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Figure 1: The “Boeing 777” model containing 350 million triangles. a.) Overview over the entire model, including shadows. b.) Zoom
into the engine, showing intricately interweaved, complex geometry. c.) The same as b.), but zooming in even closer. All of the individual
parts of the entire plane are modeled at this level of complexity. d.) The cockpit, including shadows. Using our out-of-core visualization
scheme, all of these frames can be rendered interactively at 3–7 frames per second on a single desktop PC.

Abstract

With the tremendous advances in both hardware capabilities and rendering algorithms, rendering performance is
steadily increasing. Even consumer graphics hardware can render many million triangles per second. However,
scene complexity seems to be rising even faster than rendering performance, with no end to even more complex
models in sight.
In this paper, we are targeting the interactive visualization of the “Boeing 777” model, a highly complex model of
350 million individual triangles, which – due to its sheer size and complex internal structure – simply cannot be
handled satisfactorily by today’s techniques. To render this model, we use a combination of real-time ray tracing,
a low-level out of core caching and demand loading strategy, and a hierarchical, hybrid volumetric/lightfield-like
approximation scheme for representing not-yet-loaded geometry. With this approach, we are able to render the full
777 model at several frames per second even on a single commodity desktop PC.

Keywords: Real-time rendering, out-of-core rendering, complex models, distributed computing, ray tracing

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Ray tracing I.6.3 [Simu-
lation and Modeling]: Applications I.3.2 [Computer Graphics]: Distributed/network graphics

1. Introduction

For many years now, the performance of commodity CPUs
has increased at a rate of a factor of two roughly every 18
months. At least in the last few years, the performance of
graphics hardware has grown even faster, having led to com-
modity graphics hardware that can render up to several mil-
lion triangles per second. In addition to this “free” increase
in rendering performance, we also see a steady improve-
ment in rendering algorithms. With all this taken together,
the model complexity that is affordable at interactive rates is
constantly and rapidly increasing.

Unfortunately, the complexity of practical models seems
to be rising even faster: First of all, users of modeling sys-
tems (and game designers as well) tend to immediately
spend every grain of increased performance into even more
detail, i.e. into more triangles.

Additionally, virtual prototyping is becoming increasingly
important and hardwired into the design process. Tradition-
ally, virtual reality has been but loosely coupled to the actual
design process, and has merely visualized semi-manually
prepared (i.e. simplified) versions of the CAD models. With
VR getting increasingly involved into the production pro-
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Figure 2: Some example closeups of the 777, to show the high geometric complexity, small degree of occlusion, and com-
plex topological structure of the model, which make it complicated for most simplification/approximation-based approaches.
a.) Zoom onto a small object of roughly one cubic foot in size, showing each individual nut and bolt modeled with hundreds
of badly-shaped triangles. Multiple surfaces with different materials overlap themselves, as can be seen e.g. on the mixed
white/blue-patched structure. Due to the randomly jittered vertex positions (introduced to prevent data theft), such structures
self-intersect with each other randomly. b.) The same view from a few meters away. The left image corresponds to the red rect-
angle in the middle. c.) & d.) The same for a view into the engine. Note how much detail is visible in that view, and how the
many pipes and cables are intricately interweaved. The low degree of occlusion is also demonstrated in Figure 3.

cess, there is a growing need to render models “directly out
of the database”, i.e. without any model “preparation” and
simplification. Such CAD datasets, however, can be quite
complex.

Furthermore, the increased use of “collaborative engineer-
ing” for large-scale industrial projects leads to models con-
sisting of hundreds and thousands of individual parts (poten-
tially created by different suppliers), each of which modeled
at whatever complexity and accuracy has been affordable for
that individual part. In practice, this often means that each
individual nut and bolt of a model (also see Figures 1– 3) is
represented in full geometric detail.

Taken together, these developments lead to a growth in
model complexity that seems to be at least as fast as the
growth in hardware resources. An end to these developments
currently is not foreseeable.

In this paper, we are targeting the interactive visualization
of the “Boeing 777” model, a model consisting of roughly
350 million individual triangles, i.e. without using instantia-
tion to generate this triangle count. Just the raw input data of
that model ships – in compressed form – on a total of eleven
CDs. After unpacking and storing each triangle as a triple
of three floats without any additional acceleration data, the
model is 12 GByte in size, and requires several minutes just
for reading it from disk. For this kind of model complexity,
generating frame rates of several frames per second is quite
challenging for contemporary massive model rendering ap-
proaches.

1.1. Outline

In the remainder of this paper, we will first discuss relevant
related work regarding rendering complex models in Sec-
tion 2, and will particularly discuss their problems in han-
dling a model of the size, topological structure, and com-
plexity of the 777. Based on this discussion, we will then

develop and describe our new approach to such models: Af-
ter giving an overview of our system in Section 3, we will
then describe the caching and demand loading subsystem in
Section 4, and our hierarchical approximation scheme for
not-yet-loaded geometry in Section 5. Section 6 then sum-
marizes some results of using our framework for rendering
the full 777 model on a single dual-1.8 GHz AMD Opteron
desktop PC with 6 GB RAM. Finally, Section 7 concludes
and ends with an outlook on future work.

2. Previous Work

Due to the practical and industrial importance of render-
ing complex datasets, there exists a vast suite of different
approaches to this problem. However, many of these tech-
niques perform well only for specific kinds of models, but
prove problematic for others.

Brute-Force Rendering. Obviously, a model of the size of
the 777 cannot be handled by a pure brute-force approach.
In theory, the most up-to-date graphics hardware (e.g. an
NVIDIA Quadro FX 4000) features a theoretical peak per-
formance of 133 million shaded and lit triangles per second,
and could thus raster the full model in only a few seconds.
Unfortunately, the practical performance usually is much
lower, in particular for models that do not fit into graphics
card memory. Thus, typical approaches to rendering com-
plex datasets rely on reducing the number of triangles to be
sent to the graphics card.

Culling Techniques. Typical approaches like view-frustum
culling are quite limited for a model of as high a depth com-
plexity as the 777. Depth complexity can only be handled
by taking occlusion into account. At least for 2D or 2 1

2 D
scenes (e.g. urban walkthroughs), occlusion can be conser-
vatively precomputed quite well [WWS00]. In three dimen-
sions, in particular with as few occlusion as in the 777 (see
Figures 2 and 3), visibility preprocessing is quite problem-
atic [ACW∗99].
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Instead of precomputing visibility, the alternative is to
use a hierarchical visibility culling mechanism, e.g. the
hierarchical z-buffer [GKM93], possibly implemented via
OpenGL occlusion queries [BMH99]. However, neither of
these approaches has been designed for handling gigabyte-
sized models that do not even fit into main memory. Re-
cently, Correa et al. [CKS03] have proposed a visibility-
based out-of-core rendering framework that can also cope
with models larger than memory. However, even if visibility-
based approaches would achieve perfect culling, for many
views the low degree of occlusion in the 777 still results in
millions of potentially visible triangles.

To handle this case, the randomized z-buffer algo-
rithm [WFP∗01] randomly selects one triangle out of the
many triangles that project onto a pixel. This, however,
works only for scenes in which it does not actually matter
which of the triangles is chosen, e.g. for picking one of the
thousands of leaves of a tree. For the 777 the exact ordering
and mutual occlusion of even very close-by triangles is quite
important. For example, in order to avoid the small yellow
pipes “shining through” the green hull to which they are at-
tached. Finally, like all the previously mentioned techniques,
the randomized z-buffer is not designed for handling models
that do not even fit into memory.

Model Simplification. As pure visibility culling even the-
oretically is not enough, many approaches try to “re-
duce” the model by some form of mesh simplification,
e.g. via edge contraction, vertex removal, or remeshing
(see e.g. [CMS98]), often requiring some form of “well-
behaving” geometry. Typically, these methods perform best
for highly tessellated surfaces that are otherwise relatively
smooth, flat, and topologically simple. In the 777 the trian-
gles actually form many detailed, loosely connected though
interweaving parts of complex topological structure, such as
mazes of tubes, pipes, and cables (see Figures 2 and 3). Such
kinds of geometry are very hard to simplify effectively in a
robust manner.

Moreover, each part of the 777 comes in a “soup” of un-
connected triangles, without any connectivity information,
often forming self-intersecting and overlapping surfaces (see

Figure 3: In comparison to most other “massive” models,
the 777 has a much lower degree of occlusion. a.) Zoom onto
the front part of the model, where the rays penetrate deeply
into the model. b.) Closeup of the geometry that can be seen
through the ribs of the plane.

Figure 2a) with different material properties. Even worse,
the vertex positions have been slightly jittered to prevent
public spreading of the sensitive original CAD data. Thus,
overlapping surfaces are not perfectly aligned, but rather ran-
domly intersect each other multiple times. For such kinds of
input data, most geometrically based algorithms are likely to
fail.

As each individual technique usually has a
weak point, the UNC’s MMR/Gigawalk sys-
tem [ACW∗99, BSGM02, GLY∗03] is based on a combina-
tion of different techniques, combining mesh simplification,
visibility preprocessing, impostors [SDB97], textured depth
meshes, and hierarchical occlusion maps [ZMHH97].
However, as just discussed each of these individual parts is
problematic in the 777. This raises the question whether a
combination of these techniques can still succeed in each
technique masking the shortcomings of the other.

Image-based and Point-based Approaches. In addition to
these “traditional” methods, researchers have also looked
into image-based and point-based approaches. For exam-
ple, the Holodeck [WS99], Render Cache [WDP99], and
Edge-and-Point-Image [BWG03] progressively sample the
model asynchronously to displaying it, and interactively re-
construct the image from these sparse samples. In principle,
both approaches might be applicable to the 777. However,
the rays traced by these systems are likely to cause signifi-
cant paging, resulting in prohibitively long times for gener-
ating enough image samples. This is likely to result in severe
subsampling, and in strong visual artifacts.

As yet another alternative, researchers have pro-
posed to represent models using point samples (see
e.g. [CH02, PZvBG00]). Though this decouples geometric
complexity from display complexity, the sparse number of
samples often limits the detail that is present in the recon-
structed image. To avoid this problem, QSplat [RL00] em-
ploys a hierarchical scheme in which the entire mesh is rep-
resented by at least one sample per triangle. However, its
hierarchical approximation scheme assumes that nearby tri-
angles can, if seen from a distance, be well approximated by
a disk-shaped “splat” with filtered color and normal infor-
mation. Like mesh simplification, this works only for rela-
tively smooth and topologically simple surfaces, and is likely
to fail for the geometrical structure of the 777 as described
above.

Interactive Ray Tracing. Finally, complex models can also
be visualized using interactive ray tracing. Due to its log-
arithmic dependence on scene complexity, ray tracing can
easily handle even highly complex scenes of several mil-
lion triangles at full detail. For example, the OpenRT real-
time ray tracing system [Wal04] has been shown to inter-
actively render the one billion triangle “Sunflowers” scene
even including shadows, semi-transparent leaves, and mov-
ing geometry. However, this has only been possible through
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instantiation, i.e. by reusing the same kind of sunflower sev-
eral thousand times, therefore being able to keep the entire
model in main memory. For the 777 model, we simply can-
not store the entire dataset – which occupies 30–40 GByte
including acceleration structures – in main memory. Once
the operating system starts to generate the inevitable page
faults the ray tracer would run idle while waiting for data,
and could not maintain interactivity.

In order to solve that problem, Pharr et al. [PKGH97] have
proposed a caching and reordering scheme that reorders the
rays in a way that minimizes disk I/O. Though this allows
for efficiently ray tracing models that are much larger than
main memory, the approach is not easily applicable to in-
teractive rendering. A simplified version of this scheme has
also been used by Wald et al. [WSB01]. They have proposed
to “suspend” rays that would cause a page fault and load the
required data asynchronously over the network while trac-
ing other rays in the meantime. The stalled rays then get
“resumed” once the data is available. Though that approach
worked well for the target model (the 12.5 million triangle
UNC Power Plant), it fails in interactively rendering a model
as complex as the 777: The proposed suspend/resume ap-
proach can hide the loading latency only within the dura-
tion of one frame. In the 777, however, even a small cam-
era change often triggers thousands of disk read requests
that simply cannot be fulfilled within a single frame. Though
prefetching (in the sense of e.g. [CKS03]) would help, it can
hide loading latencies only to a limited degree.

Furthermore, their demand loading scheme was based on
splitting the model into “voxels” of several thousand trian-
gles, which were then loaded and discarded as required. This
caching granularity is far too large for our purposes, as each
individual ray may cause loading another of these voxels.
Additionally, this method is prone to memory fragmenta-
tion, and carries a certain overhead for managing the data
(also see the discussion in [DGP04]).

3. An Out-of-Core Framework for Interactively
Rendering Massively Complex Models

As shown by the discussion in the previous section, contem-
porary techniques to handle massive models cannot easily
cope with a model of the size, structure, and complexity of
the 777. Thus, a new approach had to be taken.

Since ray tracing can in principle handle such massive
amounts of geometry, in a first experiment we ported the
OpenRT ray tracer to a shared-memory architecture, and ex-
perimented with rendering the 777 on 16 UltraSPARC III
CPUs in a SUN Sun Fire 11K with 180 GB RAM. This al-
lowed for storing the model – including pre-built BSP data
– into the RAM disk, making it possible to load the entire
scene within a few seconds, and to interactively inspect it at
several frames per second, even including shadows.

With these successful experiments, we started designing

an architecture that could deliver similar performance even
on a commodity PC. In order to be able to at least address the
entire model, we decided to build on AMD’s 64-bit Opteron
CPUs [AMD03], which have recently become available in
commodity desktop systems. Compared to e.g. the Intel Ita-
nium CPU, the Opteron also supports the IA32 SSE Instruc-
tion set [Int02], and thus can exploit also those traversal
and intersection routines of OpenRT that have been specifi-
cally optimized towards SSE [WSBW01, Wal04]. This sup-
port for using SSE instructions – together with a nominally
higher clock rate – allow the Opteron to easily outpace the
UltraSPARC III. Instead of having to use many CPUs in a
Sun Fire, we can achieve similar performance on a single
dual-CPU Opteron PC.

Unfortunately, having a 64-bit address space allows for
addressing the entire model, but cannot help the fact that we
still are not able to keep it entirely in memory. We therefore
decided to follow the approach of Wald et al. [WSB01], and
use a combination of manual memory management and de-
mand loading in order to detect and avoid page faults due to
access to out-of-core memory. As discussed in the previous
section, however, their approach had several shortcomings
with respect to a 777-class model, mainly with respect to
the design and implementation of the memory management
scheme. Most importantly, their system has mainly been de-
signed for hiding the scene access latency by suspending and
resuming rays, which we have argued cannot work success-
fully for the 777.

As a consequence, our framework builds on two pil-
lars: First, on a new memory management scheme that has
been redesigned from scratch. It avoids the fragmentation,
caching granularity, and I/O problems of the original ap-
proach, and is thus much better suited for a 777-class model.
Second, our approach does not even try to hide scene ac-
cess latency, but instead kills off potentially page-faulting
rays, which are then being replaced by shading information
from so-called “proxies”. This is achieved by efficiently de-
termining in advance accesses to parts of the BSP that may
potentially lead to a page fault. Proxies are a pre-computed
coarse yet appropriate approximate representation for the re-
spective subtree. This proxy mechanism is similar to a hi-
erarchical level-of-detail representation intermixed with the
spatial index structure, and will be described in more detail
in Section 5.

4. Memory Management

As just motivated, a memory management scheme based on
manually managing individual sub-parts of several thousand
triangles is inappropriate for the 777 due to memory frag-
mentation, much too coarse cache granularity, and thus bad
memory efficiency and high I/O cost. In contrast to this, the
Linux/UNIX memory mapping facilities (mmap() [BC02])
provide a convenient way of addressing and demand load-
ing memory on a per-page basis. In particular, it realizes
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a unified cache, i.e. it does not matter which data is con-
tained in which physical page, and it never pages in any data
(e.g. shading information) that might not be required.

Leaving the memory management (MM) to the operating
system greatly simplifies the design, and improves the effi-
ciency of the implementation: For example, manual memory
management requires to take special care in order to avoid
race conditions where one thread accesses data that is just
being freed by another thread. If not avoided by costly syn-
chronization via mutexes, such race conditions usually lead
to program crashes. If a similar race condition happens in our
OS-based MM scheme, the worst that can happen is a page
fault, as the pointer to the not available memory region is
still considered valid. Additionally, working on “real” point-
ers minimizes the address lookup overhead, as this is done
automatically by the processor’s hardware MMU, and do not
cost precious CPU time (also see [DPH∗03]).

Finally, using this scheme is quite simple: All one has
to do to implement this scheme is to precompute all static
data structures (e.g. BSP index structures etc.), store them
on disk in binary form, and map them into the address space
via mmap(). This preprocessing is done in an out-of-core
approach similar to [WSB01].

4.1. Detecting and Avoiding Page Faults

Though an OS-based MM system has many advantages over
manual caching, it also has a major drawback in that we lose
control over what data is loaded into or discarded from mem-
ory at what time. Although data is automatically paged in on
demand upon accessing it, the resulting page fault stalls the
rendering thread until the data is available.

To retain control over the caching process we imple-
mented a hybrid memory management system, which uses
the operating system to perform demand paging, but which
detects and avoids potential page faults before they occur,
and which manually steers page loading and eviction.

In order to avoid page faults, we have to detect whether or
not memory referenced by a pointer is actually in core mem-
ory. Though Linux for this purpose offers the mincore()
function, performing an OS call on each memory access ob-
viously is not affordable. When taking a closer look at the
Linux memory mapping implementation, however, there are
several important observations to be made: First, after hav-
ing once loaded a page, it will stay in memory at least for a
limited amount of time. Second, pages in memory will not
be paged out as long as there is some unused memory avail-
able. Thus, as long as we know that there is some memory
left, we can mark once-accessed pages, and can be (almost)
sure that the respective page will still be in memory later on.

Obviously, this only works as long as we do not try to page
in more data than fits into physical memory. Fortunately, this
can be easily guaranteed: By using the Linux madvise()

call, we can force the kernel to free pages of our choice,
thereby guaranteeing that some free memory is available at
any time, and that no pages become unavailable without us
knowing it. Of course, this assumes that no other processes
start using up our memory.

4.2. The Tile Table

In order to mark pages as either available or missing, we
have to store at least one bit per page. Keeping an entry for
each potential 4 KB page in a 64-bit address space would
require 252 entries and is not affordable. Instead, one could
use a hierarchical scheme as used by the processor’s MMU,
which however would be quite costly to access. We there-
fore group several pages into one “tile” and keep our tiles
organized in a hash table of tile addresses. If the hash ta-
ble is large enough to minimize hash collisions, hashing is
quite efficient, and can be implemented with a few bit op-
erations on the address pointer. Furthermore, a hash table
is quite memory efficient: For hashing 128 GB RAM of 4
KB sized tiles (one page per tile) we only need 32M entries.
Using a larger cache granularity of 16 KB or 64 KB, this re-
duces even more to 8M and 2M entries, respectively. If the
size of the tile table is a power of two, all addressing and
hashing operation can be performed efficiently by simple bi-
nary ands and shifts.

Each tile table entry contains a 64-bit pointer with the vir-
tual base address of the tile for detecting hashing collisions.
The lower 12–16 bits of this entry are always zero, and can
thus be used for other purposes, i.e. for marking whether the
page is available (bit 0), and whether it has recently been
referenced (bit 1). Thus, in order to check if a page is in
memory, we simply have to find its entry in the tile table
(one shift operation), validate there is no hash collision
(one and), check bit 0 for availability (one more and), and,
if required, set bit 1 (one or) to mark an access.

4.3. Tile Fetching

In case we found a tile that is not marked as available, we
cancel the respective ray and schedule the tile’s address for
asynchronous loading by putting it into a request queue.

Once a tile is scheduled to be fetched, it will eventually
be loaded by an asynchronous fetcher thread. In an infinite
loop, this thread in each iteration takes one request from the
request queue, reads in the page via madvise(), and then
marks the tile as available. Though reading the page obvi-
ously stalls the fetcher thread, the ray tracing threads are not
affected at all, and remain busy. Note that we run several
(4–8) fetcher threads in parallel, thereby allowing the OS to
schedule multiple parallel disk requests as it deems appro-
priate.

Fetch Prioritization. Missing data leads to cancellation of
rays, so missing data that cancels many rays should be
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overview engine wheels cockpit cabin
Figure 4: Reference views for our experiments. From left to right: Overview over the whole model, a view into the engine,
zoom onto the front wheels, the cockpit, and one of the main cabins. Using a single dual-CPU AMD Opteron 1.8 GHz PC, these
respective views can be rendered at 4.1, 2.9, 7.1, 3.1, and 3.2 frames per second at video resolution (640×480).

fetched faster than data affecting only a single ray. Count-
ing the actual accesses to a tile, however, is too costly, as
it would require to coordinate the different write accesses
to the shared counter. Instead, we observe that the number
of affected rays is proportional to the size of the BSP voxel
they are about to enter, and inversely proportional to its dis-
tance to the camera. We use this value for prioritizing fetch
requests. To avoid searching for the most important requests,
we map the priority to 8 discrete values, and keep one re-
quest queue for each of them. The fetchers then always take
the first entry out of the queue with highest priority. This
mapping is performed linearly, relative to the minimum and
maximum priorities of the previous frame.

4.4. Tile Eviction

As mentioned before, the tile fetcher can only fetch new
tiles if some unused memory is available. Otherwise, the OS
pages out tiles without us even noticing it (i.e. they are still
being marked available). We therefore use the madvise()
function to discard mapped pages from main memory. This
obviously should be done only for pages that are likely not
needed any longer. As a full “least recently used” strategy
would be too expensive, we follow the same strategy as the
Linux kernel swapper, and use a “second chance” strategy.
The tile evictor slowly but continuously cycles through the
tile table and resets the tile’s “referenced” bit to zero (the
page is still marked as present!). If the tile is still needed,
this bit will soon be re-set by a rendering thread. If, how-
ever, the evictor visits a tile a second time with the R-bit still
zero, it evicts the tile and marks it as missing. Similar to the
Linux kernel swapper, tile eviction only starts once memory
gets scarce, currently at a memory utilization of ∼80%.

4.5. Minimizing MM Overhead

While the just described memory management is an integral
part of our system, we have to keep its performance impact
to an absolute minimum. In particular, we have to minimize
the number of semaphore synchronization operations, which
otherwise tend to block the rendering threads.

Apart from the time consumed by the asynchronous
fetcher and evictor threads, the main ray tracing threads have

to constantly check each memory access for availability of
the data. To minimize this overhead, we first check each
pointer dereference for whether it crosses a tile boundary
(with respect to the previous access). This can be done quite
efficiently by simple bit operations, already reduces most
of the tile table lookups, and does not require any costly
semaphore operations.

Even in the case that we have to access the tile table, we
can often get away without having to perform locking op-
erations: If the tile is marked as available, or is marked as
already being fetched, we can immediately return. Though
this can result in a race condition – e.g. the evictor might
evict the tile at exactly this moment – this event is extremely
improbable. Even if it occurs, in the worst case it can lead to
either a single, improbable page fault, or to scheduling a tile
twice for being loaded. Both cases are well tolerable even in
the rare event that they occur.

As such, there are only two cases where a ray tracing
thread has to use a mutex. Once it adds a previously unvis-
ited tile to the tile table, and every time it has to add a tile
to the request queue. Both cases happen but relatively rarely.
We also have to lock a mutex every time the tile fetcher or
tile evictor want to modify the tile table or request queues.
These threads, however, are not performance critical.

5. Geometry Proxies

Using our MM scheme, we can efficiently detect and avoid
any page fault of the ray tracing threads, and thus main-
tain interactivity and high performance at all times. Unfortu-
nately cache misses are detected but shortly before the data
is actually required. Thus, the ray that caused this page fault
obviously cannot be traversed any further.

As already discussed in Section 2, only suspending that
ray until the data has been fetched will not work for a model
of the 777’s complexity, as we simply cannot load thousands
of tiles within a single frame. Hence, we have no other way
but to accept the fact that there eventually will be pixels in
a frame for which we cannot completely trace the necessary
ray(s). Therefore, we have to decide on what color to assign
to such pixels. Obviously, coloring these pixels in a fixed
color (like red in Figure 5) results in large parts of the image
being unrecognizable.
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Figure 5: Approximation quality during startup time. Left:
Immediately after startup. Right: after loading for a few
seconds. Even then only a fraction of the model has been
loaded. Top row: Without proxy information, by just mark-
ing canceled rays in red. Bottom row: Using our geometry
proxies. While the proxy quality after startup is quite coarse,
it suffices to navigate the model. As can be seen, without the
proxies almost no pixel contains sensible information. Even-
tually all data will be loaded, with no artifacts left at all.
Also note that the positive influence of the proxies can hardly
be shown in a still image, and becomes fully apparent only
while interactively navigating the model.

Alternatively one could fill in such a pixels color from
the nearest valid sample, interpolate its color from several
surrounding pixels, or even do sophisticated sparse sample
reconstruction as done in e.g. the Render Cache [WDP99].
This approach however is quite problematic too: First, it re-
quires costly (and badly parallelizable) post-filtering of the
rendered image, which is too costly for full-screen resolu-
tions. More importantly however, even a slight change of
camera position can result in large fractions of the image
becoming invalid (see Figure 5): Though most of the re-
quired nodes in the upper BSP levels will be in memory,
many of the subpixel-sized leaf voxels will not yet be avail-
able, and will result in killing off many pixels, even after the
rays could be traced “almost” up to he final hitpoint.

5.1. Proxies for Missing Data

For a cache miss however there are several important obser-
vation to be made: First, a cache miss can only be caused
by a ray that wishes to traverse a specific subtree of the BSP
that is not yet in memory. Such a subtree – no matter how
many nodes or triangles it contains – is always a volume en-
closed in an axis-aligned box. Furthermore, walkthrough ap-
plications tend to not change the view drastically, and similar
views will touch similar data, particularly in the upper levels
of the BSP tree. As such, going from one view to the next
most of the upper-level BSP nodes will already be in mem-

ory, and only small subtrees close to the leaves are likely to
be missing. These subtrees fortunately are quite small, and,
when projected, often smaller than a pixel. For such small
voxels it often does not matter which triangle exactly is hit
by the ray, as long as there is some kind of “proxy” that mim-
ics the subtrees appearance. As a result, we have chosen to
compute such a proxy for each potentially missing subtree.

Note that this scheme is inherently hierarchical, as each
proxy represents a subtree that in turn contains other sub-
trees and proxies. Moreover, this hierarchical approximation
is tightly coupled to the BSP tree, and thus adapts well to the
geometry.

Number of Proxies. Before discussing how exactly we are
going to represent our proxies, we first have to evaluate how
many of them we actually need (in order to estimate the
amount of memory we can spend on them), and how to ef-
ficiently find the proxies. As we want to use our proxies for
hiding the visual impact of a cache miss, we obviously need
a proxy for each potentially occurring cache miss. As al-
ready discussed above, cache misses can only happen when
following pointers from a parent node to its children that are
located in a different tile. Instead of building a proxy for each
child, we only build a proxy for the parent node.

More importantly, we change our BSP memory orga-
nization such that the number of pointers across tiles is
minimized: Instead of storing BSP nodes in depth-first
order [Wal04], we now use a scheme where we always
fill cache-tile sized memory regions in breadth-first or-
der [Hav99], thereby combining nodes forming small sub-
trees in the same tile. Apart from having fewer tile-crossing
pointers, this has the positive and visually notable side ef-
fect that the proxy distribution is more symmetric: In depth-
first order, the parents tile is usually filled up with nodes of
the left child’s subtree, almost always yielding a potentially
faulting pointer for the right son. This insymmetry results is
visually displeasing images while not all data is loaded.

granularity 16KB 64KB
BSP number memory number memory

deep 15.6M 1.2GB 4.3M 344MB
shallow 833K 66MB 383K 30MB

Table 1: Number of proxies with respect to cache granular-
ity, and for two different BSP tree parameters. The deeper
BSP generates somewhat faster performance (see Table 3),
but requires more memory and many more proxies. For our
experiments, we typically use the shallow BSP with 16 KB
tiles, resulting in less than 70 MB of proxy memory. How-
ever, using only 80 bytes per proxy (see below), even the deep
BSPs are affordable when using 64 KB tiles, using 344 MB
out of 6 GB RAM. Note that the deep BSPs are a worst-case
configuration.

Obviously, the exact parameters with which the BSP was
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built influences the number of proxies. Deeper BSPs tend to
achieve higher performance (see Table 3), but unfortunately
also have more potentially page-faulting subtrees (see Ta-
ble 1). Note that we can also influence the number of proxies
by adjusting the caching granularity, as we can also perform
our caching on e.g. 16 KB or 64 KB tiles. A larger cache
granularity results in less tiles, in less pointers crossing tile
borders, and thus in less proxies (see Table 1). Due to their
lower memory consumption, by default, we use the shallow
BSPs with a cache granularity of 16 KB, resulting in roughly
1.1 million proxies for the 777 model.

5.2. Hybrid Volumetric/Lightfield-like Proxies

As proxies, we have chosen a lightfield-like approach: As
just argued, each proxy represents a volumetric subpart of
the model, that will be viewed only from the outside, but
from different directions. Thus, we only need to generate
some meaningful shading information for each potentially
incoming ray. This representation of discretized rays in fact
is similar to a lightfield [LH96], except that we do not store
readily shaded illumination samples in our proxy, but rather
pre-filtered shading information. In particular, we store the
averaged material information (currently only a single dif-
fuse 5+6+5 bit RGB value) and the averaged normal (dis-
cretized into 16 bits). As mentioned above such a proxy will
usually be subpixel-sized, we ignore the spatial distribution
of the incoming ray on the proxy’s surface, and rather only
consider its direction. To this end, we triangulate the sphere
of potentially incoming directions around the proxy, and pre-
compute average normal and material value for each vertex
of this discretized sphere of directions.

In case a canceled ray must use such a proxy, we then sim-
ply find the three nearest discretized directions with respect
to the rays direction (i.e. the spherical triangle that contains
this direction), compute the ray direction’s barycentric coor-
dinates with respect to its neighboring directions, and then
interpolate the shading information from the data stored at
these neighboring directions.

As discretized directions, we currently use the trian-
gulation given by once subdividing the Octahedron given
by the +X,-X,+Y,-Y,+Z, and -Z axes, which results in 18
discretized directions: 6 directions along the major axes,
and 12 directions halfway in-between two adjoining axes
(i.e. (1,1,0),(1,0,1),...). This discretization has been chosen
very carefully, as it allows for finding the three nearest di-
rections quite efficiently: The direction’s three signs specify
the octant of the spheres which has only 4 triangles. The co-
ordinate with the maximum value then fixes the main axis,
and leaves but two potential triangles, the one adjoining the
axis, and the center triangle of the octant. By computing the
four dot products between the ray and these triangles’ four
vertices, the nearest three vertices – and their barycentric co-
ordinates – can be easily and efficiently determined.

The main problem with this approach is that averaging the

normal tends to result in a normal that points more into the
direction of the viewer than each individual normal. For ex-
ample, looking symmetrically onto the edge of a box shows
two sides facing the viewer in a 45-degree angle, but aver-
aging the normals results in the averaged normal pointing
towards the viewer. This effect leads to over-estimation of
the cosine between normal and viewing direction and thus
in overly bright proxies.

By only considering directional information, a proxy will
for each individual direction look like a simple, colored box.
This obviously leads to artifacts if a proxy covers many pix-
els. As these proxies are fetched with higher priority such
large blocks however appear rarely, and disappear quickly.
For proxies of small projected size our representation is
sufficient and very compact. Alternatively, one could use
a method in which this purely directional scheme is only
used for small proxies, and proxies higher up in the BSP
also get some positional information. So far however this
scheme was not deemed necessary, and thus has not been
implemented.

5.3. Discretization, Generation, and Reconstruction

Though we have just argued that the actual hitpoint is not im-
portant as long as we have a solid approximation, it is impor-
tant to note that occlusion has to be taken into account. Most
proxies contain a significant number of triangles, potentially
with different materials and orientation. It often happens that
a proxy contains e.g. lots of yellow cables being hidden be-
hind a green metal part. In that case, just randomly picking
a triangle is not appropriate, as it would lead to the proxy
getting yellowish.

We therefore compute the directional information by sam-
pling the proxy with ray tracing. Rays are traced from the
outside onto the object, and only triangles actually visible
from that respective direction will contribute to the proxy’s
appearance in that direction. Each proxy is sampled by a cer-
tain number (∼10K) of random rays, whose hit information
is stored within the proxy. To increase uniformity of the rays,
we use Halton sequences [Nie92] for generating the rays.

5.4. Memory Overhead and Reconstruction Quality

For obvious reasons, we can spend only a small amount of
memory for our proxies: We want to use the proxies to hide
page faults, and thus currently need all proxies in physi-
cal memory. Otherwise, we would only replace paging for
BSP nodes by paging for proxies. On the other hand, we still
need a significant portion of main memory for our geometry
cache, and cannot “waste” it on proxies.

As mentioned above, we use a discretization of 18 direc-
tions for each proxy. At two 16-bit values per direction, each
proxy consumes 72 bytes, plus a float for specifying its sur-
face area (for prioritized loading), plus a 32-bit unique ID
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specifying to which BSP subtree it belongs. In total, this re-
quires a mere 80 bytes per proxy, or 66–344 megabytes for
our two example configurations (shallow 16 KB, deep 64
KB).

Addressing of Proxies. In case of a cache miss, we have
to efficiently find the corresponding proxy. As we can’t add
any pointer to the respective BSP node – at least not with-
out changing the entire BSP structure of the ray tracer – we
simply use the parents address as a unique identifier for the
proxy, and use this address to index into an STL-”map” to
find the proxy. Thus, we can implement our MM scheme
without interfering at all with OpenRT’s internal data struc-
tures, and can use the same data structures and algorithms as
without our memory management unit (MMU).

Note that we only build proxies only for BSP subtrees,
and not for faulting triangles or shading data. For such page
faults, we simply use the last proxy encountered during
traversal, which represents the subtree that this faulting tri-
angle is located in.

6. Results

Once all the individual parts of our system are now together,
we can start evaluating its performance. As target hardware
platform, we have chosen a dual-processor 1.8 GHz AMD
Opteron 246 system with 6 GB RAM, running SuSE 9.0
Linux with kernel 2.4.25. Though the machine is equipped
with an NVIDIA graphics card, this card is only used for
displaying the final image, and otherwise remains unused.
For storing the model, the system uses a standard Western
Digital WD2500JB IDE disk with a nominal throughput of
roughly 50–55 MB/s. All of these parts are commodity PC
parts, and the whole system costs is less than $5000.

6.1. Preprocessing

As mentioned before, all preprocessing – i.e. model splitting,
BSP construction, and proxy computation – is performed out
of core. For this preprocessing, by default we stop subdi-
viding at 2–4 million triangles per voxels. At this size the
individual blocks conveniently fit into memory for BSP con-
struction. BSPs that are built in core can be built with ad-
vanced BSP generation schemes using cost prediction func-
tions [Hav01, Wal04], which results in higher rendering per-
formance than for the typical “split-in-the-middle” strategy
adopted while splitting the model.

Depending on the actual BSP parameters, we need around
30–40 GB on disk for the preprocessed model. Preprocess-
ing – including unpacking, conversion, splitting, BSP gen-
eration, and proxy computation – takes in the order of one
day on a single PC, depending on the actual parameter val-
ues. Most of this time however is spent in BSP generation
and proxy computation, which can be trivially parallelized
by simply having N machines working on every Nth voxel

each. This allows for performing the entire preprocessing in
less than a night. For example, in the course of writing this
paper we have performed this preprocessing several times a
day in order to experiment with different parameters.

6.2. Proxy Memory Overhead and Cache Configuration

From these experiments, we have picked two different con-
figurations that represent a range of typical values. For one
setting, we have chosen high-quality BSP trees of up to 60
levels of depth for each voxel generated during out-of-core
preprocessing. This obviously results in many BSP nodes,
roughly 40 GB on disk, and many proxies (see Table 1).
In the other experiments, we have used rather shallow BSP
trees, which use only 30 GB of disk space, and much less
proxies.

As mentioned before, we use a cache granularity of 64
KB for the deep BSPs, and 16 KB for the shallow BSPs,
resulting in 66 MB and 344 MB for the proxies, respectively.
With 6 GB of physical RAM, we can configure our cache
size at 4–5 GB, with plenty of RAM left for the OS and
for OpenRT runtime data. At this cache size, large parts of
the model fit into the cache. In particular, each individual
view fits into cache, and the proxies only have to bridge the
loading latencies when changing views.

6.3. Demand Loading Time and Approximation Quality

After a complete restart of the entire system, our framework
starts by parsing the list of voxel files, creates the yet-empty
containers for the voxels, and builds a “top-level” BSP for
these voxels. All this takes at most a few seconds. It then
reads in all the proxies, which takes several seconds to a few
minutes, depending on the actual proxies’ data size. Once all
proxies are read, the ray tracer immediately starts shooting
rays, and uses the proxies while the data is being fetched
asynchronously.

Depending on how much data is required for loading the
working set of a frame, it can take in the order of up to sev-
eral minutes until all data is loaded. Some views require up
to more than a gigabyte of data, which simply cannot be
loaded from disk within a few seconds. The memory foot-
print and loading time for our reference views (see Figure 4)
are given in Table 2. As a worst-case example, we have taken
the “overview” viewpoint, in which the entire airplane is
seen from a viewpoint with minimal occlusion and in which
the rays travel deeply into all parts of the model . This view
requires more than 2 gigabytes of data, and can take minutes
to page in.

While the approximation is rather coarse immediately af-
ter startup (see Figure 5), the structure of the model is al-
ready well recognizable after having loaded only a few per-
cent of the data. Though this quality is far from perfect, it is
totally sufficient for navigating through the model while it is
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being loaded and refined simultaneously. Additionally, when
zooming onto a specific part the data is usually fetched quite
fast, and shows the part in full detail after only a few frames.

Once a significant portion of the model has been loaded,
most of the geometry needed for rendering is already present
in the cache. In particular, most of the upper levels of the
BSP are already in the cache, and potential cache misses will
typically affect only a few pixels. In that case, the proxies
can do a good job at masking these isolated missing pixels.
As our proxies were never designed to provide a high-quality
hierarchical approximation, they fulfill their planned task of
providing solid feedback for interactive navigation.

BSP/View overview engine wheels cockpit cabin

deep 2,300 145 40 122 254
shallow 2,150 215 36 105 236

Table 2: Memory footprint (in MB) for our reference
views. As expected, some views require up to hundreds of
megabytes. Particularly the intentionally chosen worst-case
“overview” requires more than 2 GB, which can take min-
utes to load completely. Note however that we do not have
to wait until all data is loaded, but can already navigate the
proxy-approximation from the very first second.

6.4. Performance Overhead

Obviously, our demand loading scheme will not come for
free. Through aggressively minimizing the tile table lookups
and mutex locks (see Section 4.5), we have reduced the over-
head of our MM scheme to the bare minimum. Even so, a
certain overhead remains. In particular, testing if a pointer
crosses a tile boundary – though it costs only a few bit tests –
has to be performed for each memory access even in the ray
tracers inner traversal loop, and thus affects performance.
Tile table access is less common, but unfortunately more
costly, and thus affects performance, too.

To determine the total overhead of our system, we have
measured the frame rate for our reference views (see Fig-
ure 4), once using the “standard” OpenRT ray tracer with-
out our MM scheme, and once with the MMU turned on.
This experiment can be performed only for static views, as
even small camera movements lead to long paging stalls if
the MMU is turned off. To enable a fair comparison, for the
MMU version we have measured the frame rate after all tiles
have been paged in. This in fact is the worst-case scenario
as rays have to be traversed quite deeply, and have to per-
form many checks and locks. Once some pixels get killed
off – i.e. during startup or when accessing previously invisi-
ble parts of the scene – frame rate is rather higher than lower.

As can be seen from Table 3, the total overhead for our
example views consistently is in the range of 25% for the
shallow BSPs, and 20% for the deep BSPs, respectively.
Note that this includes the entire overhead, including pointer

checking, tile lookups, threading, tile fetching, mutexes, etc.
As our MM scheme enables us to navigate fluently without
any paging stalls, we believe this overhead to be quite toler-
able.

BSP/View overview engine wheels cockpit cabin

shallow BSPs
w/o MMU 2.7 2.4 5.3 2.0 2.1
w/ MMU 1.9 1.8 4.0 1.5 1.6

overhead 26% 25% 24% 25% 23%

deep BSPs
w/o MMU 4.9 3.6 9.0 4.0 4.0
w/ MMU 4.1 2.9 7.1 3.1 3.2

overhead 16% 19% 21% 22% 20%

Table 3: Total overhead of our memory management
scheme for different views (see Figure 4), and for BSPs built
with different cost parameters, measured in frames per sec-
ond. As can be seen, total overhead is in the range of 25% for
the shallow BSPs, and only 20% for the higher-performing
deeper BSPs.

6.5. Overall System Performance

With this small performance overhead, the ray tracer is quite
efficient at rendering the model. As can be seen from Ta-
ble 4, using a single dual-Opteron PC we achieve interactive
frame rates of 3–7 fps at video resolution of 640× 480 pix-
els. Even at full-screen resolution of 1280× 1024, we still
maintain frame rates of 1–2 fps. Such high resolutions are
particularly important for getting a feeling of the relative ori-
entation of the highly detailed geometry. While the just men-
tioned frame rates do not include antialiasing, supersampling
can still be added progressively as soon as the camera stops
moving.

Also note that this performance data again corresponds to
all data being present in the geometry cache. Upon cache
misses and use of proxies, frame rates are even higher, as
the rays perform less traversal steps. Thus, we can main-
tain these interactive frame rates at all times while navigat-
ing freely in and around the model.

Resolution overview engine wheels cockpit cabin

shallow BSPs
640x480 1.9 1.8 4.0 1.5 1.6
1280x1024 0.7 0.6 1.3 0.5 0.5

deep BSPs
640x480 4.1 2.9 7.1 3.1 3.2
1280x1024 1.3 0.9 2.3 1.0 1.0

Table 4: System performance in frames per second on a sin-
gle dual-1.8 GHz Opteron, using our two configurations.
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6.6. Shading and Shadows

In the course of the paper, we have only concentrated on the
memory management scheme and proxy mechanism, and
so far have neglected secondary rays and shading at all. Of
course, using a ray tracer allows for also computing shadows
and reflections. Without sensible material data (which is not
included in the 777 model), and in particular with the ran-
domly jittered vertex positions (and therefore randomly jit-
tered normals) however computing reflections simply does
not make much sense.

Shadow effects can be added quite easily. While the per-
formance and caching impact of shadows so far have shown
to be surprisingly low, an exact discussion of these effects
is beyond the scope of this paper. Nonetheless, adding shad-
ows in practice is relatively simple. For example, Figure 6
shows some images that have been computed with shadows
from a flashlight-like light source that is attached relative to
the viewer.

Figure 6: Using a ray tracer, adding shadows to the model is
(almost) trivial. As expected, shadows significantly improve
the impression of shape and depth (compare to Figure 4).
This is particularly the case during interaction.

As expected, shadows add an important visual cue to the
image, and significantly improve the impression of shape
and depth, which can best be seen by comparing Figures 4
and 6. This improved sense of depth is particularly apparent
once the shadows move with the light during interaction.

7. Conclusions

In this paper, we have presented a framework that allows for
interactively ray tracing gigabyte-sized models consisting of
hundreds of millions of individual triangles on a single desk-
top PC. This is achieved using a combination of real-time ray
tracing, an out-of-core demand-loading and memory man-
agement scheme for handling the massive amounts of geom-
etry, and a hybrid volumetric/lightfield-like approximation
scheme for representing not-yet-loaded geometry.

By detecting and canceling potentially page-faulting rays,

we can avoid system paging, and maintain high frame rates
of several frames a second, even while flying into or around
our example airplane model.

The visual impact of killing off rays is reduced by ap-
proximating the missing geometry using a lightfield-like
approach. For not too drastic camera changes, the prox-
ies can well hide the visual artifacts otherwise caused by
the canceled rays. For large camera movements however, or
when entering a previously occluded part of the model, the
proxy structure becomes visible in form of blocky artifacts
in the image. These artifacts then are similar to other ap-
proaches like Holodeck, Render Cache, point-based meth-
ods, or even MPEG/JPEG-compression. Using the surface-
based loading prioritization however these artifacts disap-
pear quite quickly. Furthermore, the quality is still sufficient
for interactively navigating the model.

Using our approach, we achieve frame rates of 3–7 frames
per second at 640×480 pixels, or still 1–2 frames per second
at full-screen resolution of 1280 × 1024 pixels, even on a
single dual-CPU desktop PC.

7.1. Future Work

As next steps, we will investigate ways to further improve
the visual appearance of our proxies, potentially by includ-
ing positional information at least for large voxels.

More importantly, we are planning to make this technol-
ogy available to industrial end-users, which means that we
have to target real-time frame rates at full-screen resolu-
tions. Eventually, this will require using more than only two
CPUs. Fortunately, quad-CPU systems are already available,
and eight-way systems have been announced. Additionally,
it seems interesting to parallelize and distribute the current
system over a cluster of cheap dual-CPU PCs. Preliminary
result already look promising.

Once the computational power is available, we also plan
on evaluating how high-quality shadows, reflections, and in
particular interactive lighting simulation can be achieved in
models of this complexity.
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