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Abstract

We present a flexible system to track the movements of a bare finger on a flat surface. The proposed system is able

to discriminate whether the user is touching or just pointing at the surface. The system works using two webcams

and a fast scanline-based algorithm. The initial setup of the two webcams is easy and fast. No markers, gloves, or

other hand-held devices are required. Since the system is independent from the nature of the pointing surface, it is

possible to use a screen or a projected wall as a virtual touchscreen. The complexity of the algorithms used by the

system grows less than linearly with resolution, making the software layer very lightweight and suitable also for

low-powered devices like embedded controllers.

Categories and Subject Descriptors (according to ACM CCS):
H.5.2 [User Interfaces]: Input Devices and Strategies; General Terms: Low Cost Input Devices, Human Com-
puter Interaction, Computer Vision

1. Introduction

To make the Human-Computer Interaction as natural as pos-
sible is a central problem in Computer Science; however,
we’re still a long way from enabling the users with a natu-
ral and immediate interface between their thoughts and the
machines.

There are two main kinds of data that humans input to
the computers: text and graphic data. They are represented
respectively by the two most common computer input de-
vices : keyboard and mouse. Speech and handwriting recog-
nition systems offer a “natural” alternative to keyboards,
while these devices seem to be still necessary in every mod-
ern computer and communication device. To point a cur-
sor, we have instead several alternatives to mice: trackballs,
touchpads, touchscreens, joysticks, graphic tablets and so
on. Touchscreens, despite their low flexibility, are probably
the preferred ones by most users. The reason is that they re-
flect, as no other device does, the way we use to get in touch
and interact with the reality around us: we use to point and
touch directly what we see around us with our hands. Touch-
screens allow to do the same with our fingers on computer

interfaces. Unfortunately, touchscreen flexibility is low: fin-
ger tracking is impossible without physical contact; it is not
possibile to use sharp objects on them; large touch-sensible
displays are expensive because of their manifacturing cost
anddamage-proneness.

In this paper we present a tracking system capable of turn-
ing any static surface in a tablet, and any kind of display -
even very large ones, like projected walls - in a touchscreen.
The system that we propose is made of low cost devices,
without the use of any kind of equipment that is not possible
to find in any computer shop with less than 100BC.

2. Related works

In the era of augmented reality and wearable computing, the
research in computer interfaces is turning back to the hu-
man body, trying to adapt the way we communicate with
computers to our natural way of move and behave. Speech-
driven interfaces, gesture-recognition softwares and facial
expression interpreters are just some examples of this grow-
ing trend, and those that are going to design a system
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based on such technologies will find a rich soil in litera-
ture. Among the technologies studied in this branch of re-
search, there is a growing interest in the ones which in-
volve real-time body tracking. Some systems track partic-
ular parts of the body or use expensive or original devices
[GMR02,Wil05,Rak06,Mor05,Lee07], but most approaches
require just low cost cameras to track eyes, head and/or
hands. We focus on finger tracking systems which do not
require special markers, gloves, hand-held devices or skin
detection.

While eyes and head tracking need to direct the camera
towards the user, finger tracking systems have a wider range
of choices. A first possibility to track user’s hands is to use
the same person-directed view point as for head tracking;
this is used in [CT06] to estimate the position of the fingertip
in the view frustum of the user, but with strong limits on
the maximum tracking resolution; in [IVV01], instead, the
absolute position of the arms directly translates into screen
coordinates, whereas mouse clicks are represented by hand
gestures. The main disadvantage of this kind of approach is
that the background of the tracked arms in the view point
of the camera has to be static, and the user is forced to do
unnatural movements in the air.

A second possibility is to direct the camera towards the
pointing surface. We can assume that this surface is static
[LB04,MRB05,ML04], making relatively simple to locate
and interpret finger positions. However, a tracking system
working with dynamic backgrounds like projected surfaces
would be desiderable. Image differencing can be a good so-
lution [vHB01], but it requires the algorithm to "know" what
is currently projected; thus, if the surface is highly dynamic,
the pointing device has to be in real time communication
with the projecting device. Cross-correlation differencing
has been used [CBC95] and a robust color-based segmen-
tation alghoritm has been developed [DKS01]. Pointing the
camera towards a dynamic surface implies in general the use
of computationally expensive algorithms.

A third possible approach, that may drastically reduce all
the above problems, is to have the cameras watching side-
wise; using this point of view we do not have any prob-
lem with dynamic backgrounds both behind the user and
on the pointing surface. Among the very few works using
this approach, in [QMZ95] the webcam is above the moni-
tor looking towards the keyboard, and the finger is located
with a color segmentation algorithm. The movement of the
hand along the axis perpendicular to the screen is mapped to
the vertical movement of the cursor, and a keyboard button
press simulates the mouse click. However, the position of
the webcam has to be calibrated and the vertical movement
is mapped in an unnatural way.

All of the above approaches need to process the entire im-
age as it is captured by the webcam. Thus, every of the above
algorithms is at least quadratic with respect to resolution (or
linear with respect to image area). Although it’s possible to

use smart region finding algorithms, these would not resolve
the problem entirely. We propose a different way to track
user movements keeping the complexity low. To this aim
we use two cameras drastically decreasing the scanning area
to a discrete number of pixel lines. Furthermore our system
makes even non-experienced users able to set up the cameras
in a few seconds from any uncalibrated position.

3. System description

We use two low cost webcams positioned sidewise so that
the lateral silhouette of the hand is captured into an image
like figure 1. After a quick auto-calibration, the software
layer will be able to interpret the image flow and translate
it into absolute screen coordinates and mouse button pres-
sures; the corresponding mouse events will be simulated on
the operative system in a completely transparent way for the
application level. We call pointing surface the rectangle of
surface to be tracked; as pointing surface we can choose a
desk, a lcd panel, a projected wall, etc.. An automatic region
stretching is done to map the coordinates of the pointing sur-
face to the target display. Any type of “device” can be used
to point or touch the surface. The system will track a finger
as well as a pencil, a chalk or a wooden stick.

3.1. Scanlines

We focus the processing only on a small number of pixel
lines from the whole image provided by each webcam; we
call these lines scanlines. Each scanline is horizontal and
ideally parallel with the pointing surface; we call touching
scanline the lowest scanline (the nearest to the pointing sur-
face), and pointing scanline every other one. The calibra-
tion phase requires that we first grab a frame before any
pointer enters in the tracking area; these reference frames
(one per webcam) will be used to look for scanline inter-
ruptions (e.g. presence of fingers) through a simple image
differencing algorithm (fig.1). The detection of a finger only
in pointing scanlines will mean that the surface is only being
pointed, while a detection in all the scanlines will mean that
the user is currently touching the surface. To determine if a
mouse button pressure has to be simulated, we can just look
at the touching scanline: we assume that the user is clicking
if the touching scaline is interrupted in at least one of the two
views. We must have at least two scanlines for each view (a
pointing and a touching one); we could increase the number
of scanlines up to tens, but three or four will suffice for an
excellent accuracy. During the calibration phase the system
decides the vertical position of each scanline depending on
the position in the image of the finger while the user touches
the surface.

3.2. Smart finger detection

We call a pixel different if the difference between its color
and the reference color of the same pixel is higher than a pre-
determined threshold; a scanline interruption occurs when

© The Eurographics Association 2008.

44



G. M. Farinella & E. Rustico / Low cost finger tracking on flat surfaces

Figure 1: Visual representation of scanlines within the view

field of each camera.

a run of k different pixels is detected. We call interruption
point the middle point of a scanline interruption, and touch-
ing point the interruption point of a touching scanline. Pixel
comparison can be made either in RGB or YUV; we obtained
better results with the latter color model.

The analysis of the scanline is made faster adopting two
“tricks". First, we do not need to scan all the pixels in a scan-
line: candidate locations for interruption points can be dis-
covered comparing every kth pixel on the line. We then pro-
ceed to look for a k-run of different pixels only in the areas
around the candidates discovered insofar (see figure 2). If
no interruptions are detected on a scanline, we do not need
to continue our frame analysis; otherwise, we scan the next
scanline starting from the same x coordinate where we de-
tected an interruption point in the previous line (figure 2).

Figure 2: Example of smart finger detection. In the highest

scanline, we first scan only a pixel every k ones; then, the

neighbourhood of candidate pixels is analyzed. If any inter-

ruption is detected in a scanline, we start scanning the next

one at the same x coordinate of the last detected interrup-

tion.

3.3. Positioning the cameras

The proposed technique requires the positioning of two we-
bcams relatively to the pointing surface. We could just put
them so that one detects only movements along the X axis,
while the other one detects Y axis changes. This solution
is the simplest to implement, but requires the webcams to
have their optical axes perfectly aligned along the sides of
the pointing surface. Moreover, the wider is the view field of
a webcam, the more we loose accuracy on the opposite side
of the surface. On the other hand, the narrower is the view
field of the webcams, the farther we have to put them to cap-
ture the entire surface. For instance, for a 2×1.5m projected
wall and a 45° view field, we have to put the webcam ~5.2
meters away to catch the whole horizontal size. (figure 3)

Figure 3: The webcam along Y axis has a wide view field,

but this brings resolution loss on segment DC; on the other

side, the webcam along X axis has a narrow view field, but

it has to be positioned far from the pointing surface to cover

the whole area.

A really usable system should not bother the final user
about webcam calibration, view angles and so on. A way to
minimize the calibration effort is to position the webcams
near two non-opposite corners of the pointing surface, far
enough to catch it whole and oriented as the surface diago-
nals were about bisectors of the respective view fields (figure
4). With this configuration there is no need to put the web-
cams far away from the surface; this reduces the accuracy
loss on the “far” sides.

In the rest of this paper we will assume, for sake of clar-
ity, that the webcams are in the same locations and orien-
tations as in figure 4. However, the proposed tracking algo-
rithm works with a variety of configurations without changes
in the calibration phase.

3.4. Tracking algorithm

When the system is loaded, the calibration phase starts. In
this phase, after grabbing a view of the background, we ask
the user to touch the vertices of the pointing surface and its
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Figure 4: Suggested configuration to optimize the use of

view frustum of the cameras.

center; for each vertex the system stores the x coordinate of
the corresponding interruption point in the touching scan-
line. In a couple of seconds, the calibration is complete and
the system is ready to start tracking.

During calibration phase we calculate the perspective
transformation which translates the absolute screen coordi-
nates to absolute coordinates in the viewed image. Aiming to
store vertices in homogeneous coordinates, we use a trans-
formation defined by a 3x3 matrixM:





a b c

d e f

g h i



 ·V = P ·α

Since P is determined up to a proportional factor α there is
no loss of generality in setting one of the elements ofM to an
arbitrary non-zero value. In the following we set the element
i = 1. To obtain all the other elements of M, in principle the
correspondence between four pairs of points must be given.
The proposed application only needs to look at horizontal
scanlines; for this reason there is no need to know the coef-
ficients d,e, f ofM and we only have to determine the values
of a,b,c,g,h.

The number of unknown matrix elements has been de-
creased to five, so we only need the x coordinate of five
points. During the calibration phase, we ask the user to touch
the four vertices of the pointing surface and its center. This
setup greatly simplifies the computation of the unknown co-
efficients. Indeed points A,B,C,D and the center E (see fig.4)
have screen coordinates respectively:

A= (0,0)
B= (0,H)
C = (W,H)
D= (W,0)
E = (W/2,H/2)

when display resolution isW ×H.

If Q is a point on the surface, let Qxp be the x coordinate
of the corresponding projected point. The final linear system
ot solve is:








0 H 0 −HBxp
W H −WCxp −HCxp
W 0 −WDxp 0
Ex Ey −ExExp −EyExp









·
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Bxp−Axp
Cxp−Axp
Dxp−Axp
Exp−Axp









which makes easy to obtain a, b, c, g, h for each camera.

During the tracking phase, we have the opposite aim: we
know the projected x coordinate in each view, and from these
values (let them be Xl and Xr) we would like to compute the
x and y coordinates of the correspondent unprojected point
(that is, the point the user is touching). Let al , bl , cl , gl , hl be
the transformation values for the first camera, and ar, br, cr,
gr, hr for the second one; the linear system we have to solve
in this case is















alxl +blyl + clzl = Xl
glxl +hlyl + zl = 1
arxr+bryr+ crzr = Xr
grxr+hryr+ zr = 1

It is convenient to divide the first two equations by zl and
the latter two by zr, and rename the unknown variables as
follows:

x =
xl

zl
=
xr

zr

y =
yl

zl
=
yr

zr

z
′

l =
1
zl

z
′

r =
1
zl

so that the final system is









al bl −Xl 0
gl hl −1 0
ar br 0 −Xr
gr hr 0 −1









·









x

y

z′l
z′r









=









−cl
−1
−cr
−1









This is a determined linear system, and it is possible to
demonstrate that in the setting above there is always one and
only one solution. Solving this system in x and y we find
the absolute coordinates of the point that the user is point-
ing/touching on the surface.

We can solve this system in a very fast way by comput-
ing once a LU factorization of the coefficient matrix, and
by using it to compute x and y for each pair of frames; we
can also use numerical methods, such as Single Value De-
composition, or direct formulas. We chose the latter method
because of the relatively small size of the matrix.
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3.5. Resolution accuracy

Let’s consider now how accurate is the tracking system de-
pending on display and webcam physical characteristics. Let
t = (xt ,yt) be a point on the pointing surface, XD×YD the
display resolution (i.e. the resolution of the projector for a
projected wall) and XW1 ×YW1 the resolution of a webcam
W1; let βW1 be the bisector of the view frustum ofW1, and let
the upper left corner of the surface be the origin of our co-
ordinate system (with Y pointing downwards, like in fig.5).
We will assume for simplicity that the view frustum of the
camera is centered on the bisector of the coordinate system,
but the following considerations keep their validity also in
slightly different configurations.

Figure 5: We define “resolution accuracy of W1 in t“ the

ratio between the length of χt and the number of pixels de-

tected by W1; from this figure it’s clear that we only care

about the horizontal resolution of W1, which is constant in

the whole view frustum.

The higher is the number of pixels detected by the web-
cam for each real pixel of the display, the more accurate will
be the tracking; thus, if we want to know how accurate is the
detection of a point in the pointing surface, we could con-
sider the ratio between the length in pixels of the segment
χt , passing by t and perpendicular to βW1 , and the number
of pixels detected by the webcamW1 (see fig. 5). We define
resolution accuracy ofW1 in t and we call σ(W1, t) this ratio.
Because pixels are approximatively squares, the number of
pixels along the diagonal of a square is equal to the number
of pixels along an edge of the square; thus, the length of χt
will be equal to the distance from the origin of one of the two
points that χt intercepts on the X and Y axes. For every point
p ∈ χt is xp + yp = k; then, its length will be equal to the
y-intercept of the line passing by t and perpendicular to βW1 .
So we have |χt | = xt + yt ; hence, the resolution accuracy of
W1 in t is

σ(W1, t) =
Xw

xt + yt

One of the most commonly used display resolutions for
projected walls is nowadays 1024× 768 pixels, while one
of the maximum resolutions that recent low-cost webcams
support is 1280× 1024 pixels at 15 frames per second. In
this configuration, the resolution accuracy in t = (1024,768)
is

σ(W1, t) =
1280

1024+768
≈ 0.71

This is the lowest resolution accuracy we have withW1 in
the worst orientation; if we invert the Y axis to get the accu-
racy forW2 (supposing thatW2 is placed on the upper right
corner of the surface), σ(W2, t)≈ 1.7. In the central point u=
(512,384) of the display we have σ(W1,u) = σ(W2,u)≈ 1.4;
it’s immediate that, in the above configuration, the average
resolution accuracy is higher than 1:1 (sub-pixel).

4. Experimental settings and system performance

The webcams we used for testing are two Philips
SPC1000NC, with a native SXGA video sensor; their
price was about 40BCeach, and they are capable of pro-
ducing a SXGA video at about 15fps. There is a ma-
ture Video4Linux2 compliant driver (uvcvideo) available for
GNU/Linux.

Our prototype has good resolution accuracy and excellent
time performances. Two USB webcameras connected to the
same computer can usually send less than 20 frames per sec-
ond simultaneously, while the software layer could elaborate
hundreds more.

We implemented the tracking system in C++ in a
GNU/Linux environment; in the relatively small source code
(~1000 lines) all software layers are strictly separated, so
that it’s possible to port the whole system to different plat-
forms with very little changes in the source.

A first demonstrational video is available for down-
load at http://svg.dmi.unict.it/iplab/download/

FingerTracking/; we are working to produce other videos
showing the calibration phase and the finger tracking on dif-
ferent conditions. These lasts videos will be available at the
same website at the conference time.

5. Conclusions and future work

We presented a low cost system for bare finger tracking able
to turn lcd displays into touchscreens, as well as a desk into a
design board, or a wall into an interactive whiteboard. Many
application domains can benefit from the proposed solution:
designers, teachers, gamers, interface developers. The pro-
posed system require a simple calibration phase.

Future works will be devoted to improve the robustness
of the overall system in each involved step. Moreover, suit-
able evaluation procedures for such kind of system will be
addressed.
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