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Abstract
We present a new method for colorizing grayscale images by transferring color from a segmented example image.
Rather than relying on a series of independent pixel-level decisions, we develop a new strategy that attempts to
account for the higher-level context of each pixel. The colorizations generated by our approach exhibit a much
higher degree of spatial consistency, compared to previous automatic color transfer methods [WAM02]. We also
demonstrate that our method requires considerably less manual effort than previous user-assisted colorization
methods [LLW04].
Given a grayscale image to colorize, we first determine for each pixel which example segment it should learn its
color from. This is done automatically using a robust supervised classification scheme that analyzes the low-level
feature space defined by small neighborhoods of pixels in the example image. Next, each pixel is assigned a color
from the appropriate region using a neighborhood matching metric, combined with spatial filtering for improved
spatial coherence. Each color assignment is associated with a confidence value, and pixels with a sufficiently
high confidence level are provided as “micro-scribbles” to the optimization-based colorization algorithm of Levin
et al. [LLW04], which produces the final complete colorization of the image.

Categories and Subject Descriptors(according to ACM CCS): 1.4.9 [Image Processing and Computer Vision]:
Applications;

1. Introduction

Colorization, the process of adding color to monochrome
images and video, has long been recognized as highly labo-
rious and tedious. Despite several recent important advances
in the automation of the process, a considerable amount
of manual effort is still required in many cases in order to
achieve satisfactory results.

For example, Levinet al. [LLW04] recently proposed a
simple yet effective user-guided colorization method. In this
method the user is required to scribble the desired colors in
the interiors of the various regions. These constraints are for-
mulated as a least-squares optimization problem that auto-
matically propagates the scribbled colors to produce a com-
pletely colorized image. Other algorithms based on color
scribbles have subsequently been proposed [Sap04, YS04].
While this approach has produced some impressive coloriza-
tions from a small amount of user input, sufficiently complex
images may still require dozens, or more, carefully placed
scribbles, as demonstrated in figure2(a).

In addition to the manual effort involved in placing the
scribbles, the pallet of colors must also be chosen carefully
in order to achieve a convincing result, requiring both ex-
perience and a good sense of aesthetics. This difficulty may

be alleviated by choosing the colors from a similar refer-
ence color image. In fact, Welshet al. [WAM02] proposed
an automatic colorization technique that colorizes an im-
age by matching small pixel neighborhoods in the image to
those in the reference image, andtransferringcolors accord-
ingly. This approach is a special case of the more general
image analogiesframework [HJO∗01], where a general fil-
ter is learned from the relationship between two imagesA
andA′ and then applied to an input imageB to produce a
filtered resultB′. However, image analogies and its deriva-
tives typically make local (pixel level) decisions and thus do
not explicitly enforce a contiguous assignment of colors. The
Levin et al.method, on the other hand, promotes contiguity
by formulating and solving a global optimization problem.

In this paper, we introduce a new color transfer method,
which leverages the advantages of these two previous col-
orization approaches, while largely avoiding their shortcom-
ings. Similarly to the method of Welshet al., our method
colorizes one or more grayscale images, based on a user-
provided reference — a partially segmented example color
image. This requires considerably less input from the user
than scribbling-based interfaces, and the user is relieved
from the task of selecting appropriate colors (beyond sup-
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(a) Reference image (b) Segmentation (c) Luminance channel (d) Input image

(e) Naive color transfer (f) Naive matching (g) Our colorization (h) Our matching

Figure 1: Our approach vs. color transfer. A reference color image (a) was automatically segmented into two major regions
(b). Transferring color to a grayscale image (d) by matching means and variances of pixel neighborhoods (as described in
[WAM02]) produces a poor result in this case (e), since pixels in (d) are matched to pixels in (c) in an incoherent manner, as
visualized in (f). Our approach produces a much better result (g), since it matches pixels in a more contiguous manner (h).

(a) Levinet al.’s colorization. Left: dozens of user drawn
scribbles (some very small). Right: resulting colorization.

(b) Reference image along with a partial segmentation.

(c) Our classification and resulting colorization.

Figure 2: (a) The method of Levin et al. might require the
user to carefully place a multitude of appropriately colored
scribbles. (b) Our approach requires an example image with
a few user-marked or automatically segmented regions, and
produces a comparable colorization (c).

plying the reference image). On the other hand, our method
explicitly enforces spatial consistency, producing more ro-
bust colorizations than Welshet al., by using a spatial voting
scheme followed by a final global optimization step. These
advantages of our approach are demonstrated in figures1
and2.

Our approach is motivated by the observation that find-
ing a good match between a pixel and its neighborhood in a
grayscale image and a pixel in the reference image is not
sufficient for a successful colorization. Often, pixels with
the same luminance value and similar neighborhood statis-
tics may appear in different regions of the reference image,
which may have different semantics and different colors. For
example, figure1(e) shows the result of applying a simple
nearest-neighbor matching based on the average luminance
and the standard deviation in small pixels neighborhoods,
and transferring the corresponding chromatic channels. In
order to improve the results in such cases, Welshet al. pro-
pose letting the user select pairs of corresponding swatches
between the example and each input image, thus limiting
the search for matching neighborhoods to particular regions.
However, this user-assisted variant still relies on pixelwise
decisions and does not enforce contiguity.

We argue that in order to assign colors correctly, a more
elaborate analysis of the different regions in the reference
image and of the relationship between pixels in the input
image and these regions is necessary. Specifically, we begin
by identifying several different source regions in the refer-
ence image, either by letting the user manually mark them,
or by using automatic segmentation. Next, we construct a
mapping between small pixel neighborhoods and points in a
feature space, specifically designed to discriminate between
pixels from different regions, based on local frequency anal-
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Figure 3: An overview of our colorization technique: we begin by analyzing the segmented reference image and constructing
an elaborate feature space, specifically designed to discriminate between different regions. Each pixel in the input image is then
classified in this feature space using voting for robustness. Then, to make the decisions more spatially consistent, we explicitly
enforce spatial consistency of colors by voting in image space, followed by a global optimization step.

ysis in the luminance channel. This analysis is done once per
reference image, and there is no need to mark corresponding
regions in each input image (in contrast to the swatch-based
variant of [WAM02]).

To colorize one or more grayscale images, we first classify
each of their pixels to find out which region they match the
best, using the feature space mentioned above. A robust clas-
sification scheme is crucial here, and we use voting both in
feature space and in image space, for improved spatial con-
sistency. Next, we transfer color only to pixels whose match
is associated with a high level of confidence, and feed the
colored pixels as “micro-scribbles” to the optimization al-
gorithm of Levinet al. [LLW04], which produces the final
complete colorization.

In summary, this paper makes the following contributions:

• We present a new automatic example-based colorization
technique, meaning that once a reference image with
some marked regions has been provided, any number of
sufficiently similar grayscale images may be colorized
without requiring any further input from the user.

• We describe a custom-tailored texture-based classifier de-
rived from a low-level feature-space analysis of the ref-
erence image. Our analysis is close in spirit to linear dis-
criminant analysis (LDA): it removes non-discriminating
features and defines an effective classifier.

• Our method enforces spatially consistent color transfer by
employing an image space voting scheme followed by a
global optimization step.

2. Background

2.1. Colorization

Colorization is a term introduced by Wilson Markle in
1970 to describe the computer-assisted process he in-
vented for adding color to black and white movies or TV
programs [Bur]. In Markle’s original colorization process
[MH87] a color mask is manually painted for at least one

reference frame in a shot. Motion detection and tracking are
then applied, allowing colors to be automatically assigned to
other frames in regions where no motion occurs. Colors in
the vicinity of moving edges are assigned using optical flow,
which often requires manual fixing by the operator.

Although the techniques used in more contemporary col-
orization systems are proprietary, and thus not much is
known about them, it appears that these systems still rely on
defining regions and tracking them between the frames of
a shot [Sil98]. Since there are no completely automatic and
robust segmentation and tracking algorithms, considerable
user intervention in such systems is unavoidable. Consider,
for example, BlackMagic, a commercial software for col-
orizing still images [Neu03]. This colorization tool provides
the user with a variety of useful brushes and color palettes,
but leaves the user with the burden of manually segmenting
the image.

Reinhardet al. [RAGS01] describe an automatic system
for transferring the color pallet from one color image to an-
other. The user can guide the process by specifying pairs
of corresponding swatches in the source and target images.
This system works by modifying the mean and the vari-
ance of colors in the image, and thus is not directly appli-
cable to colorization of grayscale images. The method of
Welsh et al. [WAM02], which was discussed in the pre-
vious section, could be viewed as an extension of Rein-
hard’s approach to the task of colorization. Recently, Chen
et al.[CWSM04] used Welsh’s approach to color objects ex-
tracted from grayscale images by an alpha matting compu-
tation.

Jia et al. [JSTS04] use a color transfer approach which
considers color statistics and spatial constraints to recover a
high quality image from two motion blurred images. Sykora
et al. [SBZ04] presented a color-by-example technique for
colorization of black and white cartoons, which combines
image segmentation, patch-based sampling and probabilistic
reasoning.
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In addition to restoring colors in monochrome content,
colorization is also used for pseudo-coloring medical im-
ages (X-ray, MRI, etc.) [GW87, Pra91]. In this case, the lu-
minance values are mapped to color values, typically via a
user-specified color lookup table.

2.2. Supervised Classification

There has been much work on methods for super-
vised classification and supervised segmentation;
[HH97, HS89, HB03, PD02, Wei99] are just a few ex-
amples. Supervised classification methods typically consist
of two phases: feature analysis and classification. In this
paper we adopt a classification approach based on the K-
nearest-neighbor (Knn) rule [DHS00]. This is an extremely
simple yet effective method for supervised classification,
which we will describe in more detail in section3.1.
Linear dimensionality reduction techniques are often used
to make such classifiers both more efficient and more
effective. For example, PCA-based techniques apply a linear
projection that reduces the dimension of the data while
maximizing the scatter of all projected samples. Linear
Discriminant Analysis (LDA, also known as Fisher’s Linear
Discriminant) [BHK97, DHS00, Fis36], which finds a linear
subspace in which the ratio of between-class scatter to that
of within-class scatter is maximized. Improved variants of
these techniques have recently been proposed by Shental
et al. [SHWP02] and Goldbergeret al. [GRHS04]. Our
approach is also based on LDA, but rather than looking for
a single optimal transformation (under certain assumptions
that do not generally hold), we carry out dimensionality
reduction using two consecutive projections: the goal of the
first projection is to reduce inter-class variability, while the
second maximizes intra-class variability.

3. Colorization by Example

Our algorithm colorizes one or more input grayscale im-
ages, based on a partially segmented reference color image.
By partial segmentation we mean that one or more mutu-
ally disjoint regions in the image have been established, and
each region has been assigned a unique label. These regions
need not cover the entire image, but each region should be
roughly uniform in color and texture. Example of partially
segmented reference images are shown in figures1(a–b) and
2(b). Such segmentations may be either computed automati-
cally, or marked manually by the user.

An overview diagram of our approach is shown in figure
3. The approach consists of the following main conceptual
stages: (i) training, (ii) classification, (iii) color transfer, and
(iv) optimization.

In the training stage, the luminance channel of the ref-
erence image along with the accompanying partial segmen-
tation are provided as atraining set to a supervised learn-
ing algorithm. Informally, this algorithm constructs a low-
dimensional feature space in which it is easy to discrim-

inate between pixels belonging to differently labeled re-
gions, based on a small (grayscale) neighborhood around
each pixel. This construction is described in more detail in
section3.1.

In the classification stage we attempt to robustly deter-
mine, for each grayscale image pixel, which region should
be used as a color reference for this pixel. This is done
by voting among the pixel’s nearest neighbors in the fea-
ture space constructed in the previous step, as described in
section3.1 as well. For improving the spatial coherence of
the resulting classification, we additionally employ voting
among each pixels neighbors in image space (section3.2).

The matches found for each pixel and its image space
neighbors also determine the color that should be assigned
to each pixel, along with a measure of confidence in
that choice. Finally, colored pixels with a sufficiently high
level of confidence are given as “micro-scribbles” to the
optimization-based colorization algorithm of Levinet al.,
which interpolates these colors to all the remaining pixels.
These last two stages are described in section3.3.

3.1. Feature Spaces and Classifiers

Given the reference color image and its partial segmentation,
our first task is to construct a feature space and a correspond-
ing classifier. Recall that the partial segmentation consists of
several regions, each associated with a unique label. Every
pixel in one of these regions defines a labeledfeature vector,
a point in the feature space. Given a previously unseen fea-
ture vector, the goal of the classifier is to decide which label
should be assigned to it.

Note that in our case the pixels to be classified come from
the input grayscale images. Therefore, the classifier cannot
rely on the colors of the pixels in the training set, and must
be able to distinguish between different classes mainly based
on texture. This implies that we should associate each pixel
with a feature vector representing its monochromatic tex-
ture. In our current implementation we use the Discrete Co-
sine Transform (DCT) coefficients of ak by k neighborhood
around the pixel as its feature vector. One of the advantages
of using DCT coefficients is that they are a rather simple tex-
ture descriptor, which is not too sensitive to translations and
rotations, since changes in phase and in direction do not af-
fect the DCT representation. The DCT transform is applied
only to the luminance channel of the reference image. This
yields ak2-dimensional feature space, populated with the la-
beled feature vectors corresponding to the training set pixels.

Once the feature space has been populated by labeled vec-
tors, a novel feature vector may be naively classified by as-
signing it the label of its nearest feature space neighbor.
However, in general, the training set pixels will not form
nicely separated clusters in the feature space, so a more so-
phisticated classifier is required. One such classifier is de-
fined by theK-nearest-neighbor (Knn) rule [DHS00]. This
classifier examines theK nearest neighbors of the feature
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(a) Reference image (b) Input classes (c) Input image (d) Our colorization

(e) Simple Knn-matching (f) Classification using (e) (g) Our Knn-matching (h) Our classification

Figure 4: Simple Knn-matching based on similar luminance value and neighborhood statistics (e) vs. our matching (g). The
improved Knn-matching in color space results in better classification after considering spatial consistency: (f) classification
based on simple Knn matching, (h) classification based on our matching.

vector and chooses the label by a majority vote. Yet, apply-
ing the Knn classifier directly in the high-dimensional fea-
ture space may still lead to many erroneous classifications
(figure 4(e)). Better results may be obtained by switching
to a low-dimensional subspace, custom-tailored according to
the training set, using an approach similar to linear discrim-
inant analysis (LDA).

Let intra-differencesbe the difference vectors between
points within the same class, andinter-differencesbe the
difference vectors between points in different classes. We
would like our classifier to ignore intra-differences, and
make its decisions mainly based on inter-differences. By
transforming (rotating) the space so that the new axis is
aligned with the principle direction of the intra-difference
vectors, and projecting the points onto the minor directions,
we ignore irrelevant dimensions. That subspace is then trans-
formed again so as to enhance the inter-differences among
the classes.

The principle is illustrated in figure5. Figure4 shows
the difference between applying Knn directly in the origi-
nal high-dimensional feature-space (e–f) and to the subspace
(g–h). Clearly the naive Knn classifier fails to discriminate
between the bushes and the elephant.

To realize this idea we use PCA and projections. We first
randomly sample a number of intra-difference vectors, ap-
ply PCA, and remove the eigenvectors that correspond to
high eigenvalues. Then, similarly, we randomly sample the
inter-differences in the resulting subspace and apply PCA

again, this time keeping the eigenvectors corresponding to
the largest eigenvalues. The result of this process is a trans-
formationT which transforms the vector ofk2 DCT coeffi-
cients to a point in the low-dimensional subspace. We can

Figure 5: Applying Knn in a discriminating subspace:
the feature space is populated by points belonging to two
classes: magenta and cyan. The yellow highlighted point has
a majority of magenta-colored nearest neighbors. After ro-
tating the space to the UV coordinate system, where V is
the principle direction of the intra-difference vectors, and
then projecting the points onto the U axis, all of the nearest
neighbors are cyan.
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Figure 6: Assigning color to pixel p: each neighbor of p
(e.g., q, r) has a matching neighborhood in the reference im-
age (Mq and Mr respectively), which “predicts” a different
color for p (Mq predicts the color at position p1 in the refer-
ence image, while Mr predicts the color at position p2). The
color of p is a weighted average of these predictions.

now define the distance between pixelsp andq as

D(p,q) = ‖T f(p)−T f(q)‖2 , (1)

where f (x) is the vector of DCT coefficients corresponding
to thek×k neighborhood centered atx.

To summarize, in order to classify a pixelp in an input
grayscale imageI , we computef (p), transform the result-
ing vector usingT, and apply the Knn classifier in the low-
dimensional subspace. In order to accelerate the classifica-
tion process we construct the feature space using only a ran-
domly sampled subset of the labeled pixels in the training
set. This reduces computation times considerably without
introducing noticeable visual artifacts in the resulting col-
orization, as noted in [WAM02].

3.2. Image Space Voting

Although the Knn classifier described above is more robust
than a naive nearest-neighbor classifier, there can still be
many misclassified pixels, as demonstrated in figure7(b):
quite a few pixels inside the body of the cheetah are classi-
fied as belonging to the background, and vice versa. A better
classification may be produced by explicitly encouraging a
more spatially coherent labeling.

ConsiderN(p), thek× k neighborhood around a pixelp
in the input image. This neighborhood might contain differ-
ently labeled pixels; in factp might be surrounded by pixels
with a different label. To rectify such situations, we would
like to apply something like the median filter, which is com-
monly used for noise removal. However, there is no order
relation among the different labels, so we use the following
approach instead: we replace the label ofp with the domi-
nant labelin N(p). The dominant label is the label with the
highest confidence conf(p, `), where the confidence is de-
fined as

conf(p, `) =
∑q∈N(p,`)Wq

∑r∈N(p)Wr
. (2)

HereN(p, `) is the set of pixels inN(p) with the label̀ , and
the weightsWq depend on the distanceD(q,Mq), between
the pixelq and its best matchMq. Mq is the nearest neigh-
bor of q in the feature space, which has the same label asq.
Specifically,

Wq =
exp(−D(q,Mq))

∑r∈N(q) exp(−D(r,Mr ))
. (3)

The confidence conf(p, `) is typically high in neighborhoods
where all (or most) pixels are labeled`, and low on bound-
aries between regions, or in other difficult to classify spots.

In essence, the filtering operation described above is a
weighted vote over the pixels inN(p). Figure7(c) shows
how this image space voting improves the spatial coherence
of the resulting classification.

3.3. Color Transfer and Optimization

At this point we are ready to define how color is transferred
from the example color imageL to an input grayscale im-
age I . We work in theYUV color space, whereY is the
monochromatic luminance channel, which we use to per-
form the classification, whileU andV are the chrominance
channels. The choice in YUV color space is for consistency
with Levin et al. though there might be better color spaces
for colorization. LetC(p) denote the chrominance coordi-
nates of a pixelp. After classifying each pixelp∈ I as de-
scribed above, the color ofp (with label `) is given by the
weighted average

C(p) = ∑
q∈N(p,`)

WqC(Mq(p)). (4)

As defined above,Mq denotes the best match ofq∈ I in the
example imageL, andMq(p) denotes the pixel inL whose
position with respect toMq is the same as the position ofp
with respect toq (see figure6). In other words, we examine
all of the pixels inN(p, `), each of which has a matching
neighborhood inL that “predicts” a different color forp, and
compute a weighted average of these predictions.

Transferring color in this manner produces a colorized re-
sult, but since some areas might still be misclassified, the
colorization will be wrong in such areas. Figure7(c) shows
such a colorization, and it can be seen that several regions
inside the body of the cheetah have been assigned a green
color. To improve the colorization, we transfer color only to
pixels whose confidence in their label is sufficiently large,
conf(p, `) > 0.5, and provide the colored pixels as con-
straints to the optimization-based color interpolation scheme
of Levin et al. [LLW04]. Thus, our classification and color
transfer stages may be viewed as a method for automatic
generation of color “micro-scribbles”.

As explained in [LLW04] the optimization-based interpo-
lation is based on the principle that neighboring pixels with
similar luminance should have similar colors. Thus, the in-
terpolant attempts to minimize the difference between the
color assigned to a pixelp and the weighted average of the
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(a) Naive nearest neighbor (b) Voting in feature space (c) Voting in image space

Figure 7: A visualization of the classifications and the resulting colorizations corresponding to different classifiers applied to
a grayscale image of a walking cheetah. The training set for these classifications is shown in figure3.

(a) Confidence map

(b) Pixels with confidence above 0.5 marked in red

(c) Micro-scribbles

(d) Final result after optimization

Figure 8: Generating automatic scribbles: pixels with confi-
dence above a predefined threshold are provided as input to
the optimization stage.

colors of its neighbors, where the weights are determined
by the similarity of their luminance. Formally, one seeks the
minimum ofJ(C), where

J(C) = ∑
p∈I

(
C(p)− ∑

q∈N(p)
wpqC(q)

)2

, (5)

(a) (b) (c)

Figure 9: Closeup of the head: (a) before optimization, (b)
confidence map, (c) final result after optimization.

and

wpq∝ e−(Y(p)−Y(q))2/2σp
2

(6)

subject to the input constraints. The reader is referred to
[LLW04] for further details.

Figure8 shows a visualization of the pixel confidences in
the cheetah image, and the automatic micro-scribbles that we
give as an input to the optimizer. The result of the optimiza-
tion is shown in figure8(d) and a closeup of the cheetah’s
head is shown in figure9. Note the improvement in the col-
orization of the head.

4. Results

All of the results shown throughout this paper were obtained
using 7× 7 neighborhoods, so our initial feature space has
49 dimensions, corresponding to the DCT coefficients. The
classifier described in section3.1 is built by sampling 500
intra-difference vectors and 500 inter-difference vectors (ex-
cept for figure10, where we used 200 samples), projected to
form a feature subspace of 10 dimensions. Pixels with a con-
fidence value above 0.5 were provided as micro-scribbles to
the optimization stage.

In figure 1 we compare our results with the results
achieved by automatic pixelwise color transfer [WAM02]. In
Figures4 and7 we further show that naive classifiers alone
do not yield satisfactory results and that our feature space
analysis and image space voting greatly improve classifica-
tion (and hence colorization) quality.

We also compare our method to the user-assisted method

c© The Eurographics Association 2005.
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(a) (b) (c)

Figure 10: Colorization without a reference image: (a) A small region in the input image is annotated with scribbles. (b) The
region is colorized using the method of Levin et al. (c) The automatic colorization of the entire image using our method.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: Automatic region marking reduces human effort, while producing very similar results. (a) Reference image. (b)
Manually marked regions: zebra (marked in red) and grass (marked in blue). (c) Automatic (mean shift) segmentation. (d)
Regions obtained by merging and shrinking segments in (c). Zebra regions are now marked in orange and yellow, while grass
regions are in green and cyan. (e) A new grayscale zebra image. (f) Classification using the manually marked regions in (b). (g)
Classification using the automatic regions in (d). The union of the orange and yellow pixels is nearly identical to the red pixels
in (f), meaning that both classification agree on which pixels best match the zebra region in the reference image, and produce
the same colorization (h).

Figure 12: Top: sample frames from a video sequence colorized by our method given a single colored frame as input. Levin
et al. had to manually scribble in 9 frames out of the 33. Bottom: the corresponding frames from the original color video
sequence, shown here as ground truth reference.
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Figure 13: Colorization of a series of grayscale images from a single example. The left column shows the reference image, its
collection of (automatically generated) regions, and its luminance channel. On the right, the top row shows the input grayscale
images; the middle row shows corresponding classifications; and the bottom row shows the resulting colorizations.

of Levin et al. [LLW04] in figure 2. The advantage of their
technique is that it does not require a reference image. In-
deed, a suitable reference image might not be available. In
such cases, it is sometimes sufficient to manually colorize a
small part of the image using Levin’s method, and then com-
plete the colorization automatically, using that small part as
the reference. This is demonstrated in figure10, where the
user colorized a few apples and a small portion of the table-
cloth using scribbles (as in [LLW04]) and indicated the cor-
responding regions, while our method finished the job. Thus,
the user-assisted workflow scenario of Levinet al. can still
benefit from the use of our method. The converse is also true.
In some cases our method produces an erroneous coloriza-
tion, typically due to a mistake in classification (for exam-
ple, some of the thin reeds in figure2 take their color from
the water or the rocks in their background). In cases such
as these, the user may intervene and fix such mistakes by
adding a few scribbles and repeating the optimization stage.

In most of our examples we used automatic segmentation
to identify the different regions in the reference image, ex-
cept in figure2, where the regions were marked manually.
We use the EDISON code [RIU] to perform meanshift seg-
mentation, with its parameters adjusted to yield large seg-
ments. We also applied morphological operators to separate
the segments (see figures1, 4 and11: the gaps between seg-
ments are shown in black). In figure11 we show a compari-
son between manual and automatic segmentation of the ref-
erence image. As demonstrated in the figure, the differences
in the classification are very small, implying that the method
is not sensitive to the segmentation.

A significant advantage of our method lies in its ability
to automatically colorize an entire series of grayscale im-
ages. This is demonstrated in figure12, which shows sev-

eral frames from a video sequence that was colorized by
out method using a single colored frame as the input ex-
ample. To guarantee temporal coherence in the colorized
video, the automatically generated micro-scribbles were fed
into the spatio-temporal volume of the video and optimiza-
tion was then applied in three-dimensions. For comparison,
Levin et al. reported scribbling in 9 out of 33 frames to col-
orize the same sequence.

An even more challenging example of sequence coloriza-
tion is shown in13. Note that the grayscale input images are
similar but lack any frame coherence, so propagating colors
from one image to another is not an option here. The varia-
tion among the images in figure13 are larger than of a typi-
cal video stream. Our method avoids any use of tracking and
greatly simplifies the work of the user. Of course, the results
are only valid as long as the colored example is valid: Once
objects that do not appear in the reference image are intro-
duced, the user has to either color them, or provide another
adequate reference.

5. Conclusion and Future Work

In this paper we presented a new technique for colorizing
grayscale images by example. The method uses a classifier
defined by a DCT analysis and custom-tailored to the given
segmented reference image. The classification of pixels in
the input grayscale image aims at creating a spatially coher-
ent labeling by employing voting both in feature space and
in image space. To further improve the transfer of the chro-
matic channels from the example to the grayscale image only
pixels with high confidence are provided as automatic micro-
scribbles to a global optimization stage, which yields the fi-
nal colorization. Our method shows significant improvement
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over techniques that use only pixelwise decisions and naive
classifications.

In the future we plan to investigate the possibility of com-
bining our classification-based approach with automatically
established swatches. This may be done by searching for rep-
resentative regions in the input images that match reference
regions particularly well. Once such representatives have
been established, the remaining input pixels might be able
to find better matches in a transitive fashion, through one
of these representatives. The premise here, as in [WAM02],
is that it is generally easier to find good matches between
neighborhoods in the same image than across different im-
ages.

We would also like to explore other, more sophisticated,
monochrome texture descriptors, such as the Gabor trans-
form, steerable pyramids, and other wavelet-related trans-
forms. By relying on descriptors that constitute a better
model of the human visual system, we hope to be able to
further improve the classification and matching capabilities
of our approach.
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