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Abstract

We propose a dataflow architecture, called HyperFlow, that offers a supporting infrastructure that creates an
abstraction layer over computation resources and naturally exposes heterogeneous computation to dataflow pro-
cessing. In order to show the efficiency of our system as well as testing it, we have included a set of synthetic
and real-case applications. First, we designed a general suite of micro-benchmarks that captures main parallel
pipeline structures and allows evaluation of HyperFlow under different stress conditions. Finally, we demonstrate
the potential of our system with relevant applications in visualization. Implementations in HyperFlow are shown to
have greater performance than actual hand-tuning codes, yet still providing high scalability on different platforms.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image

Generation—Line and curve generation

1. Introduction

The popularization of commodity multi-core CPUs and
multi-GPU units has opened many alternatives for the design
and implementation of efficient visualization and data analy-
sis algorithms. However, manually distributing the process-
ing load among CPU cores and GPU units can be very cum-
bersome. Combining CPU and GPU processing in a more
automatic fashion raises several challenges, since CPUs and
GPUs behave differently, and require an underlying infras-
tructure to control execution and data transfer between mod-
ules efficiently. Existing pipeline models used in scientific
applications, such as systems based on VTK [Kit, BCC*05],
already decompose computing tasks into independent mod-
ules and transparently manage data communication inside a
pipeline. However, these systems were designed around the
assumption of a homogeneous processing model, based only
on multi-core CPUs. Therefore, a full revision of data struc-
tures and algorithms is necessary to leverage the processing
power offered by GPUs.

In this paper we introduce HyperFlow, a dataflow archi-
tecture that treats all processing elements in a heterogeneous
computational system as first rate computational units, in-
cluding multi-core CPUs, GPU units and potentially other
types of processing elements. The architecture is designed
to run on a single system, which we define as an array of
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possibly many interconnected nodes. Each node is an indi-
vidual machine that contains a set of heterogeneous process-
ing elements. The architecture is designed to make full use of
data streaming, a concept used before in scientific dataflow
systems. HyperFlow provides an infrastructure of abstract
layers that allow dataflow systems to be designed without
knowledge of the actual processing elements used to exe-
cute pipeline modules. Two abstract layers are introduced to
separate the module execution context from the actual com-
putation. The first abstraction separate implementations de-
signed for different types of processing elements at the mod-
ule level. At the processing element level a second abstrac-
tion allows execution to be independent of the actual exe-
cution context (CPU or GPU). The HyperFlow architecture
handles the mapping and coordination between processing
elements and execution units. The scheduling is controlled
by a dedicated module that relies on a set of strategies to
best perform execution tasks.

We first validated HyperFlow with synthetic applications
based on a general suite of micro-benchmarks, which were
useful for debugging the system and stress testing Hyper-
Flow in common parallel constructions. Tests were also per-
formed with real applications, such as image processing
pipelines and isosurfacing. The main contributions intro-
duced in this work are as follows:
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A definition of abstraction layers that can encapsulate
pipeline modules and processing elements in different
configurations of heterogeneous systems;

o A full infrastructure to enable the construction of modules
that can be run on different types of processing elements
with full support for data streaming between them;

e Scheduling policies for automatic load balancing tasks
across different processing elements;

e Parallel implementation of three different applications:

edge detection, streaming multigrid for gradient-domain

operations, and isocontouring of structured grids.

2. Related Work

There is a vast literature that discuss parallel programming in
heterogeneous systems. Good introductory references is the
recent survey on heterogeneous computing of Broddtkorb et
al. [BDH*10] and the book by Rauber and Riinger [RR10].

Streaming computation has been a key concept to
improve computational performance [KDK*01], essen-
tially due to the increase of parallelism while also re-
ducing memory footprint. The programming model of-
fered by Streamlt [TKAO02] and their corresponding sys-
tems [DLD*03,CGT*05, TKM*02] created abstractions that
used streaming computation for high performance com-
putation. An implementation of the graphics pipeline us-
ing Streamlt is given in [CGT*05], with code mapped
to the general-purpose Raw architecture [TKM*02]. The
need to leverage the parallel processing of GPUs for
general-purpose computation led to several programming
languages and environments, such as Brook [BFH*04],
Scout [MIA*04], CUDA [NVI10], OpenCL [Krol0], Se-
quoia [FKH*06], etc. These languages expose the GPU as
a streaming architecture with parallel programmable units
composed of kernels (programs) that operate on streams
(data). However, they are considered low-level and they do
not support dynamic scheduling across multiple devices.

There are several frameworks proposed to handle
distributed computation across heterogeneous many-
core systems. XKAAPI [DGLM], Harmony [DYO08] and
StarPU [ATNW11] proposes runtime environment to allow
dynamic scheduling of execution kernels to heterogenous
systems resources. During execution, they map the program
task-graph to available resources using a specific data plan.
The relationship between data and tasks specification here
are coupled much loosely than that of an actual dataflow
architecture. A parallel dataflow framework was introduced
in [VOS*10] for many-core systems. Their proposed
architecture distributes computing resources (e.g. threads)
to modules per execution request. Modules have only one
implementation and can only run on a fixed set of resources.

Support for heterogeneous systems composed of hybrid
CPU/GPU systems are starting to appear recently. Instead
of forcing applications to be rewritten into a streaming pro-
cessing format, HMPP [BB09] enhances CUDA programs

with a set of compiler directives, tools and software run-
time that support multi-core CPU parallel programming.
FastFlow [ATMO09] is a low-level programming framework
that support streaming applications for multi-core machines
at fine-grained computations. The CUDASA programming
language [MFS*09] extends CUDA to allow distributed
computation on multiple GPUs in a local system or across
machines on a network. GRAMPS [SFB*09] is a program-
ming model specifically designed for graphics pipelines that
allows task and data-level parallelism for multi-core sys-
tems, composed of either CPUs or GPUs, but not both.

Anthill [THCF10] uses a demand-driven approach based
on a performance estimator to assign tasks to processors
in CPU/GPU systems. The DAX [MMGA] projects under
way are also addressing CPU/GPU parallel frameworks for
dataflow systems. In [WS10], an approach called Elastic
Computing that separates functionality from implementation
was proposed. In this work we propose similar abstractions,
described in more details in the following section.

3. HyperFlow Abstractions

The design of HyperFlow relies on the construction of ab-
straction layers. At the module level, pipelines are defined
as interconnected Task-Oriented Modules (TOMs), and exe-
cuted as a set of token-based data instances called flows. To
encapsulate available processing units, a Virtual Processing
Element (VPE) forms an abstraction layer over the actual
computing resources available in the system.

3.1. Task-Oriented Modules (TOMs)

A pipeline in HyperFlow consists of a set of interconnected
Task-Oriented Modules (TOMs). Each TOM defines and
holds parameters needed for a specific computational task,
such as the number of input and output ports. To allow the
same pipeline to be executed across a wide range of differ-
ent computational resources transparently, TOMs do not ex-
plicitly represent task implementations. Instead, they store a
list of task implementation objects, which are dynamically
scheduled to perform the actual computation on a given set
of inputs. This separation of task specification and imple-
mentation is one of the main differences between HyperFlow
and similar systems. The requirement for a TOM to be exe-
cuted at runtime is for it to have a task implementation that
matches the system resources (e.g. CPUs or GPUs).

3.2. Flows

Similar to token-based hardware dataflow architectures, Hy-
perFlow executes pipelines by sending instruction tokens
to processing units for execution, and sending data tokens
back as results. Both of these token are modeled as a flow
in HyperFlow, which passes between connected TOMs in
the pipeline. Each flow contains a data reference along with
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its meta information, such as source and destination mod-
ules, to control pipeline executions as well as streaming data
across modules. Flows are classified as waiting, live, or dead
depending on their status (waiting for execution, executing,
and finished, respectively). After a module completes execu-
tion, new flows might be generated for subsequent modules
in the pipeline to process.

Pipeline execution in HyperFlow execution does not re-
strict pipelines to be directed acyclic graphs (DAGs). While
other systems make use of DAGs to guarantee the mod-
ule execution order, it comes at a cost of limited pipeline
parallelism and static execution. HyperFlow, on the other
hand, supports dynamic execution for enabling pipelines
with feedback communication. In order to determine when
a module is ready to execute, HyperFlow maintains a flow
cache that stores incoming flows until all of the input data
arrives, and then trigger the module execution.

3.3. Virtual Processing Elements (VPEs)

One main feature of HyperFlow is the ability to schedule
pipeline modules for execution across heterogeneous com-
puting resources such as GPUs and CPUs in a transparent
way. To manage different computational resources, we in-
troduce the concept of Virtual Processing Elements (VPEs),
which are abstract layers that manage execution contexts of
specific computing resources. VPEs are designed as a ser-
vice that waits for tasks to be executed when a resource be-
comes available. Once this happens, a VPE first verifies if
all input data is properly transferred to its current context,
since data may reside in different, mutually inaccessible,
memory areas, such as CPU and GPU memory. In Hyper-
Flow, we assume that each VPE, regardless of their underly-
ing hardware, has access to main CPU memory. Therefore, a
data-transfer path between potentially very different VPEs is
always possible, although users are free to implement their
own data transfer routines.

4. HyperFlow Architecture

In this section we describe the HyperFlow architecture for
parallel execution of dataflows on shared-memory systems
(Fig. 1). By design, HyperFlow allows a single module to
have more than one implementations and depending on the
system it runs on, the most appropriate one(s) will be ex-
ecuted. At the application developer level, the framework
provides a C++ template API that dynamically allows con-
struction and execution of pipelines.

4.1. Execution Engine (EE)

The main controlling component of HyperFlow is the Exe-
cution Engine (EE). At runtime, the EE initializes a set of
VPEs that are mapped to the corresponding computing re-
sources available and managing all flows passing through
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Figure 1: HyperFlow Architecture. The execution engine is
the control module, managing live flows generated by TOMs.
The scheduler assigns flows for execution in available VPEs.

the system, as well as the status of VPEs. A polling thread
is the main control module of the EE, which waits in a non-
blocking way for either a waiting flow to be generated in the
TOMs, or a resource VPE to become available. Once a wait-
ing flow is generated, the EE dispatches it to the VPE sched-
uler for execution. This polling thread also instructs the VPE
scheduler when a VPE resource becomes available.

4.2. VPE Scheduler

The VPE scheduler is responsible for managing and schedul-
ing flows for execution on available VPEs. Internally, it
maintains two priority queues of flows: a waiting queue
which contains flows generated by the EE, and a live queue
of flows currently executing. Flows sent from the EE are ini-
tially added to the VPE waiting queue and sorted by their
identification number. HyperFlow generates these numbers
monotonically and uses them to quickly determine the exe-
cution order of pipeline modules such that global scheduling
strategies can be employed without actually traversing the
whole pipeline.

Flow identification also allows the scheduler to cache in-
put flows for detecting when a module is ready for execution.
In a streaming pipeline where data from different timesteps
can simultaneously flow through a single module, the cache
is necessary to make sure that module inputs are sorted out
appropriately before getting processed. Only when all in-
put flows with the same identification number, or the same
time step, are present in a module cache, the module will be
scheduled for execution with that set of flows.

The scheduler in HyperFlow is designed using the event-
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Figure 2: Processing two data blocks using HyperFlow. A flow between modules A and B is identified by (A,B), and is colored
green for the first data block and orange for the second. (1) the first (green) flow (0,A) is generated and goes to the waiting
queue. (2) then it moves to the live queue and triggers execution of module green A in the VPE. (3) it is executed in the VPE. (4)
flow A terminates, and generates (A,B) and (A,C) flows. (5) and trigger execution of B and C modules. (6) B terminates and
generates (B,D). (7) (B,D) moves to the cache since D can only execute when (C,D) is live. (8) C terminates and generates
(C,D). (9) (C,D) becomes live, and along with (B, D) in the cache trigger D to execute. (10) D is in execution. (11) D terminates.
The same process is repeated for the second data block starting with the orange flow (0,A) in step (2) to (12).

driven paradigm but allowing developers to provide their
own scheduling strategy. The default scheduling strategy in
HyperFlow is based on time statistics. As HyperFlow starts
executing a pipeline, it attempts to execute each module on
at least a CPU VPE and every GPU VPE to establish an ini-
tial average time. For subsequent executions of the module,
the average time of past executions on each VPE will be used
to select an available VPE with the fastest average time.

The default scheduling strategy also allows interruptions
when new scheduling events are posted to the scheduler.
This is to ensure the scheduler to favor depth-first execu-
tions, pushing data as far as possible downstream. The main
advantage of this approach is the cache-coherent access pat-
tern on hierarchical memory architectures of both CPUs and
GPUs. It also reduces the overall memory footprint, thus,
increasing the amount of in-core/on-device data that can be
processed concurrently. Since the scheduler only operates on
a copy of the waiting queue in order allow simultaneously
scheduling and updating the waiting queue, when a VPE is
done executing a flow and generating new flows, it might
be desirable to utilize that recently available VPE to execute
those newly created flows as well. Therefore, a restart of the
scheduling is required to facilitate depth-first execution.

It is also necessary to note that in the case when a data

transfer across VPEs is needed, the scheduler will first tell
the source VPE to convert the flow data to the main CPU
host memory. The VPE has to be responsible for this con-
version instead of the VPE scheduler because it is not al-
ways possible for the VPE scheduler to access the internal
memory context of each flow due to driver regulation. After
the conversion is completed, newly converted flows will be
passed on to the destination VPE for further processing. The
fact that HyperFlow automatically takes care of this conver-
sion process in a thread-safe manner allows GPU code to not
worry about thread migration issues. For instance, in CUDA,
GPU memory that are allocated inside a thread can only be
used or freed on that same thread. Thus, in order to perform
computation across two GPUs, users have to normally go
into the first GPU thread, copy the data to main memory,
then in the second thread, another copy has to be performed
to transfer the data to the second GPU thread. Since Hyper-
Flow always perform data transfer in this fashion, this is no
longer a problem.

4.3. Classes of Parallelism Supported

HyperFlow supports a combination of task, data and pipeline
parallelism. Task and data parallelism are natively supported
in HyperFlow using the default scheduling strategy. As long
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as there are available VPEs, the VPE scheduler will concur-
rently assign independent flows, i.e. flows with different ids
or without any upstream/downstream relations, for execu-
tion. Since independent tasks and distinct input data blocks
produce independent flows, HyperFlow can interchangeably
coordinate between task and data parallelism. Because flows
with smaller ids have higher priority on the waiting queue,
HyperFlow favors task parallelism over data parallelism.
This allows HyperFlow to maintain a small memory foot-
print with better cache behavior, as an individual data block
travels as far down the pipeline as possible before new data
blocks are processed. Since HyperFlow automatically in-
stantiates modules as part of the data-parallelism paradigm
to utilize all computational resources, each module may have
more than one instance at any time, thus not strictly enforc-
ing pipeline parallelism. In this case, pipeline parallelism
is rather promoted to “streaming” data parallelism, where
threads are only required to execute different data-blocks
on a sub-network. However, if a group of task implemen-
tations is not reentrant, i.e. cannot be run with multiple in-
stances, data will be passed through that sub-network with
true pipeline parallelism. Currently, HyperFlow allows users
to specify a task implementation to be not reentrant by us-
ing an internal mutex locking mechanism. An example of a
12-step pipeline running with various types of parallelism is
shown in Fig. 2. Task and data parallelism are in effect at
steps (5,7) and (3,7), respectively. Pipeline parallelism oc-
curs at steps (5,9), and the flow cache is used in (7-11).

4.4. Memory Management

HyperFlow supports execution on different devices (such as
CPUs and GPUs, for instance) interchangeably, which re-
quires the transfer of data objects between devices. For this
purpose, we enforce that all data objects must inherit from
the predefined pata class. This class implements reference-
counted objects that are required to be copied on write This
approach has two advantages: one is the obvious smaller
memory footprint, since multiple references to the same ob-
ject use much less space than copies of this object. Also,
the copy-on-write approach implies that HyperFlow has
no read-after-write or write-after-write hazards, typical of
many concurrent programming approaches. However, for a
pipeline that passes a large amount of data, data copy can
be very expensive. In this case, users may override the pata
class to use a different approach.

A data object in HyperFlow must also define its
medium and conversion procedures. Currently there are two
types of data mediums in HyperFlow, oM ceu_memory and
pm_ceu_memory, Which specify the main memory and GPU de-
vice memory, respectively. The purpose of the conversion
procedure, createInstance (DMTYPE medium), is to allow the en-
gine to request a new data object with a specific type of
medium that is equivalent to the original data. This allows
data to be passed between different VPEs in a customizable

(© The Eurographics Association 2012.

manner. As was discussed previously, we require that all pata
objects implement at least a conversion to and from main
CPU memory, to ensure that there will always be at least
one data-transfer path between any pair of VPEs. Similar to
data creation, data deletion must run on the original context
in which the pata object was created. Therefore, when a pata
object reaches zero references, the EE schedules the VPE to
release its data resources, instead of doing so directly.

Given the spontaneous mapping of VPEs and module im-
plementations in HyperFlow, dynamic memory allocation
and deallocation are unavoidable. While these operations are
acceptable on CPUs, they are considerably slow on GPUs.
For example, thousands calls to cudaMalloc() and cudaFree ()
could take seconds to complete. HyperFlow addresses this
issue by providing a customizable memory allocator for each
VPE. Pipeline developers may use this to assign an opti-
mal memory plan for their applcation. By default, each GPU
VPE in HyperFlow has a fixed-size block allocator where its
total size and block-size can be changed programmatically.
If an application has to allocate many objects with a simi-
lar size, they can take advantage of 1ocalalloc() and iocal-
rree () Of the GPU VPE to only call cudamaiioc() only once.
An example demonstrating data management of HyperFlow
is given in the supplemental material.

Along with the depth-first scheduling strategy that at the
same time, aiming to retain data on the same VPE, data
streaming is fully supported in HyperFlow by having flows
“streaming” data from one module to another. The combi-
nation of these designs in streaming allows HyperFlow to
achieve high performance by hiding latency with coherency
of memory accesses.

5. Synthetic Applications

O O
TS0 8 >
=g O

(a) asymmetric (b) split-join (c) scan

Figure 3: Topology of micro-benchmarks.

In this section we focus in a set of micro-benchmarks de-
signed to stress test both computational performance and
data bandwidth. Experiments were conducted on two sys-
tems: (A) an i7 (8 HT cores), 6 GB of RAM; 3 GPUs: 2x
GeForce GTX 295 and 1x Tesla C1060 with 4 GB; (B) SGI
UV with 96 Xeon cores and 1 TB of RAM.

5.1. Micro-Benchmarks

Micro-benchmarks were designed to evaluate scheduling as
well as data handling strategies. The idea is to implement
modules that keep the computational device occupied just



6 Vo et al. / HyperFlow

Execution Time (s)
O - N W s Uu o u ® ©

Figure 4: Split-join benchmarks using 1, 2, 4 and 8 threads
(green, red, blue and orange bars respectively) and 1000
Sflows with width,length = 2,4,8.

like a regular implementation but without the need of in-
forming actual code. To allow different pipeline configura-
tions, we designed a framework that generates benchmark
programs from a description of basic network topology and
module description. Fig. 3 illustrates the main benchmark
classes used: asymmetric, split-join, and scan.

The asymmetric benchmark is used to stress unbalanced
computation, where data reaches the destination much ear-
lier through one path, causing many flows to be queued
up at the final module. It is desirable that flow scheduling
in the longer path is not affected by this bottleneck. This
benchmark is parametrized by the number of modules on
the longest path.

The split-join benchmark model pipelines that divide
the input into independent sequences of computation. This
benchmark is parametrized by its length and width. This
benchmark has the highest degree of parallelism up until the
last module, which merges the pieces back together. A lin-
ear benchmark that models a typical streaming pipeline can
be seen as a subset of this benchmark. The scan benchmark
model the typical parallel operation by the same name, using
the number of reduction steps as parameter.

5.2. Performance Results

We conducted several experiments using a great variety of
micro-benchmarks, and list below the main results obtained.
To evaluate the performance of the scheduler, we extracted
execution traces containing start and finish times for each
module execution. We investigated this data using the ani-
mation of flows passing through the pipeline with a Gantt
chart indicating when each VPE is active processing a flow.
Accompanying video shows the complete animation. results
for the split-join benchmarks running with 1000 flows. Runs
with 10 and 100 flows as well as with the scan and assymet-
ric benchmarks produced similar graphs.

6. Real-case Applications

In this section, we report comparison results between Hyper-
Flow and hand-tuned implementation of three applications.

(a) Image-based edge detection pipeline
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Figure 6: Edge detection pipeline on approximately 4GB of
image data, comparing to a system with 1 CPU and 0 GPUs.

6.1. High Throughput Image Processing

The first application to illustrate HyperFlow is an edge de-
tection framework capable of dealing with multiple images
concurrently. The pipeline starts with a source TOM which
decodes a stream of images from disk and send them down
to another TOM that performs Gaussian blur. The next step
in this pipeline consists of a blending operation that returns
the difference between the original image and the blurred
version. The combined image is streamed to a threshold
TOM that computes the image accumulated histogram and
discards pixels whose accumulated frequency fall outside
a given range (we set this range to be between 95% and
100% of the total accumulated histogram value). Finally,
the pipeline sends images to an inversion TOM for display
preparation. The main form of parallelism in this pipeline is
the streaming data-parallelism.

Each TOM in this pipeline, except the decoding one, has
dual implementations, one for CPU and one for GPU. At
runtime, depending on the available resources, HyperFlow
will instantiate a number of these implementations to handle
incoming images on different VPEs concurrently. Fig. 6(a)
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Figure 5: Edge detection of the Stanford church computed using HyperFlow: (left): 512 input images of 3 Mp each (1.5 Gp
total); (right): result computed in 7 seconds using a heterogeneous system composed of 8 CPU threads and 2 GPUs.

Scheduling DFS Host Fermi Non-Fermi

Strategy Memory Memory Memory
Time Statisti Yes 2.0GB 60 MB 60 MB
¢ Statsties 1N 33GB | 2I6MB 752 MB
Greed Yes 742 MB 48 MB 36 MB
reecy No T3GB | 223MB TIMB
Both GPUs Yes 1.9 GB 48 MB 48 MB
CPU Threshold No 33GB 156 MB 168 MB
Yes 708 MB - -

AllCPU No 1.5GB

Table 1: Memory usage with different scheduling strategies.

illustrates this pipeline and how simple it is to integrate an
existing code into HyperFlow. It shows the function used for
image inversion, as well as a small class that wraps this func-
tion to provide an implementation to the image inversion
TOM. Fig. 6(b,c) report speedups for both system A and B.

6.1.1. Heterogeneous Scheduling

Though system A is comprised of heterogeneous processing
elements (CPUs and GPUs), all GPU devices are indeed ho-
mogeneous in term of their compute capability as a CUDA
1.3 device. In other words, a GPU implementation would
always produce the same performance regardless of which
GPU it is mapped to in this system. Thus, we further ex-
periment HyperFlow on another system to better validate
our scheduling strategy on fully heterogeneous platforms.
This system consists of 8 Xeon cores @ 3.2GHz, 1x GTX
480 (Fermi, CUDA 2.0), 1x Quadro FX 5800 (Non-Fermi,
CUDA 1.3) and 24 GB of RAM.

One of the shortcomings of early CUDA-based GPUs is
the slow performance of atomic operations on global mem-
ory. This issue has been resolved by the Fermi architec-
ture [NVI11] with the new device L2 cache. As atomic op-
erations are heavily used for computing accumulated his-
tograms in the GPU implementation of the threshold mod-
ule, a good scheduling strategy should avoid running this
implementation on a non-Fermi card for the edge detection
pipeline. HyperFlow achieves this by analyzing past execu-
tion times of the threshold module.

Fig. 7 reports performances for different scheduling
strategies and pipeline configurations in HyperFlow. All
CPU and All GPU refer to pipelines where each module has
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Figure 7: Performance results for the edge detection of the
Stanford dataset with different scheduling strategies.

only a single implementation that runs on CPU or GPU, re-
spectively. As shown in the figure, forcing the pipeline to run
completely on the GPUs results in the worst performance,
mostly due to having the non-Fermi card overwork on the
threshold TOM. As we restrict the threshold TOM to run
only on CPUs while allowing the rest to be freely deployed
on the non-Fermi card, the Fermi card or both, the results are
much better as shown in the Non-Fermi-, Fermi-, and Both
GPUs- CPU Threshold graph, respectively. In the last two
entries, we remove this restriction and let HyperFlow pick
the best possible scheduling. Greedy refers to the strategy
of mapping whichever VPE that is available VPE to waiting
flows. Time Statistics is the default strategy, as described in
Section 4.2, that can automatically blacklist the non-Fermi
card from running the threshold module as a result of its slow
average execution time.

Our experiments also show that the introduction of block
allocators to GPU VPEs has actually added a noticeable im-
provement on the scheduler performance. On the other hand,
the depth-first strategy gives similar (if not faster) perfor-
mance in most cases, but uses considerably much less mem-
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ory (see Table 1). There is no Block Allocator result reported
for All GPU in Fig. 7 because without the DFS enforcement,
the amount of GPU memory required to run the experiment
exceeded the physical limit of 1.5 GB on the GTX 480 card.

6.1.2. Comparison to VTK

Our last validation of this application is the comparison of
HyperFlow to the de-facto standard visualization API, VTK,
in particular, their multi-threaded imaging library. Fortu-
nately, VTK provides implementations for all of the mod-
ules above except for the image decoder which was designed
specifically for our application. Fig. 8 shows the perfor-
mance results of VTK, HyperFlow, and their variations on
the system described in the previous section.

The VTK line refers the original implementation of VTK,
which did not scale well. This is because VTK can only par-
allelize execution at module level (dividing the pixels) with
multithreading. Therefore, as one of the limitations, it could
not perform image decoding in parallel. In our experiment,
the parallel dataflow framework by [VOS*10] that has been
made available through VTK, also produced a similar per-
formance result as the original VTK. This is mainly because
such framework only promotes task- and data-parallelism
but there is only a single path of execution in the pipeline.

We further analyze the performance of a manually opti-
mized version of the above VTK pipeline (shown as Hand-
tuned VTK). The pipeline first scan through the input stream
for partitioning decoded data. Then, it creates a number of
threads where each of them will decode a set of images.
While being relatively complex, this manually constructed
pipeline is still outperformed by the all CPU implementation
in HyperFlow (shown as HyperFlow CPU). The pipeline in
HyperFlow simply produced less overhead and only need to
stream data from disk once. The green line shows the perfor-
mance of HyperFlow when also utilizing the 2 GPUs, some-
thing that VTK currently does not support.

6.2. Streaming Multigrid Gradient-Domain Processing

This experiment is to demonstrate the streaming capabilities
of HyperFlow against another hand-tuned implementation.
We construct a pipeline similar to the streaming panorama
stitching by Kazhdan et. al [KHOS] but using HyperFlow
with a simple modification to the multigrid solver that al-
lows relaxation steps to be updated in parallel automatically
at runtime. Instead of performing temporally blocked relax-
ation in a single streaming operation, the Gauss-Seidel iter-
ations are separated and chained together (as shown on the
left). Hence, pipeline parallelism can be triggered automati-
cally by HyperFlow as rows of images are streamed through
this solver. However, since each iteration of the update also
has its own streaming buffer, rows needs to be copied among
iterations. This results in a higher memory footprint and
bandwidth. Thus, there is a trade-off between concurrency
and memory usage in this pipeline.

“-VTK Hand-tuned VTK -®HyperFlow CPU <& HyperFlow

140 B
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80

Time (s)
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40
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0
1 2 4 8

Number of CPUs

Figure 8: Performance comparison of HyperFlow vs. VTK.

Image Original HyperFlow Speedup
PNC3 39.78s 31.68s 1.26x
Edinburgh 73.73s 55.06s 1.34x
Red Rock 126.41s 90.06s 1.40x

Table 2: Performance results for streaming multigrid
gradient-domain image editing in HyperFlow.

Table 2 shows performance timings for the modified
pipeline in HyperFlow. Though the original implementation
was very well optimized, it is shown that the performance
can still be improved by a simple transformation into Hyper-
Flow. However, the amount of parallelism here depends di-
rectly on the number of iterations involved. Due to the small
number of iterations needed by the application, i.e. 5, and the
additional data copies between iterations, HyperFlow was
only able to achieve the maximum of 1.4x speedup.

6.3. Isocontouring Structured Grids

We conclude our evaluation with a more challenging load
balancing problem: data-parallel isosurface computation. As
input we use the RMI dataset from LLNL [ILC10]: a 2048 x
2048 x 1920 regular grid of single-byte values totaling 8 GB
of data. This dataset was partitioned into blocks of size
128 x 128 x 64 voxels, with each mapped to a separate flow.
Because some blocks contain no isosurface while others may
be quite dense, a static assignment of blocks to processors
can introduce considerable load imbalance; something that
HyperFlow avoids.

The contouring computation cannot process each block
independently, because contours must be extracted also be-
tween voxels residing in adjacent blocks. Fig. 9(a) illustrates
(using a 2D analogy) the data communication needed be-
tween adjacent blocks, here shown in blue. The red and
green thin blocks correspond to shared block “edges”; yel-
low blocks are shared corners. Note in particular that this
duplication of block boundary voxels adds a considerable
number of thin layers as additional flows processed by Hy-
perFlow. These flows and data dependencies are further il-
lustrated by the pipeline in Fig. 9(b).

We compare the performance of HyperFlow with Isen-

(© The Eurographics Association 2012.
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Figure 9: Parallel isosurface extraction in HyperFlow and comparison result to the approach of Isenburg et al’s [ILC10].

burg et al.’s [ILC10] implementation of their parallel stream-
ing isocontouring algorithm—here referred to as “Ghost”—
which pads each block with a surrounding layer of ghost
zones (voxels from adjacent blocks) corresponding to the
red, green, and yellow blocks in Fig. 9(a). The Ghost algo-
rithm was designed for distributed computation, and there-
fore uses MPI for (in-memory) interprocess communication.
Fig. 9(c) summarize the execution time for both methods.
As is evident, both methods achieve near-linear speedup,
with HyperFlow consistently outperforming Ghost. We con-
jecture that this result is due in part to better load balanc-
ing in HyperFlow, which contrary to Ghost performs a dy-
namic rather than static task allocation, and MPI overhead in
Ghost.

7. Discussion

Pipeline developers often spend a considerable amount of
time tweaking workflows to make sure they optimally utilize
available resources, which requires manually writing mod-
ules to run either on the CPU or the GPU. This approach has
a significant portability drawback, since the same pipeline,
when executed on a different system, might not run with
the same efficiency, or not even run at all (if the target ma-
chine lacks the necessary computational resources). We ad-
dressed this problem with the concept of a TOM, in which
tasks may have more than one implementation. This abstrac-
tion enforces a clean separation between module specifica-
tion and implementation, thus, allowing developers to con-
struct efficient, high-level pipelines without prior knowledge
of the computing resources available at execution time. For
example, in HyperFlow the exact same pipeline can be ex-
ecuted on machines with different numbers of CPU cores
and GPU devices by compiling tasks into Callable Objects,
such as CPU function pointers and GPU kernels. The sched-
uler places these into appropriate execution contexts, such
as CPU masks or individual GPU devices. It is important

(© The Eurographics Association 2012.

to observe that to support pipeline parallelism, these objects
need to be reentrant. In our current implementation, they are
simply compiled as function pointers for local execution. To
allow HyperFlow to run across a distributed system, they
would need to be compiled into executable files that can be
sent over the network.

Although the examples discussed in this paper include
VPEs defined only for CPU threads and GPU devices, Hy-
perFlow is designed to allow arbitrary VPEs, with no inher-
ent limitation on the kind of computing resource that can
be integrated into the architecture. Therefore, it is possible
to define VPEs that exploit many other computational re-
sources, such as Web and Cloud Computing, among others.

8. Conclusions and Future Work

We presented HyperFlow, a parallel dataflow architecture
that allows pipelines to take full advantage of modern,
heterogeneous computational systems. HyperFlow is com-
prised of several components carefully designed to create
an efficient abstraction layer that allows developers to de-
sign pipelines without knowing on which types of proces-
sors their modules get executed. The Task-Oriented Module
encapsulates the difference between task specification and
implementation. Therefore, pipeline modules can have mul-
tiple heterogeneous implementations, individually designed
to take advantage of a particular type of processor. Pipeline
execution relies on a token-based mechanism in which flows
are sent to processing units. We also introduced the notion of
a Virtual Processing Element, an abstraction that allows pro-
cessing elements to be offered without explicitly knowledge
whether they are implemented as a CPU thread or a GPU
device. In the future, we plan to extend HyperFlow to dis-
tributed systems with heterogeneous configurations, re-visit
architectural decisions, and extend validation with applica-
tions of even higher computational complexity.
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