
7. International Immersive Projection Technologies Workshop
9. Eurographics Workshop on Virtual Environments
J. Deisinger, A. Kunz (Editors)

© The Eurographics Association 2003.

An Innovative Design Approach to Build Virtual Envi-
ronment Systems

M. Oliveira1, J. Crowcroft2 and M. Slater1

1 Department of Computer Science, University College London, London WC1E BT, UK
2 Computer Laboratory, Cambridge University, Cambridge CB3 OFD, UK

Abstract
A Virtual Environment (VE) presents a complex problem with interesting non-trivial challenges for software
development. The majority of existing systems supporting VE are based on monolithic architectures, making
maintenance and software reuse difficult at best. When a novel concept or idea requires implementation, it is
not possible to extend an existing system by replacing or incrementing the necessary functionality. This leads
to a proliferation of VE systems.

This paper identifies some of the major problems in the current development trend of VE systems that result in
incremental innovation with little overall progress. However, component methodology and other software en-
gineering principles are not widely employed in system design. We present the Java Adaptive Dynamic Envi-
ronment (JADE) as an innovative design approach to building VE systems.

The paper discusses some of the major elements of the JADE component framework, such as the kernel, the
namespace, the event model and how to configuration takes place. In addition, a simple maze dungeon game
is discussed demonstrating the runtime reconfiguration of the supporting VE system.

Keywords:
Virtual reality, virtual environments, system design, component frameworks, online games, java

Categories and Subject Descriptors (according to ACM CSS): D.2.11 [Software Architectures]: Domain Specific
Architectures; I.3.7 [Computer Graphics]: Virtual Reality

1. Introduction

An exact definition of a Virtual Environment (VE)* is di f-
ficult to find. However, all VEs share a common vision,
which is best described in the works of science fiction lit-
erature related to cyberspace, such as Neuromancer [Gib-
son84] and Snowcrash [Stephenson92]. The achievement
of developing the necessary infrastructure to support the
vision remains an elusive goal. This is partly due to the fact
that innovation in system development has stagnated or is
done in barely noticeable increments.

A VE presents a challenging problem with regards to
the development of an underlying system. The problem

* We consider an online game to be an instance of a virtual en-
vironment

domain presents itself being vast, requiring diverse areas of
expertise, which may range from networks to psychology.
The daunting complexity makes the development of any
existing VE system a difficult task to achieve with a high
cost in resources (money, time and people).

The wide applicability of VE, such as scientific visu-
alization, socializing, training, psychological therapy,
gaming, produce a set of requirements that make it very
difficult or nearly unfeasible to build a single system to fit
all needs. Traditionally, the result has been the creation of
monolithic systems that are highly optimized to a particular
application, without possibility of reusability with a differ-
ent purpose.

The development trend of the VE community is seri-
ously affected by the “reinventing the wheel” and “not
invented here” syndromes. These philosophies limit inno-

143

http://www.eg.org
http://diglib.eg.org

Oliveira et al. / An Innovative Design Approach to Build Virtual Environment Systems

© The Eurographics Association 2003.

vation and impedes the field to mature sufficiently to begin
discussion of standards necessary for empowering the web
with 3D windows into alternate realities. A brief analysis
of the main causes is presented in section 2, along with
some of the pioneering work in new directions. We will
describe in section 3 the Java Adaptive Dynamic Environ-
ment (JADE), an innovative approach to design and build
VE systems. Also included in section 3 is the description of
a simple VE system evaluating the dynamic capabilities of
JADE. Finally some concluding remarks are summarized
in section 4.

2. Previous Work

The current trend in the VE community has been for a new
VE system to be developed every time it was necessary to
have one. Another reason that motivates the genesis of a
new system is the lack of system flexibility to a particular
application. This has lead to a wide proliferation of mono-
lithic systems, such as DIVE [Hagsand96], MASSIVE
[Greenhalgh00], NPSNET [Macedonia94], and SPLINE
[Anderson95]. Even with the introduction of some modu-
larity, which promoted the emergence of toolkits such as
the WorldToolkit [Sense98] and Avocado [Tramberend98],
the core problems that plague the current systems continue
to persist.

The trend in the games industry is even worse, where
the production cycles of each game traditionally involve
game design, technology development and content crea-
tion. The licensing of game technology is not overly suc-
cessful since the particular requirements of each game usu-
ally involves significant changes in the code, leading in
some cases to total redevelopment of the supporting game
engine.

2.1. Problems

The problems, which constraint innovation, are summarily
described as follows:

• Non-Extensibility. The design of most VE systems is
tightly coupled with the initial requirements, thus re-
sulting in monolithic architectures where any changes
or modifications are unfeasible. The architectures of
more recent versions of some systems do present a
modular design, but continue to make it difficult to
extend the core functionality if it was not foreseen in
the original design. Thus, any changes require signifi-
cant, if not total, reengineering of the underlying sys-
tem. In most cases, the most cost/effective solution is
the creation of a new system.

• Non-Interoperability. It is not possible to migrate
necessary functionality between different systems to
obtain the most effective solution customized to a

specific problem with minimal resource expenditure.
So despite the existence of some toolkits, code migra-
tion remains an illusory goal and consequently fo-
menting the creation of new systems.

• Non-Evolution. The current existing VE systems do
not evolve at runtime. Every time a modification oc-
curs, no matter how small, it is necessary to shutdown
the system to replace the codebase and reinitialize it.
This problem does not have a dramatic impact on ex-
isting VE systems used within research laboratories
since their operation is session based, meaning system
availability is limited for small periods of time in well
controlled environments. The same does not occur
with commercial systems that are required constant
availability around the clock.

• Steep Learning Curve. The complexity of a VE sys-
tem, with its tightly coupled nature, makes it difficult
for a developer to haul any benefits without becoming
an expert. Unfortunately, the learning curve associated
to a system is traditionally exponential. This results in
a select few being sufficiently proficient with a par-
ticular system, normally the creators and maintainers.

• One Stop Shop. The complexity of VE involves the
operation of several different sub-systems, such as
rendering, networking, database, etc. Although
modularity may influence the design of each subsys-
tem, their operation remains tightly coupled to each
other. Consequently, the result is a monolithic archi-
tecture, albeit modular.

• “Not Invented Here” and “Reinventing The
Wheel”. These syndromes imply the expenditure of
resources on the reemergence of existing technology
in building a VE system. Consequently, exploring new
approaches becomes quite limited.

One of the fundamental goals of VE is to create alter-
nate realities where people may interact with the environ-
ment and each other. This implies the existence of a net-
work infrastructure connecting all the participants together.
So in addition to the previous problems, the following be-
come relevant:

• Poor Scalability. Most VE systems aimed at collabo-
ration claim to support in theory thousands of users,
when in reality all documented experiments in Col-
laborative Virtual Environments (CVEs) do not go
beyond a few dozen. Even considering the military
applications based on the Distributed Interactive
Simulation (DIS) [DIS93] protocol, where the main
design goal is the support of million of simultaneous
users, the threshold remains in the few hundreds. With
the online game community, the number of user base

144

Yao et al. / Fat Curves

© The Eurographics Association 2003.

is reported to be larger at the expense of significant
large budgets to increase the network and computa-
tional resources. This approach is less than ideal since
notoriously the client/server architectures do not scale.

• Poor Robustness. The VE systems are essentially
distributed systems and current solutions are not suffi-
ciently robust, neither possesses any fault tolerant
mechanisms. The situation is aggravated as the num-
ber of simultaneous users increases, thus imposing
more stress on the system and associated network in-
frastructure.

• “BlackBox” Network. The network constitutes the
core of the infrastructure interconnecting all systems,
which may or may not be running the same VE. How-
ever, both in the VE and online game community, the
knowledge of the network and its volatile nature re-
mains naive. This results in viewing the network as a
“blackbox” where the remainder of the system inter-
acts via a simple interface of send and receive mes-
sages. This approach results in failure of VE systems
to adequately adapt to network problems or reflect be-
havior that is non-TCP friendly contributing to con-
gestion collapse [Floyd99].

Upon analysis of existing VE systems, the assessment
is that a significant overlap in functionality. In most cases,
the system excels in particular operational features while
performs poorly in others depending on the focus of the
targeted set of applications.

The existing variety of different solutions clearly illus-
trates that there is no single solution to the various prob-
lems. This denotes that no system is ideal and that the fo-
cus should be interoperability of operational functional
blocks between different systems and not enforcing the
adoption of a platform, system or toolkit.

2.2. Component Design Methodology

The Virtual Reality Transport Protocol (vrtp) [Brutz-
man97] proposal, illustrated in Figure 1, provides insight
into the classes of components that are part of a VE system
and their relationships.

The proposed components are aggregated into three
layers of flexibility:

• Infrastructure (level 0). This layer provides the sup-
port to all the remainder components of a VE system.
The core of this layer is the Universal Platform, which
provides dynamic runtime extension and management
of the remaining components.

• Middleware (level 1). This layer aggregates all the
components that are not coupled to a particular VE

application. The various roles that components may
assume may be categorized into client, server and
monitor.

• Application (level 2). This layer implies a ready to
use system by the end-user, without the necessity to
any further development. The main focus is the con-
tent production and configuring the underlying com-
ponents of the system.

Figure 1 - Virtual Reality Transport Protocol (VRTP)
layered component framework

2.3. New Trends in VE Development

Some pioneering work has been done aimed at exploring
systems structured around object-oriented frameworks to
address some of the problems previously mentioned.

The MAVERIK [Hubbold01] system consists of a
small kernel based on object-oriented principles with an
elegant call-back mechanism. This decouples the need for a
particular internal data structure, thus allowing a particular
instantiation of the system to provide a context specific
data model. MAVERIK itself focuses on a framework,
which provides the developer with great flexibility at the
cost of productivity. However, to aid the development of a
VE system a set of existing base Modules are provided for
the purposes of rendering, navigation, spatial management
and device integration. The system is for the development
of single user systems, without any support for multiple
simultaneous users.

The VRJuggler [Bierbam01] platform is a toolkit to
build VE systems that are portable, flexible and configur-
able at runtime. The core of the toolkit is the Virtual Plat-
form, which alleviates the developer of considering low-

145

Oliveira et al. / An Innovative Design Approach to Build Virtual Environment Systems

© The Eurographics Association 2003.

level details regarding the management of system resources
such as devices and processes. This allows the developer to
develop the system disregarding the target configuration of
the hardware and expect the applications to work.

The Bamboo [Watsen98] component framework aims
to promote reusability and code interoperability, independ-
ently of the implementation language. The core of the ap-
proach is the micro-kernel that manages at runtime modu-
lar blocks of the system encapsulated as blocks that abide
the well-defined interface of a Module. Coupled with the
set of language loaders, Bamboo promotes dynamic exten-
sibility and interoperability. No additional functionality
beyond module management is available, although a set of
standard extension modules have been announced.

Although all initiatives are either based on component
or object-oriented design principles, only Bamboo follows
the conceptual ideas contained in the vrtp proposal. The
Bamboo micro-kernel represents the Universal Platform of
the infrastructure layer. The remainder two approaches,
while extensible and reusable, share the problem of cou-
pling together all the different layers of flexibility: infra-
structure, middleware, and application. The results are
similar to having a monolithic architecture.

3. The Java Adaptive Dynamic Environment

The Java Adaptive Dynamic Environment (JADE) is the
core component framework of the Mayhem [Oliveira01]
project. JADE permits dynamic runtime management of all
components and resources of a VE system. At its core is a
light-weight cross-platform micro-kernel, which becomes
the foundation to any VE application. Some of the design
principles are similar to the Bamboo initiative, but the
adoption of the Java programming language allowed the
focus to be on the design of the framework itself and its
functionality.

The JADE reference implementation has six core java
packages: Namespace; Kernel; Event; Compiler; Util; Ge-
neric. The remainder subsections will describe the most
important elements of the JADE framework.

3.1. Namespace

Within a VE system it is necessary to maintain a nu-
merous amount of resources. This evokes the need of being
able to identify successfully a particular resource, thus the
requirement of a namespace.

There are two categories of resources depending on the
responsibility the VE developer has over them:

• SystemResource. These correspond to the resources
that are generated by the VE system during its opera-
tion. Each time a SystemResource is created, then a

global unique SystemID is generated that may be ac-
cessed by the developer, but never tampered with.
Consequently the JADE framework ensures name-
space integrity at system level. The SystemID is a tu-
ple consisting of the current absolute time in millisec-
onds (with counter modifications to ensure unique-
ness) and the local IP of the host machine if connected
to the network.

• Resource. This is a subclass of SystemResource with
the addendum of the means of identification by the
VE system developer. The default means are a String
for name and an ID, both of which are managed by the
developer. Consequently, the responsibility of ensur-
ing namespace integrity belongs to the developer. In
the current implementation the ID is an int.

The design of the namespace package represents the
foundation of the JADE framework. Figure 2 illustrates a
simplified UML class diagram of the design.

Figure 2 - Simplified UML class diagram of the
jade.namespace package

The Namespace consists of an interface thus decoupling
the implementation from the design. The reference imple-
mentation is embodied in the Registry class.

3.2. Kernel

The management of the JADE component framework
takes place in the JADE kernel. The design of the kernel is
highly flexible, allowing for the developer to provide pro-
prietary implementations to replace one or all of the default
internal functional blocks. This may be done at runtime or
whilst the system is initializing by providing the appropri-
ate configuration file.

146

Yao et al. / Fat Curves

© The Eurographics Association 2003.

Since it is necessary to assure easy accessibility to the
JADE kernel from any place in the system, the singleton
[Buschmann98] pattern was adopted. As a result, only one
micro-kernel per Java Virtual Machine (JVM) exists.

3.3. Module

One of the cornerstones of the JADE framework is the
Module, which uses the Policy pattern to delegate to the
VE developer the implementation of the details. This ap-
proach allows the micro-kernel to manage the various
Modules that are part of a system without concern of their
particular functionality.

The granularity of a Module is entirely the responsibil-
ity of the developer. One may encapsulate an entire system
within a single Module, or may break down each minimal
operation into separate Modules. The developer should aim
at a design with balanced flexibility and performance.

protected void buildMetaData();
protected void createModule();
protected void initialiseModule();
protected void activateModule();
protected void deactivateModule();
protected void shutdownModule();
protected void absorbModuleState(Module source);

Figure 3 - Core of the Module interface

Every Module developed is required to implement the
policy interface denoted in Figure 3. The buildMetaData is
where the developer instantiates the meta data discrimi-
nating the particular instance of the Module, this informa-
tion may be used for both security and reload mechanisms
of the kernel. As illustrated in the absorbModuleState
method, the developer is responsible for implementing the
state transition of one Module instance to another of the
same type.

The Module interface reflects its life cycle*: void, cre-
ated, ready, activated and deactivated. When a Module is
initiated its state becomes void, allowing its member vari-
ables to be configured as required if different from default.
Once the Module is created then it is ready to be loaded
into the Kernel and initialized, becoming ready for use.
During the remainder of the Module’s life cycle, its state
oscillates between ready, activated and deactivated, until it
the operation shutdown is evoked. The shutdown of the
Module returns it to void.

* The Module expands the Resource’s life cycle (BirthCycle)
by adding the activate and deactivate operations (LifeCycle).

Figure 4 - Module life cycle

While in the ready, activated or deactivated state, it is
possible for a Module to be reloaded, although due to secu-
rity restriction the operation is only permissible to the
owner of the Module. To assist the reload operation, a
Module contains a description that encapsulates its name,
version and relevant urls.

The execution of a Module is passive within its
owner’s context. However, should it be necessary for it to
be concurrent, there exists the ModuleRunnable that is
contained within a thread context of its own.

3.4. ModuleManager

A ModuleManager is a specialized Module that is a
container of other Modules and is responsible for their
management. Since each Module has a unique ID that
identifies it, the resulting namespace in the VE system has
a hierarchical nature. The JADE micro-kernel is a derived
ModuleManager with functionality beyond just Module
management. The operations available are summarized in
Figure 5, where (…) contains either the unique ID of the
target Module or the pair (owner, module).

The accessibility of the getModule method is intention-
ally protected, thereby delegating to the derived subclasses
the responsibility of exposing the contents of the Module-
Manager. The JADE kernel provides such a method re-
trieveModule(…), which may be either blocking or non-
blocking.

In Figure 5, three protected methods exist to enforce
the existence of a ReloadPolicy, SecurityPolicy and a
Namespace in case none are provided by access methods:

• ReloadPolicy. This policy is used to determine how a
Module is reloaded. By default the JADE micro-
kernel validates version numbers of the Modules,
choosing the most recent.

• SecurityPolicy. This policy is invoked preceding any
operation of a Module and determines its execution.

147

Oliveira et al. / An Innovative Design Approach to Build Virtual Environment Systems

© The Eurographics Association 2003.

public void activate(…);
public void deactivate(…);
public void shutdown(…);
public void initialize(…);
public void loadModule(…);
public void reloadModule(…);
public void unloadModule(…);
public void unloadAll();
protected Module getModule(…);
protected abstract void buildReloadPolicy();
protected abstract void buildSecurityPolicy();

Figure 5 - Core of the ModuleManager class

3.5. Resource Locator

The ResourceLocator is the fundamental helper class of the
JADE kernel. It is responsible for retrieving a resource
from a given source and dispatching it to the appropriate
sink as illustrated by Figure 6. The ResourceLocator may
manage any type of resource provided the appropriate Re-
triever and Handler exist:

• Retriever. The role of this element is to retrieve a
resource from its location. By default, there exist three
retrievers: local hard disk, Hyper Text Transfer Proto-
col (HTTP) and the Jini service.

• Handler. Once a resource is retrieved, the Retriever
delegates it to the respective Handler. The type de-
fined in the resource descriptor determines which
handler to evoke. There exist handlers for native sys-
tem libraries, Modules and Classes.

The process of locating a resource begins by the Re-
sourceLocator receiving a resource descriptor. A caching
mechanism is used to validate if the resource has been pre-
viously retrieved. This may be overridden when necessary
by setting a flag. The retrieval process is determined by the
protocol defined in the URL of the resource. If no protocol
is identified, then it is assumed that the resource is located
on a file system, either local or remote and the system vari-
ables for paths are used. Once the resource has been re-
trieved, it is delegated to the appropriate Handler based on
its nature (Module, Library, Class or any content specific
resource such as textures, vrml [VRML97], etc). In the
case of a Module or a Java class, the ResourceLocator re-
solves the associated classfile and dynamically links it into
the system. The class resolution verifies any dependencies
and retrieves all the other necessary classes from the either
the local classpath or the same URL of the initial
class/Module.

Figure 6 - ResourceLocator with sources/sinks

The handling of libraries via the Java Native Interface
(JNI) allows the integration of native code (C/C++, Pascal,
Assembly, LISP, etc). However, this option will compro-
mise the portability of the VE system, requiring the exis-
tence of a different library for each system.

3.6. Event Model

The JADE kernel may support any number of Modules, but
most likely their operation is not isolated from one another.
Therefore it is necessary to provide some means for data to
be exchange between Modules and for events to be trig-
gered.

All the existing mechanisms have their advantages and
disadvantages. The choice of which mechanism to adopt is
delegated to the VE system developer.

The simplest and most efficient form of communica-
tion is direct accessibility to a Module. This is possible
since each Module is retrievable via the Namespace man-
aged by the JADE kernel. However, this approach requires
prior knowledge of the target Module or to use reflection to
determine the interface at run-time. The adoption of this
method is discouraged since it produces Modules that are
tightly coupled to one another.

The JADE framework provides two other forms for
communication between Modules, both based on the Sub-
scriber/Publisher pattern using events. An overview of the
event package is depicted in the UML class diagram of
Figure 7.

148

Yao et al. / Fat Curves

© The Eurographics Association 2003.

Figure 7 - Simplified UML class diagram of the
jade.event.package. Only immediate relationships to

classes in other packages are illustrated

The base SystemEvent indicates the source, type of
event and any arguments necessary to be processed by the
target subscribers. In the case the source is beyond the
scope of the JADE kernel then it is necessary to use the
Event class that tracks the source Identity.

Any Module (or code within the system) may generate
events. The way in which an event is disseminated charac-
terizes the corresponding event model being used, either
distributed or central.

Distributed Event Model

Each Module may accept the direct registration of a
subscriber’s interest. Whenever an event is generated, the
Module informs each of the subscribers that belong to the
set of listeners.

While this approach is more robust than a central ar-
chitecture, it requires that a subscriber to retrieve the refer-
ence of the desired Module to register their interest. An-
other disadvantage is the impossibility of a subscriber just
indicating their interest in just the type of an event inde-
pendent of its source.

Central Event Model

This approach relies on the existence of a central event
manager responsible for dispatching events. Whenever an
event is generated, it is posted to the event manager, which

places it into the appropriate dispatch queue according to
its type, priority and source.

Any subscriber interested in receiving events is re-
quired to register their interest with the event manager,
indicating their interest either in a source or particular type
of event independent of its origin.

Upon subscribing, it is possible for the subscriber to
denote if the interest is blocking or non-blocking by using
EventBarriers. In the case of blocking, the subscriber is
blocked until the event occurs once and only once. While
in the non-blocking case, the subscriber is notified each
time the event occurs or a particular source generates an
event. In this case, it is necessary to explicitly deregister
when there is no more interest in receiving events.

It is possible to create dispatchers and event queues as
necessary, but by default the JADE kernel provides three
with varying degrees of priority (high, normal, low).

3.7. Configuration

The configuration of the JADE kernel and the resulting
system is done either via a command line interpreter or a
file. In both cases, the associated mechanisms are based on
a syntax parser coupled with a semantic parser. Thus, the
semantic parser may be shared across different syntax
parsers, such as eXtensible Markup Language (XML) or
online commands.

The compiler framelet [Fayad99] is reused throughout
other frameworks, such as the TreacleWell (TW) net-
working module and the Meta Interest Management
(MIM).

The compiler, similar to other supporting elements of
the kernel, has a default implementation, which may be
replaced by the developer provided the corresponding in-
terfaces are respected.

3.8. Evaluation

A common drawback of existing VE systems, namely
online games, is the cumbersome process of applying up-
grades. Traditionally the upgrade operation requires the
system to be offline or before the user begins interacting
with the VE.

One of the design goals of the JADE framework was
the dynamic extensibility of the VE system at runtime. In
Figure 8 it is possible to see the evolution of the rendering
Module from flat shaded to depth shaded and finally to
textured map. All the transitions occurred whilst the user
was engaged in the VE, without requiring the system to go
offline.

149

Oliveira et al. / An Innovative Design Approach to Build Virtual Environment Systems

© The Eurographics Association 2003.

Figure 8 - Dynamic replacement of the Renderer Mod-
ule at runtime in the Maze game test program

4. Conclusions

The wide proliferation of existing VE systems clearly
demonstrates that the current development trend is costly in
terms of manpower, time and monetary investment. The
lack of interoperability makes it hard to reuse any code and
for rapid knowledge transfer. As a result there are many
VE systems that excel in its design objectives whilst per-
forming inadequate, if not miserably, in the remainder op-
erational blocks of the systems. Although this problem has
been recognized within the field of VE research and the
gaming industry, little progress has been made in finding a
solution.

We argue that a possible alternative to the current de-
velopment trend is the adoption of component design
methodologies. The JADE component framework provides
an alternative approach that addresses most of the short-
comings of the existing development trend.

In addition to the JADE framework, a set of middle-
ware Modules have been developed, such as:

• Meta Interest Management (MIM). This Module is
responsible for handling the Area Of Interest Man-
agement (AOIM). It consists of a component frame-
work that allows the multiple simulatenous usage of
different policies to avoid design constraints on the
VE itself (ie: visibility based policy for indoors with
grid based for outdoors)

• TreacleWell [Oliveira02]. This Module is responsible
for the networking of the VE system. It is a three
tiered component framework based on the network
design principle of micro-protocols.

• Meta Unified Datamodel (MUD). This Module is
responsible for the data management of a VE system
using extensively the Model/View/Controller pattern.
This approach allows for users to interact together in-
dependently of their devices (PC, PDA, Head
Mounted Display (HMD), mobile phone (G3), etc).

Although the adoption of the JADE framework (not its
reference implementation) is a requirement, the modules
mentioned above are not. The developer gains productivity

by employing them, but at the possible cost of flexibility.
The main reason for a layered approach is the impossibility
of building the ideal system that addresses all the func-
tional requirements of any user.

The NPSNET-V [Kapolka02] project shares common de-
sign principles and concepts with JADE, including termi-
nology. An objective of future work is to analyze the inde-
pendent code implementations and synchronize the two
designs to obtain a single component framework for future
VE system development..

Acknowledgments

This work is sponsored by Alfamicro and the Portuguese
Foundation for Science and Technology. We wish to thank
the many design discussions with Anthony Steed that
helped refine the JADE framework

References

 1. D. Anderson, J. Barrus, J. Howard, C. Rich and R.
Waters, “Building Multi-User Interactive Environ-
ments at MERL”, IEEE Multimedia, Winter 1995.

 2. A. Bierbam, C. Just, P. Hartling, K. Meinert, Baker,
and C. Cruz-Neira, “VR Juggler: A Virtual Platform
for Virtual Reality Application Development”, Proc.
IEEE VR’2001, Yokahama, March, 2001.

 3. D. Brutzman, M. Zyda, K. Watsen and M. Mace-
donia, “Virtual Reality Transfer Protocol (vrtp) De-
sign Rationale”, Workshops on Enabling Technol-
ogy: Infrastructure for Collaborative Enterprises
(WET ICE): Sharing a Distributed Virtual Reality,
MIT, Cambridge Massachusetts, June, 1997.

 4. F. Buschmann, R. Meunier, H. Rohnert, P. Som-
merlad and M. Stal, “A System of Patterns”, John
Wiley & Sons, 1998.

 5. “Standard for Information Technology – Protocols
for Distributed Interactive Simulation Applications”,
Institute for Simulation and Training, Technical Re-
port IST-CR-93-15, May 1993.

 6. M. Fayad, D. Schmidt and R. Johnson, “Building
Application Frameworks”, Wiley computer publish-
ing, 1999.

 7. S. Floyd and K. Fall, “Promoting the Use of End-to-
End Congestion Control in the Internet”, IEEE/ACM
Transactions On Networking, Vol 7, N. 4, August
1999.

 8. W. Gibson, “Neuromancer”, Ace Books, New York,
1984.

 9. C. Greenhalgh, J. Purbrick and D. Snowdon, “Inside
MASSIVE-3: Flexible Support for Data Consistency
and World Structuring”, Proc. ACM CVE’00, San

150

Yao et al. / Fat Curves

© The Eurographics Association 2003.

Francisco, September, 2000.
 10. O. Hagsand, “Interactive Multiuser VEs in the DIVE

System”, IEEE Multimedia, Spring 1996, Vol. 3, N.
1, IEEE Computer Society.

 11. R. Hubbold, J. Cook, M. Kaetes, S. Gibson, T. How-
ard, A. Murta, A. West and S. Pettifer,
“GNU/MAVERIK A Micro-Kernel for Large-Scale
Virtual Environments”, Presence, Vol. 10, N.1,
2001.

 12. A. Kapolka, D. McGregor and M. Capps, “A Unified
Component Framework for Dynamically Extensible
Virtual Environments”, Proc. ACM CVE’02, Bonn,
September, 2002.

 13. M. Macedonia, M. Zyda, D. Pratt, P. Barham and S.
Zestwitz, “NPSNET: A Network Software Archi-
tecture for Large-Scale Virtual Environments”, Pres-
ence: Teleoperators and Virtual Environments, Vol.
3, N. 4, 1994.

 14. M. Oliveira, J. Crowcroft and M. Slater, “Mayhem in
Online Game and Virtual Environment Develop-
ment”, short paper, Eurographics’01, Manchester,
September, 2001.

 15. M. Oliveira, J. Crowcroft and M. Slater, “Trea-
cleWell: Unraveling the Magic "Black Box" of the
Network”, Proc. SCI’02, Orlando, July, 2002

 16. Sense 8, “WorldToolkit Technical Overview”, 1998.
 17. N. Stephenson, “Snow Crash”, Roc (Penguin

Books), New York, 1992.
 18. H. Tramberend, “Avocado: A Distributed Virtual

Reality Framework”, Proc. IEEE VR’1998, 1998

 19. “Virtual Reality Modeling Language”, ISO/IEC DIS
14772-1, April 1997.

 20. K. Watsen and M. Zyda, “Bamboo – A Portable
System for Dynamically Extensible, Real-Time,
Networked, Virtual Environments”, Proc. IEEE
Virtual Reality Annual International Symposium
(VRAIS’98), Atlanta, March 1998.

151

152

