
Joint Virtual Reality Conference of EGVE - ICAT - EuroVR (2009)
M. Hirose, D. Schmalstieg, C. A. Wingrave, and K. Nishimura (Editors)

Markerless Visual Tracking for Augmented Books

Kyusung Cho1, Jaesang Yoo1, and Hyun S. Yang1

1Korea Advanced Institute of Science and Technology, Korea

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract
An augmented book is an application that augments such multimedia elements as virtual 3D objects, movie clips,
or sound clips to a real book using AR technologies. It is intended to bring additional education effects or amuse-
ment to users. For augmented books, this paper presents a markerless visual tracking method which recognizes
the current page among numerous pages and estimates its 6 DOF pose in real-time. Given an input image by a
camera, the tracking method first recognizes a page and performs wide-baseline keypoint matching at the same
time. For that purpose,a generic randomized forest (GRF) is proposed which extends the randomized forest (RF)
proposed by Lepetit et al. which only performs wide-baseline keypoint matching. The proposed GRF is capable
of simultaneous page recognition and wide-baseline keypoint matching. Once a page is recognized, the tracking
method executes the page tracking process without page recognition until the page is turned. The page tracking
process selects a keyframe of the page adequate for tracking and employs a coarse-to-fine approach. As a result,
the tracking method shows robustness to viewpoint and illumination variations and performance of more than 30
fps for augmented books.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Multimedia Information Systems]: Artificial,
augmented, and virtual realities—Augmented Book, Markerless Visual Tracking

1. Introduction

Recently, there have been a variety of approaches to en-
hance books by adding digital information. As an example
of these approaches, some applications have enhanced real
books by means of augmentation with 3D virtual objects
via augmented reality technology. These applications are re-
ferred to here as augmented books. An augmented book can
raise users’ understanding of the contents of the book and
provide visual impressions for users. This makes it popular
for educational [CLY07], [FYK∗04], [THKN07], entertain-
ment [BKP01], [JRP∗05], art [SPFL08] and advertisement
applications.

Like other augmented reality systems, the most important
problem with an augmented book is the registration between
the real and virtual world. To mitigate this issue, augmented
books require visual tracking through a camera which rec-
ognizes the current page among numerous pages and calcu-
lates a 6 DOF pose in real time. However, visual tracking for
an augmented book is quite difficult because a book gener-
ally includes tens or hundreds of pages and because tracking
should be performed in real time (at more than 25fps).

To address these difficulties, most augmented books
have thus far employed fiducial marker tracking methods
[CLY07], [FYK∗04], [BKP01], [JRP∗05]. Fiducial markers
are surrounded by a black rectangle or circle boundary for
easy detection and include a bit pattern for ID representation.
While the use of fiducial markers is a convenient and simple
choice for an augmented book, these markers can lead to
visual discomfort due to their distinctive shapes. Moreover,
they are fragile to partial occlusion so that they are likely to
distract users’ immersion.

Recently, augmented books have employed markerless
tracking methods that do not cause visual discomfort. With
markerless tracking, a page pose is calculated from natu-
ral features extracted from the page without any fiducial
markers [THKN07], [SPFL08]. Markerless tracking meth-
ods, however, involve fundamentally high computational
costs compared to fiducial marker tracking. Moreover, they
are associated with problems related to an increment in com-
putational time and a drop in page recognition accuracy as
the number of pages increases.

In addition, Yang et al. proposed a hybrid visual tracking
method which merges the merits of fiducial marker track-
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ing and markerless tracking [YCS∗08]. This work uses a
tiny marker for page recognition and a randomized forest
for page pose calculation.

For augmented books, this paper presents a markerless
visual tracking method which recognizes the current page
among numerous pages and calculates its 6 DOF pose in
real-time. Given an image input by a camera, the proposed
tracking method first recognizes a page and then performs
wide-baseline keypoint matching to calculate its initial pose.
For these purposes, a generic randomized forest (GRF)
which extends the original randomized forest proposed in
[LF06] is proposed. With the GRF, the tracking method can
recognize and track pages without an increment in compu-
tational time and a drop in page recognition accuracy as the
number of pages increases. Moreover, the tremendous mem-
ory consumption of the randomized forest referred to as the
weakest point is reduced. Once a page is recognized and
its initial pose is calculated, the tracking method performs
the page tracking process without page recognition until the
page is turned. The page tracking process selects a keyframe
of the page adequate for tracking and employs a coarse-to-
fine approach.

2. Related Work

There are various natural features for markerless tracking,
such as keypoints, lines, eigen-images, and others. Key-
points tend to have less of a computation cost. Moreover,
they are more robust with a range of viewpoint, illumina-
tion variations and partial occlusion compared to other fea-
tures [LF05]. Therefore, this markerless tracking method for
augmented books is based on keypoints and utilizes wide-
baseline keypoint matching methods to recognize the cur-
rent page and calculate its initial pose. In the following para-
graphs, we look into wide-baseline keypoint matching meth-
ods, page recognition methods, and page tracking methods.

2.1. Wide-baseline Keypoint Matching

Most wide-baseline keypoint matching methods build an
affine-invariant descriptor for each keypoint and match key-
points using the descriptors. To build affine-invariant de-
scriptors, scale selection, rotation correction, and intensity
normalization processes are required. The well-known meth-
ods are SIFT [Low04], GLOH [MS05], and SURF [BTV06].
However, these methods consume a considerable amount of
time while building descriptors; hence, they are not suitable
for augmented reality applications which require strong real
time performance.

Recently, the keypoint matching method of Lepetit el al.
[LF06] using a randomized forest (RF) is capable of real
time performance and is robust to the viewpoint variations.
Therefore, many researchers have worked with this method.
They transform a local image patch of each keypoint into
nearly possible appearances and train randomized trees in a

RF with those transformed patches. The internal nodes of
the trees test the intensity difference between two pixels of
an image patch and leaf nodes store the posterior distribu-
tion of all keypoints. In [WKR07], Williams et al. proposed
a modified RF which makes real-time training possible and
applied this method to a real-time SLAM problem. They se-
lected two points randomly to test at the internal nodes of the
trees instead of choosing two points considering how much
information can be gained.

As mentioned before, each node test of a RF is deter-
mined randomly. That implies the node tests are indepen-
dent of training data. Accordingly, once the node tests of a
RF for one training data set are set, it is possible to reuse
those for another training data set. This property is referred
to as reusability, and a generic randomized forest (GRF) is
proposed that maximizes this type of reusability to the point
that the GRF performs simultaneous page recognition and
wide-based keypoint matching.

Although RFs represent a state-of-the-art real-time key-
point matching scheme, a RF for numerous pages requires
a tremendous amount of memory - approximately 3.2GB
for 100 pages. This much memory is unavailable for normal
desktop computers and is therefore an obstacle to commer-
cialization. Hence, this study proposes a method reducing
memory consumption via the use of the property of FAST
keypoints [RD06b].

2.2. Page Recognition

To our best knowledge, there have been two reports describ-
ing a page recognition method without fiducial markers. In
[THKN07], Taketa et al. compared the input image to all
model pages using an active search technique to recognize
the current page and then selected the page with the highest
similarity score as a recognition result. In [SPFL08], Scher-
rer et al. built a RF for each page during a training stage.
They recognized a page by comparing keypoints extracted
from the input image with those extracted from model pages
using RFs.

As both systems only tracked a book with 7 to 10 pages
and because precise experimental results were not presented,
it is not an exact representation of this problem. However,
it is possible to predict that the computation would linearly
increase when tracking over a hundred of pages. Moreover,
the page recognition accuracy of this scheme would fall.

2.3. Page Tracking

The various tracking methods can be classified into two
groups according to whether or not prior information is
given. These two groups are model-based tracking and
SLAM-based tracking. In the model-based approach (
[LF05], [RD06a]), tracking is mainly separated from the
training stage. The training stage involves predefining ob-
jects which will be tracked during the tracking stage.
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However, the SLAM-based approach ( [DRMS07],
[KM07]), it is capable of tracking in unknown environments
because it performs both tracking and map building simul-
taneously, which is expensive in computation. For an aug-
mented book, the model-based approach is more feasible
because a training stage is necessary to recognize a page.
Hence, it becomes possible to determine which objects are
to be augmented on their proper pages. However, to reduce
the burden of the training stage, an idea is borrowed from
the SLAM-based approach. First, a relatively small number
of keypoints(200) is extracted during the training stage. Sec-
ond, additional keypoints (at most 1000 in total per page)
are extracted from the initially selected keyframe during the
tracking stage.

This indicates that both online and offline information is
used for the page tracking process. This creates tracks with
a considerable amount of information. This is described in
Section 3.2 in detail.

3. Proposed Method

The proposed tracking method requires a training process
prior to performing in real-time. The training process ob-
tains one training image per page from a user and trains the
generic randomized trees using the training images. Details
of the training process are explained in Section 3.1.

In real-time, keypoints are first extracted from the input
image because they are commonly used in the page recogni-
tion process and the page tracking process as shown in Fig-
ure 1. If there is no valid page ID, the page recognition pro-
cess is executed; otherwise, the page tracking process is ex-
ecuted. An invalid page ID arises in case a page is not recog-
nized or if page tracking fails at the prior frame. Once a page
is recognized and its initial 6 DOF pose is calculated during
the page recognition process, a valid page ID is created and
the results including the page ID, rotation matrix (R), and
translation vector (t) are conveyed to the page tracking pro-
cess. The page tracking process is performed repeatedly un-
til page tracking fails due to rapid page movement or a page
turn. Details of the page recognition process are explained
in Section 3.1 while those of the page tracking process are
discussed in Section 3.2.

3.1. Page Recognition Process

The page recognition process is intended to recognize a page
and calculate its initial 6DOF pose. For these purposes, the
generic randomized forest plays a key role in both page
recognition and keypoint matching. To calculate the initial
pose of the recognized page, it is necessary to remove out-
liers among matching pairs and estimate the page pose rel-
ative to the camera. The PROSAC method [CM05] is used
for the outlier removal and the method of Schweihofer et
al. [SP06] is sused for pose estimations.

Figure 1: Overview of markerless visual tracking

3.1.1. Keypoint Extraction

The FAST detector [RD06b] was chosen for use because it
is known to be very efficient for keypoint extraction. Key-
points are extracted from three octaves of an image to han-
dle scale variations. To confirm whether each pixel p is a
keypoint, this method considers 16 circular pixels at a dis-
tance of 3 from pixel p. If p is determined to be a keypoint
and if p is brighter than its neighbors, p is referred to as a
positive keypoint. If p is darker, it is a negative keypoint. In
keypoint matching, if the keypoint p of the current image
is positive, p does not need to be compared to negative key-
points of model images and vice versa. This property reduces
the number of keypoint comparisons and the memory con-
sumption of a randomized forest, which is considered as the
weakest point. Additional details are given in section 3.1.2.

3.1.2. Generic Randomized Forest

The generic randomized forest (GRF) is utilized as it max-
imizes the reusability of a randomized forest (RF). Hence,
it can perform page recognition and wide-baseline keypoint
matching simultaneously. As mentioned in Section 2.1, each
node test of a RF is determined in a random manner. This im-
plies that the node tests are independent of the training data.
Therefore, once node tests of a RF for keypoint matching
within a certain page are built, it is possible to reuse those for
another page. Thus it is possible to share the common node
tests of one RF instead of building a RF for each page. Fur-
thermore, if page recognition is designed well enough to be
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performed using the common RF, the RF becomes generic;
it can perform page recognition and wide-baseline keypoint
matching. The RF is referred to as the generic randomized
forest.

Training the GRF

The structure and the training method of a GRF are ba-
sically equivalent to the original RF apart from the prob-
abilities stored in the leaf nodes, as shown in Figure 2. A
GRF consists of NT randomized trees T1,T2, · · · ,TNT , and
all node tests of the GRF are built in a random manner. Af-
ter the GRF is trained, every leaf node stores one probability
distribution for page recognition and Nc probability distri-
butions for keypoint matching for Nc pages.

Figure 2: Generic Randomized Forest

To train the GRF for page recognition, new views of each
page are first synthesized from the corresponding training
image using randomly selected affine transformations. Key-
points are extracted from each new view by the FAST detec-
tor and are formed into the training data set for each page. In
the prepared training data sets for all pages, every keypoint
in the training data sets passes through all NT trees. If a key-
point from i-th page reaches the l-th leaf node ξt,l of the t-th
tree Tt , the frequency of page class i in ξt,l increases. Finally,
each leaf node stores the total visiting number of keypoints
and the frequency of page classes. If the total visiting num-
ber in leaf node ξt,l is Nt,l and the frequency belonging to

page class i is Nt,l,i, the posterior of page class i is calculated
using (1).

P(C = i | ξt,l) =
Nt,l,i

Nt,l
(1)

While training the GRF for keypoint matching within a page,
new views of each keypoint extracted from the page are syn-
thesized using affine transformations instead of transform-
ing the entire image as in training for page recognition.
These new views are formed into the training data set for
each keypoint. In the prepared training data sets for all key-
points within the page, every keypoint in the training data
sets passes through all NT trees. In the i-th page, if the total
visiting number in leaf node ξt,l is Nt,l and the frequency be-
longing to keypoint class k is Nt,l,k, the posterior of keypoint
class k is calculated using (2).

P(K = k | i,ξt,l) =
Nt,l,k

Nt,l
(2)

This training process for keypoint matching is performed re-
peatedly with the other pages.

As a result of training, every leaf node of the GRF stores
one probability distribution for page recognition and Nc
probability distributions for keypoint matching for Nc pages
as shown in Figure 2.

Page recognition using the GRF

Given an image taken by a camera in real-time, N key-
points are first extracted from the image by the FAST de-
tector and then pass through all NT trees. One keypoint m j
reaches NT leaf nodes and giving NT probability distribu-
tions. In addition, the final probability distribution with re-
spect to keypoint m j can be acquired by considering their
average. Finally, the page recognition result is obtained by
considering the average of the final probability distributions
with respect to all keypoints, as in (3).

Page î = argmaxi P(C = i | T1, · · · ,TNT ,m1, · · · ,mN)

= argmaxi
1
N

N

∑
j=1

1
NT

NT

∑
t=1

P(C = i | lea f (Tt ,m j)) (3)

, where lea f (Tt ,m j) is the leaf node which m j reaches in Tt .

Wide-baseline keypoint matching using the GRF

After a page is recognized, keypoint matching is per-
formed. However, in keypoint matching, the keypoints do
not need to pass through all NT tress in the GRF once again
because the structure of the GRF is shared in page recogni-
tion and wide-baseline keypoint matching. This point makes
the proposed method very fast despite the fact that it per-
forms both tasks. Thus, the GRF is appropriate for aug-
mented reality applications which require recognition and
tracking of a current object among numerous target objects.
If the i-th page is recognized, keypoint matching for the i-th
page considers only the i-th probability distribution stored in
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the leaf nodes. Keypoint m j is matched as in (4).

Keypoint k̂ = argmaxk P(K = k | T1, · · · ,TNT ,m j)

= argmaxk
1

NT

NT

∑
t=1

P(K = k | lea f (Tt ,m j)) (4)

Reducing the memory consumption

The original RFs for numerous pages require a tremen-
dous amount of memory to store posteriors. As an experi-
ment result, it was determined that the most efficient RF had
the number of trees as NT = 40, a depth of d = 10, and
the number of keypoints N f = 200 which requires 32MB.
If a book consists of 100 pages, approximately 3.2GB is re-
quired. Thus, it is crucial to reduce the memory consumption
of the RF before commercialization can be considered.

In [WRM∗08], Wagner et al. reported that memory con-
sumption can be reduced to 25% of its original burden with-
out a performance loss by storing posteriors as 1- byte inte-
ger values instead of 4-byte floating values.

In addition, it is possible to reduce memory consumption
at most by half using the positive/negative property of FAST
keypoints. As mentioned in Section 3.1.1, if a keypoint of
the input image is positive, it does not need to be compared
to the negative keypoints of model images and neither do any
negative keypoints. Thus, it is possible to separate the trees
for positive keypoint matching from the trees for the nega-
tive instances in a RF according to the ratio of the number
of positive keypoints (N f pos) to that of negative keypoints
(N f neg). The trees for positive keypoints store the posterior
distribution of only N f pos positive keypoints in its leaf node
instead of storing the posterior distribution of all of the key-
points. This is also true for the trees of negative keypoints.
Thus, the memory consumption reduces according to the ra-
tio of N f pos to N f neg and at most by half in case N f pos is
equal to N f neg. Furthermore, if both the method of Wag-
ner et al. and the proposed method are applied to the RF,
memory consumption can be reduced to 1/8 of the original
burden.

3.2. Page Recognition Process

When a page is recognized or recovered from a tracking fail-
ure, the page is tracked by estimating the camera pose ac-
cording to the motion model, projecting and matching the
map points in two stages (coarse and fine), and finally, re-
fining the camera pose from the matching pairs. This is de-
scribed in 3.2.1 in detail.

When a new page is recognized by the page recognition
process, the training image of the page is initially used as a
keyframe to track the page. However, this is quite danger-
ous in terms of tracking stability because the training im-
age may have been taken with a different camera in a dif-
ferent environment. Thus, the current frame is updated as a
keyframe just in case it describes the page better than the

existing keyframe according to the score calculated in sec-
tion 3.2.2 after every instance of tracking success. In addi-
tion, more keypoints are extracted from the initial detected
keyframe and they are added them to the world map for bet-
ter tracking with abundant map points.

3.2.1. Tracking a page

This section describes a keypoint-based tracking process for
a recognized page with the assumption that a 3D world map
has already been constructed. At every frame, the following
procedure is performed.

1. A prior pose is estimated from a motion model.
2. Map points in the world are projected into the image ac-

cording to the estimated prior pose in 1.
3. A coarse search is performed with 60 map points and the

camera pose is refined.
4. A fine search is performed with at most 500 map points

and the final pose is computed from the matching.
5. The motion model is updated.

Camera Motion

Camera motion M can be parameterized with a six-vector
µ, a translation for the first three and rotation for latter el-
ements, using an exponential map [Var74]. Thus, given a
camera pose P which transforms a point in a world coor-
dinate into a point in a camera coordinate, the new camera
pose P̂ can be estimated via (5) [KM07].

P̂ = MP = exp(µ)P (5)

, where P = [R t] and R and t are the camera rotation matrix
and the translation vector, respectively. A decaying velocity
motion model is used, which slows and stops eventually if
new measurements are lacking.

Patch search

To find matching pairs between map points in the world
coordinate and keypoints in a current image frame, a map
point(X) is projected into an image, as expressed by (6).

x = K
[

R t
]

X = K
[

R t
]

X
Y
Z
1

 (6)

, where x is a 2D point in an image coordinate, and K is the
intrinsic matrix of the camera. Affine warping is performed
to take account of viewpoint changes between the 8×8 im-
age patch generated from the keyframe of the world map and
the current camera position, as described in [KM07]. The de-
terminant of the affine warping matrix is used to determine
the pyramid level at which the patch can be searched. The
best match between the projected map point and a keypoint
in the current image frame can be found within a fixed ra-
dius around the projected map point position by evaluating
zero-mean SSD scores within the circular search region.

Coarse-to-fine matching
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To make the page tracking process more robust to rapid
camera motions, the patch search and pose update are done
twice. First, a coarse search is done with only 60 map points
from highest levels of the image pyramid of the current
frame. A patch search is performed with a larger radius and
a pose is refined with the successful matching pairs, by min-
imizing the Tukey biweight objective function [Hub81] of
the reprojection error iteratively. With the refined pose, a
fine search is done with up to 500 map points. At this point,
the patch search is performed with a smaller search region.
The final camera pose is eventually calculated and the cam-
era motion is updated from the difference between the initial
and final camera pose of the frame.

Tracking evaluation and failure recovery

Tracking is likely to fail in the occurrence of a motion
blur, occlusion, or an incorrect position estimate. Thus, if a
fraction of the result of keypoint matching falls below a cer-
tain threshold, it is considered as a tracking failure, causing
the valid page ID bit to be set to false. Thus, the page recog-
nition process will be performed to recover a camera pose at
the next frame.

3.2.2. Keyframe update

The tracking quality in the page tracking process depends
on the quality of the keyframe because it is used in patch
search. However, because the initial keyframe of each page
is from the offline stage and because it may have been cap-
tured by a different camera in a different environment, the
fraction of the keypoint matching result is likely to fall,
which might cause poor tracking quality and result in an
unexpected tracking failure as well. Thus, the goal of the
keyframe update is to capture the image frame as a keyframe
for a page which suitably describes the page while satisfying
the following three conditions:

1. An image is clear enough with no motion blur.
2. The area of the page appears as much as possible in the

image and it is captured as large as possible in the image.
3. The page plane and camera direction are orthogonal.

The total score function of the t-th frame is the weighted sum
of the three subscore functions of ScoreZMSSD, Scorearea,
and Scoreortho, as shown in (7).

Scoretotal(It) = ω1 ScoreZMSSD(It)

+ ω2 Scorearea(It)

+ ω3 Scoreortho(It) (7)

, where ScoreZMSSD, Scorearea, and Scoreortho represent the
above conditions in sequence; ω1, ω2, and ω3 are the weight
factors of the three score which represent their importance.
ScoreZMSSD measures how similar the adjacent frames are
with no motion blur, as shown in (8). ZMSSD is the zero-
mean squared sum of the distance between two adjacent

blurred images at frame t (BIt ) and t-1(BIt−1).

ScoreZMSSD(It) = 1 − ZMSSD(BIt ,BIt−1)
ZMSSDmax

(8)

Scorearea measures the portion of the pages are shown within
the image at frame t, as shown in (9).

Scorearea(It) =
Areat

ImageSize
Areat

AreaO f Paget
(9)

, where Areat denotes the area of the page shown in the im-
age at frame t in pixel scale and AreaO f Paget is the area of
the page including the area beyond the image boundary after
four boundary points of the page are projected into the im-
age according to the camera pose. Scoreortho measures how
orthogonal the page is to the camera z vector, by compar-
ing the z coordinate of the camera z vector(CamZz,t ) and the
normal vector of the page (PageNormz,t ) after projecting it
into the camera coordinate according to the camera pose, as
shown (10).

Scoreortho(It) = 1 −
∣∣CamZz,t + PageNormz,t

∣∣ (10)

Therefore, the higher Scoretotal is, the more accurately the
page tracking process tracks the pose of a page.

4. Experiment Result

For the experiment, a laptop with a 2.2GHz Core 2 Duo CPU
with 2GB memory and an ATI Mobility Radeon HD 2400
graphic card were used. A Logitech Ultra camera was at-
tached to the laptop. A 640x480 image was obtained from
the camera and keypoints were extracted using the FAST de-
tector in real-time.

4.1. Performance of the page recognition process

The experiments were performed using the GRF with the
number of trees at NT = 40 and a depth of d = 10. First,
the recognition performance of the GRF was evaluated as
it affects the overall performance. For the experiment, the
GRF with 20 pages and nine test images taken from different
viewpoints were prepared for each page, and a total 180 im-
ages were taken for the evaluation. To determine how many
keypoints per page suitably describe a page in training, the
recognition rate was examined as the number of keypoints
increased from 10 to 300. Figure 3 shows the experimental
result.

160 keypoints recorded the highest recognition rate,
89.2% although there was only slight difference with more
than 100 keypoints. In fact, the recognition rate was not as
high as expected. However, if erroneous page recognition
occurs, the proposed method ignores the page through out-
lier removal during the page recognition process. Thus, false
positives generally do not occur.
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4.2. Performance of the page tracking process

To show that a page is being tracked correctly, the world
model of a page (red rectangle) and the recognized page ID
(page number) are projected onto the image according to the
camera pose and a virtual object assigned to each page is
augmented on the page.

Figure 3: Page recognition rate with respect to the number
of keypoints

Figure 4 shows that the page tracking process works well
with dramatic viewpoint variations of the camera(first row),
scale variations (second row) by moving the camera back
and forth, illumination variations (third row), partial occlu-
sions (fourth row), and complicated environments in which
tracking is likely to be disturbed (fifth row).

Figure 5 shows the tracking time for a book of 11 pages.
The average tracking time for 1270 frames was 8.61 ms. This
is represented as a straight red line in the graph. Most timing
spikes occur when the page recognition process is attempt-
ing to recognize a page, but the spike that takes place around
frame 205 was due to a tracking failure.

5. Conclusion

For augmented books, this paper presents a markerless vi-
sual tracking method which recognizes the current page
among numerous pages and estimates its 6 DOF pose in
real-time. The results show that the average tracking time
for 1270 frames is 8.61 ms. The GRF used to recognize
a page ID takes at most 35ms during experiments, which
implies that it guarantees real-time execution at almost 30
fps while initially showing 90% accuracy in recognition.
Thus, although tracking fails, the tracking process recovers
very quickly within several frames. However, the accuracy
of recognition decreases if the environment of a page in an
image is disordered. The page tracking process with the on-
line and offline information and the keyframe update demon-
strates good tracking results. However, because it uses a mo-
tion model when it predicts the pose at every frame, it tends

Figure 4: Tracking in situations with dramatic viewpoint
variation, scale variations, illumination variations, partial
occlusions, and complicated environments

to fail to track a page when the page shows irregularly dra-
matic movements. Thanks to the page recognition process,
tracking then restarts within a few frames.

Therefore, additional experiments related to the accuracy
of page recognition and page poses can be performed as a
future work. This may improve the aforementioned.
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