
Eurographics Symposium on Parallel Graphics and Visualization (2009)
J. Comba, K. Debattista, and D. Weiskopf (Editors)

Distributed Visualization of Complex
Black Oil Reservoir Models

Frederico Abraham and Waldemar Celes

Tecgraf - Computer Science Department, PUC-Rio
Rua Marquês de São Vicente 225, 22450-900 Rio de Janeiro, RJ, Brasil

{fabraham,celes}@inf.puc-rio.br

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract
Recent accomplishments in the computer simulation of black oil reservoirs have created a demand for the visu-
alization of very large models. In this paper, we present a distributed system for the rendering of such models.
Following recent trends in the high performance computing area, the system is intended to make the visualization
of these models available to lightweight clients on corporate networks, through the use of a cluster of inexpensive
off-the-shelf PCs equipped with multiple GPUs. The proposed system uses a sort-last approach and supports a
diverse set of visualization techniques. Through an efficient use of each GPU and a partial composition stage on
each cluster node, our solution tackles the scalability issues that arise when using mid-to-large GPU clusters.
Experimental results show that our implementation can sustain the visualization of models with up to 60 million
cells at interactive rates, using a cluster with 16 nodes, each one equipped with 4 GPUs. Experimental results also
demonstrate the scalability of the proposed solution.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics I.3.3 [Computer Graphics]: Picture/Image Generation, Viewing algorithms—I.3.8
[Computer Graphics]: Applications—C.2.4 [Computer-Communication Networks]: Distributed Systems, Dis-
tributed Applications—

1. Introduction

Recent advances in parallel architectures for the numerical
simulation of black oil reservoirs have allowed the use of
very discretized domains. As a consequence, these simu-
lations have produced very large datasets that must be vi-
sualized in 3D environments for analysis and inspection.
Conventional scientific visualization techniques of such very
large models are not viable. In order to achieve interactive
visualization rates, one has to employ scalable visualization
solutions.

Similar large-scale visualization problems have been han-
dled through the use of clusters of commodity PCs equipped
with specialized and inexpensive high-performance graph-
ics hardware. Nowadays, computers equipped with multiple
GPU cards have also proved to be another attractive option
for the visualization of large datasets [MMD08]. Moreover,
recent trends in high-performance computing have moved
heavy computations from desktop computers to very well-

equipped computing data centers, especially in the oil in-
dustry.

In this paper, we present a distributed visualization sys-
tem for large-scale black oil reservoir models. Our solution
attempts to explore the full graphics processing power of a
cluster of PCs, where each node is equipped with multiple
graphics cards. The system is designed to allow lightweight
clients to benefit from a distributed rendering system ac-
cessed through conventional corporate networks. As a con-
sequence, the end user does not need to be physically close
to the cluster.

The proposed system employs the sort-last distributed
strategy and supports a diverse set of visualization tech-
niques. With an efficient use of the available GPUs, com-
bined with a pipelined implementation and the use of partial
image compositions on the cluster nodes, our solution tack-
les the scalability issues that arise when using mid-to-large
GPU clusters. Experimental results demonstrate that our so-

c© The Eurographics Association 2009.

DOI: 10.2312/EGPGV/EGPGV09/087-094

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV09/087-094

Frederico Abraham and Waldemar Celes / Distributed Visualization of Complex Black Oil Reservoir Models

lution can sustain the visualization of very large reservoir
models at interactive rates.

The remainder of this paper is organized as follows. In the
next section, related works on distributed rendering and mul-
tiple GPU rendering are presented. Black oil reservoir mod-
els and the corresponding usually applied visualization tech-
niques are briefly presented in Section 3. Section 4 presents
our proposed distributed pipeline architecture and imple-
mentation. Section 5 presents the experimental results and
demonstrates the effectiveness and efficiency of our solution.
Finally, in Section 6, some concluding remarks are drawn
and future work is discussed.

2. Related Work

Molnar et al. [MCEF94] presented a classification of paral-
lel rendering strategies based on the placement of the visi-
bility sorting phase in the graphics pipeline: sort-first, sort-
middle and sort-last. In the sort-first strategy, the screen is
partitioned into disjoint tiles, and each cluster node is re-
sponsible for rendering (thus sorting) all primitives overlap-
ping its corresponding tile. Sort-middle systems distribute
primitives after the geometry stage and before the rasteri-
zation stage, not being suitable for modern graphics hard-
ware. Sort-last systems split the model among the rendering
nodes, and each node runs the entire local rendering pipeline
on its corresponding submodel. Sorting the partial images
of each node resolves the visibility problem and is the last
stage of the pipeline, executed on a master node. Molnar
et al. [MCEF94] have elected sort-last as the most scalable
strategy in terms of number of primitives, being definitely
the choice for rendering massively complex models.

Wylie et al. [WPLM01] built a scalable sort-last system
based on PC clusters. They implemented simple strategies
to partition the data for parallel rendering, most of them
based on the number of triangles, demonstrating excellent
load-balancing characteristics in terms of geometry process-
ing and good load-balancing in terms of rasterization when
the triangle count is relatively large.

Humphreys et al. [HHN∗02] have presented Chromium,
the successor to WireGL [HEB∗01], a system for manipulat-
ing streams of OpenGL API commands on a cluster of PCs.
The system allows both sort-first and sort-last distribution
of graphics application workload without requiring changes
to the source code of the application. However, we believe
application-dependent optimizations, while less generic, are
necessary in the context of massively large datasets.

Van der Schaaf et al. [dSRG∗02] have compared the use
of immediate mode, such as WireGL [HEB∗01], with re-
tained mode rendering paradigms. Two approaches were ex-
perimented: replicating data on the nodes and broadcasting
graphics commands over the network. The replicated-data
approach achieves better performance while broadcasting

simplifies transparency for handling user input and render-
ing synchronization.

Marchesin et al. [MMD08] presented a sort-last volume
visualization system based on a single machine driving mul-
tiple GPUs. The results show that their system competes well
with mid-sized clusters of single GPU PCs. This makes the
use of multiple GPU cards a definite plus to increase the
graphics power of a single PC at low cost. Other previous
works on multiple card rendering, like NVIDIA’s SLI [nvib]
and Quadro Plex [nvia], use sort-first to distribute the work-
load among the GPUs, which does not scale well with the
size of the model.

Cavin et al. [CMF05] implemented a pipelined sort-last
rendering for large volumetric and polygonal datasets using
commodity off-the-shelf PC clusters. Their solution demon-
strates that low cost clusters, which exclude expensive spe-
cialized networks, such as Myrinet and Infiniband, and hard-
ware image compositors, can be viable competitors to more
expensive solutions. Later on, Cavin et al. [CM06] presented
a theoretical and practical performance analysis of pipelined
sort-last implementations for both polygonal and volume
rendering.

Different from most previous proposals, we have designed
our system to allow the connection of lightweight clients,
through the use of conventional corporate networks. We have
employed the sort-last strategy for rendering very large black
oil reservoir models, taking advantage of nodes equipped
with multiple GPUs.

3. Black oil reservoir simulation

Black oil reservoirs are formed through the accumulation
of hydrocarbons in sedimentary rocks [Dak78]. These re-
sources are extracted by drilling wells into the reservoir field
and connecting them to a pipeline network for storage and
processing. Natural or induced underground pressure forces
the oil (and gas) to flow to the surface. In order to maxi-
mize resource recovery, the oil industry uses numerical sim-
ulators to predict fluid flow. By simulating different well ar-
rangements and configurations, the reservoir is economically
evaluated and its exploration is planned.

3.1. Reservoir models

A black oil reservoir model is defined by a discrete mesh
of hexahedral cells topologically organized on a tridimen-
sional grid. Each cell is identified by a triple [i, j,k] with cells
[i+1, j,k], [i−1, j,k], [i, j +1,k], [i, j−1,k], [i, j,k +1] and
[i, j,k− 1] as topological neighbors. The geometry is usu-
ally irregular, as shown in the Figures 1-5. Due to discon-
tinuities in elevation, characterizing geological faults, topo-
logical neighbor cells may not share faces. Also, cells in the
topological grid might be set as inactive, yielding irregular
(and, possibly, disconnected) groups of cells. All cells of a

c© The Eurographics Association 2009.

88

Frederico Abraham and Waldemar Celes / Distributed Visualization of Complex Black Oil Reservoir Models

given k constitute a layer, which normally resembles an ir-
regular terrain, with discontinuities.

Based on geophysical and geological information, the
reservoir is characterized assigning properties to the cells.
For a given well arrangement, the simulator computes the
oil (and gas) flow based on its numerical model. As a result,
the simulation outputs the well’s production data and physi-
cal properties (such as oil, gas, and water saturation) at each
cell for each time step of the simulation.

3.2. Reservoir visualization

The numerical simulation results in large datasets. Scientific
visualization techniques are then applied for inspecting such
results. The goal is to provide the engineers a rich set of
graphics tools for unambiguous analysis of the model.

A variety set of 3D visualization techniques may be of-
fered to the user:

• conventional iso-contouring of cell faces for scalar field
visualization (Figure 1);

• smoothed scalar fields with iso-lines (Figure 2);
• separation of reservoir layers for better inspection of the

internal reservoir structure (Figure 3);
• positioning of arbitrary cutting planes (Figure 4);
• volume rendering algorithm of non-structured meshes

(Figure 5: in our system, volume rendering is achieved
by using a GPU-based ray-tracing algorithm [EC05]).

One main challenge of black oil reservoir visualization
is the ability to handle very large models. Due to the avail-
ability of increasing computer power and to improve simula-
tion accuracy, the oil industry has employed reservoir mod-
els composed by tens of millions of cells – very recent ad-
vances in parallel simulations have allowed the simulation
of a reservoir with one billion cells [sau]. Visualizing such
complex models at interactive rates requires the use of more
elaborate visualization techniques. The use of culling tech-
niques, such as frustum and occlusion culling, reduces the

Figure 1: Visualization algorithms: original coordinates
iso-contour.

Figure 2: Visualization algorithms: smoothed property with
iso-lines.

Figure 3: Visualization algorithms: iso-contour with layer
separation.

number of primitives sent to the graphics pipeline but do not
suffice for very large models. Two different approaches are
eligible for handling such models: level-of-detail technique
and distributed visualization. Level of detail, when applied
to reservoir models, faces the following challenges: (i) the
technique imposes changes in the topology of the model,
which may lead to incorrect result interpretations; (ii) the
model simplification may depend on the scalar field being
visualized, turning it difficult to build, in a pre-processing
phase, an unique hierarchical structure suitable for all scalar
fields; (iii) the technique is not adequate for high resolution
displays, which are currently a trend in the oil industry. The
level-of-detail technique has the advantage of allowing the
use of a single workstation for visualizing complex models,
and this may appear as a strong requirement in some ap-
plications. On the other hand, distributed visualization does
require the use of multiple processing units. However, in the
context of the oil industry, the existence of large computing
data centers is a reality. For that reason, this paper focuses on
the use of a cluster of GPU-equipped PCs for reservoir visu-
alization. Our goal is to build a distributed visualization sys-

c© The Eurographics Association 2009.

89

Frederico Abraham and Waldemar Celes / Distributed Visualization of Complex Black Oil Reservoir Models

Figure 4: Visualization algorithms: arbitrary cutting planes.

Figure 5: Visualization algorithms: ray-casting volume ren-
dering.

tem that supports the different techniques commonly used
for reservoir visualization, allowing the inspection of very
large models at interactive frame rates.

4. Proposed distributed visualization

Previous related works indicate sort-last as the best suited
parallel rendering strategy for very large models [MCEF94,
WPLM01, CMF05, CM06, MMD08], mainly because the
model is subdivided among the nodes. Sort-first and sort-
middle, the other two distributed strategies, require the en-
tire model to be loaded on each rendering node, which is not
feasible for very large models given hardware constraints.

As pointed out by Molnar et al. [MCEF94], although scal-
able in terms of model size, the scalability of the sort-last
strategy suffers from having to deal with an increasing count
of partial images from the nodes. These images have to be
sent over the network for composition, either by depth-buffer
visibility sorting or alpha-blend composition.

In this section, we describe our distributed system for
large reservoir model visualization, and discuss our proposal
to achieve scalability and to minimize the impact of dealing
with a large number of partial images.

4.1. Hardware architecture

Our system was designed to use a cluster of PCs, each
one equipped with a PCI-express bridge with multiple GPU
cards attached to it. In this way, we take advantage of the
low cost per bandwidth ratio of such buses, as attested by
Marchesin et al. [MMD08].

Figure 6 illustrates the hardware layout of our solution.
Users requiring the visualization of large models can connect
to the cluster master node. This node coordinates the dis-
tributed rendering of complete frames, which are then sent to
the client over a conventional corporate network. The other
cluster PCs serve as renderer nodes. The cluster nodes are
interconnected by a fast network. Each server PC spawns,
for each GPU, a rendering thread that controls its graph-
ics pipeline. New reservoir models are transmitted from the
client to the master node, which stores them in a shared file
system.

4.2. Model partitioning

The first step for an efficient distributed visualization resides
in adequately partitioning the model among the renderers.
Once the model has been stored in the shared file system, the
master node executes the partitioning algorithm. We use a
KD-tree structure to recursively split the axis-aligned bound-
ing box of the entire model. Considering that nc denotes the
number of cells in the current (sub)model and n the num-
ber of renderer nodes, at each recursion step, the nc cells are
sorted according to their centroid coordinates along the axis
corresponding to the largest bounding box dimension. The
(sub)model is then split in two parts, where the first part are
allocated to the first b n

2c nodes, and the second to the re-
maining n−b n

2c nodes. The numbers of GPUs in the first
and second node groups are used as weights to position the
splitting plane: if the first and second groups have respec-
tively g1 and g2 GPUs, the splitting plane is placed at the
centroid of the cell at index nc∗ g1

g1+g2 of the sorted cell ar-

... Fast
Interconnect

Laptop

PC

Server 1

GPU 1 Renderer

GPU 2 Renderer
...

Server 2

GPU 1 Renderer

GPU 2 Renderer
...

Master

Composition
 GPU

Cluster

 Local
Network

Shared
storage

Hard Disk
Created by Andrew Fitzsimon

Computer
Created by Andrew Fitzsimon

Figure 6: Hardware layout of our solution.

c© The Eurographics Association 2009.

90

Frederico Abraham and Waldemar Celes / Distributed Visualization of Complex Black Oil Reservoir Models

ray. Cells crossing the splitting plane are allocated to both
groups, and clipping planes are added for restricting render-
ing to inside the subdivided bounding boxes.

When the recursion reaches a group with only one node,
the cells allocated to it are once again split, among the g
GPUs of the current node. The same procedure applies,
where the first and second parts is allocated to the first b g

2c
and the remaining g−b g

2c GPUs, respectively.

This procedure results in a well balanced partition in
terms of number of cells. The average screen coverage of
each partition is also reduced, due to spatial properties of a
KD-tree subdivision. This alleviates both the network usage
and the composition cost. The procedure is simple and effi-
cient; however, it requires the storage of all centroid coordi-
nates in the master node memory. This may be a constraint
for very large models but is not addressed in this work.

After the model has been split, each final partition bound-
ing box is sent to the corresponding server node. The node
loads all associated submodels (one for each GPU) and is
then ready to spawn rendering threads with the desired visu-
alization technique.

Our system does all image compositions on the GPUs.
Since all submodel bounding boxes are convex and adjacent,
it is straightforward to sort the partitions according to the
viewer. This allows us to use the painter’s algorithm to cor-
rectly resolve visibility on the composition stage: instead of
reading and sending the entire depth buffer of the covered
screen area and performing z-buffer composition, it suffices
to read and send the alpha component of each pixel. An alpha
value equal to 0 signals that the pixel was not written during
the rendering. The alpha channel also suffices for composing
subimages with transparency, needed by the volume visual-
ization technique.

4.3. Distributed Pipeline

Figure 7 details our implementation. The execution running
on each entity (client, master, and renderer) are divided into
pipeline stages, each one executed on a separate operating
system thread.

Decompress

Receive

Compose

Control

Client

Decompress

Receive

Compose

Control

Read

Compress

Send

Master

Compress

Compose/Read

Render

Renderers

1 G1

1 1

1

1

Cluster

SendN

G tiles

N tiles

N tiles

Figure 7: Our pipelined sort-last architecture: G is the ag-
gregate number of GPUs; N is the number of renderer nodes.

4.3.1. Renderers

The renderer nodes are responsible for loading and effec-
tively rendering the parts of the model assigned to all its
GPUs. During a rendering session, each node runs a num-
ber of GPU rendering pipelines in parallel. As a result, each
renderer node generates a set of partial images. However, in-
stead of sending all partial images to the master node, we
have opted for introducing a partial composition on the ren-
derer node.

Based on the model partition described in Section 4.2,
each renderer node composes the partial images generated
by its GPUs in a back-to-front order. The first GPU in the
back-to-front order is also responsible for performing the
partial composition. Each other GPU rendering thread reads
back the region covered by its bounding box and puts it avail-
able for the rendering thread of the first GPU, which is re-
sponsible for composing the partial images in the correct or-
der. After composition, the union of all screen coverages is
read back and queued for compression.

The compress stage compresses the partial images us-
ing the LZO compression library. This library provides ex-
tremely fast and simple lossless compression of byte arrays,
being suitable for real-time applications like ours. The re-
sulting compressed buffers are sent to the send stage. The
send stage is responsible for sending the compressed images
to the receive stage on the master node.

4.3.2. Master

The master node is responsible for controlling the dis-
tributed rendering. This control is implemented in the con-
trol pipeline thread. Its tasks include:

• keeping the camera parameters updated on all renderers;
• computing and sending the screen coverage of each

bounding box; this is done at each frame using the algo-
rithm described by Blinn [Bli96];

• forwarding all relevant application-specific parameters to
the renderers;

• requesting the rendering of a new frame.

This thread also implements frame control. While one
frame is being received and composed, another frame can
be issued on all renderers, as in [ACCE04]. Although this
results in an additional frame of latency, the parallelism be-
tween all pipeline stages is increased, resulting in better
overall performance (in terms of frames per second).

The receive stage waits for the compressed partial images
from each renderer node. Each received image is forwarded
to the decompress stage, being then decompressed and sent
to the compose stage. The partial images are finally com-
posed in back-to-front order on the GPU of the master node.

Once the final image is ready, its RGB components are
read back to the main memory for compression and transfer
to the client node. In order to improve performance, the read,

c© The Eurographics Association 2009.

91

Frederico Abraham and Waldemar Celes / Distributed Visualization of Complex Black Oil Reservoir Models

compress, and send stages are implemented in parallel. The
final image is split into horizontal tiles. The tiles are then
read back using the asynchronous glReadPixels func-
tion, offered by the ARB_pixel_buffer_object OpenGL ex-
tension. In this way, compression and transfer are done in
parallel with reading back: while one tile is being read, the
previous readback result can be queued for compression and
sent to the client node.

4.3.3. Client

The client node receives, decompresses and draws the final
RBG image. These three stages run in parallel with the read,
compress, and send stages on the master node. As we shall
demonstrate, this parallelism in transferring the final image
to the client results in a significant gain of performance when
the client-master network bandwidth appears as the bottle-
neck of the system.

The client node also runs the control stage. This stage is
responsible for handling user input and controlling the ren-
dering engine implemented on the cluster.

5. Experimental Results

We have tested our system using a 16-node cluster, being
each node equipped with a two dual-core 2.4 GHz AMD
Opteron processor, 8 GB of RAM and connected by both
a switched 1 Gbps Ethernet and an Infiniband 4x network.
This allows us to test our system in both common off-the-
shelf visualization clusters and clusters equipped with bet-
ter and more expensive interconnections. The master node
is equipped with one NVIDIA Geforce GTX 280 GPU. The
15 server nodes are equipped with 4 NVIDIA Quadro FX
5600, each one with 1.5 GB of video memory. These graph-
ics cards were connected to two x16 PCI-express bridges.
A detailed description of the cluster hardware can be found
in [SEP∗08]. The client system was a laptop connected to
the cluster through a local Gigabit Ethernet network.

The system was implemented in C++, using OpenGL,
pthreads and TCP/IP sockets on a Linux operating system.
Each rendering thread uses frustum and occlusion culling
techniques in order to reduce the number of primitives sent
to the graphics pipeline at each frame. The implementation
of these acceleration techniques follows the frustum culling
algorithm presented by Assarsson et al. [AM00] and the
hardware-assisted occlusion culling algorithm presented by
Bittner et al. [BWPP04]. All tests were run at a resolution of
1680 x 970.

The system was tested on a black oil reservoir simula-
tion model with different discretizations, ranging from 10 to
60 million cells in total. One limitation of our system is the
memory consumption of the model partitioning phase, re-
quiring a PC with enough memory to load the entire model.
Since our master node has 8 GB of memory, the partitioning
had to be done on a separate computer.

5.1. System Scalability

In order to test the system scalability, we have varied both the
size of the model and the number of cluster renderer nodes
in use. The test was run using only 2 GPUs at each node.
Figure 8 illustrates the results obtained using the gigabit Eth-
ernet network and the Infiniband network. The plots display
the time spent for rendering each frame along a camera path.
In this path, the original model is rotated until t = 45s. At this
time, the layers of the model are separated, increasing the
rendering load. The model is then rotated until t = 90s, when
a navigation is performed to inspect the reservoir model from
a closer view. As can be noted, the system scales reason-
ably well for both interconnection configurations, presenting
good overall performance.

Note that the use of a slower interconnect does not af-
fect performance for these tests. This is because the net-
work transmission is not the bottleneck of the system in
these cases. However, if compression is turned off, net-
work transmission becomes the bottleneck, degrading per-
formance even for the faster interconnect.

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

A
ve

ra
ge

 fr
am

e
tim

e
(m

s)

Time on camera path (s)

10 million cells using 10 GPUs
12 million cells using 12 GPUs
15 million cells using 16 GPUs
18 million cells using 20 GPUs

(a)

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

A
ve

ra
ge

 fr
am

e
tim

e
(m

s)

Time on camera path (s)

10 million cells using 10 GPUs
12 million cells using 12 GPUs
15 million cells using 16 GPUs
18 million cells using 20 GPUs

(b)

Figure 8: System scalability using (a) the Ethernet network
(b) the Infiniband network.

c© The Eurographics Association 2009.

92

Frederico Abraham and Waldemar Celes / Distributed Visualization of Complex Black Oil Reservoir Models

5.2. Partial composition

As each renderer node was assigned a predefined part of the
model, the system may suffer from load imbalance when
zooming in the model. Additionally, in such situations, sub-
models assigned to some renderer nodes may cover larger
areas of the screen, requesting more network bandwidth and
more composition efforts.

Under such circumstances, the proposed partial image
composition on each renderer nodes has shown to be quite
effective. This is demonstrated by testing the system with a
different camera path. This path starts visualizing the entire
model without layer separation. The camera zooms in until
t = 30s and returns to fit the whole model in the screen at
t = 60s. At t = 65s, the reservoir layers are separated, and
a navigation to inspect the model in between the layers is
done until t = 115s. After that, the viewer returns to its orig-
inal position.

This test was performed using 12 renderer nodes, using 4
GPUs at each, interconnected by the Ethernet network. Fig-
ure 9 illustrates the gain in performance due to applying par-
tial composition on each node, especially for the second half
of the experiment where performance is critical due to the
layer separation.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 fr
am

e
tim

e
(m

s)

Time on camera path (s)

26 million cells, 48 GPUs, full composition
26 million cells, 48 GPUs, partial composition

Figure 9: Comparison between full and partial composition.

5.3. Final image splitting test

We have used the same camera path of the last experiment to
test the benefits of splitting the final image, parallelizing the
read, compress, and send stages on the master node, and the
receive, decompress, and compose stages on the client node.

The test was run using 11 4-GPU renderer nodes con-
nected through the Infiniband network. We then varied the
number of tiles for transferring the final image from the mas-
ter to the client. As shown in Figure 10, we have achieved
a better gain in performance when splitting the image in 4
tiles.

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 fr
am

e
tim

e
(m

s)

Time on camera path (s)

15 million cells using 44 GPUs, not splitting frame
15 million cells using 44 GPUS, splitting in 2 parts
15 million cells using 44 GPUS, splitting in 3 parts
15 million cells using 44 GPUS, splitting in 4 parts
15 million cells using 44 GPUS, splitting in 5 parts

Figure 10: Final image splitting comparison.

5.4. Stressing the system

In order to stress the system, we have increased the size
of the model to 60 million cells. Figure 11 illustrates the
performance achieved by using a total number of 59 GPUs
distributed among 15 renderer nodes, interconnected by the
Ethernet network. In this test, the camera performed the
same path as in the last two experiments.

6. Conclusions and Future Works

In this paper, we have presented a sort-last distributed ren-
dering system for very large black oil reservoir models,
which represents a demand of the oil industry due to the in-
creasing use of parallel processing for reservoir simulations.
Our system relies on clusters of PC equipped with multiple
GPUs and, through the use of a pipelined implementation, is
able to deliver fullscreen frames at interactive rates.

Experimental results have demonstrated the effectiveness

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 fr
am

e
tim

e
(m

s)

Time on camera path (s)

60 million cells using 59 GPUs

Figure 11: System performance on the visualization of 60
million cells.

c© The Eurographics Association 2009.

93

Frederico Abraham and Waldemar Celes / Distributed Visualization of Complex Black Oil Reservoir Models

and efficiency of the proposed solution. We highlight the fol-
lowing features of our system:

• it scales well with the size of the model and is able to
handle models with tens of millions of cells;

• it allows the connection of lightweight clients, and we
have proposed to parallelize the transferring of the final
image by decomposing it into horizontal tiles;

• it takes advantage of nodes equipped with multiple GPUs,
and we have proposed to perform partial image composi-
tion on each node.

We also presented a simple strategy for partitioning the
model that results in a well balanced distribution. However,
our current implementation requires an amount of memory
proportional to the number of cells in the model. This may
be prohibitive for very large models, and we plan to investi-
gate a scalable partitioning algorithm in future work. We also
plan to experiment other compression algorithms, since the
run-length encoding type may not be the best choice for sci-
entific visualization imagery. Another very important aspect
that should be considered is load balancing; we plan to in-
vestigate dynamic load balancing based on rendering times,
as in [ACCE04].

7. Acknowledgements

This research was financially supported by CNPq (Brazilian
National Research and Development Council) and Petrobras
(Brazilian oil company). We also thank NCSA (National
Center for Supercomputing Applications) at the University
of Illinois for the support and access to the cluster equip-
ment.

References

[ACCE04] ABRAHAM F. R., CELES W., CERQUEIRA

R., ELIAS J. L.: A Load-balancing Strategy for Sort-
First Distributed Rendering. In Proceedings of SIBGRAPI
(2004), IEEE Computer Society, pp. 292–299.

[AM00] ASSARSSON U., MÖLLER T.: Optimized View
Frustum Culling Algorithms for Bounding Boxes. Jour-
nal of Graphics Tools 5, 1 (2000), 9–22.

[Bli96] BLINN J.: Calculating Screen Coverage. IEEE
Computer Graphics and Applications 16, 3 (1996), 84–
88.

[BWPP04] BITTNER J., WIMMER M., PIRINGER H.,
PURGATHOFER W.: Coherent Hierarchical Culling:
Hardware Occlusion Queries Made Useful. In Eurograph-
ics (2004), vol. 23, pp. 615–624.

[CM06] CAVIN X., MION C.: Pipelined Sort-Last Ren-
dering: Scalability, Performance and Beyond. In Euro-
graphics Symposium on Parallel Graphics and Visualiza-
tion (EGPGV06) (2006), Eurographics Association.

[CMF05] CAVIN X., MION C., FILBOIS A.: COTS
Cluster-based Sort-Last Rendering: Performance Evalua-
tion and Pipelined Implementation. In Proceedings of the
IEEE Visualization Conference (2005), IEEE Computer
Society, pp. 111–118.

[Dak78] DAKE L. P.: Fundamentals of Reservoir Engi-
neering. Elsevier Science, 1978.

[EC05] ESPINHA R., CELES W.: High-Quality
Hardware-Based Ray-Casting Volume Rendering Using
Partial Pre-Integration. In Proceedings of SIBGRAPI
(2005), IEEE Computer Society, pp. 273–280.

[HEB∗01] HUMPHREYS G., ELDRIDGE M., BUCK I.,
STOLL G., EVERETT M., HANRAHAN P.: WireGL: A
Scalable Graphics System for Clusters. In SIGGRAPH
’01: Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques (2001), ACM
Press, pp. 129–140.

[HHN∗02] HUMPHREYS G., HOUSTON M., NG R.,
FRANK R., AHERN S., KIRCHNER P. D., KLOSOWSKI

J. T.: Chromium: A Stream-Processing Framework for
Interactive Rendering on Clusters. In SIGGRAPH ’02:
Proceedings of the 29th annual conference on Computer
graphics and interactive techniques (2002), ACM Press,
pp. 693–702.

[MCEF94] MOLNAR S., COX M., ELLSWORTH D.,
FUCHS H.: A Sorting Classification of Parallel Ren-
dering. IEEE Computer Graphics & Applications 14, 4
(1994), 23–32.

[MMD08] MARCHESIN S., MONGENET C., DISCHLER

J.: Multi-GPU Sort-Last Volume Visualization. In Eu-
rographics Symposium on Parallel Graphics and Visu-
alization (EGPGV08) (2008), Eurographics Association,
pp. 1–8.

[nvia] http://www.nvidia.com/page/quadroplex.html.

[nvib] http://www.slizone.com.

[sau] Saudi Aramco Completes First
Giga-Cell Reservoir Simulation Run.
http://www.rigzone.com/news/article.asp?a_id=70015.

[dSRG∗02] VAN DER SCHAAF T., RENAMBOT L., GER-
MANS D., SPOELDER H., BAL H.: Retained Mode Paral-
lel Rendering for Scalable Tiled Displays. In Proceedings
of the 7th Immersive Projection Technology Symposium
(Orlando, Florida, 2002).

[SEP∗08] SHOWERMAN M., ENOS J., PANT A., KIN-
DRATENKO V., STEFFEN C., PENNINGTON R., MEI

HWU W.: QP: A Heterogeneous Multi-Accelerator Clus-
ter. Tech. rep., NCSA, University of Illinois at Urbana-
Champaign, 2008.

[WPLM01] WYLIE B., PAVLAKOS C., LEWIS V.,
MORELAND K.: Scalable Rendering on PC Clusters.
IEEE Computer Graphics and Applications 21, 4 (2001),
62–70.

c© The Eurographics Association 2009.

94

