
EG UK Theory and Practice of Computer Graphics (2007)

Ik Soo Lim, David Duce (Editors)

MTCut: GPU-based Marching Tetra Cuts

Eva Monclús, Isabel Navazo, Pere-Pau Vázquez

Modeling, Visualization, and Virtual Interaction Group

Universitat Politècnica de Catalunya, Barcelona

Email: emonclus@iri.upc.edu {isabel|ppau}@lsi.upc.edu

Abstract

Isosurface construction and rendering based on tetrahedral grids has been adequately implemented on pro-

grammable graphics hardware. In this paper we present MTCut: a volume cutting algorithm that is able to cut

isosurfaces obtained by a Marching Tetrahedra algorithm on volume data. It does not require a tetrahedal rep-

resentation and runs in real time for complex meshes of up to 1.8M triangles. Our algorithm takes as input the

isosurface to be cut, and produces the cut geometry in response to the user interaction with a haptic device. The

result is a watertight manifold model that can be interactively recovered back to CPU upon user request.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications I.3.4 [Com-

puter Graphics]: Graphics UtilitiesVirtual device interfaces

1. Introduction

In computer-aided medical applications, data of the interior

of the human body is obtained by systems such as Computer

Tomography or Magnetic Resonance Imaging. These sys-

tems generate volume models consisting of scalar data sets

over 3D uniform structured grids. The continuous improve-

ments in capture devices allows sampling data at higher res-

olutions, which improves precision, but leads to a larger

amount of information to be managed. Real time visualiza-

tion of massive volumetric models has been an important

challenge for many years. Recently, several approaches for

real time GPU-based volume visualization algorithms have

been proposed [EHK+06]. These are able to interactively an-

alyze complex data sets, by using transparency or identify-

ing the isosurface embedded in the volume. Some methods

also focus on analyzing such data sets by using texture-based

clipping algorithms. All these techniques have enabled the

development of computer-aided clinical diagnose applica-

tions. However, in some applications such as planning, simu-

lation, and surgical training, the rendering and manipulation

of geometric models of anatomic structures is required. With

the advent of new graphics hardware it has become possible

to generate isosurface meshes on the fly from the volume

models ([Pas04, RDS+04]).

Interactive cutting of volumetric models based on isosur-

faces is of great interest in surgical planning (such as cranio-

facial surgery [CT96]). Most of the existing algorithms rely

on the creation of a tetrahedral discretization in the volume

bound by the isosurface. Later, according to a given cut, the

topology of this tetrahedral mesh is modified (cut) and, if re-

quired, deformation computations are performed in order to

determine the new position of the elements. The complex-

ity of these operations makes it incompatible with real time

rendering requirements [FDA05]. Some recent systems de-

couple the mechanical simulation and visualization. This al-

lows modeling of fine surface detail without increasing the

computational burden on the physical simulation, thus yield-

ing a lower number of tetrahedra because they use a coarser

tetrahedrization of the volume [SHGS06].

In this paper we present an approach for real time, pro-

gressive cutting of a complex isosurface model using a hap-

tic device in a virtual reality environment without the need

to pre-compute a tetrahedrization of the volume. We fo-

cus on the modelling of interaction with rigid objects such

as the skull, represented with a manifold triangular sur-

face mesh that has been obtained from the initial regu-

lar grid by means of a Marching Tetrahedra (MT) algo-

rithm [DK91, YMDO93]. The cutting tool (blade) is repre-

sented by a segment. The cutting tool movement is tracked

(only when the device is in contact with the mesh) and the

blade path is approximated by a set of quads formed be-

tween two consecutive positions (segments) of the tool (it

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

Eva Monclús, Isabel Navazo, Pere-Pau Vázquez / MTCut: GPU-based Marching Tetra Cuts

is a piecewise-bilinear surface). This is the approximation

taken in the context of osteotomy applications such as the

LeFort I [CT96] surgical operation for example.

Our application consists of two threads: The first one

deals with the haptic device, from which it obtains a cutting

path generated through the interaction. The second uses this

cutting information in order to cut the geometry in real time

by taking advantage of modern GPU capabilities. The pro-

posed strategy for geometry cutting is based on the detection

of the cells intersected by the tool path, their on-the-fly tetra-

hedization, and the reconstruction of the triangles based on

the MT configuration of each tetrahedron after classifying

its vertices according to both the isosurface and the cutting

path. This approach has the advantages of generating a high-

quality approximation and visualization of the cut path, it

does not require any special preprocess, and guarantees the

creation of manifold watertight meshes. Moreover, we can

recover the cut manifold surface to CPU.

To sum up, the main contributions of our paper are:

• A real time, high quality algorithm for the visualization

of interactive cuts of complex isosurfaces that does not

require a tetrahedrization preprocess.

• Possibility of interactively undoing part of the cut without

a cost penalty.

• Generation of manifold watertight triangle meshes.

• Recovery of the cut meshes from GPU to CPU.

• Maximum cut error bounded by the size of a tetrahedron

in the initial regular grid.

The rest of the paper is organized as follows: Section 2 re-

views related work on model cutting and GPU-based isosur-

face extraction, Section 3 gives an overview of our system,

Section 4 gives details on the implementation, and Section 5

discusses the results of our work. Finally, Section 6 points to

some directions of future research.

2. Previous Work

Isosurface generation on the GPU has been addressed in pre-

vious papers. The presented methods are generally based

on the generation of the triangles of the surface using a

Marching Tetrahedra algorithm [DK91, YMDO93, GH95].

There are two main approaches: those who use the fragment

shader and multiple render passes to obtain the 3D geome-

try, such as in Klein et al. [KSE04] and Kipfer and Wester-

mann [KW05], and those who generate the isosurface in a

single pass in the vertex shader, such as in Pascucci [Pas04]

or Reck et al. [RDS+04]. The key difference is that vertex-

based approaches produce the corresponding geometry in a

single pass, whereas fragment-based approaches build the

geometry in fragment shaders (using the render to vertex ar-

ray facility) and therefore require a second rendering pass

that uses this information. Fragment-based approaches have

been claimed to be better due to the fact that vertex texture

fetch is often slower than fragment texture accesses, and,

moreover, some graphics cards do not even allow this kind of

access. On the other hand, with the advent of new graphics

architectures, which unify processors that do either vertex or

fragment processing in the same processor, this will not be

true anymore. Concerning the isosurface cutting, there are

two different approaches that depend on the input model: a

triangle mesh or a tetrahedrization of the interior volume of

a mesh. Zachow et al. [ZGSZ03] address computer-assisted

3D planning of arbitrarily shaped osteotomies on polygo-

nal bone models. Their objective is cutting a mesh and they

do not add the triangles of the surface of the mesh’s cut.

Therefore, they obtain open surfaces with borders. Pintilie

and McInerney [PM03] focus on interaction techniques in

order to determine the cut. Their proposal may produce wa-

tertight surfaces, but can only be extended to volume cut-

ting if the cut is shallow. Previous approaches on tetrahe-

dral mesh cutting typically use three different strategies:

a) erasing intersected tetrahedra, b) restricting the incisions

to be aligned with existing faces, and c) tetrahedra subdi-

vision into smaller ones. The first require a larger tetra-

hedrization in order to eliminate small amounts of volume

and get an acceptable visual quality [CDA00, FDA05]; the

second [SHS01] produce a low extra discretization of the

mesh, but also require dense meshes; the third approach has

the drawback that a good cut quality requires excessive sub-

division of the intersected nodes [GCMS00, BGTG04]. Re-

cently, some approaches focus in decoupling the simulation

and visualization domain [SHGS06], which allows for mod-

elling of fine surface detail without incurring an increase in

the computational cost of the physical simulation.

Our proposal does not require the initial tetrahedrization

of all the volume. Instead, the tetrahedrization of the inter-

sected cells of the grid is computed on-the-fly. In [SCM06]

the authors analyze the different tetrahedrization schemes

and the produced error in isosurface reconstruction with re-

spect to the Marching Cubes algorithm. Although we can

use any implicit subdivision, since we have high resolution

models, we have chosen a minimal conformal voxel splitting

configuration as in [ABE+03] (see Figure 2) as it trades off

between the subdivision degree and the produced error. In-

dependently of the tetrahedrization scheme, it is possible to

lose part of volume when reconstructing the interior of a cut

tetrahedron. Therefore, our modification of the topology is

closer to the first of the strategies listed above, but working

with a higher precision and a higher quality of the cut.

3. System Overview

In this Section we overview the application’s architecture

and cutting algorithm (details are left for the next section).

3.1. System Architecture

Our system has two threads: the haptic thread which deals

with the haptic device and the geometry thread, responsible

of cutting the geometry, as depicted in Figure 1.

c© The Eurographics Association 2007.

38

Eva Monclús, Isabel Navazo, Pere-Pau Vázquez / MTCut: GPU-based Marching Tetra Cuts

Figure 1: Architecture of our system.

Figure 2: Voxel split-

ting into 5 tetrahedra.

The haptic thread samples the

positions (and orientations) of the

haptic tool and builds a set of

sticks (segments) from them (with

an assumed cutting tool length).

Then, a quad mesh is built from

those, by imposing the following

conditions: only one stick is sam-

pled inside each voxel, and copla-

narity of every two consecutive

sticks. This ensures that a voxel is cut by at most two planes.

The voxels traversed by this surface are detected. The result

(cut path and intersected voxels) is stored in a struct called

cutting information that is passed to the subsequent render-

ing passes. The geometry thread executes a three step ren-

dering algorithm. First, the intersected voxels are encoded in

a texture. Then, a surface-based rendering algorithm draws

the isosurface while a shader discards the fragments that be-

long to the intersected voxels according to the information

obtained from the haptic thread. In the third step the new

geometry, that is, the one affected by the cutting surface, is

generated using our GPU MTCut algorithm (see Figure 4).

In order to obtain the tetrahedrization of the affected voxels,

we use a conformal voxel splitting configuration, shown in

Figure 2, as in [ABE+03]. When needed, the created geom-

etry is recovered to the CPU by using a rendering pass that

encodes the new geometry in a texture.

3.2. Voxels cutting

MTCut algorithm has four steps: classification, pattern cal-

culation, edge identification, and vertex generation. MT clas-

sifies vertices with respect to an isovalue. In our case, we

classify the tetrahedron vertices according to an isovalue and

the cutting mesh (see Figure 3). Once the edges are identi-

fied from the computed pattern, the vertex generation is also

carried out in a different manner, as their positions are deter-

mined not only by the isovalue but also the cutting mesh.

For each tetrahedron being cut we use the classification of

its vertices with respect to the isovalue (see Figure 3a) and

the corresponding vertex classification with respect to the

cutting surface (see Figure 3b). At voxel level, this is given

by at most two planes. We reclassify the vertices of each

tetrahedron setting values inside to those which are inside

the final isosurface. As shown in Figure 3c, if the tetrahe-

dron is cut by a single plane, points are classified as inside

if they lie inside the isosurface and in the positive half space

of the cutting plane. When we have two cutting planes, the

classification is done according to the concavity/convexity

that the cutting planes form with respect to the direction of

the cut. This allows us to calculate the new vertex position

to obtain the final triangulation of the cut (see Figure 3d).

This is done in the following way: if the edge is cut only by

the cutting plane, the vertex will be placed at the intersection

of the plane with the edge. If the edge is traversed both by

isosurface and cutting plane, we place the new vertex at the

more interior of the two (except when the edges are shared

with non cut voxels, where we keep the intersection with the

isosurface). Notice that no cracks are generated between the

newly created surface and the original isosurface. The reason

is that the classification of all the vertices shared between cut

voxels and non cut voxels is never changed. This generates

the cutting geometry of the positive side of the cutting plane.

By reversing its orientation we may reconstruct the remain-

ing cut geometry.

4. MTCut Algorithm

In this Section we detail the implementation of the different

steps of our algorithm, depicted in Figure 4.

4.1. Implementation details

The first step (Texture coding) determines the voxels that are

traversed by the cutting tool. This information is encoded in

a 2D texture. This is done in the following way: once we

know the set of voxels that are cut by our cutting surface,

we perform a first rendering pass where we render directly

to a texture that encodes the voxels to be cut. Each texel

(s, t) stores the information of the voxels whose coordinates

are (i = s, j = t,k = 0..depth), which means that the texel

value is a bitmap that codifies the state of voxels: cut voxels

take value 1 and non cut voxels take value 0. If the voxel

(i, j,k) is cut, then, at texel (s = i, t = j) the k-th bit will

be set to 1. This is depicted in Figure 5. In order to do this,

we only need to render a point for each cut voxel. We use

blending function set to GL_ADD so, if we encode each dif-

ferent depth level in the color channels, we can generate a

c© The Eurographics Association 2007.

39

Eva Monclús, Isabel Navazo, Pere-Pau Vázquez / MTCut: GPU-based Marching Tetra Cuts

(a) Isosurface (b) Cutting plane

(c) Pattern recalculation (d) Resulting cut

Figure 3: Cutting a voxel that contains isosurface by a

plane. Red vertices indicate those that are outside the isosur-

face. White vertices are inside the isosurface, and the black

ones, are the ones which were interior to the isosurface and

now are extern to the plane and therefore are reclassified.

Figure 4: Overview of MTCut: First step creates a texture

with information of cut voxels, second renders the isosur-

face by discarding the triangles inside cut voxels, and third

creates the cut geometry. Dashed lines indicate generated

information.

texture of dimensions 512× 512 and 64 depth values. Note

that, although our textures could hold up to 32 bits per color

channel, blending operations are internally computed with

only 16 bits. This reduces our available set to 64 different

depth values in total. This is large enough for most applica-

tions. For larger volume models, we can use several alter-

natives. The first one is to increase the size of the texture

we are projecting to. A size of 1024× 1024 would allow us

to encode up to 256 depth values. We can also use several

textures. This possibility is especially interesting due to the

fact that current GPUs are able to cope with several textures,

and the multiple render target facility permits writing them

in a single pass. A third possibility is to codify the color in

CPU and pass it to GPU in order to generate this texture.

Computing this texture in CPU slightly slows down framer-

ates due to texture update and transfer, as the cut is defined

interactively.

Figure 5: Texture coding: Texel

(s, t) stores the information of

voxels (i = s, j = t, k). If voxel (i,

j, k) is cut, then k-th bit of texel (s,

t) will be set to 1, else it will be 0.

The second step

(Render isosurface) is

responsible for drawing

in the final image the

isosurface that is not

affected by the cut. This

is carried out by using a

vertex buffer object that

stores the geometry of

the original isosurface

and a fragment shader

that discards the trian-

gles of the isosurface

that lie inside the cut

voxels. Note that this

is not possible at vertex

shader level because

our isosurface representation does not repeat vertices for

triangles that share the same vertex. Therefore, discarding

a vertex (that is, degenerating the corresponding triangle)

would eliminate all triangles that share that vertex, including

those placed outside the voxels pierced by the cut. Despite

that, it is important to remark that this can theoretically

be done on the so-called geometry shader step of the new

GPU architectures such as the NVidia GeForce 8800, which

would also improve performance.

The original isosurface of the model remains unmodified

throughout the whole process, as real time modification is

not possible. This is the reason for the first step. Discard-

ing triangles on the CPU is not an option because we would

need to rebuild all vertex arrays every frame or use imme-

diate mode (which slows the frame rate to half the fps we

obtain with our method). Thus, we discard the fragments

corresponding to these affected triangles on the GPU, which

can be performed in real time. This strategy has another ad-

vantage: it affords the progressive cutting of the model to-

gether with the implementation of an interactive undo oper-

ation. Furthermore, we do not have artifacts on the boundary

of the two geometries because both are generated using the

same principles of the MT algorithm. This algorithm may in-

cur in a small violation of the principle of mass conservation

(not visually detectable) in special cases of slicing surfaces.

Notwithstanding, given the actual resolution of the medical

images, we postulate that the lost mass is smaller than the

volume the blade may destroy in its real movement, and ac-

tually the upper bound is the volume of a tetrahedron.

Finally, all that remains is to create the geometry of the

c© The Eurographics Association 2007.

40

Eva Monclús, Isabel Navazo, Pere-Pau Vázquez / MTCut: GPU-based Marching Tetra Cuts

cut, which is done at the third step (Generate cut geometry).

In order to do so, we have designed a MT-based algorithm

that is executed in a vertex shader (cf. Section 3.2). It is sim-

ilar to Pascucci’s method [Pas04] in the sense that we are

also sending a quad per each tetrahedron (belonging to the

cut voxels), but we take advantage of the fact that we have a

regular voxelization, and therefore the information we need

to provide is different, as explained in Section 4.2.

The cutting vertex shader performs the following steps:

1. Calculate the coordinates of the four vertices of the tetra-

hedron given its index inside the voxel (see Section 4.2)

and the origin and dimensions of the voxels model.

2. Create the marching pattern of the current tetrahedron us-

ing the scalar data at each vertex and the classification

values of the vertices with respect to the cutting planes.

3. Generate the coordinates of the new vertex given the

computed pattern classification.

4. Compute the normal associated to the new vertex (see the

method in Section 5).

Figure 6 depicts the intermediate results of our algorithm

for a simple model of a heart traversed by a quad. Note that

we also create new geometry for all the voxels interior to

the isosurface which are affected by the cut. For the exam-

ples in this paper, we will only reconstruct the isosurface

that is located in one of the sides of the cut. Rendering both

parts does not imply an important penalty, but the resulting

images would not show the produced geometry because the

caps share the cutting mesh. Both second (Render isosur-

face) and third (Generate cut geometry) steps render onto

the same final image, therefore, the result is the combination

of both: the first one renders the surface not affected by the

cut and discards all the geometry close to the cutting mesh,

and the final step creates the new geometry.

Figure 6: Cut of a heart model. Orange triangles correspond

to the newly created geometry.

4.2. Data organization

The information required for the first two steps of our in-

teractive cutting algorithm has already been discussed. The

third step is the one that executes the actual cut. As already

stated, each voxel can be pierced by a maximum of two cut-

ting planes. We need the following information:

• Tetrahedron information: as we have a regular voxel grid,

the information concerning the vertices of a tetrahedron

can be determined by knowing in which voxel we are at

(given by a triplet (i, j,k)) and the number of the tetrahe-

dron: an integer value in the range [0..4].
• Vertex index in the quad: an integer value in [0..3].
• Cutting planes: they can be stored using 8 float values,

represented by the signed distance of the vertices of the

tetrahedron to the planes.

• Classification of each vertex with respect to the isosur-

face, encoded in one float value per vertex.

Since the set of cut voxels changes dynamically at each

render step as the user moves the cutting tool, we use

OpenGL immediate mode to pass this information to the

GPU. Therefore, it will be important to reduce as much as

possible the amount of information passed for each primitive

(GL_QUAD). We will use the following vertex attributes:

• Position: 4 float values.

• Color: 4 float values.

• Texture coordinates: 4 float values.

• Normal: 3 float values.

Vertex attribute Information contents

glVertex4f Signed distances to isosurface

glMultiTexCoord4f Signed distances to first plane

glNormal Signed distances to plane 2

(fourth component in glColor)

glColor4f Voxel coordinates, tetra index,

vertex id, and distance to plane 2

Figure 7: Data encoding for the third rendering pass.

Unfortunately, the information we need to encode

amounts a total of 17 values (5 per vertex, 8 plane coordi-

nates and 4 values for the pattern configuration), and we have

only 15 variables to store. We can rearrange the information

in order to fit into this space. The information arrangement

is shown in Figure 7. We take advantage of the fact that the

voxel information consists of integer values and so the num-

ber of available bits is larger than we need. First, we store

the classification of the vertex into the glVertex coordinates

(x,y,z,w). Then, we encode the information of the tetrahe-

dron and the current vertex in the color components (r,g,b).
Red and green channels hold the i and j components of the

voxel, while the blue channel encodes the k component to-

gether with the number of the tetrahedron and the vertex

number of the associated quad. This is possible due to the

fact that all these values are integers and relatively small,

thus we can set blue to k ∗16+ tetra∗4+ vertex. The alpha

channel will be used for the second plane information. The

first plane is encoded by storing the distances of each ver-

tex to the plane in glMultiTexCoord coordinates. Finally, the

c© The Eurographics Association 2007.

41

Eva Monclús, Isabel Navazo, Pere-Pau Vázquez / MTCut: GPU-based Marching Tetra Cuts

second plane is encoded in glNormal values plus the remain-

ing alpha channel of the color values. With this information

we can determine the rest of the data necessary to perform

the cut in a vertex shader. Note that in the third step we also

send the 3D texture of the volume model in order to calculate

the illumination in the fragment shader, as explained later.

4.3. Geometry recovery

So far, the presented algorithm is able to generate, in a

frame-based fashion, the new geometry that represents the

surface of the cut. Nevertheless, we have also developed an

algorithm for the recovery of this newly created geometry by

exploiting the capabilities of modern GPUs.

The main idea is to build a pair of textures where each

texel represents the position (in the first texture) and the

normal (in the second) of a vertex. The texels will be gen-

erated sequentially from the input information. In order to

do so, instead of rendering quads, we issue a point (with

the GL_POINTS primitive) per vertex. We will also pass to

the vertex shader the texel position. The rest of the work

is straightforward: the vertex shader will compute the actual

position and pass it to the fragment shader and this will write

both position and normal in two auxiliary buffers. Further-

more, it also detects if the generated geometry is a triangle

or a quad and flags it in the alpha channel so the recovery

process at the CPU is simplified. This process can be carried

out quite fast in a modern GPU. The cost depends on the

size of the texture to be captured back to the CPU, which de-

pends on the number of traversed voxels. Our experiments

show that textures of up to 512× 512 can be read back to

main memory and processed in order to obtain the encoded

geometry in 100 to 120 ms. Once the new geometry has been

recovered to CPU, we can fuse it with the current isosurface

(by substituting the triangles in the cut voxels by the new

triangles and updating the neighborhood relations). Then, a

flooding algorithm may detect the present shells in the re-

sulting geometry, which allows to separate the models.

5. Results

In Figure 8a we can see an example of a cut in the jaw model

extracted from a volume model of 512×512×40. The cor-

rect matching between new and original geometry may be

visually inferred from the continuity of shading (Figure8a

bottom center). This is also illustrated if the new geometry

is shown, as it can be appreciated in Figure 9, where a close-

up of of a cut of the heart model (64× 64× 22 voxels) is

shown in wireframe for comparison purposes.

In order to obtain a good illumination quality, in all the

examples we use a Phong fragment shader implementation.

This requires the computation of a normal per pixel, which

we do in three different ways:

• For the triangles of the initial isosurface, we interpolate

the normals at their vertices (calculated using the gradient

formulation).

• For new triangles of the cut that belong to tetrahedra that

contain isosurface, we approximate the normal from the

gradient at this point using the volume information stored

in the 3D texture. This is performed in the fragment shader

because 3D texture access at vertex shader level is ex-

tremely slow.

• For new triangles that belong to tetrahedra that only con-

tain cutting planes (they are interior to the isosurface), we

calculate the average of the normal of the cutting planes

(computed using the distance of the vertex’s tetrahedron

to the plane as in [ABE+03]). This has to be done in the

vertex shader.

We have tested our algorithm in a P-IV PC equipped with

1Gb of RAM memory and a GeForce 6800 Ultra graphics

card with 256Mb of memory. Our haptic device is a Haptic-

MASTER from FCS. Table 1 shows the results obtained with

different models, namely: the heart model, the jaw (with two

different resolutions), the hip, and the head (see Figure 8b

and c). For all of them, different cuts have been performed,

the number of voxels pierced by the cuts is shown in the

fourth column. The remaining columns show the framerates

obtained by: using Phong shading rendering of the isosur-

face (sixth column), executing the first and second steps of

our algorithm (texture creation and isosurface rendering with

collapsation of the affected voxels), and finally, the last col-

umn shows the framerates of the overall process. Note that,

as expected, our algorithm is sensitive to the number of vox-

els traversed by the cutting geometry. This can be used to

recover geometry when part of the cut is considered to be

stable, which will lead us to framerates equivalent to those of

the sixth column. It is important to remark that the number

of triangles we originate is linear with the cutting surface,

and, in this sense, it is not higher than the ones that would be

generated by a MT of the cut surface. Some videos can be

seen in www.lsi.upc.edu/∼moving/MTCut.xml

It is not possible to perform the whole process (complete

GPU-based isosurface generation and isosurface cutting) at

the same frame rates. We have implemented the algorithm

by Pascucci [Pas04] and only the generation of the isosur-

face with a model like the jaw yields only 7 fps for the mid-

dle model (256×256×40) and approximately 3 fps for the

complete model (512×512×40).

6. Conclusions and Future Work

We have presented an interactive cutting algorithm that per-

forms cuts on volume models. Our rendering method com-

bines the information of a previously built isosurface and in-

teractively created cut surface from the volume model, cre-

ating a manifold watertight surface. In the future we want

to work on improving the framerates by using the new GPU

architectures. Furthermore, we want to add force feedback

to the haptic interaction (currently, the haptic tool is only

c© The Eurographics Association 2007.

42

Eva Monclús, Isabel Navazo, Pere-Pau Vázquez / MTCut: GPU-based Marching Tetra Cuts

(a) A cut performed in the jaw model. Top left shows the original model and bottom left the cut model. We can see the

generated geometry in the top middle image and, at its bottom, a close-up of the cut region that shows the continuity in

shading when using the same color. The right column shows the jaw separated in two different shells.

(b) Hip model cutting (c) Skull cut

Figure 8: Several snapshots of the interactive cutting process. The first two rows show the cutting of the jaw model. The last

row shows a hip and a skull cutting.

used as an input device). We also want to enhance the visu-

alization in order to help the surgeon visualize the volume

information interior to the isosurface, as this reveals noble

structures (vessels, nerves. . .), that should not be cut.

Acknowledgments

The authors thank Iban Lozano and Héctor Yela for their

help with some parts of the implementation. Work supported

by TIN2004-08065-C02-01 of Spanish Government.

References

[ABE+03] C. Andujar, P. Brunet, J. Esteve, E. Monclús,

I. Navazo, and A. Vinacua. Robust recovery for hybrid

surfaces visualization. In 8th International Fall Workshop

on Vision, Modeling, and Visualization, VMV’03, pages

215–222, Munich, Germany, 2003. 2, 3, 6

[BGTG04] D. Bielser, P. Glardon, M. Teschner, and

M. Gross. A state machine for real-time cutting of tetra-

hedral meshes. Journal of Graphical Models, 66(6):398–

417, 2004. 2

[CDA00] S. Cotin, H. Delingette, and N. Ayache. A hy-

c© The Eurographics Association 2007.

43

Eva Monclús, Isabel Navazo, Pere-Pau Vázquez / MTCut: GPU-based Marching Tetra Cuts

Model Dimensions Triangles Intersected voxels fps original Steps 1 and 2 Steps 1 to 3

Heart 64×64×22 5956 182/251 125 125 125/125

Jaw 256×256×40 549942 550/3495 100 69 62/40

Jaw 512×512×40 1851016 419/3638/11716 40 30 30/23/15

Hip 512×512×100 1184544 132/598/1401/4116 64 45 44/43/39/29

Head 256×256×196 1428084 171/744/1641 46 31 32/30/28

Table 1: Timings of different models. Columns 1 to 3 show the model and the resolution, The next column shows the number

of intersected voxels in different cuts, and the following columns the framerates obtained. “fps original” shows the results of

isosurface rendering, without any cut. Column “Steps 1 and 2” shows the results of the first two steps of our algorithm: texture

creation and voxels collapsing. Finally, the last column shows the fps of the whole algorithm.

Figure 9: A zoom-in of the heart model, note the continuity

between original (top) and new (bottom) geometry.

brid elastic model allowing real-time cutting, deforma-

tions and force-feedback for surgery training and simu-

lation. The Visual Computer, 16(8):437–452, 2000. 2

[CT96] Bookstein, F. L. Cutting, C. B. and Taylor, R. H.

Applications of simulation, morphometrics, and robotics

in craniofacial surgery. pages 641–662. 1996. 1, 2

[DK91] A. Doi and A. Koide. An efficient method of tri-

angulating equi-valued surfaces by using tetrahedral cells.

IEICE Transactions, 74(1):214–224, 1991. 1, 2

[EHK+06] K. Engel, M. Hadwiger, J.M. Kniss, Ch. Rezk-

Salama, and D. Weiskopf. Real-Time Volume Graphics.

A. K. Peters, Ltd., 2006. 1

[FDA05] C. Forest, H. Delingette, , and N. Ayache. Re-

moving tetrahedra from manifold tetrahedralisation : ap-

plication to real-time surgical simulation. Medical Image

Analysis, 9(2):113–122, 2005. 1, 2

[GCMS00] F. Ganovelli, P. Cignoni, C. Montani, and

R. Scopigno. A multiresolution model for soft objects

supporting interactive cuts and lacerations. Computer

Graphics Forum (EG 00), 19(3):271–282, 2000. 2

[GH95] A. Guéziec and R. Hummel. Exploiting triangu-

lated surface extraction using tetrahedral decomposition.

IEEE Trans. on Visualization and Computer Graphics,

1(4):328–342, 1995. 2

[KSE04] T. Klein, S. Stegmaier, and T. Ertl. Hardware-

accelerated Reconstruction of Polygonal Isosurface Rep-

resentations on Unstructured Grids. In Proceedings of Pa-

cific Graphics ’04, pages 186–195, 2004. 2

[KW05] P. Kipfer and R. Westermann. GPU construction

and transparent rendering of iso-surfaces. In Proc. Vision,

Modeling and Visualization, pages 241–248. IOS Press,

infix, 2005. 2

[Pas04] V. Pascucci. Isosurface computation made simple.

In VisSym, pages 293–300, 2004. 1, 2, 5, 6

[PM03] G. Pintilie and T. McInerney. Interactive cut-

ting of the skull for craniofacial surgical planning. In

IASTED International Conference Biomedical Engineer-

ing (BioMed2003). Acta Press, 2003. 2

[RDS+04] F. Reck, C. Dachsbacher, M. Stamminger,

G. Greiner, and R. Grosso. Realtime isosurface extrac-

tion with graphics hardware. In M. Alexa and E. Galin,

editors, Eurographics Short Papers, pages 33–36. Black-

well Publishers, 2004. 1, 2

[SCM06] J. Snoeyink, H. Carr, and T. Moller. Artifacts

caused by simplicial subdivision. IEEE Transactions

on Visualization and Computer Graphics, 12(2):231–242,

2006. 2

[SHGS06] D. Steinemann, M. Harders, M. Gross, and

G. Szekely. Hybrid cutting of deformable solids. In Proc.

of IEEE Conference on Virtual Reality 2006). IEEE, 2006.

1, 2

[SHS01] D. Serby, M. Harders, and G. Szekely. A new

approach to cutting into finite element models. In Proc. of

Int. Conf. on Medical Image, pages 425–433, 2001. 2

[YMDO93] R. Yoshida, T. Miyazawa, A. Doi, and T. Ot-

suki. Clinical planning support system-clipss. IEEE Com-

put. Graph. Appl., 13(6):76–84, 1993. 1, 2

[ZGSZ03] S. Zachow, E. Gladilin, R. Sader, and H.-F.

Zeilhofer. Draw and cut: intuitive 3d osteotomy plan-

ning on polygonal bone models. In CARS, pages 362–369,

2003. 2

c© The Eurographics Association 2007.

44

