
7. International Immersive Projection Technologies Workshop
9. Eurographics Workshop on Virtual Environments
J. Deisinger, A. Kunz (Editors)
The blue-c Distributed Scene Graph

Martin Naef1, Edouard Lamboray1, Oliver Staadt2, Markus Gross1

1Computer Graphics Laboratory, Swiss Federal Institute of Technology, Zurich
2Computer Science Department, University of California, Davis 
{naef, lamboray, grossm}@inf.ethz.ch, staadt@cs.ucdavis.edu

Abstract
In this paper we present a distributed scene graph architecture for use in the blue-c, a novel collaborative
immersive virtual environment. We extend the widely used OpenGL Performer toolkit to provide a distributed
scene graph maintaining full synchronization down to vertex and texel level. We propose a synchronization
scheme including customizable, relaxed locking mechanisms. Our distributed scene graph includes both
locally stored nodes for static scene data as well as nodes shared across multiple sites, thus minimizing syn-
chronization overhead. We discuss the performance and demonstrate the functionality of our toolkit with two
prototype applications in our high-performance virtual reality and visual simulation environment.
Keywords
Distributed graphics, scene graph, collaborative virtual environments, networked virtual reality
CR Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism — Virtual Reality

1.  Introduction
Over the past decade, the field of virtual reality has evolved
rapidly and has proven to be a powerful technology for a
wide range of application areas such as science, engineering
and medicine. Recent advances in networking technology
and the increasing availability of high-speed network con-
nections enable researchers to interconnect immersive vir-
tual reality systems at remote locations 15. 

Distributed virtual environments can either be con-
structed based on underlying distributed databases 5, 4, 8

describing the world in abstract terms or scene graphs
including the geometrical representation. Database
approaches are most frequently used in virtual environ-
ments comprising a very large number of nodes. Due to ren-
dering performance issues, however, a direct database
traversal is less adequate for complex immersive environ-
ments with tight real-time constraints. 

For that reason, most immersive VR applications are
based on scene graph toolkits 21, 21, 15 which provide a hier-
archical object-oriented scene representation. Toolkits used
in stand-alone VR systems are usually not immediately
suited for distributed applications due to the lack of built-in
mechanisms for sharing application data in a consistent

fashion across multiple sites. Thus, distributed scene
graphs 23, 7, 13 have been developed to solve this problem.
Figure 1 depicts a typical application scenario where a dis-
tributed scene graph is employed to share application data
over a network. 

Ideally, a distributed scene graph should provide all fea-
tures available in stand-alone scene graph toolkits without
adding unnecessary programming complexity. Hence, add-
ing distributed scene graph functionality to a widely-used
toolkit ensures a large degree of backward compatibility to
existing applications and provides a familiar programming
environment for new applications. 

A

B

C

Update

U
pdate

U
pd

at
e

Update

Figure 1:  Multiple sites sharing a common scene and prop-
agating their respective changes.
© The Eurographics Association 2003.
125

http://www.eg.org
http://diglib.eg.org


Naef et al. / The blue-c Distributed Scene Graph
We have developed the blue-c Distributed Scene Graph
(bcDSG) in the context of the blue-c project 20, 10 – a col-
laborative tele-presence environment with simultaneous
acquisition of 3D video 24 and immersive projection. We
employ OpenGL Performer 21, which is one of the most
widely-used toolkits for high-performance immersive VR
applications, as the underlying scene graph. This allows us
to use Performer features including file loaders, multi-pro-
cessing, and flexible scene graph structures while maintain-
ing high system performance. Although we will refer to
Performer throughout the paper, the concepts presented
here are as well applicable to other scene graphs such as
OpenSG (www.opensg.org) or Open Scene Graph
(www.openscenegraph.org). 

The bcDSG shared nodes are replicated and, as opposed
to other approaches, fully synchronized down to vertex and
texel level. Furthermore, we do not rely on specific notifica-
tion mechanisms and do not change the API paradigm of
the underlying scene graph.

Note that this approach differs from shared memory
approaches, where a single copy of the scene graph can be
stored centrally, and from distributed immediate mode ren-
dering, where rendering or interaction commands are sent
in one direction to individual nodes in rendering clusters 15,
17, 1.

2.  Related work

Various methods have been proposed to build networked
virtual environments, such as NPSNET 12, RING 6, DIVE 5
and DIS/HLA 4, 8. A detailed overview of these and similar
systems can be found in 19. These systems focus on large-
scale virtual environments with synchronization happening
at the application level, updating the logical world defini-
tion as opposed to the geometric representation. Recently,
shared scene graph architectures have been proposed for
cluster-based rendering 15, 17. However, their design is opti-
mized for distributing the scene graph to cluster nodes for
rendering purposes only. Distributed modifications and sub-
sequent synchronization of changes for collaborative appli-
cations is not supported. Architectures more closely related
to the approach taken in bcDSG include Avango 23, Distrib-
uted Open Inventor 7, and Repo-3D 13. 

Distributed Open Inventor is based on the Open Inventor
toolkit and relies on its inherent notification scheme.
Although this allows for an elegant implementation of
scene graph distribution, the issue of locking is not
addressed. The underlying Inventor toolkit, however, is not
optimized for large real-time virtual environments and
visual simulation applications and provides no built-in sup-
port for multi-processing and multi-pipe rendering. Further-
more, other scene graphs such as OpenGL Performer 21 or
OpenSG 15 do not provide a similar notification mecha-
nism. 

Avango solves the problem of detecting changes by add-
ing “Inventor-style” fields to Performer, replacing the origi-
nal attribute access methods. This is achieved by
subclassing Performer nodes and implies that only encapsu-
lated Performer features can be used in distributed applica-
tions. Avango’s encapsulation is not complete, e.g. the
distribution of geometry leaf nodes is not implemented.

The Repo-3D architecture combines Modula-III, which
provides native support for distributed objects, with a cus-
tom graphics solution. Although this results in an elegant
solution, wide acceptance of this system for application
development is unlikely in comparison to an architecture
based on a widely-used scene graph toolkit and a main-
stream programming language such as Performer and C++. 

3.  System overview

The blue-c API provides an application development envi-
ronment which offers flexible access to all blue-c features,
including graphics and sound rendering, device input, 3D
video and scene distribution. These subsystems are pro-
vided as services and managed by the blue-c core
(Figure 2). 

The blue-c distributed scene consists of the following
base components: 

• The shared scene is built using special shared node
classes. These shared nodes are derived from Per-
former objects and inherit an additional synchroniza-
tion interface (Section 3.2).

• The synchronization service traverses the shared por-
tion of the scene once per frame (Section 3.3). It gen-
erates, sends and handles scene operation messages.
The synchronization service also includes a class fac-
tory and node and ID management (Section 4).

• The consistency, locking and ownership management
mechanisms (Section 5) are implemented as part of the
synchronization service.

blue-c Core

SyncManager

ClassFactory

NodeManager

Networking

Scene Graph

Shared

Graphics Rendering

Audio Rendering

Application

Figure 2:  System overview.
© The Eurographics Association 2003.

126



Naef et al. / The blue-c Distributed Scene Graph
• The network interface sends and receives scene opera-
tion messages. It also provides session and ID manage-
ment (Section 6).

3.1.  Scene Graph
The main data structure for all world-related data is a scene
graph. It is based on OpenGL Performer and enhanced with
customized nodes for 3D video rendering of the user repre-
sentation 24, and contains audio and animation support.

The Performer scene is a directed graph built from differ-
ent types of group nodes, geometry nodes and rendering
attributes such as material, texture and lighting. These
nodes and attributes are C++ objects. All nodes and
attributes can be referenced several times within the graph.
This allows for efficient memory usage and sorting to mini-
mize the number of state changes when rendering the scene.

The blue-c distributed scene graph system follows a split
approach. It divides the scene graph into a shared and a
local partition. For performance reasons, only the shared
partition is traversed by a synchronization service and kept
consistent across all participating sites. The local partition
is completely under the control of the local application. It is
typically used for geometry that is loaded from files and
forms the static environment of the collaborative applica-
tion. Groups inside the shared partition of the scene can
include non-synchronized children by using special refer-
ence nodes.

3.2.  Shared nodes and connectivity
The shared portion of the scene must be built completely
using customized nodes that include a node identifier, shar-
ing state information and a serialization interface.

As Silicon Graphics provides no access to the Performer
source code, the most elegant way to add the necessary
interfaces is to derive new node classes from both the
related Performer classes and the shared node interface as
shown in Figure 3. Multiple inheritance allows to add an
additional interface without affecting the original Performer
methods. The shared classes are named after their Per-
former counterparts, replacing the prefix “pf” with our own
“bc” (e.g., pfDCS becomes bcDCS).

Derived nodes include both the traditional scene graph
nodes (such as groups, transformations, switches and geom-

etry containers) as well as attribute classes (such as materi-
als, textures and highlighting). Attribute objects are treated
similar to children of group nodes, allowing for shared
attributes between different nodes.

Both the traditional parent-child relationships in the
graph and references to rendering attributes, e.g. texture
objects, are defined as the connectivity information.

3.3.  Synchronization service

The synchronization service traverses the shared portion of
the scene once per rendering frame. Each visited node is
checked for dirty flags. The necessary scene update mes-
sages are generated and enqueued for network transmission
as explained in Section 4. The synchronization service also
receives and handles messages from the partner sites.

The synchronization service expects reliable transmis-
sion of messages with a guaranteed order between two sites.
It does not make assumptions about global message order-
ing, i.e. messages from different sites may arrive in any
order.

In order to avoid temporary inconsistencies, such as ren-
dering new geometry before material properties have been
transmitted, messages from a single site are always pro-
cessed in batches of a full frame.

The lack of global message ordering may lead to situa-
tions where updates for the same node may overtake each
other (e.g. site A creates a new node, passes ownership to
site B, which in turn sends an update. The update from site
B may arrive at site C before the original create message
from site A). In such cases, incoming messages may not
always be processed immediately. The message is then put
into a delay buffer and reinserted into the incoming mes-
sage queue after the next incoming batch. A counter is
increased each time the message is delayed, allowing to
detect if there is a serious problem somewhere in the net-
work.

The efficient handling of messages requires two addi-
tional subsystems that are part of the synchronization ser-
vice:

• The node manager provides a fast node identification
service, returning a pointer to the node data for an
abstract ID. 

• The class factory provides services to create a new
node by specifying the class type name or Performer
custom type information. It is also used for transform-
ing Performer scene nodes into shared nodes.

4.  Scene operations

The scene graph is kept consistent among the participating
sites by sending messages with node modification opera-
tions. This section explains the message types and the node
identification system.

pfNode

pfGroup

pfDCS

bcDCS

CBCSharedNode

Figure 3:  Class diagram of a bcDCS node.
© The Eurographics Association 2003.

127



Naef et al. / The blue-c Distributed Scene Graph
4.1.  Node identification
The usual node referencing using pointers does not work
across local machine boundaries since no global address
space is provided. Hence, a globally unique, abstract node
identifier is required.

Each shared node has its own NodeID structure which
consists of a 24 bit main identification number (ID) and an
8 bit generation number (Figure 4). The generation number
allows reusing the ID number after the corresponding node
has been deleted without risking wrong identifications
caused by inconsistent message ordering across sites. New,
globally unique NodeIDs are provided by the networking
system (Section 6.4).

The ID number is used as direct index into an ID-to-
node-reference table that is kept inside the node manager.
This direct mapping allows very fast lookups, while ID
reuse helps keeping the table reasonably small.

The ID structure also encodes node ownership as a 10 bit
system ID. A quick ownership test is therefore based solely
on the ID structure, and ownership requests can be sent
directly to the current owner.

To make sure that outdated update messages do not over-
ride the most recent state, a serial number is stored for both
connectivity and attribute state. Update messages always
include the respective serial number. Only updates with
higher serial numbers are processed by the synchronization
service.

Since state serial numbers are only 12 bits long, they may
wrap over in actual applications. Therefore, the comparison
always uses “windows” to decide which number is more
recent. In theory, this could break the consistency. In prac-
tice, there is still slack for almost a minute network delay in
the case of an update every frame at 50 frames per second.
Connectivity updates are much less frequent than state
updates, hence shorter serial numbers are sufficient.

As shown in Figure 4, all ID information is encoded into
two 32 bit words to keep the additional memory footprint
per node minimal.

4.2.  Node status and traversal
Each shared node keeps a set of flags, encoded in a single
integer. These flags are:

• New: The node has just been created, only the local
system knows of its existence.

• State Dirty: Attributes of the node have changed and
must be broadcast.

• Connectivity Dirty: The connectivity of the node has
changed. This especially applies to group nodes, how-
ever, material properties are also considered children
of the node.

• Request Ownership: The local system wants to
become owner of the node. No request has been sent
yet.

• Ownership Request Pending: An ownership request
for the current node has been sent. There is no answer
yet.

These flags only reflect state information for the local copy
of the node. They are never transmitted across the network.
Additional state information such as the owner and update
generation is encoded in the node ID presented above.

The application programmer is responsible for setting the
state flags whenever Performer attributes or node connec-
tivity has changed.

The shared partition of the scene graph is traversed once
per rendering frame. The traversal is exhaustive, i.e., all
nodes, including attributes such as textures, are traversed
regardless of visibility. A node is visited only once per tra-
versal by checking against a frame counter which is stored
inside the node and updated during the first visit. 

4.3.  Operations on the scene

During the traversal, scene update messages are created
according to the state of the visited node. The following
subsections describe the message types and how they are
handled by the receiver.

Create node. Whenever a new node is detected (i.e. the
New flag is set), a CreateNode message is generated and
broadcast. The message includes the class name in plain
text and the ID of the new node.

At the receiver side, the class factory creates the required
node object instance according to the provided class name
and registers the node with the node manager.

Update state. For nodes with the State Dirty flag set, an
UpdateState message is generated and broadcast. Shared
nodes provide a streaming interface to serialize all Per-
former node attributes into the message transmission buffer.
To guarantee consistency, only the owner of a node is
allowed to send UpdateState messages (see Section 5). For
each state update, the state serial number of the node is
increased.

The receiver side first tries to locate the node by the ID.
If the node ID is unknown, the UpdateState message is
delayed. Only if the state serial number stored in the mes-
sage is larger than the locally stored serial number, the node
restores its state through the serialization interface. Other-
wise, the update message has been superseded by another
update message and can safely be discarded. Ownership
information is also updated by the UpdateState message.

Figure 4:  Node identification structure.

07152331

State SerialConnectivity S.Owner

IDGenerationWord 0

Word 1
© The Eurographics Association 2003.

128



Naef et al. / The blue-c Distributed Scene Graph
UpdateState messages always contain all Performer node
attributes. Since the blue-c system is targeted at high-band-
width networks, some redundancy in the transmission is
compensated by less state bookkeeping overhead and there-
fore more efficient per-frame handling. This compromise
also makes it easier to update the derived classes whenever
new Performer features are added.

Update connectivity. Connectivity updates are similar to
state updates. An UpdateConnectivity message is generated
whenever the Connectivity Dirty flag is set. The list of the
IDs of the child nodes is streamed into the message buffer.
References to material property objects (e.g. pfGeoState
and their children in Performer terminology) are treated just
as regular children with their own ID.

Connectivity updates follow the same rules regarding
serial number and ownership handling. The receiver side
only updates the connectivity of the node if all child nodes
are found, otherwise the message is delayed.

Delete node. Old nodes should be deleted to avoid memory
leaks. If the application deletes a node, a DeleteNode mes-
sage is generated. Only the owner of the node is allowed to
delete a node.

4.4.  Detecting orphaned nodes

After each scene traversal, orphaned nodes can easily be
detected by iterating through the list of nodes in the node
manager and checking the frame number of the last visit in
the shared node data. Nodes that are not referenced in the
scene have an old traversal number and can be deleted.

There may be situations where objects are only tempo-
rarily removed from the scene. To avoid automatic cleanup
in this case, the application receives a delete request mes-
sage where it can set a deny/grant flag for each object.

5.  Consistency and locking

Any distributed system has to provide methods to guarantee
data consistency across the nodes. Depending on the target
application, there are different consistency requirements,
e.g. some systems provide totally consistent data at all
times whereas others allow for some transient differences
between the sites.

Strict locking schemes that guarantee a consistent state at
all times usually result in either relatively high latencies,
scalability restrictions (e.g. traditional client-server models
with a single master node) or highly complex systems.
Strict consistency requirements are typical for applications
where the participants compete against each other.

Temporary inconsistencies, however, are acceptable for
many applications. Especially in collaborative applications
where the users try to achieve a common goal and where
they have additional communication channels at their dis-
posal, e.g., a voice connection, minor glitches are perfectly

acceptable as long as they do not result in permanent incon-
sistencies.

For the blue-c distributed scene graph, a relaxed locking
scheme based on object ownership was implemented. By
default, it provides immediate response to user interface
actions by allowing for local modifications of nodes before
ownership is acquired. For scenarios where a strict locking
scheme is appropriate, the application developer may easily
change the semantics as required.

5.1.  Operations

The core concept of the consistency management is node
ownership. To negotiate and pass ownership between differ-
ent sites, three message types are defined:

Request ownership. A site requesting ownership of an
object sends a RequestOwnership message to the site that is
known as the last owner of the node.

If the receiving node is no longer the owner of the
requested node, it forwards the request according to the
locally stored ownership information. The message is for-
warded until the current owner is found. In actual applica-
tions, repeated forwarding rarely occurs since new owners
typically broadcast update messages soon after acquiring
ownership, informing all other sites of the new ownership
situation as a side effect.

Pass ownership. The PassOwnership message is sent as an
answer to a request ownership message. It is sent directly to
and transfers the ownership of the defined node to the
requestor site.

The receiver node updates the local ownership informa-
tion and clears the Ownership Request Pending flag of the
node. It also signals the successful ownership transfer to the
application.

Decline ownership. If ownership cannot be passed, a
DeclineOwnership message is sent. 

The receiver node clears the Ownership Request Pending
flag of the node and informs the application of the declined
request. If the local node is dirty, it may request a state
update from the owner to restore the original state.

5.2.  Relaxed locking and application interaction

The relaxed locking scheme provided by the system allows
an application to modify a node at any time, even if it is not
the owner. This results in instant visual feedback for editing
operations on the scene. If a modified node does not belong
to the site, ownership is automatically requested to acquire
the right to broadcast an update message (Figure 5). 

The current owner always sends its last update message
before it passes ownership. The guaranteed ordering
between two nodes then ensures that the new owner always
knows the most recent state and therefore never propagates
changes based on an outdated state.
© The Eurographics Association 2003.

129



Naef et al. / The blue-c Distributed Scene Graph
Update messages arriving for dirty nodes override the
local settings and clear the dirty flags. This results in a
“jumping” object if multiple sites try to modify the node at
the same time. However, the inconsistencies are only tem-
porary, the owner always “wins”, returning the system to a
consistent state after a delay of some frames. This behavior
is perfectly acceptable for a collaborative modelling sce-
nario. For applications where this behavior is undesirable,
the solution is simply not to update a node until ownership
is acquired.

By default, the system receiving the ownership request
passes ownership immediately if its local instance is not
dirty. If it is dirty, the request is delayed until the state
update has been broadcast.

An optional “application loop” gives additional control
over the ownership management to implement application
specific locking schemes. For each ownership request, the
system sends an ownership request information message to
the application. The application may then decide to decline
the request by setting a flag in the message. A typical
implementation would decline an ownership request if the
node is currently selected for modification. 

6.  Networking
Since our tele-immersive collaborative virtual reality sys-
tem requires a versatile and platform-independent network-
ing layer, we decided to build the blue-c communication
services upon a distributed object computing standard. We
chose a CORBA-based framework for designing and imple-
menting the various communication tasks, which also
include the distribution of a scene graph. The core network-
ing functionality is based on the CORBA Audio/Video
Streaming Service 14, 3. Within this approach, the commu-
nication channels are initialized using CORBA remote
method calls. The actual payload, however, is directly
streamed to the network interface, e.g., using IP sockets or
ATM adaptation layers.

The core part of the connection setup is implemented in a
central session server, which is also used for ID distribution

(see Section 6.4). Furthermore, we extended the basic
Audio/Video Streaming Service implementation for our
specific needs. Data sources and sinks are handled through
link endpoints, which locate their communication partners
using the CORBA Naming Service. The link endpoints are
responsible for establishing a connection according to a
given specification, which includes attributes concerning
reliability, the underlying transport protocol and unicasting
or multicasting. Figure 6 shows an overview of the network
configuration. 

6.1.  Communication channel configuration

As explained in Section 4, keeping the blue-c shared scene
graph consistent requires a reliable transmission of the
scene graph operations from each participating site. How-
ever, no total ordering of the scene graph operations is
required. The TCP protocol guarantees a reliable transmis-
sion, i.e., the data is transmitted loss-free and in order.
However, TCP is not very well suited for real-time systems
because of its built-in flow control mechanisms. Further-
more, TCP cannot be used in a multicast setup. As a conse-
quence, we implemented an appropriate scheme for reliable
data transmission based on the connectionless and unreli-
able UDP protocol and on explicit positive and negative
acknowledgements. The technique we use is similar to the
Reliable Multicast Protocol RMP, used in the source-
ordered reliability level 23.

The use of IP resource reservation protocols, like
RSVP 2, during connection setup, or of UDP-based RTP/
RTCP 18 allows for the future support of quality of service
features within the system.

6.2.  Shared scene graph message transmission

Once the communication link is established, our framework
transmits messages containing the actual payload, i.e., the
shared scene graph operations. The scene graph operations
are streamed into appropriate messages, which are then
written into transmission buffers. The format of a shared
scene graph message is specified in Table 1.

A transmission buffer can either be directly flushed to the
network, or it is automatically sent, after it has been com-

Visit node

Dirty?
no

Owner?
no Req.  

Pending?

no

Send update

Clear dirty flag

Request ownership

Done

yes

yes

yes

Figure 5:  Locking scheme: Per frame processing.

A B
NamingService

TimeService

Connection
Management

UDP Multicast

CORBACORBA

NodeIDService

Figure 6:  Networking overview.
© The Eurographics Association 2003.

130



Naef et al. / The blue-c Distributed Scene Graph
pletely filled with messages. It can contain a single mes-
sage, several messages, or a frame of a large message that
does not fit into a single transmission buffer. Especially
messages resulting from scene graph operations including
texture updates can be larger than the 4 kB size limit of the
transmission buffers.

At the receiver, a dedicated task activates a callback upon
buffer reception. In this callback, the messages, or message
frames, are extracted from the received transmission buffer.
All completely received messages are then forwarded to the
upper layers, in which the scene graph operations are recon-
structed and applied to the local copy of the shared scene
graph.

Note that we also include a timestamp in the shared scene
graph message. It is not required for consistent scene graph
updates, but it can be exploited by the application. A global
time for distributed applications is implemented using the
CORBA Time Service.

All memory management for buffers and messages is
handled by the memory pools of the communication frame-
work. Typical message and transmission buffers are allo-
cated during application start-up. The communication
framework also handles hardware specific issues, like little/
big endian encoding. The implementation of the communi-
cation framework is built on the TAO/ACE framework
(http://www.cs.wustl.edu/~schmidt/TAO.html).

In order to assess the performance of our implementa-
tion, we measured the round-trip time of shared scene graph
messages between different hosts in the same local area net-
work. We generated transmission buffers of size 4 kB at the
scene update rate of 50 frames per second, i.e., a constant
traffic of 1.6 megabit per second, and we obtained average
round-trip times of less than 3 milliseconds. 

6.3.  Multicasting issues

As soon as N, the number of participating sites, becomes
larger than two, the networked communication can be done
more efficiently using multicast protocols. As described in
Section 4 and Section 5, we distinguish between two cate-
gories of messages: 

• Scene operations which are sent to all participating
sites.

• Locking operations which need to be transmitted only
between the two concerned sites.

This scenario can be translated into a communication link
setup which consists of one multicast channel for scene
operations and a unicast channel in between each two sites
for locking operations. In this setup, the transmission of
locking messages will only reach the sites which are
directly involved in the operation.

However, the increasing number of point-to-point con-
nections for large N makes this setup not very feasible in
practice. Hence, for large N, all messages are transmitted
over the multicast channel and locking operations need to
be dismissed by the non-involved sites.

6.4.  Distributed node identifiers

During application start-up, the participating sites register
themselves at a session server, from which they obtain ref-
erences to their communication partners (see Section 6.1).
Furthermore, the main server distributes a different range of
authorized node IDs to every client application joining the
shared session. The centralized distribution of node IDs
guarantees that every client will use distinct IDs. At any
time during the application, a given node ID resolves to at
most one node in the shared scene graph.

During the lifetime of the application, every client keeps
a list L of authorized, but not-assigned IDs. In case a client
creates a new node, it removes an ID from L and assigns it
to the new node. In an analogous way, a client deleting a
node increments the corresponding ID’s generation counter
and reintroduces the ID into its list L of authorized, but not-
assigned IDs. Note that only the client triggering the delete
operation, i.e., the node’s last owner, introduces the ID into
L, even if it does not fall into its initial range of possible
IDs. Hence, this algorithm allows for efficient reuse of node
IDs and avoids situations in which the same ID refers to
two different nodes. Furthermore, a client realizing that the
size of L, i.e., the number of available IDs, falls below a
threshold, requests an additional range of IDs at the session
server. Thus, a real shortage of available IDs and any
related delays can be avoided.

7.  Example applications

We implemented two collaborative example applications
based on the blue-c distributed scene graph. The applica-
tions take advantage of the full scene graph synchroniza-
tion, including texture updates, and use different locking
schemes.

ATTRIBUTE SIZE

MessageType 4 bytes

MessageSource 2 bytes

MessageDestination 2 bytes

NodeID 8 bytes

Timestamp 8 bytes

PayloadLength 4 bytes

PayloadData  PayloadLength 

Table 1:  Format of a shared scene graph message.
© The Eurographics Association 2003.

131



Naef et al. / The blue-c Distributed Scene Graph
7.1.  Distributed chess

An immersive, larger-than-life chess game was imple-
mented as a classical example of a multi-user game. The
application features all core concepts of the distributed
scene system.

The chessboard is located inside an old building. The
room geometry and textures are loaded from a file indepen-
dently by all sites and reside in the non-synchronized parti-
tion of the scene. The chessboard is built only by the first
site in the shared partition. Its geometry, attribute and tex-
ture data is streamed to the other sites using the synchroni-
zation features. The geometry of the pieces is loaded from
files. They are inserted into the shared partition by refer-
ence nodes.

The application includes little game logic. It only allows
to pick and move the chess pieces on the board and removes
hit pieces with a small animation sequence. 

Picking and moving the pieces follows a strict locking
scheme: Pieces are only moved after object ownership is
acquired. Ownership requests for picked pieces are
declined. This makes sure no two players move the same
piece at the same time.

The animation sequence for removing pieces from the
board simply updates the geometry and sets the dirty flags,
using the default relaxed locking scheme implemented by
the system.

7.2.  Collaborative painter

The collaborative painter tool was inspired by the Cave-
Painting application 9. The user has the option to create
simple geometrical objects (quads) of different colors. He
can then paint onto the surface of these quads, i.e., modify
the texture. With the exception of the color palette and a
visual cue for the tracker position in the form of a spray can,
all objects, including textures, are shared between the
nodes. All users immediately see all of the scene updates.

8.  Discussion and future work

This paper presents a shared, distributed scene graph based
on OpenGL Performer. It provides a relaxed locking

scheme optimized for collaborative work. The extensions
do not impose any penalty on the local rendering perfor-
mance and require little additional considerations from the
application developer.

The system was optimized for collaborative applications
in a controlled, high-bandwidth environment. It relies on
source-ordered reliable network transmission.

In the current implementation we decided not to encapsu-
late a few Performer node types such as outdated structures
(e.g. pfLightPoints) and very large data objects (e.g ASD
terrain nodes and image based rendering objects) that are
unlikely to be included in a shared scene. These features
can still be used in the local partition of the scene and be
referenced from the shared partition if needed.

The current system transfers complete node state infor-
mation with a single message. This level of granularity is
well suited for the standard Performer node types. For per-
formance reasons, however, customized nodes with large
and complex internal data structures should be synchro-
nized at the field level. The necessary extensions will be
provided in future versions of the blue-c distributed scene
graph.

At this moment, the system does not allow late joining of
sites. Instead, there is a single rendez-vous point at applica-
tion startup. Similar to Avango, late joining could be imple-
mented by requesting a complete graph update from a
single node in the system and add a global, non-blocking
rendez-vous and buffering system to guarantee no pending
updates are missed.

Acknowledgements

We would like to thank all members of the blue-c team for
many inspiring discussions. This work has been funded by
ETH Zurich as a “Polyprojekt” (grant no. 0-23803-00).

References

1. J. Allard, V. Gouranton, L. Lecointre, and E. Melin.
“Net Juggler and SoftGenLock: Running VR Juggler
with active stereo and multiple displays on a commod-

Figure 7:  Example applications: Distributed chess, collaborative painter.
© The Eurographics Association 2003.

132



Naef et al. / The blue-c Distributed Scene Graph
ity component cluster.” In Proceedings of the IEEE
Virtual Reality 2002. IEEE Computer Society, 2002.

2. R. Braden, L. Zhang, S. Berson, S. Herzog, and
S. Jamin. “Resource ReSerVation Protocol (RSVP).”
RFC 2205, Sept. 1997.

3. “Audio/Video Stream Specification.” Object Manage-
ment Group, Jan. 2000.

4. “IEEE standard for information technology - protocols
for distributed simulation applications: Entity informa-
tion and interaction.” IEEE Standard 1278-1993, 1993.

5. E. Frécon and M. Stenius. “DIVE: A scaleable network
architecture for distributed virtual environemnts.” Dis-
tributed Systems Engineering Journal, 5:91–100, Sept.
1998. Special Issue on Distributed Virtual Environ-
ments.

6. T. A. Funkhouser. “RING: A Client-Server System for
Multi-User Virtual Environments.” In Computer
Graphics (1995 SIGGRAPH Symposium on Interactive
3D Graphics), pages 85–92, Monterey, California,
April 1995.

7. G. Hesina, D. Schmalstieg, A. Fuhrmann, and
W. Purgathofer. “Distributed open inventor: A practi-
cal approach to distributed 3D graphics.” In
D. Brutzman, H. Ko, and M. Slater, editors, Proceed-
ings of the ACM symposium on Virtual reality software
and technology, pages 74–81. ACM Press, 1999.

8. “Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA) - Framework and Rules.”
IEEE Standard 1516, September 2000.

9. D. F. Keefe, D. A. F. Rodrigues, T. Moskovich, D. H.
Laidlaw, and J. J. L. Jr. “CavePainting: A fully immer-
sive 3d artistic medium and interactive experience.” In
Proceedings of the 2001 Symposium on Interactive 3D
Graphics, pages 85–93, March 2001.

10. A. Kunz and C. Spagno. “Simultaneous projection and
picture acquisition for a distributed collaborative envi-
ronment.” In Proceedings of IEEE Virtual Reality
2002, pages 279–280, 2002.

11. J. Leigh, A. E. Johnson, and T. A. DeFanti. “CAV-
ERN: A distributed architecture for supporting scalable
persistence and interoperability in collaborative virtual
environments.” Journal of Virtual Reality Research,
Development and Applications, 2(2):217–237, Dec.
1997. The Virtual Reality Society.

12. M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Bar-
ham, and S. Zeswitz. “NPSNET: A Network Software
Architecture for Large Scale Virtual Environments.”
Presence, 3(4), Fall 1994.

13. B. MacIntyre and S. Feiner. “A distributed 3D graphics
library.” In M. Cohen, editor, Proceedings of SIG-
GRAPH 98, pages 361–370. Addison Wesley, 1998.

14. S. Mungee, N. Surendran, Y. Krishnamurthy, and
D. C. Schmidt. The Design and Performance of a
CORBA Audio/Video Streaming Service, chapter in
Design and Management of Multimedia Information

Systems: Opportunities and Challenges. Idea Group
Publishing, 2000.

15. D. Reiners, G. Voss, and J. Behr. “OpenSG - Basic
concepts.” 1. OpenSG Symposium, 2002.

16. J. Rohlf and J. Helman. “IRIS Performer: A high per-
formance multiprocessing toolkit for real-time 3d
graphics.” In Proceedings of SIGGRAPH 94, ACM
SIGGRAPH Annual Conference Series, pages 381–
395, 1994.

17. B. Schaeffer. “Networking and management for clus-
ter-based graphics.” http://www.isl.uiuc.edu, Mar.
2002.

18. H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson. “RTP: A Transport Protocol for Real-
Time Applications.” RFC 1889, Jan. 1996.

19. S. Singhal and M. Zyda. Networked Virtual Environ-
ments: Design and Implementation. ACM Press - SIG-
GRAPH Series. Addison-Wesley, 1999.

20. O. G. Staadt, A. Kunz, M. Meier, and M. H. Gross.
“The blue-c: Integrating real humans into a networked
immersive environment.” In Proceedings of ACM Col-
laborative Virtual Environments 2000, pages 201–202,
San Francisco, Sept. 2000. ACM Press.

21. P. S. Strauss and R. Carey. “An object-oriented 3D
graphics toolkit.” In Proceedings of SIGGRAPH 92,
ACM SIGGRAPH Annual Conference Series, pages
341–349, 1992.

22. H. Tramberend. “Avocado: A distributed virtual reality
framework.” In Proceedings of IEEE Virtual Reality
99, pages 14–21, 1999.

23. B. Whetten, T. Montgomery, and S. M. Kaplan. “A
High Performance Totally Ordered Multicast Proto-
col.” In Dagstuhl Seminar on Distributed Systems,
pages 33–57, 1994.

24. S. Wuermlin, E. Lamboray, O. G. Staadt, and M. H.
Gross. “3D video recorder.” In Proceedings of Pacific
Graphics ’02. IEEE Computer Society Press, 2002.
© The Eurographics Association 2003.

133



134



Naef et al. / The blue-c Distributed Scene Graph

© The Eurographics Association 2003.

Figure 7:  Example applications: Distributed chess, collaborative painter.

332


	The blue-c Distributed Scene Graph
	1. Introduction
	2. Related work
	3. System overview
	3.1. Scene Graph
	3.2. Shared nodes and connectivity
	3.3. Synchronization service

	4. Scene operations
	4.1. Node identification
	4.2. Node status and traversal
	4.3. Operations on the scene
	4.4. Detecting orphaned nodes

	5. Consistency and locking
	5.1. Operations
	5.2. Relaxed locking and application interaction

	6. Networking
	6.1. Communication channel configuration
	6.2. Shared scene graph message transmission
	6.3. Multicasting issues
	6.4. Distributed node identifiers

	7. Example applications
	7.1. Distributed chess
	7.2. Collaborative painter

	8. Discussion and future work
	Acknowledgements
	References

