
Eurographics Symposium on Rendering (2004)
H. W. Jensen, A. Keller (Editors)

An Efficient Hybrid Shadow Rendering Algorithm

Eric Chan Frédo Durand

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology†

Abstract

We present a hybrid algorithm for rendering hard shadows accurately and efficiently. Our method combines the
strengths of shadow maps and shadow volumes. We first use a shadow map to identify the pixels in the image that
lie near shadow discontinuities. Then, we perform the shadow-volume computation only at these pixels to ensure
accurate shadow edges. This approach simultaneously avoids the edge aliasing artifacts of standard shadow
maps and avoids the high fillrate consumption of standard shadow volumes. The algorithm relies on a hardware
mechanism for rapidly rejecting non-silhouette pixels during rasterization. Since current graphics hardware does
not directly provide this mechanism, we simulate it using available features related to occlusion culling and show
that dedicated hardware support requires minimal changes to existing technology.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics processors, I.3.7
[Computer Graphics]: Color, shading, shadowing, and texture

Keywords: shadow algorithms, graphics hardware

1. Introduction
Shadow maps and shadow volumes are two popular means
for the real-time rendering of shadows. Shadow maps are ef-
ficient and flexible, but they are prone to aliasing. Shadow
volumes are accurate, but they have large fillrate require-
ments and thus do not scale well to complex scenes. Achiev-
ing both accuracy and scalability is challenging for real-time
shadow algorithms.

Sen et al. [SCH03] observed that shadow-map aliasing
is only noticeable at the discontinuities between shadowed
and lit regions, i.e. at the shadow silhouettes. On the other
hand, shadow volumes compute shadows accurately at every
pixel, but this accuracy is needed only at the silhouettes. This
observation suggests a hybrid algorithm that uses a slower
but accurate algorithm near the shadow discontinuities and a
faster, less exact algorithm everywhere else.

In this paper, we describe a hybrid shadow rendering al-
gorithm (see Figure 1). We first use a shadow map to find
quickly pixels in the image that lie near shadow silhouettes,
then apply the shadow volume algorithm only at these pixels;
the shadow map determines shadows for the remaining non-
silhouette pixels. This approach greatly reduces the fillrate

† email: {ericchan|fredo}@graphics.csail.mit.edu

needed for drawing shadow volumes, because the number
of silhouette pixels is often a small fraction of the shadow
polygons’ total screen area (see Figure 2). We show that our
method produces accurate hard shadows and has substan-
tially lower fillrate requirements than the original shadow
volume algorithm.

To avoid processing non-silhouette pixels during shadow
volume rasterization, we propose an extension to graphics
hardware called a computation mask. Computation masks
are useful in general for accelerating multipass rendering
algorithms. Although they are not directly exposed in cur-
rent hardware, we show how to simulate them efficiently us-
ing available features related to early z occlusion culling.
Since computation masks exploit existing culling hardware,
adding native hardware support requires minimal changes to
modern graphics chips.

2. Related Work
Researchers have developed many shadow algorithms over
the years, several of them based on the classic shadow map
and shadow volume methods. Recent work has focused on
extending these methods to handle soft shadows, which we
do not discuss in this paper. Many efforts have also been
made to address the shadow-map aliasing and the shadow-
volume fillrate issues. We focus our discussion below on

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

Chan and Durand / smapSV

a. b. c. d.

Figure 1: Overview. We first use a shadow map (a) to identify pixels in the image that lie close to shadow silhouettes. These
pixels, seen from the observer’s view, are shaded green in (b). Next, we render shadow volumes only at these pixels to obtain
accurate shadow edges (c). We use the shadow map to compute shadows everywhere else, and the final result appears in (d).

a. b.

Figure 2: (a) The cylinder’s shadow exhibits aliasing due to
shadow-map undersampling. However, aliasing is only ap-
parent at the shadow edges. (b) Pixels that lie near shadow
edges (shown in red) account for only a small fraction of the
total image size.

this recent body of work and refer the reader to Woo et al.’s
paper [WPF90] for a broader survey of shadow algorithms.
Akenine-Möller and Haines’s book [AMH02] also provides
a good discussion of real-time shadow algorithms.

Shadow maps were introduced by Williams in 1978
[Wil78]. The algorithm works in image space: it first ren-
ders a depth map of the scene from the light’s viewpoint; the
depth map is then used to determine which samples in the fi-
nal image are visible to the light. Shadow maps are efficient
and are supported in graphics hardware, but they are prone
to sampling artifacts such as aliasing.

Researchers have developed many techniques for address-
ing shadow-map aliasing. Approaches based on filtering
and stochastic sampling [LV00, RSC87] produce nice an-
tialiased shadows. Unfortunately, effective filtering requires
a large number of samples per pixel, which is expensive
for real-time applications. Furthermore, using a large fil-
ter width leads to self-shadowing artifacts that are scene-
dependent and hard to avoid.

Other methods reduce aliasing by increasing the effective
shadow-map resolution. Adaptive shadow maps [FFBG01]
detect and redraw undersampled regions of the shadow map
at higher resolutions. Unfortunately, the required data struc-
tures and host-based calculations preclude real-time per-
formance for dynamic scenes. Perspective shadow maps

a. b.

Figure 3: A simple scene with a few objects (a) can lead to
high fillrate consumption when using shadow volumes. (b)
The shadow polygons (shown in yellow) occupy substantial
screen area and overlap in screen space. Lighter shades of
yellow correspond to regions with higher overdraw.

[SD02] are simpler: they just require an additional perspec-
tive transformation that effectively provides more resolution
in the shadow map to samples located close to the viewer.
This method is simple and fast, but it does not reduce alias-
ing in all cases. For instance, when the light source and the
viewer face each other, the perspective transforms mutually
cancel and the result is a standard uniform shadow map.

Sen et al. [SCH03] observed that shadow-map aliasing
is only problematic near the shadow silhouettes, i.e. dis-
continuities between shadowed and lit regions. They pro-
pose the silhouette map, a 2D data structure that provides
a piecewise-linear approximation to the true geometric sil-
houette seen from the point of view of the light source. The
silhouette map provides an excellent reconstruction of the
shadow silhouette and eliminates shadow-map aliasing in
many cases. Since only one silhouette point may be stored
per texel in the silhouette map, however, artifacts may ap-
pear when multiple shadow boundaries meet. Our edge re-
construction uses shadow volumes and avoids these artifacts.

Unlike the shadow map, which works in image space,
Crow’s shadow volume algorithm [Cro77] works in object
space by drawing polygons to represent the boundary be-
tween illuminated and shadowed regions of 3D space. The
shadow volume itself is the volume bounded by these poly-
gons, and a shadow query involves checking if a point in the

c© The Eurographics Association 2004.

Chan and Durand / smapSV

image lies within the volume. Bergeron [Ber86] generalized
the method to handle open models and non-planar surfaces.

Heidmann [Hei91] showed how to accelerate shadow-
volume calculations using a hardware stencil buffer. Un-
fortunately, the original algorithm for stencil-based shadow
volumes suffered from numerous robustness issues, some of
which were addressed by Diefenbach [Die96] and Carmack
[Car00]. Recently, Everitt and Kilgard [EK02] described a
robust implementation using modern graphics hardware.

Unfortunately, the shadow volume algorithm does not
scale well to scenes with high shadow complexity. The
method involves drawing extra geometry, but the main prob-
lem is the large fillrate required. There are two reasons
for this. First, shadow-volume polygons occupy substantial
screen area, as shown in Figure 3, especially in heavily-
shadowed scenes or when the observer is in shadow. Second,
the shadow polygons overlap in screen space, and every ras-
terized pixel of every shadow polygon potentially updates
the stencil buffer. This degree of overlap, combined with the
large screen coverage of shadow polygons, grows rapidly as
shadow complexity increases, leading to an explosion in fill-
rate consumption.

Lengyel [Len02], Everitt and Kilgard [EK03], and
McGuire et al. [MHE∗03] describe a number of culling tech-
niques for optimizing stencil shadow volumes to reduce fill-
rate. One method estimates the shadow extent on a per-
blocker basis and uses scissoring to discard shadow-polygon
pixels that lie outside the computed scissor rectangle. A re-
lated method also considers the depth range of the shadows
cast by individual blockers and discards pixels from shadow-
volume polygons that lie outside of this range. The key idea
here is to discard pixels early in the pipeline without per-
forming stencil updates, thereby accelerating rasterization
and saving valuable memory bandwidth.

The above techniques are useful, but they are less effective
for heavily-shadowed scenes. This is because pixels that lie
in shadow are precisely those that lie within the depth ranges
and scissor rectangles computed in the above optimizations;
thus such pixels do not benefit from these optimizations.
Scenes in which shadow polygons have large depth ranges
are also problematic. In contrast, our method performs ras-
terization and stencil updates only for pixels that lie near
shadow silhouettes. Thus even for scenes with many shad-
ows, the fillrate consumed by shadow-volume polygons re-
mains small. Note that our method is complementary to the
aforementioned optimizations.

Researchers have recently proposed several new methods
for tackling the fillrate problem of shadow volumes. Aila and
Akenine-Möller [AAMar] describe a two-level hierarchical
shadow volume algorithm. Their approach is similar to ours
in that they identify shadow-boundary pixels and rasterize
shadow volumes accurately only at those pixels. There are
two important differences, however. First, their method de-
tects tiles of boundary pixels in object space by checking for
triangle intersections against the tiles’ 3D bounding boxes,
whereas our method identifies the boundaries in image space

using a shadow map. Second, an efficient implementation
of their method requires numerous changes to hardware, in-
cluding a modified rasterizer, logic for managing tile up-
dates, and the addition of a delay stream [AMN03]. In con-
trast, our method relies on existing culling hardware to re-
duce shadow-volume fillrate.

Lloyd et al. [LWGMar] take a different approach to re-
ducing shadow-volume rasterization costs. One of their tech-
niques is to use image-space occlusion queries to identify
blockers that lie entirely in shadow; shadow-volume poly-
gons for such blockers are redundant and may be culled. A
similar method is used to cull blockers that cast shadows
only on receivers lying outside the observer’s view frustum.

Furthermore, Lloyd et al. limit the screen-space ex-
tent of shadow-volume polygons in two ways. In the first
method, they compute overlaps of the blockers’ axis-aligned
bounding boxes to estimate the depth intervals from the
light source that contain shadow receivers; they clamp
shadow polygons to non-empty depth intervals. In the sec-
ond method, they partition the observer’s view frustum into
discrete slices and use occlusion queries to determine which
slices contain receivers; as in the first approach, shadow
polygons are clamped to non-empty slices. The second ap-
proach provides greater culling but incurs additional over-
head. The key difference between all of the above culling
strategies and our method is that Lloyd et al. reduce fillrate
by reducing the number and size of the shadow-volume poly-
gons, whereas we draw the entire polygons and rely on the
hardware to perform culling of non-silhouette pixels. These
approaches are fully complementary.

McCool [McC00] was the first to propose a hybrid algo-
rithm that combines shadow maps and shadow volumes. His
method first renders a depth map and runs an edge-detection
algorithm to find the blockers’ silhouette edges. Next, the
method reconstructs shadow volumes from these edges and
uses them to compute shadows in the final image. A strength
of McCool’s approach is that shadow-volume polygons are
generated only for silhouette edges that are visible to the
light source. Unfortunately, an expensive depth-buffer read-
back is required, shadow polygons are fully rasterized, and
artifacts can occur due to aliasing in the shadow-volume re-
construction.

Govindaraju et al. [GLY∗03] propose a different hybrid
shadow algorithm. First, they use level-of-detail and PVS
culling techniques to reduce the number of potential block-
ers and receivers; these techniques are implemented using
hardware occlusion queries. Next, they compute shadows us-
ing a mix of object-space clipping and shadow maps. Exact
clipping of receiver polygons against the blockers’ shadow
frusta is performed for receivers that would otherwise ex-
hibit shadow-map aliasing artifacts. To identify these re-
ceivers, they use a formula derived by Stamminger and Dret-
takis [SD02] that relates the size of a pixel in shadow-map
space to its size when projected into the observer’s image
space. Shadow maps are used for the remaining receiver
polygons. This hybrid approach improves the accuracy of

c© The Eurographics Association 2004.

Chan and Durand / smapSV

shadow silhouettes without requiring an excessive number
of clipping operations.

The approach of Govindaraju et al. is similar to ours
in that both methods limit the amount of computation re-
quired to render accurate shadow silhouettes. The two meth-
ods perform culling at different stages, however. Whereas
their method minimizes the number of objects that are pro-
cessed by their clipping algorithm, our method minimizes
the number of pixels in the image that are treated by shadow
volumes. The two methods could be combined by replacing
their software-based polygon clipping with our optimized,
hardware-accelerated shadow volume rasterization.

3. Algorithm
We assume that blockers are polygonal, well-behaved,
closed, and manifold; these properties ensure a robust im-
plementation of shadow volumes [EK02].

An overview of our approach is shown in Figure 1. We
first create an ordinary shadow map, which serves to iden-
tify shadow silhouette pixels and compute shadows for non-
silhouette pixels. Then, we use shadow volumes to compute
accurate shadows only at silhouette pixels. The underlying
assumptions are that the silhouette pixels account for a small
fraction of the total number of shadow-polygon pixels, and
that the hardware supports a mechanism for efficiently dis-
carding pixels that do not lie on the silhouette.

We now explain these concepts in more detail; implemen-
tation and hardware issues are discussed in the next section.
The algorithm’s steps are:

1. Create a shadow map. We place the camera at the
light source and render the nearest depth values to a buffer,
as shown in Figure 1a. Since we only need the shadow
map to approximate the shadow silhouette, we can use a
low-resolution shadow map to conserve texture memory and
speed up shadow-map rendering. The tradeoff is that low-
resolution shadow maps can miss small features and usually
increase the number of pixels classified as silhouette pixels.
We will discuss this issue further in Section 5.1.

2. Identify shadow silhouette pixels in the final image.
We render the scene from the observer’s viewpoint and use a
technique suggested by Sen et al. [SCH03] to find silhouette
pixels. We transform each sample to light space and com-
pare its depth against the four nearest depth samples from
the shadow map. If the comparison results disagree, then we
classify the sample as a silhouette pixel (shown in green in
Figure 1b). Otherwise, the sample is a non-silhouette pixel
and is shaded according to the depth comparison result.

Reducing the number of silhouette pixels is desirable be-
cause it limits the amount of stencil fillrate consumed when
drawing shadow volumes. For example, pixels that are back-
facing with respect to the light are always in shadow, so we
never tag them as silhouette pixels. Additional methods for
reducing the number of silhouette pixels are discussed in
Section 6.3.

During this step, we also perform standard z-buffering,

// Find discontinuities: shadow silhouette pixels.
void main (out half4 color : COLOR,
 half diffuse : COL0,
 float4 uvProj : TEXCOORD0,
 uniform sampler2D shadowMap)
{
 // Use hardware's 2x2 filter: 0 <= v <= 1.
 fixed v = tex2Dproj(shadowMap, uvProj).x;

 // Requirements for sil pixel: front-facing and
 // depth comparison results disagree.
 color = (v > 0 && v < 1 && diffuse > 0) ? 1 : 0;
}

Figure 4: Cg pixel shader for finding shadow silhouettes.

a. b.

Figure 5: Comparison: a cylinder’s shadow is rendered us-
ing (a) a 512×512 shadow map and (b) our hybrid al-
gorithm with a 256×256 shadow map. Using a lower-
resolution shadow map in our case is acceptable because
shadow volumes are responsible for reconstructing the
shadow silhouette.

which leaves the nearest depth values seen from the ob-
server’s viewpoint in the depth buffer. This prepares the
depth buffer for drawing shadow volumes in the next step.

3. Draw shadow volumes. The stencil shadow volume al-
gorithm works by incrementing or decrementing the stencil
buffer based on whether pixels of shadow-volume polygons
pass or fail the depth test. We follow the z-fail setup de-
scribed by Everitt and Kilgard [EK02] because of its robust-
ness. The key difference in our approach is that we rasterize
shadow-polygon pixels and update the stencil buffer only at
framebuffer addresses containing silhouette pixels.

At the end of this step, the stencil buffer contains non-zero
for pixels that lie in shadow; it contains zero for pixels that
either are not shadowed or are not silhouette pixels. For ex-
ample, the black shadow edges in Figure 1c show the regions
where the stencil-buffer contains non-zero.

4. Compute shadows. We draw and shade the scene only
at pixels with stencil values equal to zero, thereby avoiding
the shadowed regions of the image.

4. Implementation Issues
Our shadow algorithm performs rasterization and stencil up-
dates of the shadow-volume polygons only at the silhouette
pixels. To find these silhouette pixels, we compare the depth
of each image sample with the four nearest depth samples
in the shadow map and check if the results agree. We use

c© The Eurographics Association 2004.

Chan and Durand / smapSV

a. b. c. d.

Figure 6: Visualization of mixing shadow maps and shadow volumes. We see the shadow of a ball cast onto the ground plane.
(a) Aliasing is evident when the ball’s shadow is rendered using a 256×256 shadow map. The rest of the images illustrate how
our method minimizes aliasing. In (b) and (c), non-silhouette pixels are shaded red and blue; for these pixels, the shadow map
determines which ones are in shadow (red) and which ones are lit (blue). Silhouette pixels are shaded black and green; shadow
volumes determine which ones are in shadow (black) and which ones are lit (green). Shadow-map resolutions of 256×256 and
512×512 were used for (b) and (c), respectively. The final shadow is shown in (d).

hardware-assisted percentage closer filtering [RSC87] to ac-
celerate this step. If the shadow query returns exactly 0 or
1, the depth comparison results agree and the pixel is not a
silhouette pixel; otherwise the results disagree and the pixel
lies on a silhouette. This optimization allows us to issue a
single texture-fetch instruction in a pixel shader, shown in
Figure 4. We tag silhouette pixels by writing 1 to the color
buffer.

Rasterization and stencil updates of shadow-volume poly-
gons are limited to silhouette pixels. We accomplish this task
using a computation mask, a device that lets us pick spe-
cific framebuffer addresses to mask off so that the hardware
can avoid processing pixels at those locations. Computation
masks are useful for accelerating multipass rendering algo-
rithms. For instance, Purcell et al. [PDC∗03, Pur04] found
that a computation mask with coarse granularity improved
the performance of their hardware-based photon-mapping
algorithm by factors of two to ten.

Current graphics hardware does not directly ex-
pose computation masks, but it turns out that the
EXT depth bounds test OpenGL extension [Ope02] can
be treated as one; see the appendix for a brief explanation
of this extension. The idea is to use a pixel shader to mask
off pixels by setting their depth values to a constant out-
side the depth bounds. Then we enable depth-bounds test-
ing so that in subsequent rendering passes, rasterized pixels
at these masked-off framebuffer addresses can be discarded
early in the pipeline. Similar culling mechanisms are com-
monly used for early z occlusion culling [Mor00].

In our implementation, we set up a computation mask
as follows. We draw a screen-aligned quad and use a pixel
shader to set the depth values of all non-silhouette pixels
to z = 0; depth values of silhouette pixels are unmodi-
fied. Next, we enable depth-bounds testing and set the depth
bounds to [ε, 1] for some small constant ε ≈ 0.001. Finally,
we apply the robust z-fail variation of stencil shadow vol-
umes [EK02]. Since the hardware discards all rasterized pix-

els whose depth values in the framebuffer are equal to z = 0,
only silhouette pixels will be rendered.

Note that our implementation depends on the hardware’s
ability to preserve early culling behavior when using a
pixel shader to compute depth values. This feature is avail-
able on the NVIDIA GeForce 6 (NV40) but not on ear-
lier NVIDIA architectures such as the GeForce FX (NV30).
ATI’s Radeon 9700 (R300) and newer architectures also sup-
port this feature, but unfortunately those chips do not support
the EXT depth bounds test extension.

5. Results
All of the images presented in this section and in the accom-
panying video were generated at a resolution of 1024 × 768
on a 2.6 GHz Pentium 4 system with a NVIDIA GeForce
6800 (NV40) graphics card.

Examples. Figure 5 shows a cylinder casting a shadow
onto the ground plane. We used an ordinary 512×512
shadow map and 2×2 bilinear percentage closer filtering
[RSC87] for the image in Figure 5a. We used our hybrid
method with a 256×256 shadow map for the image in Figure
5b. The lower-resolution shadow map is acceptable because
the shadow-volume portion of our algorithm reconstructs the
shadow edges accurately.

Figure 6 shows a closeup of the ball’s shadow from Fig-
ure 3a and illustrates how our method operates near shadow
silhouettes. Figure 6a shows the aliasing artifacts that result
from using an ordinary 256×256 shadow map. In the middle
two images, non-silhouette pixels are shown in red and blue;
red pixels are fully shadowed, and dark gray pixels are fully
lit. Visibility for these pixels is determined using the shadow
map. Silhouette pixels are shown in black and green; black
pixels are in shadow and green pixels are lit. Shadow deter-
mination in this case is performed by shadow volumes. Fig-
ures 6b and 6c use 256×256 and 512×512 shadow maps,
respectively. Figure 6d shows the final shadow computed by
our method.

c© The Eurographics Association 2004.

Chan and Durand / smapSV

Tree

Cubes

View A View B View C

Dragon Cage

Figure 7: Three test scenes with high shadow complexity. Rows contain different scenes, and columns show different views.
Each scene is illuminated using a single point light source.

Methodology. We evaluated our method using the scenes
shown in Figure 7. The Cubes and Dragon Cage scenes con-
tain 12,000 triangles each, and the Tree scene has 40,000
triangles. We chose these scenes and viewpoints for several
reasons. First, they have high shadow complexity and require
enormous fillrate when using ordinary shadow volumes.
Second, these scenes have many overlapping shadow edges,
which can lead to temporal artifacts when using shadow sil-
houette maps [SCH03]. Third, we have chosen some cam-
era views (see View C) that are on the opposite side of
the blockers as the light source; these cases are difficult
to handle using perspective shadow maps [SD02]. Finally,
these scenes are heavily-shadowed, and the depth range of
shadow-volume polygons is large, making it difficult to ap-
ply the scissor and depth-bounds optimizations described in
Section 2 [Len02, EK03, MHE∗03]. In summary, real-time
shadow rendering is a challenging task in all of these scenes.

5.1. Image Quality
Figure 8 compares the image quality of shadow maps, our
hybrid method, and shadow volumes; we used a 1024×1024
shadow map for the first two techniques. These images show
that our method minimizes the edge-aliasing artifacts of
shadow maps.

A more subtle improvement is that our method reduces
self-shadowing artifacts. With regular shadow maps, incor-
rect self-shadowing may occur due to limited depth-buffer
resolution and precision. These artifacts are visible, for ex-
ample, in the Dragon Cage scene in Figure 8 (see the lower-
left image). The problem is usually addressed by adding a
small bias to the depth values when rendering the shadow
map [AMH02, RSC87, Wil78]. Unfortunately, the amount
of bias required depends on the scene configuration and is
hard to set automatically for dynamic scenes.

In our approach, however, incorrectly-shadowed pixels
are often classified as silhouette pixels and thus are rendered
correctly by the shadow-volume portion of the algorithm.

c© The Eurographics Association 2004.

Chan and Durand / smapSV

Tree

Cubes

Shadow Maps Hybrid Algorithm Shadow Volumes

Dragon Cage

Figure 8: Comparison of image quality using shadow maps (left column), our hybrid algorithm (center column), and shadow
volumes (right column). A shadow-map resolution of 1024×1024 was used for the shadow map and hybrid algorithms.

The reason is that the depth value of an affected pixel usu-
ally lies between the depth values of two adjacent samples
in the shadow map. As a result, the depth comparisons dis-
agree and the pixel is tagged as a silhouette pixel. One impli-
cation is that we can choose the shadow bias conservatively,
erring on the side of applying too little bias and relying on
the shadow volumes to avoid self-shadowing artifacts. If we
apply too little bias, however, then most of the pixels in the
image will be classified as silhouette pixels.

Although shadows computed using our approach are of-
ten similar to those computed using shadow volumes, small
differences may occur due to sampling errors in the shadow
map. To understand these differences better, we studied sev-
eral images produced using the hybrid algorithm at different
shadow-map resolutions. Figure 9 shows an example of one
such set of images; we chose the Tree scene as our example
because its thin branches are difficult to represent accurately
in a discrete buffer. The indicated regions in red and green
show missing or incorrect shadows due to undersampling.

More generally, a limitation of using lower shadow-map
resolutions is that small blockers may be poorly represented
in the shadow map. This form of aliasing manifests itself
in vanishing and popping shadows. Existing shadow algo-
rithms that rely on discrete buffers for visibility queries,
such as the work of McCool [McC00], Govindaraju et al.
[GLY∗03], and Sen et al. [SCH03], also exhibit similar ar-
tifacts. The difficulty is that arbitrarily small objects may
cast arbitrarily large shadows, depending on the scene con-
figuration, and low-resolution shadow maps are more likely
to miss such objects. This problem could be addressed
by combining our method with a perspective shadow map
[Koz04, SD02], which optimizes the depth buffer’s sample
distribution to maximize resolution near the viewer.

5.2. Performance
Fillrate consumption is significant for the shadow volume
algorithm in all of our test scenes. Figure 10a shows an ex-
ample in which shadow-volume polygons cover the entire

c© The Eurographics Association 2004.

Chan and Durand / smapSV

Hybrid: 256 x 256 Hybrid: 512 x 512 Hybrid: 1024 x 1024 Shadow Volumes

not applicable

Figure 9: Artifacts. These images are crops from the Tree scene, View B. The images in the left three columns were generated
using our hybrid algorithm with varying shadow-map resolutions. In the top row, the regions indicated in red and green show
missing or incorrect shadows due to undersampling in the shadow map. The corresponding images in the bottom row visualize
the reconstruction errors using the same color scheme as in Figures 6b and 6c. The reference image in the far-right column was
obtained using shadow volumes.

image and have an overdraw factor of 79, meaning that ev-
ery pixel is processed 79 times on average. We reduce this
huge fillrate consumption by limiting shadow-polygon ras-
terization to silhouette pixels, shaded green in Figure 10b;
silhouette pixels in this scene cover just 5% of the image.
Performing rasterization and stencil updates only at these
pixels leads to the stencil buffer shown in Figure 10c.

Figure 11 compares the number of pixels rasterized by
shadow volumes and our hybrid method. It also shows
the percentage of pixels classified as silhouette pixels as a
function of shadow-map resolution. Even with a 256×256
shadow map, the fraction of silhouette pixels is much smaller
than the fraction of all shadow-volume pixels.

Figure 12 compares the performance of the shadow map,
shadow volume, and hybrid algorithms. Performance is mea-
sured using the time required for each algorithm to render
one frame; all times are reported in milliseconds. The plot
gives a performance breakdown for each part of each algo-
rithm. Not surprisingly, the cost of the hybrid and shadow
volume algorithms is dominated by the rasterization and
stencil updates of the shadow-volume polygons. Our method
is significantly faster, however: we observed speedups of
30% to over 100%, measured in frames per second. Keep
in mind that these performance numbers are highly scene-
dependent and view-dependent; hardware culling implemen-
tations (see Section 6.2) also play a large role in determining
the actual speedup. We provide performance numbers sim-
ply to demonstrate that substantial acceleration is attainable
across a number of different scenes and viewpoints.

6. Discussion
6.1. Algorithm Tradeoffs
The key performance tradeoff in our work is the reduction of
fillrate at the cost of an extra rendering pass. We emphasize
that our method is designed to handle dynamic scenes with
high shadow complexity, which would ordinarily give rise
to many overlapping shadow volumes and quickly saturate
the hardware’s fillrate. Thus our method is most relevant to
fillrate-limited applications, such as many of the current real-
time game engines. Ordinary shadow volumes will clearly
run faster for scenes of sufficiently low shadow complexity.

Since our method combines both shadow maps and
shadow volumes, it inherits some of the limitations from
both. In contrast to the shadow map algorithm, which han-
dles any geometry that can be represented in a depth buffer,
our method requires watertight polygonal models for ro-
bust shadow volume rendering. In contrast to the shadow
volume algorithm, our method is restricted to directional
light sources because we use shadow maps to find silhou-
ette pixels; omnidirectional lights require additional render-
ing passes. Finally, our method requires one more rendering
pass than ordinary shadow volumes because we must first
create the shadow map. Fortunately, this extra pass is inex-
pensive because it can be done at lower resolutions and re-
quires no shading.

6.2. Computation Masks
We described at length in Section 4 how to treat the depth
bounds test as a computation mask, but this trick is only nec-
essary because current hardware lacks a dedicated computa-
tion mask. We believe that adding a true computation mask
to graphics hardware is worthwhile for several reasons. First,

c© The Eurographics Association 2004.

Chan and Durand / smapSV

a. c.b.

Figure 10: Fillrate consumption and overdraw in the Dragon Cage scene. The shadow volume polygons, shaded yellow in (a),
cover the entire image and have an overdraw factor of 79; brighter yellow corresponds to higher overdraw. Our hybrid method
restricts drawing shadow polygons to the silhouette pixels, shaded green in (b); these pixels cover just 5% of the image. The
image on the right (c) illustrates the resulting stencil buffer: black pixels on the floor and walls are in shadow and represent
non-zero stencil values.

as we pointed out earlier, computation masks are closely re-
lated to early z occlusion culling, and thus most of the re-
quired technology is already present in current hardware.
In particular, computation masks can take advantage of the
early tile-based rejection mechanisms already used for oc-
clusion culling and depth bounds testing. Furthermore, the
representation for a computation mask is much more com-
pact: only a single bit per pixel is needed, as compared to 16
or 24 bits per pixel for an uncompressed depth buffer.

Early pixel rejection (due to either computation masks,
occlusion culling, or depth bounds testing) is unlikely to oc-
cur with single-pixel granularity. It is more likely that such
culling takes place on a per-tile basis, such as a 16-pixel or
8-pixel tile. Fortunately, the images in Figures 1b and 10b
suggest that non-silhouette pixels tend to occupy large con-
tiguous regions of screen space and can benefit from conser-
vative tile-based culling.

6.3. Additional Optimizations
One way to reduce further the number of classified silhou-
ette pixels is to consider only the pixels that undersample
the shadow map. Stamminger and Drettakis [SD02] derive
a simple formula for estimating the ratio r of image resolu-
tion to shadow-map resolution; silhouette pixels with r < 1
can be omitted because they won’t exhibit aliasing artifacts.
This culling strategy could be added to the shader in Figure
4 at the cost of additional per-pixel floating-point arithmetic.
In our test cases, however, we found that this technique re-
duced the number of classified silhouette pixels by only 5%,
not enough to justify the computational overhead.

We have also considered (but not implemented) an op-
timization inspired by the work of Lloyd et al. [LWGMar]
and the hybrid algorithms of McCool [McC00] and Govin-
daraju et al. [GLY∗03]. As mentioned earlier, an advantage
of McCool’s work is that shadow volumes are not needed for
blockers that are entirely in shadow, because these blockers
are absent from the shadow map. Similarly, Lloyd et al. and
Govindaraju et al. use image-space occlusion queries to re-

duce the number of blockers and receivers considered for
shadow computation.

These occlusion queries could be combined with our al-
gorithm in the following way. After rendering a shadow map
in the first step of the algorithm, render a bounding volume
for each blocker from the light’s viewpoint and use an oc-
clusion query to check if any of the bounding volume’s pix-
els pass the depth test. If no pixels pass, then drawing the
shadow volumes for that blocker may be skipped. Note that
this culling strategy must be applied on a per-blocker basis
(as opposed to a per-silhouette-edge basis) to ensure the con-
sistency of the stencil-based shadow volume algorithm.

This optimization is useful in situations where complex
blockers are often shadowed; a common scenario is a com-
puter game in which monsters hide in the shadows. In these
cases, it may be possible to avoid drawing the shadow poly-
gons entirely for a large model. The cost of the optimization
includes the occlusion query, which adds latency to the ren-
dering pipeline, and the drawing of bounding boxes, which
consumes additional fillrate. On the other hand, most of the
latency can be hidden by issuing many queries but only
checking the result of the first query after several bounding
volumes have been drawn. Drawing a bounding box is also
fast because there are no writes to the framebuffer, no shad-
ing is needed, and hardware-accelerated occlusion culling is
applicable.

7. Conclusions
We have presented a hybrid shadow rendering approach that
combines the strengths of shadow maps and shadow vol-
umes. The key idea is to use shadow maps to identify which
regions of the image will exhibit edge aliasing, then apply
shadow volumes only in those regions to obtain better accu-
racy.

We have shown that our algorithm benefits from using a
computation mask that discards pixels early in the pipeline.
More generally, a computation mask allows the programmer
to identify a small set of pixels in the scene that are “inter-

c© The Eurographics Association 2004.

Chan and Durand / smapSV
S

ilh
o
u
e
tt
e
 p

ix
e
l
c
o
v
e
ra

g
e
 (

%
)

Cubes

View A View B View C View A View B View C View A View B View C

Tree Dragon Cage

0

20

40

60

80

100

Hybrid : 1024 x 1024 Hybrid: 512 x 512 Hybrid: 256 x 256 Full shadow volumes

32x 64x 94x 13x 33x 45x 25x 49x 79x

Figure 11: Shadow volume overdraw and silhouette pixel coverage. The black bars show the percentage of pixels in the image
covered by shadow volumes, and the number next to each bar is the overdraw factor (the ratio of shadow-polygon pixels to
the total image size). The white, red, and blue bars show the percentage of pixels in the image that are classified as shadow
silhouette pixels by our hybrid algorithm; colors correspond to different shadow-map resolutions.

Shadow map lookup

Render at stencil = 0

Render at stencil = 0 + shadow map lookup

Draw shadow volumes

Find silhouette pixels + create computation mask

Create shadow map

Initialize z-buffer

T
im

e
 (

m
s
)

SM

H

SV

SM

H

SV

SM

H

SV

Cubes

View A View B View C View A View B View C View A View B View C

Tree Dragon Cage

0

20

40

60

80

Figure 12: Performance comparison. The vertical bars measure the per-frame time in milliseconds (ms) for the shadow map
algorithm (SM), our hybrid algorithm (H), and the shadow volume algorithm (SV). Colored sections of a bar indicate how much
time is spent in each part of the algorithm.

esting”; all other pixels are masked off. Expensive per-pixel
algorithms can then operate on this subset of pixels without
incurring the cost over the entire framebuffer. This strategy
of decomposing a problem into two parts — a large part that
relies on a fast but inexact technique, and a small part that
uses a slower but accurate technique — is applicable to a
number of multipass rendering algorithms.

We believe that the benefits of hardware computation
masks will become more significant as pixel shaders in-
crease in complexity. Current hardware already performs
aggressive occlusion culling to avoid unnecessary shading.
Computation masks represent a logical step in this direction.

Acknowledgments
Special thanks to Nick Triantos and Mark Kilgard from
NVIDIA for providing hardware and driver assistance. Our
discussions with them have contributed greatly to our under-
standing of occlusion culling performance issues. Jan Kautz,
Addy Ngan, Timo Aila, and our anonymous reviewers pro-
vided valuable feedback on this paper. This work is sup-
ported by an ASEE National Defense Science and Engineer-
ing Graduate fellowship.

Appendix
The EXT depth bounds test OpenGL extension [Ope02]
states that a rasterized fragment is discarded if the current
depth value stored in the framebuffer at that fragment’s ad-

c© The Eurographics Association 2004.

Chan and Durand / smapSV

dress lies outside user-specified depth bounds. The key is
that an architecture’s implementation may discard fragments
early in the pipeline without performing buffer updates, such
as stencil writes. Thus modern graphics architectures, which
often rasterize and shade tiles of fragments in parallel, can
aggressively discard an entire tile during rasterization if all
the fragments in the tile lie outside of the depth bounds.
Similar mechanisms are already used for early z occlusion
culling [Mor00].

References
[AAMar] AILA T., AKENINE-MÖLLER T.: A hierarchical

shadow volume algorithm. In Proceedings of the
ACM SIGGRAPH / Eurographics Workshop on
Graphics Hardware (2004 (to appear)), ACM Press.
3

[AMH02] AKENINE-MÖLLER T., HAINES E.: Real-Time
Rendering (2nd edition). A. K. Peters Ltd., 2002,
pp. 248–276. 2, 6

[AMN03] AILA T., MIETTINEN V., NORDLUND P.: Delay
streams for graphics hardware. ACM Transactions
on Graphics (TOG) 22, 3 (2003), 792–800. 3

[Ber86] BERGERON P.: A general version of Crow’s shadow
volumes. In IEEE Computer Graphics and
Applications (September 1986), pp. 17–28. 3

[Car00] CARMACK J.: Private email, May 23, 2000.
http://developer.nvidia.com/attach/3413. 3

[Cro77] CROW F. C.: Shadow algorithms for computer
graphics. In Proceedings of ACM SIGGRAPH
(1977), ACM Press, pp. 242–248. 2

[Die96] DIEFENBACH P.: Multi-pass Pipeline Rendering:
Interaction and Realism through Hardware
Provisions. Ph. D. thesis MS-CIS-96-26, University
of Pennsylvania, 1996. 3

[EK02] EVERITT C., KILGARD M. J.: Practical and robust
stenciled shadow volumes for hardware-accelerated
rendering, 2002. http://developer.nvidia.com/object/
robust shadow volumes.html. 3, 4, 5

[EK03] EVERITT C., KILGARD M. J.: Optimized stencil
shadow volumes, 2003.
http://developer.nvidia.com/docs/IO/8230/
GDC2003 ShadowVolumes.pdf. 3, 6

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K.,
GREENBERG D. P.: Adaptive shadow maps. In
Proceedings of ACM SIGGRAPH (2001), ACM
Press, pp. 387–390. 2

[GLY∗03] GOVINDARAJU N. K., LLOYD B., YOON S.-E.,
SUD A., MANOCHA D.: Interactive shadow
generation in complex environments. ACM
Transactions on Graphics (TOG) 22, 3 (2003),
501–510. 3, 7, 9

[Hei91] HEIDMANN T.: Real shadows, real time. In Iris
Universe, No. 18 (November 1991), Silicon Graphics
Inc., pp. 23–31.
http://developer.nvidia.com/attach/3414. 3

[Koz04] KOZLOV S.: Perspective shadow maps: Care and
feeding. In GPU Gems (2004), Addison-Wesley. 7

[Len02] LENGYEL E.: The mechanics of robust stencil
shadows. In Gamasutra (October 11, 2002).
http://www.gamasutra.com/features/20021011/
lengyel 01.htm. 3, 6

[LV00] LOKOVIC T., VEACH E.: Deep shadow maps. In
Proceedings of ACM SIGGRAPH (2000), ACM
Press, pp. 385–392. 2

[LWGMar] LLOYD B., WENDT J., GOVINDARAJU N.,
MANOCHA D.: CC shadow volumes. In
Proceedings of the Eurographics Symposium on
Rendering (2004 (to appear)). 3, 9

[McC00] MCCOOL M. D.: Shadow volume reconstruction
from depth maps. ACM Transactions on Graphics
(TOG) 19, 1 (2000), 1–26. 3, 7, 9

[MHE∗03] MCGUIRE M., HUGHES J. F., EGAN K., KILGARD

M., EVERITT C.: Fast, practical and robust
shadows. Technical Report CS03-19, Brown
University, October 27, 2003. 3, 6

[Mor00] MOREIN S.: ATI Radeon – HyperZ technology,
August 22, 2000.
http://www.ibiblio.org/hwws/previous/www 2000/
presentations/ATIHot3D.pdf. 5, 11

[Ope02] OPENGL ARCHITECTURAL REVIEW BOARD:
EXT depth bounds test OpenGL extension
specification, 2002.
http://www.nvidia.com/dev content/nvopenglspecs/
GL EXT depth bounds test.txt. 5, 10

[PDC∗03] PURCELL T. J., DONNER C., CAMMARANO M.,
JENSEN H. W., HANRAHAN P.: Photon mapping on
programmable graphics hardware. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics Hardware (2003), Eurographics
Association, pp. 41–50. 5

[Pur04] PURCELL T. J.: Ray Tracing On A Stream
Processor. Ph. D. thesis, Stanford University, 2004.
5

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.:
Rendering antialiased shadows with depth maps. In
Proceedings of ACM SIGGRAPH (1987), ACM
Press, pp. 283–291. 2, 5, 6

[SCH03] SEN P., CAMMARANO M., HANRAHAN P.:
Shadow silhouette maps. ACM Transactions on
Graphics (TOG) 22, 3 (2003), 521–526. 1, 2, 4, 6, 7

[SD02] STAMMINGER M., DRETTAKIS G.: Perspective
shadow maps. In Proceedings of ACM SIGGRAPH
(2002), ACM Press, pp. 557–562. 2, 3, 6, 7, 9

[Wil78] WILLIAMS L.: Casting curved shadows on curved
surfaces. In Proceedings of ACM SIGGRAPH
(1978), ACM Press, pp. 270–274. 2, 6

[WPF90] WOO A., POULIN P., FOURNIER A.: A survey of
shadow algorithms. IEEE Computer Graphics and
Applications 10, 6 (Nov. 1990), 13–32. 2

c© The Eurographics Association 2004.

