
Eurographics Italian Chapter Conference (2010)
E. Puppo, A. Brogni, and L. De Floriani (Editors)

Adaptive quad mesh simplification

A. Bozzo1 and D. Panozzo1 and E. Puppo1 and N. Pietroni2 and L. Rocca1

1Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova, Italy
2Visual Computing Group - ISTI-CNR, Pisa, Italy

Abstract
We present an improved algorithm for the progressive simplification of quad meshes, which adapts the resolution
of the mesh to details of the modeled shape. We extend previous work [TPC∗10], by simplifying the approach and
combining it with the concept of Fitmaps introduced in [PPT∗10]. The new algorithm has several advantages: it is
simpler and more robust; it does not need a parametrization of the input shape; it is adaptive; and it preserves pro-
jectability of the output mesh to the input shape, thus supporting displacement mapping. We present experimental
results on a variety of datasets, showing relevant improvement over previous results under several aspects.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Surface representations

1. Introduction

Quad meshes, i.e. meshes composed entirely of quadrilat-
erals, are becoming more and more popular in computer
graphics and geometric modeling, because of their high im-
pact in a variety of applications. In recent years, several
methods have been proposed for the simplification of quad
meshes, i.e., the task of producing a low complexity mesh
M′ out of a high complexity one M (see Section 2). Com-
pared to the case of triangle meshes, simplification of quad
meshes poses extra challenges, because connectivity is more
constrained, and also quads are less adaptive than triangles.
The main goal addressed by most methods is to obtain a
mesh with good quality, i.e., having almost flat and square
faces, and most vertices with regular valence four. On the
other hand, quality of approximation and adaptiveness are
usually addressed only indirectly.

In this paper, we extend the method proposed in [TPC∗10]
to explicitly take into account adaptiveness and quality of ap-
proximation, while also improving performance and results
in terms of mesh quality. Our algorithm, like the previous
one, generates a mesh made of convex, almost right-angled,
flat quads; it does this by progressively simplifying an initial
quad mesh at high resolution, through the combined effect of
local operations that modify mesh connectivity, and smooth-
ing operations that improve the geometry of quads. Depend-
ing on needs, our algorithm can be used to obtain either a
mesh with equally sided quads and a uniform distribution of

vertices, as in [TPC∗10], or an adaptive mesh in which res-
olution of elements is distributed according to details of the
modeled shape.

The basic technique is modified in several aspects: we
adopt a smaller and better controllable set of local operators;
we change the criteria to trigger such operators; we adopt
a simpler and more efficient method for mesh smoothing,
which does not require a parametrization of the input mesh.
These changes alone provide a simpler and more robust al-
gorithm, which achieves much better results in terms of qual-
ity of the output mesh, by addressing the same goals as the
original method.

Next, we further extend the method, to explicitly address
accuracy and adaptivity, by incorporating Fitmaps, which
were introduced in [PPT∗10]. Fitmaps are a pair of scalar
fields defined on the input shape and computed during pre-
processing, which estimate locally how well a portion of
shape can be approximated with a bilinear patch. Such fields
work as a guidance to select operations during the simplifi-
cation process: they allow us to adapt the output tessellation
to details of the input, to evenly distribute the approxima-
tion error, and to preserve projectability, i.e., the possibility
to map the output surface to the input by normal projection,
thus supporting displacement mapping.

Our algorithm has been experimented on a variety of
datasets. We provide visual as well as numerical compar-

c© The Eurographics Association 2010.

DOI: 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2010/095-102

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2010/095-102

A. Bozzo, D. Panozzo, E. Puppo, N. Pietroni, L. Rocca / Quad simplification

isons that demonstrate significantly better results with re-
spect to the previous algorithm.

2. Related work

Compared to the more consolidated problem of simplify-
ing triangle meshes [LRC∗02], quad mesh simplification is
harder, and algorithms supporting this task have been devel-
oped only recently. In triangle mesh simplification, the main
objective is to obtain a mesh with a reduced number of faces
that approximates well the input shape. In quad mesh sim-
plification, the main challenge is to obtain a mesh that max-
imizes regularity in terms of both connectivity (valence of
vertices) and geometry (shape of elements), while quality of
approximation is usually addressed only as a side issue.

Quest for regularity has often leaded to global meth-
ods that are inherently not adaptive and not progressive.
Remeshing algorithms, for instance, build a completely new
mesh, not necessarily at lower complexity, which represents
the input shape well and has a superior quality [BZK09,
DBG∗06, HZM∗08, KNP07, RLL∗06]. The main objective
of remeshing is a mesh made of square faces of uniform size
and with a nearly regular connectivity. An additional objec-
tive may be alignment of elements to either feature lines, or
curvature, or a cross field defined on the surface.

The progressive and local approach typical of most algo-
rithms for triangle meshes cannot be adapted to quad simpli-
fication easily. Collapse of a quad diagonal is recognized as
a valid operation to simplify the mesh locally while preserv-
ing quad structure, but a simplification algorithms cannot be
based just on it, because it tends to severely corrupt the shape
of surviving elements and to destroy regular connectivity.
Early algorithms for progressive mesh simplification com-
bine diagonal collapse with operations that affect larger ar-
eas, such as poly-chord collapse [DSSC08,SDW∗09]. How-
ever, global operations have several drawbacks: their all-
or-nothing nature makes them a clumsy tool to maximize
any sought objective; they are not suitable for selective re-
finement; and they are difficult to apply in an out-of-core
context. More recent methods rely just on local operations:
in [DSC09] poly-chord collapses are split into smaller inde-
pendent sub-steps; while in [TPC∗10] six strictly local prim-
itive operations are used. Our algorithm uses just four out of
those six operations.

For objects with details at different scales, such as natu-
ral shapes acquired through range scanning, the contrasting
objectives of having a good fit and a coarse control mesh
can be achieved only if the mesh is adaptive. Adaptivity and
regularity are highly contrasting objectives: transition from
coarse to fine patches requires introducing some irregular
vertices, or warping the shape of some quads, or both. In
[TPC∗10] a method is proposed to obtain an adaptive mesh
by naturally blending such two objectives, but this requires
a scalar field to be user-defined on the input mesh, which

describes the importance of different parts of the mesh. In
this paper, we automatize such an approach by incorporat-
ing Fitmaps proposed in [PPT∗10] (see Section 3.3).

3. The algorithm

As already mentioned in the introduction, our algorithm
modifies the technique originally proposed in [TPC∗10], and
extends it to an adaptive technique by using Fitmaps from
[PPT∗10]. In Subsection 3.1 we describe the outline of the
original method; in Subsection 3.2 we describe our modifi-
cations to the non-adaptive (homeometric) case; and in Sub-
section 3.3 we describe Fitmaps as well as their use to obtain
the adaptive algorithm.

3.1. The original method

The algorithm described in [TPC∗10] progressively simpli-
fies an initial quad mesh by applying local operators. Three
classes of operators are defined: two coarsening operators -
diagonal collapse and edge collapse - that reduce the num-
ber of elements in the mesh; two optimizing operators - edge
rotate and vertex rotate - that improve mesh quality; and two
cleaning operations - doublet removal and singlet removal
- that remove degenerate configurations. Such operators are
interleaved with tangential smoothing that displaces vertices
on the surface while maintaining the overall shape of the ob-
ject, in order to improve the geometry of faces.

Given a quad mesh M0 at high resolution (which may be
generated from a triangle mesh, with a conversion algorithm
also presented in [TPC∗10]), the simplification algorithm
has the following general outline:

1. Iteratively process mesh Mi to produce mesh Mi+1 until
user-defined criterion is met. At each cycle:

a. for a fixed number of times:

i. perform any profitable local optimizing operation,
until none is available, then clean degeneracies

ii. select and perform a local coarsening operation
and clean degeneracies

b. smooth the mesh just in those zones affected by local
operations

2. Perform global smoothing of mesh Mn.

The sought objective is to generate a mesh with faces
as squared as possible and as uniform as possible in their
size: such a condition is called homeometry. The variance of
lengths of edges and diagonals measures how far a mesh is
from being homeometric.

Collapse operations applied during Step 1.a.ii simplify the
mesh. The shortest element (either a diagonal or an edge) is
selected at each step for collapse. The other operations are
aimed, on one hand, at improving mesh quality in terms of
shape (Step 1.a.i) and sample distribution (Step 1.b) and, on

c© The Eurographics Association 2010.

96

A. Bozzo, D. Panozzo, E. Puppo, N. Pietroni, L. Rocca / Quad simplification

the other hand, at driving the selection of best coarsening
operations to be performed next.

The stop criterion is user-defined and it is usually related
to the size of the output.

3.2. Basic simplification

In its basic version, our algorithm pursues the same objective
of the original algorithm, i.e., homeometry, by recombining
similar ingredients. The outline of the algorithm differs from
the original one, as follows:

• Iteratively process mesh Mi to produce mesh Mi+1 until
user-defined criterion is met. At each cycle:

1. select and perform a diagonal collapse (and related
cleaning operations);

2. perform any profitable edge rotation (and related
cleaning operations) in the portion of mesh affected by
collapse;

3. smooth the mesh just in the 1-ring of the zone affected
by previous operations;

This outline essentially introduces a finer level of granu-
larity in the simplification loop: during each cycle just one
local coarsening operation is executed, then the mesh is ad-
justed only locally with optimization and cleaning opera-
tions and with smoothing. Additionally, the global smooth-
ing at the end of the simplification process is not required
anymore.

Local operations. Just one type of coarsening operation,
i.e., diagonal collapse is used in Step 1 (see Figure 1 left).
This operation eliminates a quad q, two edges and a ver-
tex, by collapsing one diagonal of q. As in the original algo-
rithm, we maintain a heap of potential collapses, prioritized
according to least cost, which is kept up-to-date throughout
the simplification process. In the basic case, the shortest di-
agonal is collapsed at each step. The position of vertex v
resulting from collapsing a diagonal d is initialized to the
midpoint of d, then v is displaced by re-projecting it onto the
surface of M0. Vertex projection is supported from a spatial
index, which is built on M0 during initialization, and sup-
ports efficient ray casting. Given the position of v, together
with the surface normal nv at v estimated on mesh Mi at the
initial position of v, we find the closest point p on M0 that is
hit by a ray cast from v along direction nv, and we displace
v to p.

Just one type of optimization operation, i.e., edge rotation
is used in Step 2 (see Figure 1 right). This operation substi-
tutes an existing edge e with one of the other two diagonals
of the hexagon formed by the two quads incident at e. Edge
rotations have also the side effect of modifying lengths of di-
agonals, effectively driving the selection of local operations
to be performed next.

After performing a diagonal collapse, we consider all

faces in the 1-ring of the collapsed element and we test their
edges for potential rotations. The criterion for triggering a
swap operation is completely different from the one used in
the original algorithm: it aims at improving the regularity
of mesh connectivity, rather than squareness of faces. Given
an edge e, let v1, . . . ,v6 be the vertices bounding the pair of
faces incident at e. We measure the valence D(vi) of each
such vertex and we set an energy ∑

6
i=1 |D(vi)−4|. We rotate

e if and only if such an operation decreases this energy. In
this way, we tend to increase the number of regular vertices
of Mi+1.

Cleaning operations are the same ones as in the original
algorithm, i.e., doublet removal and singlet removal (see Fig-
ure 1 center). Collapse and swap operations may generate
doublets, i.e., configurations where two adjacent quads share
two consecutive edges, which join at a vertex with valence
two. Doublet-removal is applied to eliminate a doublet as
soon as it appears, by simply merging the two quads. A dou-
blet removal may generate other doublets, which are elimi-
nated recursively, and, in rare cases, a singlet, i.e., a configu-
ration in which a face has two consecutive edges coincident,
resulting in a vertex of valence one. A singlet is also elimi-
nated as soon as it appears, by removing the degenerate quad
and joining its two adjacent quads at a common edge.

Tangent space smoothing. This operation consists in mov-
ing vertices so that they never leave the surface of the mesh,
increasing the overall homeometry at the same time. For a
better match between the simplified model and the original
mesh M0, vertices are kept on M0, rather than on current
mesh Mi.

Smoothing is performed through a relaxation process and
it has two main purposes: it directly improves mesh quality
and it helps selecting the best candidate operation to perform
next. Relaxation is always applied locally on the zone af-
fected by previous operations (Step 3). Each vertex involved
in relaxation is subject to forces of a system of springs. The
rest position of each spring coincides with the ideal length
of its associated edge, or diagonal, which corresponds to the
average length µ of edges of Mi, or to

√
2µ, respectively, for

a fully homeometric mesh.

In the original algorithm, mesh parametrization was used
and relaxation was performed in parametric space. Such
an approach is rather accurate, but it involves computing a
parametrization of mesh M0, i.e., resolving a problem pos-
sibly harder than mesh simplification. We resort to a much
simpler approach, which exploits the spatial index already
used for vertex projection during diagonal collapse, and
turns out to be equally effective. Each vertex is relaxed inde-
pendently, by moving it first to the rest position of its system
of springs in 3D. Relaxation in 3D is straightforward to com-
pute, but, in general, it moves a vertex v out from the surface
of M0, so we re-project v onto the original surface M0.

c© The Eurographics Association 2010.

97

A. Bozzo, D. Panozzo, E. Puppo, N. Pietroni, L. Rocca / Quad simplification

Figure 1: The set of local operations used during the simplification.

3.3. Adaptive simplification

The adaptive version of the algorithm is obtained by relaxing
homeometry, in favor of a criterion that tends to uniformly
distribute approximation error. Classical progressive meth-
ods for triangle mesh simplification schedule local opera-
tions by applying, at each cycle, the operation that causes the
least increase of error. This approach, however, is computa-
tionally expensive, since it involves simulating the effect of
all possible operations before performing them, and it can-
not be extended easily to quad mesh simplification, while
also preserving requirements on mesh regularity.

Following [PPT∗10], we adopt a rather different ap-
proach. We use a guidance field, which is computed on the
input mesh during pre-processing, to drive the selection of
operations. This field provides an estimate on the density of
vertices, for each portion of surface, which is required to
distribute error evenly. Another guidance field, which is also
computed during pre-processing, helps to avoid warping the
mesh too much, thus preserving projectability, an important
property that is crucial to preserve the possibility of apply-
ing displacement mapping to reconstruct the surface at an
arbitrarily good level of detail during rendering.

Fitmaps. Generic Fitmaps have been introduced
in [PPT∗10], and they have been used in the specific
case of surfaces made of bicubic patches. Here, we describe
Fitmpas for the simpler case of bilinear patches.

A Fitmap consists of a pair of values for each point p of a
surface: the S-fitmap FS and the M-fitmap FM . The S-fitmap
(“Scale” fitmap) estimates, at each point p, how the error of
fitting a bilinear patch to a neighborhood of p increases with
radius of the neighborhood. The M-fitmap (“Maximal ra-
dius” fitmap) estimates how much a face can extend around
each point p before correct projection of the face to the input
shape through normal displacement becomes impossible.

The Fitmap of mesh M0 can be interpreted as a prescrip-
tion on the patches of an ideal approximation M̃:

• The local radius of each face of M̃ should be inversely
proportional to the value of the S-fitmap computed at its
central point;

• No face of M̃ should have a radius larger than the value of
the M-fitmap computed at its central point.

The first condition aims at distributing error evenly over
M̃, thus improving accuracy for a given number of patches.
The second condition aims at preserving projectability, but it
also prevents surface inconsistencies that might be caused by
excessive warping (e.g., squeezing thin or elongated parts).
The two channels of the fitmap for the Rampart model, to-
gether with a simplified mesh built based on it by our method
are depicted in Figure 2. Note that a fitmap is a property of
the input only, which does not depend on the sought mesh
M̃; on the other hand, a fitmap does not provide guarantees
on the true approximation error and projectability of M̃, but
rather a heuristic estimate of such values.

We compute the fitmap at vertices of M0 and we extend
it by linear interpolation to all points of M0. For each vertex
p of M0, we consider neighborhoods of p of increasing radii
r0, . . . ,rh. In all our experiments, we use h = 8, we set r0
equal to the average length of edges of M0, rh equal to 1/4 the
length of the diagonal of the bounding box, and we distribute
the other radii on an exponential scale.

For estimating the S-fitmap, we fit linear functions to each
neighborhood of p and we record each fitting error E(ri).
Linear functions serve here as an easy and conservative sur-
rogate to the more general bilinear patches that constitute
our output mesh M̃. The sequence of E(ri) values provides
an estimate of how the fitting error grows in the neighbor-
hood of p.

Next, we compress information provided by these values
into a single scalar value. Since we are fitting linear patches,

c© The Eurographics Association 2010.

98

A. Bozzo, D. Panozzo, E. Puppo, N. Pietroni, L. Rocca / Quad simplification

(a) (b) (c) (d)

Figure 2: From left to right: the Rampart dataset simplified wthout using fitmaps (a), the S-fitmap (b), the M-fitmap (c) and
another version of the Rampart dataset simplified adaptively with the fitmaps (d).

we expect error to increase with the quadric power of radius
r, thus we model it with a simple function E(r) = ar2. Hav-
ing collected h measurements of errors at different radii ri,
we fit such function to these values and we recover parame-
ter a.

We set the value for the S-fitmap FS(p) to
√

a so that we
obtain a function that increases linearly with the radius. In
this way, if two patches centered in p0, p1 have radii r0 and
r1, respectively, they contribute approximatively the same
error E′ if the values of r0 ·FS(p0) and r1 ·FS(p1) are equal.

The M-fitmap FM is built together with the S-fitmap. For a
given neighborhood of radius ri, let Pi be the linear function
fitted to data. Function Pi defines a plane, let ni be its surface
normal, oriented outwards from the surface. We compute the
scalar product between ni and the normal of each triangle of
M0 spanned by the given neighborhood, and we consider a
face to be oriented consistently with Pi if such a value is pos-
itive. The value of FM(p) is set to the largest tested radius at
which the portion of neighborhood covered by inconsistent
faces is smaller than a “tolerance” threshold τ. Parameter τ

can be user-defined, depending on the amount of high fre-
quency noise expected in the input mesh, or on the amount
of 3D high frequency detail that could be ignored, to avoid
an excessive fragmentation of patches. All figures and ex-
periments in this paper use τ = 5%.

Simplification based on Fitmaps. Incorporating Fitmaps
into the simplification framework is very simple. The S-
fitmap is used to weight the length of diagonals to be sched-
uled for possible collapse. Priority of a diagonal d in the
heap is set to

|d| ·FS(φ(c)),

where |d| denotes the length of d, c is the center of the face
containing d, and φ(c) is its projection to M0; projection φ

is computed along the normal direction of the face contain-

ing d, by means of the spatial index that is also used during
diagonal collapse and tangential smoothing.

The M-fitmap is used to try avoiding collapses that hinder
projectability. Given a potential collapse, we evaluate the M-
fitmap at the center of surrounding faces that the collapse
would extend, and we perform the collapse only if, at each
such face, the M-fitmap is smaller than the radius of the face,
measured as the maximal distance between its center and one
of its corners.

The M-fitmap can be also used to set an automatic halt-
ing condition for the simplification loop, instead of a user-
defined criterion. In this case, simplification is halted when
no feasible collapses remain.

Implementation. The simplification algorithm has been
implemented in C++ as a plugin for Meshlab [CCR08]. It
will be released in the official Meshlab distribution soon.
The plugin allows to start from a triangle mesh and to con-
vert it to a pure quad mesh using the algorithm of [TPC∗10].
Two simplification modes are available: the non-adaptive
simplification, that halts when a user-defined number of
faces is reached, and the adaptive simplification, which does
not require any parameter.

4. Experiments

The proposed method was tested on several datasets coming
from range scanning. Results are shown in Figure 5. All ex-
periments have been performed on an Intel i5 2.5 Ghz 4.00
GB, using a single core.

In this section, all tables report the computation times re-
quired for simplifying the initial dataset, the vertex valency
(max valence and % of regular vertices), the homeometry
as in [TPC∗10] (min and max, both normalized with ideal
length µ) and the Hausdorff distance (computed with Mesh-
Lab [CCR08]), with respect to bounding box diagonal.

c© The Eurographics Association 2010.

99

A. Bozzo, D. Panozzo, E. Puppo, N. Pietroni, L. Rocca / Quad simplification

Time val reg Homeometry Dist
f aces (s) max (%) min max 10−3

ideal values: — — — 1 1 0
Moai 8.2K 13.38 6 - 9 71 - 44 0.34 1.87 0.4
(25k) 3.3K 4.16 5 - 6 71 - 64 0.53 1.77 0.5

0.6K 2.31 5 - 6 72 - 62 0.59 1.71 3.0
Pensatore 15K 33.97 6 - 8 71 - 48 0.43 1.82 0.6

(48k) 10K 5.31 5 - 7 71 - 61 0.43 1.79 0.8
5K 5.23 5 - 7 72 - 57 0.55 1.76 1.3
2K 3.11 5 - 6 72 - 68 0.44 1.85 2.4
1K 1.02 5 - 7 72 - 64 0.44 1.67 3.7

Gargoyle 11K 15.01 7 - 7 70 - 61 0.44 2.84 0.8
(24k) 4K 8.05 5 - 7 73 - 57 0.54 1.76 1.8

2K 2.31 5 - 7 72 - 54 0.58 1.81 3.1
Bunny 11K 11.41 8 - 7 75 - 69 0.48 2.64 0.3
(22k) 5K 6.43 5 - 7 72 - 68 0.44 1.89 0.7

3K 2.16 5 - 6 72 - 61 0.58 1.76 1.2
Fertility 22K 6.39 7 - 6 73 - 63 0.39 2.13 0.1

(28k) 5K 18.53 5 - 6 72 - 67 0.51 1.88 0.7
3.3K 1.98 5 - 7 72 - 71 0.54 1.75 1.0
2K 1.50 5 - 6 72 - 67 0.57 1.69 1.6

Rampart 20K 23.91 7 - 7 68 - 75 0.23 10.49 0.4
(38k) 10K 13.01 7 - 7 71 - 62 0.52 7.45 0.7

Table 1: Comparisons with Practical Quad Mesh Simpli-
fication [TPC∗10]. Columns val and reg reports both our
values (on the left) and values from previous work (on the
right).

Comparison with practical quad mesh simplification. In
Table 1 we show the results of our algorithm on the same
test cases of Table 1 of [TPC∗10]. The same datasets have
been used and the simplification has been stopped at the
same number of faces. Simplification times are comparable
with the original algorithm, but our method does not require
computing a parametrization for the tangent space smooth-
ing phase. Meshes produced by the proposed algorithm con-
tain about 20% less extraordinary vertices than the original
algorithm and they often have a maximum vertex valence of
5. This is due to the new criterion used for edge rotation that
strives to produce regular vertices whenever possible. The
homeometry is similar with both methods: this is interest-
ing since, in the proposed algorithm, neither the edge rota-
tions nor the smoothing phase explicitly optimize homeom-
etry. Still, the results are comparable, and sometimes even
better, than [TPC∗10], meaning that our criteria indirectly
optimize homeometry.

Adaptive simplification. Statistics of our adaptive simpli-
fication algorithm are shown in Table 2. Figure 3 shows that
with an adaptive mesh it is possible to better preserve fea-
tures than with a uniform mesh with the same budget of
quads. Small quads are placed on the fingers, ears, nose and
tail of the armadillo to better preserve the shape. Big quads
are used to cover the legs and torso, because they are suffi-
cient to approximate almost flat regions of the armadillo.

In this case, the simplification is completely automatic
and the stopping criterion is provided by the M-fitmap. As it
can be seen from Figures 3 and 5, the simplification is very
adaptive: the difference in the area of patches varies signif-
icantly as the it proceeds (see Figure 4), producing a good

(a) (b)

Figure 3: Two simplified versions of the Armadillo dataset
with the same number of faces. (a) is made of equally sided
quads. (b) is an adaptive mesh that shows that even with a
small number of faces it is possible to preserve small features
as the fingers of the armadillo.

Time val reg Homeometry Dist
f aces (s) max (%) min max 10−3

ideal values: — — — 1 1 0
Moai 94 23.97 5 70 0.39 1.73 14.52

Pensatore 116 75.08 6 68 0.12 2.32 16.29
Gargoyle 1.5k 38.46 6 69 0.17 3.60 4.21

Bunny 681 33.64 6 69 0.17 4.27 8.71
Rampart 1.4K 73.21 6 71 0.10 6.08 4.62

Armadillo 1.5K 141.64 6 69 0.09 3.79 4.32

Table 2: Statistics on experiments with completely auto-
matic adaptive simplification guided by the fitmaps.

approximation of the original shape even with a low number
of quads.

The regularity of the adaptive meshes are inferior com-
pared to the non adaptive meshes of Table 1. This is a side
effect of the adaptivity of the mesh. In fact, a transition from
a region with small faces to one with big faces in a mesh
necessarily occurs through irregular vertices. however, our
algorithm generates adaptive meshes with less irregular ver-
texes than the uniform meshes produced by [TPC∗10].

Comparison between homogeneous and adaptive
meshes. Finally, in Table 3 we show the difference between

Time val reg Homeometry Dist
|M| (s) max (%) min max 10−3

ideal values: — — — 1 1 0
Moai 94 20.72 5 72 0.62 1.57 14.24

Pensatore 116 50.30 5 72 0.55 1.82 13.64
Gargoyle 1.5k 26.04 5 72 0.52 1.80 3.83

Bunny 680 22.77 5 71 0.06 2.15 10.28
Rampart 1.4K 49.09 6 71 0.29 2.37 12.82

Armadillo 1.5K 90.82 6 73 0.50 1.93 5.96

Table 3: Statistics on experiments with uniform meshes with
the same number of faces of meshes in Table 2.

c© The Eurographics Association 2010.

100

A. Bozzo, D. Panozzo, E. Puppo, N. Pietroni, L. Rocca / Quad simplification

Figure 4: The gargoyle datasets simplified at 18k, 12k and 6k faces. The adaptivity of the mesh increases during the simplifi-
cation.

regular and adaptive meshes generated with our simplifica-
tion algorithm. The table shows the statistics computed on
a set of meshes with the same number of faces of the same
meshes adaptively refined (Table 2). The uniformly refined
meshes have greater homeometry and regularity that the
corresponding adaptive meshes but an higher Haursdorff
distance from the original mesh. This is due to the loss
of features that occurs when a limited number of faces is
available and all faces must have the same size. This does
not happen in simple shapes, such as those represented in
Moai or Pensatore datasets, but it is extremely pronounced
in more complex ones, for example in Bunny and Rampart
meshes.

5. Conclusions

We have presented an algorithm for quad mesh simplifica-
tion that is faster and simpler than [TPC∗10], while produc-
ing meshes with higher regularity and similar homeometry.
We have shown that four local operators are sufficient to pro-
gressively simplify a quad mesh.

Fitmaps have been integrated in the simplification frame-
work, leading to an effective algorithm for adaptive simpli-
fication. At the best of our knowledge this is the first al-
gorithm that produces adaptive quad meshes. Adaptivity on
quad meshes always implies an increase in the number of ir-
regular vertices, since they are required in transition zones
between quads of different sizes. In our experiments, we
measure a 3% average increase in extraordinary vertices for
adaptive meshes, in comparison to non-adaptive ones with
the same number of quads.

Our methods still lack alignment to feature lines and
preservation of sharp features. As future work, we plan to
use different heuristics for the selection of local operators
and a different smoothing algorithm that is able to use a
cross field defined on the mesh to produce quads aligned
to it. This extension requires further research, since it in-
creases the complexity of an already hard problem. In fact,

we should optimize at the same time the homeometry, the
regularity and the alignment to the cross field.

References
[BZK09] BOMMES D., ZIMMER H., KOBBELT L.: Mixed-

integer quadrangulation. ACM Trans. Graph. 28, 3 (2009), 1–10.
2

[CCR08] CIGNONI P., CORSINI M., RANZUGLIA G.: Meshlab:
an open-source 3d mesh processing system. ERCIM News (73) -
http://meshlab.sourceforge.net/ (2008), 45–46. 5

[DBG∗06] DONG S., BREMER P.-T., GARLAND M., PASCUCCI
V., HART J.: Spectral surface quadrangulation. ACM Trans.
Graph. 25, 3 (2006), 1057–1066. 2

[DSC09] DANIELS J., SILVA C., COHEN E.: Localized quadri-
lateral coarsening. Comput. Graph. Forum 28, 5 (2009), 1437–
1444. 2

[DSSC08] DANIELS J., SILVA C., SHEPHERD J., COHEN E.:
Quadrilateral mesh simplification. ACM Trans. Graph. 27, 5
(2008), 1–9. 2

[HZM∗08] HUANG J., ZHANG M., MA J., LIU X., KOBBELT
L., BAO H.: Spectral quadrangulation with orientation and align-
ment control. ACM Trans. Graph. 27, 5 (2008), 1–9. 2

[KNP07] KÄLBERER F., NIESER M., POLTHIER K.: Quadcover
- surface parameterization using branched coverings. Computer
Graphics Forum 26, 3 (2007), 375–384. 2

[LRC∗02] LÜBKE D., REDDY M., COHEN J., VARSHNEY A.,
WATSON B., HÜBNER R.: Level Of Detail for 3D Graphics.
Morgan Kaufmann, 2002. 2

[PPT∗10] PANOZZO D., PUPPO E., TARINI M., PIETRONI N.,
CIGNONI P.: Automatic construction of adaptive quad-based
subdivision surfaces. Submitted for publication, 2010. 1, 2, 4

[RLL∗06] RAY N., LI W.-C., LÉVY B., ALLIEZ P., SHEFFER
A.: Periodic global parameterization. ACM Trans. Graph.
(2006). 2

[SDW∗09] SHEPHERD J., DEWEY M., WOODBURY A., BENZ-
LEY S., STATEN M., OWEN S.: Adaptive mesh coarsening for
quadrilateral and hexahedral meshes. Finite Elements in Analysis
and Design 46, 1-2 (2009), 17 – 32. 2

[TPC∗10] TARINI M., PIETRONI N., CIGNONI P., PANOZZO D.,
PUPPO E.: Practical quad mesh simplification. Computer Graph-
ics Forum (Eurographics 2010) 29, 2 (2010), 407–418. 1, 2, 5, 6,
7

c© The Eurographics Association 2010.

101

http://meshlab.sourceforge.net/

A. Bozzo, D. Panozzo, E. Puppo, N. Pietroni, L. Rocca / Quad simplification

Figure 5: Different datasets simplified with our method. The majority of them, with the exception of the gargoyle in the top
center and the bunny in the bottom left, are adaptive models simplified using the Fitmaps.

c© The Eurographics Association 2010.

102

