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Abstract

We present a framework for automatically enhancing videos of a static scene using a few photographs of the same scene.

For example, our system can transfer photographic qualities such as high resolution, high dynamic range and better lighting

from the photographs to the video. Additionally, the user can quickly modify the video by editing only a few still images of

the scene. Finally, our system allows a user to remove unwanted objects and camera shake from the video. These capabilities

are enabled by two technical contributions presented in this paper. First, we make several improvements to a state-of-the-art

multiview stereo algorithm in order to compute view-dependent depths using video, photographs, and structure-from-motion

data. Second, we present a novel image-based rendering algorithm that can re-render the input video using the appearance

of the photographs while preserving certain temporal dynamics such as specularities and dynamic scene lighting.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer Vision]: Enhancement

– Registration I.4.8 [Image Processing and Computer Vision]: Scene Analysis – Stereo, Time-varying imagery

1. Introduction

We have recently witnessed a revolution in the resolution and

quality of digital still cameras, with reasonably priced digital

cameras now capturing surprisingly high quality photographs.

Image editing tools have also become relatively mature and easy

to use. In contrast, similarly priced video cameras capture video

that is noisier, of lower resolution, and more difficult to edit† than

digital photographs.

There are many practical reasons for this disparity in progress.

Video produces much more data than still photography and thus

necessitates more aggressive compression and limited resolution.

Still cameras can use flash or long exposure, while video cameras

have to generally make do with the available light in the scene and

use short exposure times to maintain frame rates. Manual photo

editing is commonplace because it is not too time-consuming,

whereas the time required to convincingly edit every frame of a

video is prohibitive.

Our goal is to bring some of the benefits of still photography

to video. We envision the user complementing a video shoot with

† In this paper we use video editing to refer to the manipulation of pixels

in a video rather than the re-ordering of video frames.

a few high quality photographs of the scene. In fact, future hard-

ware could be designed to simultaneously capture such datasets.

With the right video authoring tool, the user could then transfer

the desirable qualities from the photographs to the video. Such an

authoring tool could be created given an algorithm that can es-

tablish pixel-to-pixel correspondence between the video and the

photographs. However, solving this correspondence problem in

the general case is incredibly challenging. Scene motion, changes

in scene lighting, and differences in viewpoint and camera charac-

teristics can drastically alter the appearance of the scene between

the video and photographs.

In this paper, we demonstrate a step towards achieving the

broad goal of enhancing real world videos using photographs. To

make the problem feasible, we restrict ourselves to scenes with

static geometry (i.e., temporal changes in the video are due to

camera motion, view-dependent effects like specular reflection,

and/or changes in scene lighting). Assuming static geometry al-

lows our system to establish correspondence using structure from

motion and multi-view stereo. We note, however, that establishing

dense correspondence in the presence of scene motion remains an

active area of research in computer vision, and we believe our ren-

dering framework could readily accommodate videos of dynamic

scenes given a robust correspondence algorithm.

Leveraging the correspondences computed using the static ge-
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(a) Super-resolution (b) High dynamic range (c) Enhanced exposure (d) Object touchup (e) Object removal

Figure 1: Video enhancements produced by our system. Given a low quality video of a static scene (top row) and a few high quality

photographs of the scene, our system can automatically produce a variety of video enhancements (bottom row). Enhancements include

the transfer of photographic qualities such as (a) high resolution, (b) high dynamic range, and (c) better exposure from photographs to

video. The video can also be edited in a variety of ways by simply editing a few photographs or video frames (d, e).

ometry assumption, our system provides a general framework for

enhancing videos in a number of ways.

Transferring photographic qualities: A user can transfer

high resolution, better lighting, and high dynamic range from

a few high-quality photographs to the low-quality video. We

demonstrate that artifacts commonly found in consumer-level

video such as noise, poor exposure, and poor tone-mapping are

significantly reduced using our system.

Video editing: A user can edit a video by editing just a few

photographs (or, equivalently, a few keyframes of the video).

These manual image edits, such as touch-ups, image filters, and

objects mattes, are automatically propagated to the entire video.

Object and camera-shake removal: A user can remove un-

wanted objects from a video by roughly specifying its outline in a

few photographs or video frames. We also demonstrate the ability

to stabilize video by smoothing out the original camera path and

re-rendering the scene as seen from the new camera path.

Our research has three main contributions.

First, we show that by augmenting consumer-level video with a

few high-quality photographs a unified framework can be created

to solve a wide variety of problems that have been previously

investigated in isolation.

Next, we present several improvements to Zitnick et al.’s

multi-view-stereo (MVS) algorithm [ZK06]. Using numerous

real world scenes, we demonstrate that our improved MVS al-

gorithm is able to extract view-dependent depths of a scene con-

taining complex geometry, and do so robustly in the presence of

dynamic lighting, noise, and unconstrained camera paths.

Finally, our main technical contribution is a novel image-based

rendering (IBR) algorithm that can re-render the input video us-

ing the appearance of the photographs. The depths estimated by

stereo algorithms are generally imperfect; thus the typical IBR

approach of rendering and blending textured depth maps results

in blurring or ghosting artifacts. Our IBR algorithm is able to pre-

serve the high-frequency details of the photographs used to re-

construct the video by instead stitching together large patches. In

addition, using a gradient-domain approach, our IBR algorithm

enforces temporal variations in the radiance of a scene-point ob-

served in the input video to be replicated in the enhanced video.

As a result, our enhanced videos combine the spatial richness of

the input photographs (e.g., high dynamic range, high resolution)

with the temporal richness of the input video like moving spec-

ularities and dynamic lighting without explicitly modeling these

phenomenon.

2. Related Work

The core of our work is a general technique for automatically

combining photographs and videos of a static scene to create

many interesting effects. Many effects shown in this paper are

commonly created by folks in the visual effects industry us-

ing software packages such as Shake, BouJou, and AfterEffects.

While the degree of automation in these packages has grown con-

siderably in the past decade, they still rely heavily on manual

effort (e.g., matting, rotoscoping, etc.) and specialized capture

equipment (e.g., blue screen filming, steady cams, use of robotic

arms to capture precise video paths, etc.); all are highly unappeal-

ing solutions to the amateur user. For example, let us consider

the task of editing the surface texture of an object in a video.

One could use rotoscoping to track the surface (which could re-

quire considerable manual effort) and propagate user edits from

a reference video frame to all other video frames. To make mat-

ters worse, the rotoscoping option could only be used for near-

planar surfaces. This is because a non-planar surface could ex-

hibit self-occlusions and other complex distortions with changes

in viewpoints. Alternatively, the user could use the commonly

used matchmove feature which allows the insertion of virtual ob-

jects into a video while automatically accounting for camera mo-

tion. However, this feature would still require the user to model,
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Figure 2: Our system for enhancing videos using photographs consists of two main components. The geometry estimation component

computes view-dependent depths for each video frame and photograph using structure from motion and multi-view stereo. The image-

based rendering component uses the estimated geometry to assign each pixel in the video to a corresponding pixel in the photographs. This

pixel-to-pixel mapping is used to reconstruct the input video using the original or manually-edited photographs. Finally, our spacetime

fusion algorithm improves the result by combining the spatial richness of the reconstructed video with the temporal dynamics of the input

video. Figures 3, 6, and 7 show an example sequence with intermediate results produced by individual system components.

skin, and light the virtual object, and then create an occlusion

matte for the final compositing. In contrast, our technique com-

pletely automates the creation of many commonly used effects.

Admittedly, however, our current technique is restricted to videos

of a static scene.

In the research community, day-time photographs have been

used to improve the legibility of night-time videos [RIY04], and

Shechtman et al. [SCI05] demonstrated video super-resolution

using stills. Both of these systems, however, assume no paral-

lax between the video and photographs. There is also a long his-

tory of work that takes advantage of multiple videos. Perhaps the

closest related work in spirit is Video Epitomes [CFJ05], which

can reconstruct portions of a video by first learning its epitome.

This representation can be used to reduce noise, fill holes in

video, or perform super-resolution (assuming some portions of

the video are more zoomed-in than others). Similarly Sawhney et

al. [SGH∗01] transfer the appearance of a high-resolution video

to a nearby low-resolution video. In contrast to these two ap-

proaches, we transfer appearance from nearby photographs rather

than video, which introduces additional challenges such as tem-

poral consistency.

Another possibility is to use additional images or videos that

are not necessarily of the same scene as examples for a ma-

chine learning approach. This approach has been demonstrated

for super-resolution of images [FJP02] and video [BBM03]. In

contrast, our task is easier because we are given high-resolution

examples of the same scene. Not surprisingly, our results are

much more faithful to the real scene. The analogies approach

learns a transformation between two images [HJO∗01] or two

videos [HE02]; our video editing application is similar to these

methods as it uses analogy-style user input, though unlike previ-

ous work we apply transformations defined on images to videos.

Several recent techniques are designed to fuse multiple pho-

tographs or videos to improve the resulting depictions. Examples

for photographs include interactive photomontage [ADA∗04],

combined long and short exposures [JSTS04], and combined

flash/no-flash [PAH∗04]. Sand and Teller [ST04] describe a reg-

istration algorithm for fusing two videos shot along similar cam-

era paths. In constrast we fuse photographs and video to produce

video, and do not restrict camera paths.

The two core algorithms in our system, multi-view stereo

(MVS) and image based rendering (IBR), have many antecedents.

Stereo continues to be an active area of research for both two-

views [SS02] and multiple views [SCD∗06]; our MVS algorithm

is an extension of the algorithm proposed by Zitnick et al. [ZK06].

Image-based rendering and novel-view interpolation [KS02] con-

tinue to receive considerable attention; we describe a novel IBR

approach that uses both graph-cuts [BVZ01] and gradient-domain

compositing [PGB03] while taking camera motion into account.

Our graphcuts compositing preserves high-frequency details of

the images used for reconstruction (e.g., photographs) while

the our gradient-domain compositing hides spatial and temporal

seams between the images. Moreover, if the camera path of the

output video matches the camera path of the input video then our

IBR algorithm can also incorporate the view-and-time dependent

lighting effects captured by the input video.

Many of the results we demonstrate can be generated using

other specialized techniques. Examples include producing high-

dynamic range video [KUWS03], correcting poorly-exposed

video [BM05], creating object mattes [WBC∗05], consistently

editing an object in multiple images [SK98], removing objects

by filling holes in video [WSI04], and IBR-based video stabiliza-

tion [BBM01]. Our approach makes the trade-off of restricting to

static scenes and optionally including photographs to give a sin-

gle (and, we believe, extensible) framework that achieves each of

these effects.

3. Overview

Figure 2 provides a high level overview of our system pipeline.

The inputs to the system depend on how the user wishes to en-

hance the video. To transfer photographic qualities, the user in-

puts both a video and a few photographs of the scene (see Fig-

ure 3). For other enhancements the user can choose to input pho-
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Input photographs Input and output videos

Figure 3: Example inputs and output of our system. Given a video with overexposed regions (top row) and a few photographs of the scene

shot with proper exposure (left column), our system automatically produces an enhanced video (bottom row). Only two of the eleven input

photographs have been shown here.

tographs, or to simply choose a few keyframes of the video to

serve the same purpose. For example, to perform object removal,

the user specifies a rough outline of the object in a few video

frames or photographs. Similarly, to perform video editing the

user provides registered pairs of original and edited images (sim-

ilar to the user input used by Image Analogies [HJO∗01]); the

image-pairs may be created using photographs or video frames.

After the inputs are specified, the system performs geome-

try estimation and image based rendering to create an enhanced

video. In the remainder of this paper we focus on the details of

these two system components, and then present a variety of video

enhancements produced by our system. Finally, we conclude by

discussing the limitations of our approach and suggesting areas

of future research.

4. Geometry Estimation

The first phase of our pipeline consists of estimating the geom-

etry of the scene imaged by the video and photographs. We be-

gin by recovering camera poses and sparse scene geometry using

a structure from motion (SFM) algorithm. Then, we produce a

view-dependent depth map (example shown in Figure 6) for each

photograph and video frame using a multi-view stereo (MVS) al-

gorithm.

4.1. Structure from motion

Our system uses the structure-from-motion implementation of

Snavely et al. [SSS06]. Like any standard structure-from-motion

library, Snavely’s system produces projection matrices for each

photograph and video frame, a sparse cloud of 3D scene points,

and a list of the viewpoints from which each scene point is visible.

4.2. Multi-View Stereo

Our multi-view stereo algorithm extends the approach proposed

by Zitnick et al. [ZK06]. We choose to build on their algorithm

because it is specifically tailored for image based-rendering of

scenes constructed from video footage. They construct view de-

pendent depths maps using an over-segmentation approach that is

robust to image noise and some types of scene specularities. We

make three improvements on their work: (1) we specialize our al-

gorithm for heterogeneous datasets containing both video frames

and photographs; (2) we use a wider range of disparity planes re-

sulting in higher quality depth maps; and (3) we use 3D scene

points generated by the structure from motion system to improve

depth estimation.

Before elaborating on the various improvements we are

proposing, here is a brief introduction to the previous algorithm.

In the first step, each input image is divided into segments us-

ing a color-based over-segmentation algorithm. The second step

computes a disparity for each segment. This step is performed

by constructing a pair-wise Markov Random Field (MRF) for

each image. Each node in the MRF corresponds to a segment,

and edges are added between all nodes corresponding to abut-

ting segments. Similar to the color consistency constraint used

in pixel-based MRFs, the prior of the MRF biases neighboring

segments with similar average colors to have similar depths. The

likelihood or data term of the MRF is computed using a standard

color similarity measure, as well as incorporating occlusion in-

formation based on current disparity beliefs. The disparity beliefs

of all segments for all images are simultaneously updated using

loopy belief propagation. At each iteration, the data term of each

MRF is biased to be consistent with the beliefs of MRFs from

neighboring images. Neighboring MRFs are also used to com-

pute occlusion information. As a result, information is shared be-

tween all neighboring images, and the final disparities are largely

consistent.

It should be noted that we do not expect the reader to be

able to implement our MVS algorithm without reading Zitnick et

al.’s paper [ZK06] that describes the previous algorithm in de-

tail. Though a full understanding of the previous algorithm is
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(a) (b) (c) (d)

Figure 4: An overview of viewpoint neighbors: (a) Viewpoints

corresponding to video frames (orange nodes) and photographs

(blue nodes). (b) Each photograph is connected as a neighbor

to its two nearest photographs and its nearest video frame (blue

links). (c) Each video frame is connected to its two nearest video

frames (red links) and (d) two video frames that are M frames

away (yellow links). Here M is three, though we typically set M

to ten. Distance between viewpoints is determined using our view-

point distance metric.

not required to appreciate the various improvements we will now

present.

4.2.1. Handling video and photographs

Working with both photos and videos requires special attention

to color matching, construction of the viewpoint neighborhood

graph, and the definition of a metric for proximity of viewpoints

that incorporates similarity of fields of view.

4.2.1.1. Determining viewpoint neighbors The previous algo-

rithm assumes that neighboring viewpoints are defined by the user

based on the camera setup. We automate this step. For each view-

point, the neighboring viewpoints are determined based on 2 ob-

jectives. First, the neighborhood graph (created by treating view-

points as nodes and pairs of neighboring viewpoints as edges),

should avoid disconnected components. This objective ensures

that depth information can propagate between all viewpoints

through the data term of the MRF. Second, viewpoints should be

considered neighbhors when they facilitate robust stereo match-

ing. If only very close viewpoints are matched as neighbors, the

small baselines may lead to ambiguous and low-precision depths.

Alternatively, only matching viewpoints that are far from one an-

other will lead to problems due to occlusions. We thus pair each

viewpoint with a mixture of nearby and distant viewpoints, as il-

lustrated in Figure 4 and described in its caption.

4.2.1.2. Viewpoint distance metric One could use the Eu-

clidean distance between viewpoints to evaluate which views are

near or far from each other. However, this metric can perform

poorly when, for example, two nearby cameras point in opposite

directions. We instead measure distance as the inverse of the num-

ber of 3D scene points observed in common by two viewpoints.

In the absence of scene point information the number of feature

matches between two images can also be used to compute dis-

tance. Our distance metric can be seen as measuring the amount

of overlap in scene structure observed by two viewpoints.

4.2.1.3. Color matching The video frames and photographs

generally have different color characteristics due to differences

(a) (b) (c) (d)

Figure 5: Options for computing disparity planes: (a) Disparity

planes generated using planes parallel to a reference viewpoint

(blue camera). (b) Disparity planes generated using planes par-

allel to each viewpoint (i.e., view-dependent disparity planes). (c)

3D scene points generated by SFM. (d) Non-fronto-parallel dis-

parity planes generated to approximate the 3D scene points.

in lighting and reflection, exposure, and sensor characteristics,

making it more difficult to compute correspondences. Thus, when

computing the data term for any reference view, we first match

the color distribution of each neighboring view to that reference

view using the color-matching algorithm proposed by Reinhard et

al. [RAGS01].

4.2.2. Augmenting the set of disparity planes

To improve the ability of the multi-view stereo algorithm to re-

construct the depths of observed surfaces, we augment the set of

available disparity planes in two ways.

4.2.2.1. View-dependent disparity planes In the previous al-

gorithm, the set of possible segment depths for each viewpoint

are derived from a set of disparity planes that are parallel to the

projection plane of a single reference viewpoint (Figure 5a). The

more orthogonal a camera’s viewing axis is to the reference cam-

era’s viewing axis, the more difficult it is for this set of dispar-

ity planes to adequately approximate the depths for that camera.

In our algorithm, each viewpoint uses a set of unique disparity

planes that are parallel to its own projection plane (Figure 5b).

In addition to improving the depth estimation, this modification

allows our algorithm to handle camera paths that could not be

handled by the previous algorithm, such as a 360◦ loop around

an object. It should be noted that view-dependent disparity planes

are not a novel contribution on our part and have been used in

other stereo algorithms [KS04].

4.2.2.2. Non-fronto-parallel disparity planes Many surfaces

in real-world scenes are slanted planes, e.g., floors and walls.

Though fronto-parallel disparity planes allow reconstruction of

arbitrary shape, these slanted planes can be more succinctly de-

scribed using non-fronto-parallel disparity planes. Thus, we aug-

ment the initial set of disparity planes with several slanted planes

that are recovered from the 3D scene points (Figure 5c, 5d)

using iterative RANSAC [Tor98]. There has been some prior

work in using non-fronto-parallel disparity planes in MVS al-

gorithms [YWY∗06,KSK06]. These methods extract non-fronto-

parallel planes by matching small texture patches between two

neighboring viewpoints. In contrast, using the 3D scene points
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generated by the SFM algorithm allows our plane extraction

method to incorporate information from all viewpoints.

4.2.3. Incorporating SFM scene points

Structure from motion yields a sparse estimate of 3D scene struc-

ture that can be used as a prior in the multi-view stereo algorithm.

Each 3D scene point is associated with a list of viewpoints that

observe it. If we project a scene point onto a segment in each of

these viewpoints, the depth of the segment should be consistent

with the depth of the scene point. Thus, we modify the data term

in the MRF to minimize the distance between each 3D scene point

and the hypothesized disparity plane of the segment onto which

the 3D scene point projects.

5. Image Based Rendering

The view-dependent depths computed in the first phase of our

system implicitly define a correspondence between each pixel in

the video and pixels in one or more photographs, as well as a

correspondence between pixels in consecutive frames of video.

In the second phase of our system, we use this correspondence

to reconstruct the video using the appearance of the photographs

while preserving the temporal dynamics of the video. The first

algorithm in this phase, which we call video reconstruction, uses

an MRF formulation to choose a photograph from which to copy

color for each video pixel, with the goal of producing a plau-

sible and seamless composite. The second algorithm, which we

call spacetime fusion, produces the final result by integrating a

gradient field created using the spatial gradients of the video-

reconstruction result and temporal gradients of the input video.

The gradient field is defined in a manner that enforces the tempo-

ral variations in the radiance of a scene-point observed in the input

video to be replicated in the final result. As a consequence, the fi-

nal result mimics the temporal variations of the input video (e.g.,

dynamic lighting, moving specularities, etc) and avoids tempo-

ral incoherence caused by errors in the depth estimates and large

exposure changes in the source photographs.

5.1. Video Reconstruction

Since the projection matrix of each video frame is known, one

approach to reconstructing the video would be to perform novel

view interpolation (e.g., [ZKU∗04, HKP∗99]) from the pho-

tographs for each video frame. However, typical view interpo-

lation algorithms produce a result that is a weighted average of

the warped input images, which generally (and in our experience)

result in ghosting artifacts and loss of high-frequency details. In-

stead, we use an MRF formulation to create a composite from

large, coherent patches of the projected inputs while minimizing

the visibility of the patch boundaries. Also, unlike the classic view

interpolation problem, we have depth and color information (al-

beit of lower quality) for each video frame we are trying to inter-

polate (reconstruct) from the input photographs. This information

can be used to guide the choice of which photograph to use for

a particular video pixel. In particular, we can favor source pho-

tograph pixels that have similar depth and color to those of the

existing video pixel to resolve occlusions and promote visually

faithful reconstructions.

We will now describe the version of the video reconstruction

algorithm designed for enhancements that transfer photographic

qualities to video. The minor modifications required for other

video enhancements are described later in this section.

Given a video frame Vi, we begin by selecting a set of source

views S1..N to be used in its reconstruction. S1..N is formed of the

N nearest photographs to Vi. We use N = 4, except when doing

object and camera-shake removal, as described later in this sec-

tion. We determine the nearest photographs using the viewpoint

distance metric defined in Section 4.2.1. Using a z-buffered point

splatting algorithm, we then separately re-render each source

view S j from the viewpoint of video frame Vi. The result is a set of

N re-projected images P1..N and corresponding re-projected depth

maps. Each image Pi provides each pixel in Vi with one or zero

reconstruction candidates (Pi may be undefined in some regions

of Vi). Note that, for the case of superresolution, we spatially up-

sample the video frames and their depth maps as a pre-process.

The video reconstruction problem can now be formulated as a

labeling problem in an MRF framework. In particular, the goal is

to assign to each pixel p ∈ Vi a label L(p) indicating which of the

N reconstruction candidates provided by P1..N should contribute

to the final result. Ideally, we would optimize the labeling of all

video frames in a single MRF formulation instead of constructing

an MRF for each frame independently. However, inference on a

3D MRF can be computationally expensive, and we have found

experimentally that acceptable results are produced by comput-

ing each frame independently. The per-frame approach is able to

maintain some temporal coherence because the multi-view stereo

algorithm encourages depths in each video frame to be consistent

with the depths in neighboring video frames. Any residual tem-

poral incoherence in the reconstructed video is removed by the

spacetime fusion algorithm.

Our cost function to evaluate the quality of a given labeling L is

in the form of a standard Markov Random Field:

C(L) = ∑
p∈Vi

CD(p,L(p))+λ ∑
{p,q}∈N

CS(p,q,L(p),L(q)), (1)

where CD is the data cost function, CS is the smoothness cost

function, p and q are neighboring pixels defined by N which is

the set of all eight-connected neighbors in Vi, and λ is a user de-

fined parameter that controls the trade-off between data cost and

smoothness cost. We typically set λ to 2.0.

The data cost function encourages video pixels to be recon-

structed from photographs with similar color and depth. We de-

fine CD as:

CD(p,L(p)) =

⎧⎨
⎩

∞ i f PL(p)(p) is unde f ined

∞ i f |d(Vi, p)−d(PL(p), p)| > κ

||Vi(p)−PL(p)(p)||

where PL(p) is the projection associated with L(p), d(I, p) denotes

the depth value at pixel p in I, and κ is a user defined constant that

controls the mismatch between the depth of a pixel and its depth
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Photograph depths Video depths

Figure 6: View-dependent depth maps generated by our multi-view stereo algorithm for the images in the top row of Figure 3.

in a projected image. We typically set κ to a value that corre-

sponds to a projection error of 5 pixels.

To make the function CD more robust to differences in the color

distribution of Vi and P1..N , we first match the color distribution

of each Pi to the color distribution of Vi using the method of Rein-

hard et al. [RAGS01]. This step is repeated for each frame i. Note

that these transformed colors are only used for computing CD and

are not used in creating the final composite.

In Equation (1), CS measures how well the labeling produces

a seamless reconstruction. CS is similar to the smoothness cost

introduced by Kwatra et al. [KSE∗03], and is defined using two

terms, X and Y :

X = ||PL(p)(p)−PL(q)(p)||+ ||PL(p)(q)−PL(q)(q)||,

Y = 2.0− (∇p,qPL(p) +∇p,qPL(q)),

where image color channel values are in the range [0..1] and

∇p,qPi returns the gradient magnitude between pixels p and q

in Pi. Lastly, CS(p,q,L(p),L(q)) = X ∗Y . Thus, CS encourages

a seam between two projections to either pass through regions

where the projections have similar colors (i.e., term X), or to run

along strong edges (i.e., term Y ).

We assign each pixel p ∈ Vi to one of its candidate labels by

using alpha-expansion moves [BVZ01] to find a labeling that is

the approximate global minimum of our cost function. Note that

for some pixels in Vi the cost is infinite, which means that no re-

projected depths were a suitable match; this can occur if the corre-

sponding surface point was not observed in any of the source pho-

tographs. Such pixels are not assigned a label, resulting in holes

in the reconstructed video that are later filled in by the spacetime

fusion algorithm.

5.1.1. Video reconstruction specializations

The above algorithm can be applied to transfer qualities from pho-

tographs to video. For other applications of our framework, how-

ever, some modifications are required.

Object Removal: To remove an object from a video, the user

specifies a rough mask for the object in one or more source im-

ages, which may be photographs or video frames. The masks are

drawn to inscribe the object (i.e., no pixels outside the object

boundary are selected). The union of the masks is then transferred

to every video frame and dilated in order to select the entire object

(and possibly a few background pixels near the object boundary).

Now the goal is to reconstruct the masked portion of each video

frame using the unmasked portion of nearby video frames and

photographs.

Remember, the video reconstruction algorithm assumes that

the approximate depths and colors of the region being recon-

structed is avaliable before the reconstruction. However, the color

and depth information for our target regions (i.e., masked portion

of each video frame) is not avaiable. We approximate this color

and depth information by re-projecting the unmasked portions of

a large number of nearby video frames and photographs (typically

75) into each video frame’s masked area, resulting in several can-

didates for each masked video pixel. We set the depth and color

of each masked pixel to the median value of its candidates. Note

that these values do not need to be very precise, since they are

only used as a guide to the video reconstruction algorithm when

selecting among source images for a video pixel. Now we can use

the video reconstruction algorithm to reconstruct the masked re-

gion of the video frame. The source views S1..N for each video

frame in the video reconstruction algorithm are generated using

the unmasked portions of the 75 nearest video frames and pho-

tographs.

Camera-shake removal: To remove camera shake from an in-

put video our system creates a new camera path by smoothing the

recovered extrinsic camera parameters (translation and rotation)

of nearby video frames. Unfortunately, the result of this opera-

tion is that color and depth information is not available for the

new viewpoints we wish to reconstruct, though color and depth

are available for nearby views (i.e., original video frames). We

use the approach described in the object removal case to approx-

imate the color and depth information in the new viewpoints, and

then apply the video reconstruction algorithm to reconstruct each

new viewpoint using 20 nearest video frames and photographs as

source images. Since the new viewpoints have not been captured

in any of the input images we cannot use our viewpoint distance

metric to determine the distance between two viewpoints. Instead

we simply use the Euclidean distance between the viewpoints as

determined by their extrinsic camera parameters.

Video editing: When performing video edits, each input pho-

tograph S j is accompanied by a user-edited version of the photo-

graph, S ′
j. We would like the video reconstruction algorithm to

produce a video that is constructed using the pixel in S ′
1..N . So

we project these images to form reconstruction candidates P ′
1..N
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for each video frame Vi, just as we projected S1..N to form P1..N .

To avoid visible seams in the output, the smoothness cost CS is

computed from the colors of P ′
1..N . The data cost CD, however,

is computed from the unedited colors of P1..N since the data cost

measures how well the photographs and unedited video frames

match.

A problem with this approach is that it is unreasonable to ex-

pect the user to manually edit every photograph in the input and,

moreover, to edit each photograph in a perfectly consistent fash-

ion; that is, some of the images may not be edited and, in im-

ages that are edited, the edited pixels in different images that cor-

respond to the same real-world location may not have the same

color. These differences can lead to flickering in the final video.

To mitigate this problem we propagate user edits across the pho-

tographs to ensure that they are consistent before running the

video reconstruction algorithm. Starting with one of the edited

photographs S ′
j, call it the “sender,” we re-project its depths into

its neighboring photographs, call them “receivers.” At each pixel

in receiver Sk, if the re-projected depth is within κ of the receiver

depth, then we copy the re-projected color of S ′
j into S ′

k. The

receivers are then added to a FIFO queue, and the process is re-

peated, drawing from the queue until it is empty. Once a photo-

graph has been a sender, it is never reused as a sender or receiver.

Figure 7 shows a video editing result where the user has applied a

painterly effect that randomly places brush strokes onto each pho-

tograph. In this case the painterly effect across the photographs is

made consistent using our edit propagation mechanism. Then the

video reconstruction and spacetime fusion algorithms are used to

transfer the painterly effect from the photographs to video. As a

result brush strokes appear to adhere to the surfaces in the video

without temporal inconsistency (see supplementary video).

5.2. Spacetime Fusion

The video created by the video reconstruction algorithm will re-

semble the photographs, but may suffer from several artifacts. The

main problem of concern is that a video reconstructed using pho-

tographs often appears oddly lifeless, because it lacks the rich

temporal variations found in videos even of static scenes; for ex-

ample, the position of specular highlights will not move as the

viewpoint changes. In addition, spatial and temporal seams be-

tween various photographs used to reconstruct the video may still

be visible due to large exposure variations in the photographs.

Also, holes may appear in the areas of the reconstructed video

where none of the projections were defined (e.g., portions of the

scene not seen in any of the photographs).

A common approach to compositing regions from several pho-

tographs (or videos) while minimizing visible seams is to com-

bine them in the gradient domain [PGB03, WRA04]. Typically,

gradient-domain compositing is performed by copying gradients

rather than colors from the source imagery to form a gradient

field G(x,y, t). Then, the enhanced video E(x,y, t) is created by

solving for a video whose gradient field is as close as possible

to G(x,y, t). Our spacetime fusion algorithm is similar in spirit to

this approach.

Frame t Frame t+1

Gt

Figure 8: The figure depicts a glass window (with shiny frame)

seen in two consecutive video frames. A change in camera view-

point causes the reflection of the sun (shown in red) to shift with

respect to the window pane. Using pixel depths we can deter-

mine all pairs of pixels in the two frames that correspond to the

same real world location (e.g., the pixel-pair outlined with a dot-

ted square). The spacetime fusion algorithm constrains the tem-

poral gradient between such pixel-pairs to match the input video,

thus preserving the dynamics of the reflection.

For our applications, we wish the output to exhibit the rich spa-

tial properties of the photographs, as well as, the temporal varia-

tions of the input video. We modify the standard gradient-domain

composing methods, by using the motion-compensated temporal

gradients Gt from the input video, and spatial gradients Gx and

Gy from the photographs.

Specifically, we define the spatial gradients as follows. In ar-

eas where the labeling of a video frame is undefined (i.e., holes)

we copy spatial gradients from the input video. To improve the

color consistency, we first transform colors in the hole region by

color matching the original frame to the non-hole portions of the

reconstructed frame (again using the color distribution matching

method of Reinhard et al. [RAGS01]). In areas where the label-

ing of a video-frame transitions from one source to another (i.e., a

photograph-to-photograph or photograph-to-hole transition), the

pixels used in computing the gradient may come from different

sources; in this case, we average the spatial gradients of the two

overlapping sources at the transition seam. Spatial gradients in all

other regions are copied directly from the reconstructed video.

The temporal gradients, on the other hand, are created from the

original input video after accounting for motion. We have found

that using Wang et al.’s [WRA04] approach of constraining tem-

poral gradients between temporally adjacent pixels (i.e., between

pixels (x,y, t) and (x,y, t +1)) leads to severe ghosting artifacts for

videos with camera motion. Also, to properly capture the tempo-

ral variations in the input video, we need to constrain the temporal

gradient between input video pixels that correspond to the same

real-world location (Figure 8). Therefore, the temporal gradient

Gt(x,y, t) is defined using the pixel at (x,y, t) in the input video

and its corresponding pixel in frame t +1. The correspondence is

computed by re-projecting the pixel (with depth) at time t into the

viewpoint of the frame at time t +1.

We create the enhanced video E by solving an over-constrained

system of linear equations formed by the following three con-
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Edited photograph Edited video

Figure 7: A video editing example: (Left column) one of the eleven input photographs processed using a painterly effect found in Adobe

Photoshop; (Right column) painterly video created by transfering the painterly effect from the photographs to the input video.

straints for each pixel in V :

E(x+1,y, t)−E(x,y, t) = Gx(x,y, t),

E(x,y+1, t)−E(x,y, t) = Gy(x,y, t),

E(x+u,y+ v, t +1)−E(x,y, t) = Gt(x,y, t),

where (u,v) is a correspondence vector linking the pixel at (x,y, t)
and its corresponding pixel in frame t + 1. (Each color channel

forms an independent set of linear equations.)

Since (u,v) is a non-discrete motion vector and the variables

in the linear system correspond to discrete locations, (u,v) must

somehow be discretized. One option is to simply round (u,v)
to the nearest integers. We have obtained more accurate results,

however, using a form of bi-linear interpolation. That is, each cor-

respondence vector results in temporal constraints for the four in-

teger coordinates nearest to (x + u,y + v, t + 1), weighted by the

distance between the floating-point location and the integer loca-

tion. We further weight each temporal constraint by A(x,y, t) ∗ τ,

where A(x,y, t) is a measure of the confidence in the accuracy of

(u,v), and τ is a user-defined constant that controls the trade-off

between fidelity to the spatial gradients and the temporal gradi-

ents. A(x,y, t) is set to the probability of the depth assigned to

(x,y, t) during multi-view stereo phase of geometry estimation.

The results in this paper were generated using a value between

7.0 and 9.0 for τ.

We use the LASPack [Ska95] conjugate gradient solver to

solve the over-constrained linear system. Constraints involving

pixels outside the boundaries of the video spacetime volume are

modeled using Neumann boundary conditions. Large videos that

cannot be solved in main memory are solved in slabs of 20-30

frames. When solving a slab of frames, the boundary conditions

for faces shared with adjacent slabs are modeled using Dirich-

let boundary conditions, while the remaining faces continue to

use Neumann boundary conditions. Using mixed boundary con-

ditions in this manner allows information to flow through the en-

tire video during optimization and ensures temporal coherency

between adjacent slabs in the final result.

5.2.1. Spacetime fusion specializations

In some cases, the user might not want to transfer the temporal

variations from the input video to the enhanced video (e.g., if the

input video exhibits noise or other unwanted temporal variations),

but may still wish to remove other artifacts in the reconstructed

video using spacetime fusion; mainly temporal flickering caused

by large exposure variations in the photographs. We can remove

these artifacts by assuming pixels that correspond to the same

real-world location exhibit constant brightness between adjacent

video-frames. That is, the motion-compensated temporal gradi-

ents Gt(x,y, t) are set to zero for all x, y, and t. The spacetime

fusion result in Figure 3 was generated in this manner to avoid

transferring the abrupt changes in sunlight from the input video

to the enhanced video.

Finally, when performing spacetime fusion for the object re-

moval case we cannot use the depth and color information from

the masked regions of the input video since these regions con-

tain the object we want to remove. Instead, we define the motion

vectors (u,v) for these regions using the depths projected from

the neighboring frames that were used to fill in the color informa-

tion during video reconstruction (Section 5.1.1). Then, we assume

scene points in the masked regions exhibit constant brightness,

and set the motion-compensated temporal gradients for these re-

gions to zero. The motion vectors and temporal gradients for the

camera shake removal case are defined in exactly the same man-

ner.

6. Video Enhancements

Once a mechanism is developed that can register photographs to

a video and then blend the two data sources in a seamless fashion,

the same mechanism can be used in a wide variety of applications.

The following are a few of the video-enhancement applications

we have explored using with our system.

Super-Resolution. Figure 1a shows an example where we ef-

fectively quadruple the resolution of a video in each spatial di-

mension using seven high-resolution photographs. For efficiency,

the photographs were scaled down to the size of the video

frames before computing depths. To generate high-resolution

video frames, depths from the low-resolution photographs were

upsampled to match the output resolution. Color data was ob-

tained from the original high-resolution photographs.

HDR Video. Figure 1b shows a video of a scene with high

dynamic range. Due to the enormous contrast in the scene, no

single exposure setting can faithfully capture all the subtleties of
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(a) Input video (b) Video matte (c) Selective decolorization (d) Object touch-up (e) Object touch-up

Figure 9: Video editing examples: Using the depths generated for the input video (a), and a user-drawn object-matte in a single video

frame, the system can produce an object-matte for the entire video (b). (c) The object-matte can be used for a variety of effects like

selective decolorization. (d) Any touch-ups made to an object in one or more video frames can be consistently applied to the entire video;

in this case, reflections on top of the photos are removed. (e) Our system can also apply touch-ups to an object while preserving the

lighting effects exhibited by the original object; in this case, the photos are changed without modifying the reflections.

the scene geometry. We augmented our video capture session with

six sets of exposure bracketed photographs which were used to

create six HDR photographs. Using the HDR photographs our

system increased the dynamic range of the input video.

Enhanced exposure. The input video in (Figure 1c) shows a

dinner-table scene lit by light cast through a window on a rainy

night. The video contains view-dependent and dynamic lighting

effects. Rain drops flowing down the window pane cast dynamic

caustics on the dinner table. Also, the silverware in the scene ex-

hibits view-dependent specular highlights. Unfortunately, due to

the limited light in the scene the video is severely underexposed in

some regions. To improve the exposure of the video we captured

twelve photographs of the scene using longer exposure time than

it is possible when capturing a video. The input video and pho-

tographs were processed by our system to produce a video with

enhanced exposure that exhibits the same temporal dynamics as

the original video. The example in Figure 3 shows another expo-

sure enhancement result where a video with overexposed regions

was enhanced using photographs shot with proper exposure.

Video Editing. Figures 1d, 7, and 9 show a variety of video

editing operations that can be used to enhance a video.

Matte generation. Figure 9b shows a result where a user-drawn

object matte in a single video frame is used to automatically cre-

ate an object matte for the entire video. The resulting video matte

is consistent with the occlusions in the scene. Such a video matte

can be used to create a variety of effects like selectively decol-

orizing the selected object (Figure 9c).

Object touch-up. In the example shown in Figure 1d we used a

texture synthesis algorithm to remove the scar from the tree trunk

in a single video frame. Then our system used the modified pixels

in the video frame to consistently edit the entire video. Similarly,

to remove the reflections on the framed photos (Figure 9d) we

replaced each photo with a reflection free image in a single video

frame. We also produced the converse result where the photos in

the video were replaced with different photos while preserving

the reflections (Figure 9e).

Painterly video. Several image filters when applied to video

frames independently produce a video that is temporally incoher-

ent; most notable of these filters are painterly effects that "paint"

a given image using varied brush strokes. To create a painterly

version of the video shown in Figure 3 we first applied a painterly

filter to all input photographs. The inconsistencies in the filtered

photographs were then removed using the edit propagation mech-

anism described in section 5.2.1. The painterly filter was then

transferred from the filtered photographs to the video using our

IBR algorithm to produce a temporally-coherent result (see Fig-

ure 7 and supplementary video).

Object removal. Figure 1e shows an example where a no-

parking sign is occluding much of the scenic background. We

specified the object to be removed, in this case the no-parking

sign, by drawing a rough mask in a single video frame. The sys-

tem then re-renders the input video without the no-parking sign

by using the object removal technique described in section 5.2.1.

Camera shake removal. Our system is also able to remove

camera shake from a jerky input video by first locally smooth-

ing the projection matrices of the input camera path to create a

smooth camera path. A stabilized video is then created by ren-

dering the scene as seen from the smooth camera path using

our IBR algorithm (see supplementary video). Unlike traditional

video-stabilization methods, which use 2D stabilization (or piece-

wise 2D stabilization), our method has the advantage of handling

videos with significant depth changes and camera shake caused

by 3D camera rotation. Also, our method incorporates informa-

tion from several video frames to fill in information at frame bor-

ders to avoid cropping–a common problem with 2D techniques.

While our method is not the first to use 3D scene reconstruction

for video stabilization (see Buehler et al. [BBM01]), our results

are likely to be of higher quality due to advances made by our

MVS and IBR algorithms.

All enhancement examples were generated using the same pa-

rameter values listed in the paper with the exception of the τ pa-

rameter in spacetime fusion. For some examples we generated

three spacetime-fusion results in parallel using three different set-

tings for τ (τ settings were picked from the range listed in Sec-

tion 5.2) and used the most visually pleasing result.

7. Discussion and future work

To demonstrate the versatility of our system we chose to qual-

itatively test it on numerous real-world examples. Our supple-

mentary video demonstrates eleven results generated using eight
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different scenes. Five of the eight input videos suffer from prob-

lems like low resolution, specularities, improper exposure, and

dynamic lighting. Our experiments demonstrate that using pho-

tographs, along with low-quality video, can produce better depth

estimates than using the video alone since our MVS algorithm

propagates depth information across all views. In addition, the

estimated depths need not be perfect as our IBR algorithm can

substantially reduce reconstruction artifacts caused by erroneous

depths (see our supplementary video).

While our results look visually pleasing, under careful scrutiny

some artifacts can be seen in most of the results. These artifacts

can be traced to errors in the output of the various computer vi-

sion algorithms used in our system. For example, structure-from-

motion sometimes yields imprecise projection matrices, which

leads to incorrect epipolar constraints being used in the depth

estimation. Some artifacts are caused when the image over-

segmentation algorithm produces segments that straddle depth

discontinuities thus violating the MVS assumption that each seg-

ment can be assigned to a single disparity plane. Also, the depths

estimated by our MVS algorithm are rarely perfect, and these

errors can also lead to artifacts. Lastly, the spacetime fusion al-

gorithm can sometimes introduce a hazy blur in the result video

when the depths used to compute the temporal gradient are im-

precise. In general, our IBR algorithm is robust to modest errors

in depth estimation, but large errors can result in artifacts.

7.1. Future Work

7.1.1. Processing speed

The current processing speed of our system is quite slow with five

minutes being spent on each video frame (resolution: 853 x 480);

where two minutes are spent on SFM, two minutes are spent on

MVS and the last minute is spent on IBR. There is a lot of room

for improvement in our unoptimized research code since runtime

speed was not our primary concern. Recent work on computing

SFM for video with real-time performance [Nis05] would be es-

pecially beneficial to our system. Our spacetime fusion algorithm

can probably be sped up using a preconditioner similar to the one

proposed by Szeliski [Sze06].

7.1.2. User interaction

While computer vision algorithms will continue to improve, we

cannot expect them to always perform perfectly. In this paper we

show how far automatic algorithms can be pushed; however, a

production-quality system would need to incorporate user inter-

action to further improve the results. Ideally, users could locally

fix problems and the system would propagate those fixes across

the output. We plan to explore user interaction within the context

of our system as future research.

7.1.3. Dynamic scenes

We have demonstrated that video can be enhanced in a number of

useful ways by capturing and incorporating several photographs

of the scene. We have also described a framework that can

achieve these improvements. However, the system described in

this paper is only the first step in achieving our overall goal,

since most videos that people take depict dynamic scenes.

It is important to note that our restriction to static geometry

is solely due to our method for computing correspondences;

our IBR algorithm for video editing and transferring pho-

tographic qualities, for example, can be integrated with any

method that can compute correspondence, even for dynamic

scenes. We see promise in the advances being made in the

general correspondence problem, such as long-range optical

flow [WB04], non-rigid shape reconstruction [BZS∗06] and

synchronized camera arrays [WJV∗05]. As computer vision

algorithms continue to improve, we believe that the static-

scene restriction can be lifted, and that our overarching goal

of generally using photographs to enhance videos can be realized.
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