Eurographics Symposium on Parallel Graphics and Visualization (2009)
J. Comba, K. Debattista, and D. Weiskopf (Editors)

A Flexible Adaptation Service for Distributed Rendering

Michael Repplinger® and Alexander Lffler! and Martin Thielen! and Philipp Slusallek®

Lehrstuhl fiir ComputerGraphik, Saarland University, Germany

Abstract

Even though high-performance real-time rendering showed significant improvements through implementing its
algorithms on top of many-core technologies, achieving interactivity in large scenes still requires a networked
cluster for distributing the workload. Available frameworks assume a high-bandwidth networking between nodes
of a cluster and ignore remote rendering scenarios where adaptation to limited resources (e.g., low bandwidth) is
required.

In this paper, we present an extension to the flexible URay framework for distributed rendering that allows to react
to unfavorable and changing network conditions. We show how adaptation strategies are applied to streams of ren-
dered images, and how to realize application scenarios that are even able to use the Internet as a communication
network, which suffers from unpredictable conditions in terms of latency and bandwidth.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.2]: Graphics Systems—
Distributed/network graphics; Computer-Communication Networks [1.3.2]: Network Architecture and Design—

Remote Systems

1. Introduction

The performance of real-time rendering has improved signif-
icantly through the last years. A large part of this develop-
ment is due to the rise of parallelization, enhanced through
many-core hardware like General Purpose GPU (GPGPU)
or Cell processors, and the possibility to easily implement
rendering algorithms on top of them. However, the goal to
interactively render large scenes in high visual quality, for
example by using high-resolution ray tracing, still requires
a networked cluster of machines for distributing the accu-
mulating workload. In-between hardware for fast image cre-
ation and fast image display, the network turns out to be
the bottleneck in a processing pipeline for distributed ren-
dering. Adaptation techniques for reducing the required net-
work bandwidth are necessary for creating an efficient and
performant rendering setup.

The URay framework [RLRS08] introduces a flexible ap-
proach to distribute rendering tasks transparently in the net-
work. It uses the Network-Integrated Multimedia Middle-
ware (NMM) [LWRS08] to embed the task of interactive
rendering in a multimedia processing pipeline. Application
design is based on the flow graph concept of NMM, which
enables a fine-grained control of distributed data processing
and data flow through the network [Mar02]. For the scenario

(© The Eurographics Association 2009.

DOI: 10.2312/EGPGV/EGPGV09/049-056

of distributed rendering, URay enables postprocessing steps
in image space like brightness and color adjustment or data
encoding.

In this paper, we present an extension to the URay frame-
work, which allows to use remote rendering also across net-
works of varying bandwidth and latency. We show how new
optimization and adaptation techniques are incorporated into
the framework, and how adaptation of bit rate and resolution
allows to use remote rendering also across heterogeneous
networks. Through permanent monitoring of the quality of
service (QoS) achieved, we are able to exploit a maximum
of the available processing and networking capabilities for
a resulting high-quality scene display. Moreover, the user is
able to explicitly specify a QoS level, to ensure that certain
adjustment parameters stay within desired limits.

The structure of this paper is as follows: In Section 2,
we will show work in the related fields of distributed ren-
dering and adaptation of multimedia streams. Section 3 will
introduce the general architecture of the URay framework,
whereas Sections 4 and 5 show concepts and implementa-
tion of the new URay adaptation service, respectively. Sec-
tion 6 shows the performance of URay adaptation strategies
in a real-world scenario. Section 7 concludes the paper, and
gives an outlook on extensions of this work.

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGPGV/EGPGV09/049-056

50 M. Repplinger & A. Loffler & M. Thielen & Ph. Slusallek / A Flexible Adaptation Service for Distributed Rendering

2. Related Work

Molnar et al. [MCEF94] presented a classification scheme
for distributed rendering. The authors subdivide techniques
that distribute geometry according to screen-space tiles
(sort-first), distribute geometry arbitrarily while doing a final
z-compositing (sort-last), or distribute primitives arbitrarily,
but do per-fragment processing in screen-space after sorting
them during rasterization (sort-middle). It is difficult to ap-
ply the scheme for a generic rendering architecture support-
ing other techniques besides rasterization, for example ray
tracing. Here, Molnar’s classification approach is no longer
applicable, as geometry processing and screen-space projec-
tion are combined in the single operation of sampling the
scene with rays. Also, recursive ray tracing requires global
and on-demand access to the scene data.

In contrast to this, the URay framework [RLRS08] shows
that realizing a rendering framework on top of NMM and the
Real-Time Scene Graph (RTSG) [GRHSO08] provides much
more flexibility and can be applied to rendering technolo-
gies such as rasterization and ray tracing. RTSG provides a
strict separation of the scene graph and a specific implemen-
tation of a renderer, which allows to integrate a new ren-
dering back end just by implementing the simple interface
as well as node renderers for the X3D nodes the renderer
should support.

Due the usage of NMM and RTSG, URay supports several
application scenarios that are not supported by other frame-
works. The first application scenario (AS1), called single-
screen rendering, comprises presenting rendered images on
a single screen but using multiple systems for rendering.

The second application scenario (AS2) called multi-
screen rendering, extends (AS1) by splitting the frame and
presenting it on multiple displays simultaneously and fully
synchronized. This is required for display walls, for exam-
ple for large-scale terrain or industrial visualization.

The third application scenario (AS3), called multi-view
rendering, comprises presenting of multiple views of the
same scene at the same point in time. For example, this is
required for stereo imagery or rendering for Virtual Reality
installations like a CAVE [CNSD*92].

The fourth application scenario (AS4), called remote ren-
dering, covers situations where rendered images have to be
transmitted through a network connection with limited band-
width, often because the original data sets have to stay in a
controlled and secure area. While the previous application
scenarios assume high-bandwidth networks, (AS4) requires
an encoding and decoding of the streams of rendered images
to reduce the data rate when transmitting for example over
the Internet.

The last application scenario (AS5) is collaborative ren-
dering, an arbitrary number of combinations of the previ-
ously described application scenarios. An ideal system sce-
nario should allow both a large control center with tiled dis-

play walls, and simultaneously remote thin clients only re-
ceiving some important aspects of large rendered images.
This is especially interesting for collaborative work where
people on different locations have to work with the same
view of a scene.

In the area of distributed multimedia processing, several
adaptation frameworks have been proposed to adapt to the
changing quality and bandwidth of a network: The work
presented in [KWCcF03] and [KDO05] focuses on achieving
end-to-end QoS when streaming video data over an Inter-
net connection while the work presented in [LG05] focuses
on transmitting video data over wireless connections. In ad-
dition to this, the adaptive streaming architecture described
in [BCCVO05] is used for transparent management of mobil-
ity. The emphasis of this work lies on heterogeneous net-
works and the support for adaptation during vertical hand
offs (i.e., switching from WLAN to UMTS) and is limited to
the networking aspect. In multimedia streaming often scal-
able video coding is used. For example the streaming sys-
tem presented in [NOO6] combines several such techniques.
Since their applicability is limited to the encoding process
itself, they can not be used to adjust the rendering process.
Together, there is no flexible adaptation framework for dis-
tributed rendering.

3. The URay Framework

The following section introduces the basic concepts of the
URay framework, explains components and typical usage
scenarios.

3.1. Components

The URay framework builds on top of an NMM flow graph
consisting of custom processing nodes supplemented by ex-
isting nodes of core NMM. The following are the specific
NMM nodes used within the URay framework:

Render Node A render node performs the actual render-
ing of a scene description to a 2D image. Key principle
of the URay framework is rendering a single frame dis-
tributed on multiple render nodes in the flow graph.

Manager Node The single source node of the URay flow
graph is called manager node. The manager node dis-
tributes the workload between the render nodes by split-
ting the image into many image tiles and assigns them
dynamically to render nodes on demand.

Di spl ayNode A display node constitutes a sink of the
flow graph, and simply presents any incoming image
buffer synchronized according to its timestamp.

Ti | eAssenbl yNode A tile assembly node in general can
receive frame tiles from all rendering nodes, and assem-
bles them to a composite image buffer. As there is one
dedicated tile assembly node for each downstream display
node, the nodes receive only those tiles of the rendered

(© The Eurographics Association 2009.

M. Repplinger & A. Loffler & M. Thielen & Ph. Slusallek / A Flexible Adaptation Service for Distributed Rendering 51

image stream that are relevant for the particular display
node they precede.

Encoder Node/Decoder Node The basic functionality
to compress image data is represented by an encoder node
and a decoder node, which are inserted between the tile
assembly node and display node. Core NMM provides
multiple specializations of encoder and decoder nodes for
video streams, for example using an MPEG-4, H.263,
H.264 or AVC codec.

Scal er Node To accomplish scenarios with multiple dis-
plays having different resolutions, but avoid having to
render the scene multiple times, the setup described so
far is augmented by a scaler node, which allows to scale
down the resolution of a passing image stream. If both are
present at the same time, the scaler node precedes an en-
coder node to avoid having to encode larger frames than
actually needed.

Figure 1 shows the presented the most important nodes of
the URay framework assembled to a simple, single-display
flow graph.

3.2. Single-Screen Rendering (AS1)

GUI events
L

T GuT image full
'tile events [Render tiles images
1
I Node
* 1
Manager Render TileAssembly Display
Node Node Node Node
Render Presentation Block
Node

Rendering Block

Figure 1. URay encapsulates the flow graph in different ba-
sic processing blocks. The rendering block includes the man-
aging node as well as all rendering nodes. The presentation
block includes all remaining nodes required to present ren-
dered images.

The primary processing block, which occurs in every
URay application, is the rendering block. It contains those
NMM components that are responsible for rendering a two-
dimensional image from a 3D scene description: In partic-
ular, it consists of a single manager node and at least one
render node. NMM enables these nodes to be transparently
distributed across physical hosts in the network to spread the
workload as uniformly as possible.

The rendering block is connected to at least one presenta-
tion block, which combines the tiles and displays the frame
on an actual physical display device. A presentation block
contains at least two NMM nodes: a tile assembly node, and
a display node. All those tiles of the rendered frame that are
sent from the renderer to the corresponding assembly node
that are to be displayed by the succeeding display node.

(© The Eurographics Association 2009.

NMM incorporates a unified messaging system, which al-
lows to send control events together with multimedia data
within the same instream channels. Of key importance is the
strict order of message handling: any node always receives
messages from its preceding node in the exact same order
they were sent [Mic05]. This allows, for example, to use
events to switch the internal state of a node at a well-defined
position within a multimedia stream.

In our case, we use the manager node of the rendering
block to send information about the next tile to be rendered
as events to its successive render nodes. A simple approach
would be to use a round-robin distribution scheme. NMM
however also has access to the internals of the network con-
nection between two nodes. By choosing a suitable size of
the network, it can control the distribution of tiles to render
nodes, and assign additional tiles only if the previous tile has
finished rendering and the buffer is not full anymore. This is
achieved by treating a network connection as an additional
queue. In case of a TCP connection, for example, the URay
framework configures the underlying network connection so
that sending and receiving side can each store exactly a sin-
gle tile to be rendered. This allows to reuse the flow control
mechanism of TCP to be informed if a new rendering task
can be sent because new rendering tasks can be written to the
sending queue. All this is only possible due to the scalable
transparency of NMM.

This very simple scheduling approach leads to an efficient
dynamic load balancing between the render nodes, because
render nodes that finish rendering tiles earlier, also do re-
ceive new rendering tasks earlier. Differences in rendering
time can be caused by different scene complexity, different
network capabilities, or different processing power of differ-
ent rendering machines.

3.2.1. User Interaction

URay should also allow user interaction with the rendered
scene. Because all render nodes render the scene, each one
has to be informed about user events, such as changes to the
viewpoint. In our setup, interaction events, key presses or
mouse movements, first are sent as out-of-band events from
the application to the manager node. The manager node in
turn forwards all incoming events to all connected render-
ers. The key point is that input events are propagated only
between tiles of different frames to avoid changes of view-
point before the processing of a frame is fully completed.

3.3. Multi-Screen Rendering (AS2)

The general idea to support applications that need to present
rendered images on multiple screens can be seen in Fig-
ure 3.3. In contrast to (AS1), the application specifies more
than one presentation block. All these presentation blocks
are then connected to the same rendering block by the frame-
work. This is possible because Render Node supports an

52 M. Repplinger & A. Loffler & M. Thielen & Ph. Slusallek / A Flexible Adaptation Service for Distributed Rendering

video0_0
Render = . d
Node ileAssembly),(Display
. % videoO_n |\ Node Node
Manager Render '
H

Node Node
n I

videol 0

.
Render videol n | (TileAssembly),(Display
Node Node Node {

Presentation Blocks

Rendering Block

Cﬂmnw-:on:‘nbk:vD

Figure 2: URay allows defining multiple independent pre-
sentation blocks (e.g., for realizing video walls). The syn-
chronized presentation of rendered images is achieved by
connecting a synchronizer to the corresponding presentation
blocks.

arbitrary number of output connections. Nevertheless, pre-
sentation blocks have to be configured independently in or-
der to achieve the desired distribution of rendered frames
to available display nodes and devices. Here, any rendered
frame can be presented on any of the screens simultaneously;
either in full or in part for realizing a video wall setup.

In addition to (AS1), another important additional compo-
nent for realizing (AS2) is the synchronizer component. The
synchronizer realized in the URay framework is described
in [RLRS08] and allows for synchronizing the presentation
of either partial or full frames in multiple display config-
urations. This is especially required for video-wall setups,
where skews in synchronization severely deteriorate the user
experience.

3.4. Multi-View Rendering (AS3)

The general approach of URay to support rendering multi-
view images for stereo or Virtual Reality scenarios, is to treat
the multi-view setup as a special case of (AS2) in which each
eye is conceptually represented as a separate presentation
block. Of course, hardware components that are represented
by display nodes (e.g., a video projector), have to be adjusted
correctly to generate a correct stereo image on a screen — this
is, however, out of the scope of this paper.

The implementation of our manager node allows render-
ing an arbitrary number of viewpoints which is required for
example for virtual reality installations. Subsequently, the
manager node initiates the rendering of all viewpoints in the
same way. Afterwards, the manager node sends an event in-
stream to inform the downstream flow graph that the frames
can now be presented.

Notable in this context is that renderers integrated into
our framework are automatically extended to support ren-
dering multi-view stereo images, even if the original imple-
mentations did not consider this functionality at all. Again
our framework greatly simplifies supporting different spe-
cific application scenarios as well as developing new render-

ing engines, as developers can focus on their specific imple-
mentation.

3.5. Remote Rendering (A4)

Presentation Block Network

TileAssembly \ll(Brightness \l,(Encoder Decoder ly(Display
Node Node Node Node Node

Postp. ing Postp ing

Block Block

Figure 3: Extended presentation block: URay allows to add
an arbitrary number of postprocessing blocks. In this exam-
ple we first adjust brightness and then encode rendered im-
ages before sending them through an Internet connection.

To enable sending a stream of rendered images across a high-
latency network like the Internet and still enable an interac-
tive manipulation of the rendered scene as described in Sec-
tion 3.2, the bandwidth of the rendered raw video stream
has to be reduced drastically. The necessary reduction of the
data rate is typically done by means of encoding the im-
age stream before sending; for example using an MPEG-4 or
H.263 video codec. Besides encoding of the stream, one can
imagine many more potential operations to be performed on
the rendered images, like brightness adaptation or tone map-

ping.

To enable all these scenarios, we allow the insertion of
one or more postprocessing blocks into a presentation block.
Figure 3 shows a presentation block enhanced by two post-
processing blocks: one for brightness adjustment, and one
for encoding and decoding the stream. The implementation
of the block consists of a common interface that uses raw
image input and output format, and arbitrary NMM video
processing nodes in between. A postprocessing block with
all its internal nodes is plugged in between the tile assem-
bly or scaler node and the display node of any presentation
block.

3.6. Collaborative Rendering (AS5)

The final application scenario to be covered by the URay
framework is the situation of multiple parties working on
and interacting with one and the same rendering block, re-
alizing a collaborative environment. This includes for exam-
ple industrial collaborations in which 3D models are syn-
chronously displayed to engineers in distinct offices around
the globe. In terms of the URay framework, this scenario
represents an arbitrary combination of (AS1) to (AS4) as
presented above.

As before, the framework configuration for (AS5) in-
cludes a single rendering block with potentially multiple pre-
sentation blocks attached. The flexible architecture of URay
allows, for example, to realize different encoded streams for

(© The Eurographics Association 2009.

M. Repplinger & A. Loffler & M. Thielen & Ph. Slusallek / A Flexible Adaptation Service for Distributed Rendering 53

each one of the presentation blocks, and arbitrary display se-
tups for the participating parties. In addition, multiple views
into the same scene are possible as well as different resolu-
tions realized by the available scaler nodes.

The possibility to realize this application scenario by
combining and grouping previously presented results again
shows the high degree of flexibility of our framework as well
as the benefit for applications build on top of this framework.

4. Adaptation Service

On top of URay, a flexible network adaptation service is re-
alized, which hast to support different adaptation techniques
due to the different requirements of supported application
scenarios.

4.1. Requirements

In (AS1), (AS2) and (AS3), the components of the render-
ing block are typically connected using high speed wired
networking technologies. Here, the available bandwidth to-
gether with the available processing power is the main is-
sue for distributed rendering applications. The implementa-
tion of our manager node already performs load balancing
in respect to the duration of rendering different tile frames
as described in Section 3.2. However, if a different adap-
tation mechanism for load balancing should be required, it
could be integrated by implementing a new manager node.
The render block offers the possibility to specify a different
manager node by a single method call. So an application can
easily configure a new mechanism for load balancing.

Especially for (AS4), adaptation of remote rendering ap-
plication scenarios to changing bandwidth is essential, be-
cause when using Internet connections for data transmission
no guarantee about the connection quality can be done. De-
pending on the utilized network protocol lost packet are ei-
ther retransmitted (e.g., when using TCP) which can cause
unacceptable latencies due to interactivity of all application
scenarios, or will be discarded (e.g., when using UDP) which
will cause unacceptable artifacts.

To restore an acceptable video quality, the amount of
transmitted data has to be reduced greatly. This can be
achieved, for example, by reducing the bit rate of a stream.
When network conditions worsen, a higher bitrate causes
more artifacts when using the same resolution. So it is de-
sirable to adjust the resolution of the rendered video as well.
Moreover, it is desired to reverse the previously applied re-
ductions when the available bandwidth is increasing again.

For (AS1), (AS2) and (AS3) this is not possible because in
general it should be assumed that a corresponding postpro-
cessing block is available. In this case an adaptation mecha-
nism has to insert a new postprocessing block during runtime
which is possible because our framework supports runtime

(© The Eurographics Association 2009.

reconfiguration. In other cases, it can happen that no fur-
ther reduction of quality is possible with the current stream.
Therefore, a reconfiguration of a postprocessing block and
the utilization of a different codec can be required.

In summary, the main aspect of an adaptation service for
URay is to be easily extendable. This includes adaptation
techniques as well as general support for supervising arbi-
trary components of the URay framework, like different net-
work protocols or processing elements. Again, this shows
the great advantage of using a flexible rendering framework.

4.2. Components

QoS-Monitor2 QoS-Monitor3

©) @

Transport- Transport-
Strategy Strategy

(1) Registration of A ies at QoS-

Transport-
Strategy

(2) Gathering data about the current network state (such as jitter, packet loss and delay)
(®) Transmission of network state data to the Adaptor (by periodically sending QoS-Reports)
@ Di ination of suitable i i (by ion with A

(® Applying adaptation techniques

Figure 4: Components of the adaptation service and single
steps of communication flow between components.

To achieve a high degree of flexibility, the adaptation ser-
vice is split into the following components:

QoS-Monitor : A QoS monitor gathers information about
a specific URay or NMM component. Furthermore it fil-
ters and forwards the so called QoS reports to the Adap-
tor. The information included into a QoS report depend
on the implementation of a specific QoS Monitor that can
include arbitrary information like packet loss, or used pro-
cessing power.

Adaptation Strategy : Instead of a static adaptation logic,
a modular approach is taken for performing adaptation
techniques. An adaptation strategy performs the interpre-
tation of specific types of QoS reports and determines
an appropriate reaction, like reducing the bitrate. Each
adaptation strategy describes this reaction in terms of
changes on the corresponding connection format between
two components of the URay framework. Furthermore, an
upper and lower bound can be set for each of these chang-
ing parameters which enables to specify a specific QoS

54 M. Repplinger & A. Loffler & M. Thielen & Ph. Slusallek / A Flexible Adaptation Service for Distributed Rendering

level, e.g., changing resolution in a certain interval. As
can be seen in Figure 4 each adaptation strategy registers
itself by all QoS monitors that produce supported types
of QoS reports to be informed about variations in me-
dia processing. Finally, different adaptation strategies can
be combined to build more complex adaptation strategies,
e.g., adapting resolution together with bitrate.

Adaptor : The adaptor is the link between the application
and several different QoS monitors as can be seen in Fig-
ure 4. The application can use the adaptor to configure
a certain QoS level that has to be achieved during run-
time. For this purpose, the application informs the adap-
tor about the desired connection format between URay
components together with parameters of the connection
format that can be changed. Allowed values for a spe-
cific parameter can be specified as a list of single values
and as a range of values, e.g., an upper or lower bound
for framerate or used bandwidth. Furthermore, a priority
can be assigned to each parameter to specify the order
of changed parameters. Since the adaptor knows available
adaptation strategies it first checks if specified QoS lev-
els are supported and determines which strategies should
be used for adaptation. If multiple adaptation strategies
support the same QoS report and QoS level the adaptor
selects a single adaptation strategy which is important to
forward a QoS report only to a single adaptation strat-
egy. Otherwise, different adaptation strategies would try
to adjust the same bottleneck. However, if no adaption is
possible without violating the QoS level specified by the
user, the adaptor throws an exception to the application.

5. Implementation
5.1. QoS-Monitor

Together with this adaptation service, we extended the trans-
port strategies of NMM for UDP and RTP by a QoS monitor
as can bee seen in Figure 5. Furthermore, we extended the
transport strategy for UDP and RTP to create transmission
statistics that are stored in a QoS report and include the fol-
lowing information.

e Fraction lost: Specifies the ratio of lost packets since
sending the last report.

e Packets lost: The number of packets lost since start of
reception.

e Statisticslost: The number of transmission statistics lost
since start of reception.

5.2. Adaptation Strategies

To evaluate the adaptation framework we realized two adap-
tation strategies, one for adjusting the bitrate of an video en-
coder, and one for adapting the resolution of rendered scene.
Those two strategies show the flexibility of the adaptation
approach itself as well as the benefits of a flexible rendering
framework.

‘Adapiation-
|—r
Strategy! —R—p» QoSReport
Adaplor
‘Adaptation- interface
strategy2 R 7™ methods

QoS-

Figure 5: Each transport strategy has its own QoS monitor
to gather information about transmission statistics. This in-
formation is forwarded to the adaptor, which decides which
adaptation strategy is used. The adaptation strategy in turn
adjusts the bitrate of an encoder for example.

5.2.1. Adaptation of Bitrate

For indicating a decreasing bandwidth, the number of lost
packets of an incoming QoS report is considered. The gen-
eral idea for adaptation is as follows: If the network is con-
gested and packet loss occurs, the fast recovery of an accept-
able quality is considered most important. Therefore, the bit
rate of the corresponding encoding node is reduced depend-
ing on the packet loss ratio. This is only possible because
URay provides access to the used components, in this case
the respective encoding node.

If a number of reports without packet loss are received,
the bit rate is increased again. Essentially, this is an AIMD
scheme which is also used in the congestion control of TCP
as described in [KROO]. In detail, there are four cases which
are handled differently.

1. No packet loss: If no packet loss occurs and delay for
next increase is not increased, the bit rate is increased by
a moderate amount of 4 % of the current bitrate.

2. Packet loss after increasing bitrate: If the bit rate was just
increased and packet loss occurs, the bit rate is only re-
duced by a small amount. Additionally, the number of
reports to wait until the bit rate is increased the next time
is depending on the previously conducted adaptation.

3. Packet loss level 1: If a relatively small amount of packets
are lost (0% < packet loss < 1%) the bit rate is reduced
by a quarter. The next increase is at least delayed by 3
reports.

4. Packet loss level 2: For a larger percentage of packet loss
(packet loss > 1%), the reaction is that the bit rate is
halved.

5.2.2. Adaptation of Resolution

Adjusting the bitrate of a postprocessing block of an encoder
will cause more encoding artifacts if the amount of images
to be encoded is not reduced. A more desirable alternative
for the user is to reduce the resolution of the rendered scene

(© The Eurographics Association 2009.

M. Repplinger & A. Loffler & M. Thielen & Ph. Slusallek / A Flexible Adaptation Service for Distributed Rendering 55

together with the bitrate. If the rendered image should still
be presented in the same resolution as originally specified in
the presentation block, a scaler node is used. In addition, this
will save processing power on the rendering side. In this case
the adaptation strategy informs the manager node to reduce
the resolution, which in turn informs all render nodes to re-
duce the resolution. This is required to ensure that resolution
changes occur only between full frames.

If more processing power is available, however, the render
nodes would create a higher framerate, which again would
lead to a higher amount of data to be encoded. To avoid
this, we extend our manager node not to exceed a certain
framerate for this presentation block. The realized strategy
for adapting resolution is grouped together with the adap-
tation strategy for bitrate and assumes a linear dependency
between achieved picture quality using a specific bitrate and
a specific resolution, that is if the bitrate is halved in value,
the resolution is also halved in value.

Together, these two adaptation strategies allow an user to
achieve still a good picture quality even though if the avail-
able network connection is reduced. Moreover, the user is
able to configure the adaptation process as well as specific
QoS level.

Although the used adaptation mechanisms are simple,
they demonstrate that a developer can focus on the imple-
mentation of an adaptation strategy even though such a com-
ponent reconfigures a distributed rendering application. This
however requires a flexible rendering framework like URay,
which allows transparent access to the underlying compo-
nents as well as runtime reconfiguration of all components
and a corresponding adaptation framework that automati-
cally configures an adaptation strategy according to the spec-
ification of a user.

6. Measurements

80

T T T T
Packet ross ratio in 1st run
70 Packet ross ratio in 2nd run -~~~ 4
Bandwidth limitation in kbit/s ——=
60 -
50
40
30 [
2
20+
N
10 \L

0

Packet ross ratio [percent]

105 120 135 150 165 180 195 210
Time since first report [s]

Figure 6: This diagram shows the packet loss without the
adaptation service presented in this paper. In this case up to
65 % of the encoded data will be lost.

In [RLRSO08], we already showed that the memory and
performance overheads of URay are negligible, while appli-
cations greatly benefit when using URay due to the flexi-
bility of the framework. Therefore we analyze the realized
adaptation service of URay.

(© The Eurographics Association 2009.

80

T T T T
Packet loss ratio in 1st run
70 | Packet loss ratio in 2nd run -~~~]
Bandwidth limitation in kbit/s —=

60 1

4111

5 90 105 120 135 150 165 180 195 210
Time since first report [s]

50
40
30

20 -

Packet ross ratio [percent]

1280

10 -

< 1760
= 1440
< 1440

o o
=} I
@ o
= 3

f=— 2080

=3
I
N
N

o
=}
@
=
llv
7!

0

Figure 7: This diagram shows the packet loss with enabled
adaptation service presented in this paper. Only a view peaks
of packet loss are contained in the diagrams. Afterwards, the
packet loss ratio drops quite fast to 0.

2500

Bn ra&e in 1st run
ein2ndrun -

2000 Bandwidth hmltatlon inkbit’ls —= |

1500

1000

Bit rate [kbit/s]

500

=—1920
r=—— 2080
f=——2240

g
2
2
=

=]
3
]
=

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210
Time since first report [s]

o
Ae 2240
Ae 2080
<1920
= 1760
r=——1600
r=—1280
f<— 1440

Figure 8: This diagram shows the estimated bitrate of our
adaptation strategy when first decreasing and then increas-
ing available bandwidth.

For the following tests we rendered a scene with a resolu-
tion of 720x480 using a rasterization back-end of an RTSG
render node. The produced framerate is nearly constant at
30fps and presented on a single presentation block on a re-
mote PC. A postprocessing block is added to the presenta-
tion block to encode video data into H.263+ format before
transmitting it to the presenting host. The encoder uses a bi-
trate of 2 MBit/s and RTP protocol is used for data transmis-
sion.

To simulate different network conditions as well as to re-
produce results, we use the tool NIST Net [CS03] for eval-
uation purposes. NIST Net is a network emulator which is
based on the IP layer and implemented for a Linux oper-
ating system. It is capable of emulating delay, bandwidth,
packet loss and other parameters through a kernel module.
The network tool is installed on PC that acts as router inbe-
tween the renderer and presentation hosts. For each test, we
present results of two iterations.

In our measurement, first the available bandwidth is re-
duced from 2.24 MBit/s slowly to about 1 MBIt using our
network simulator and then increased again. As can be seen
in Figure 6, the bandwidth of 2.24 MBIt/s is required to
transmit the encoded video without data loss . This is re-
quired because the used H.263+ encoder uses a tolerance of
10 %. Thus the data stream could be 10 % larger then config-
ured which is true in our case. However, since our adaptation

56 M. Repplinger & A. Loffler & M. Thielen & Ph. Slusallek / A Flexible Adaptation Service for Distributed Rendering

strategy reconfigures the bitrate by percent, it automatically
configures a bitrate that is 10 % smaller.

Figure 6 shows the increasing packet loss when reduc-
ing the bandwidth and no adaptation is enabled. Due to a
packet loss of up to 65 %, the user receives a completely
damaged image, which makes it impossible to interact with
a displayed 3D scene.

In contrast to this, Figure 7 shows the packet loss if adap-
tation is enabled. Here, only peaks of packet loss are ob-
served. Afterwards, the packet loss ratio drops quickly down
to zero again. As soon as the available bandwidth is in-
creased again, the adaptation strategy detects this and starts
increasing bitrate and resolution again which can be seen in
Figure 8.

Peaks of packet loss are unavoidable as the adaptation ap-
plies only after packet loss occurs. Anyhow, the quality com-
pared to a video without adaptation is much better. These
results show that even though the adaptation logic of the
adaptation strategies is simple, but the outcome is reason-
ably good.

7. Conclusion and Future Work

In this paper, we presented an adaptation to the URay system
for distributed rendering and display. Using a flexible ren-
dering system coupled with a system for distributed multi-
media processing and streaming using a network of process-
ing nodes connecting within a common flow graph. Using
a middleware provides an unprecedented flexibility in par-
allelizing and distributing all aspects of a rendering system:
user input, rendering, post-processing, display, and synchro-
nization. Moreover, using a flexible framework greatly sim-
plifies adding new services. We showed an adaptation ser-
vice together with two adaptation strategies realized on top
of URay, which allows to consider changes in network con-
nections and automatically adapts the configuration of pro-
cessing components to achieve a good rendering quality in
an encoded distributed setup.

Our future work will focus on developing further adapta-
tion techniques. For example in different scenarios, different
streams are more or less important. Often, this depends on
the content. This is especially important for (AS5), where
multiple users receive rendered images from the same ren-
dering block. Here different presentation blocks could be
treated with a different priority if the network bandwidth
goes down, or presentation blocks with a lower priority are
removed when the processing power is no longer sufficient.

Acknowledgements

We thank Dmitri Rubinstein for fruitful discussions, close
collaboration on the URay framework, and for providing
RTSG as a flexible scene graph system.

References

[BCCVO05] BERNASCHI M., CACACE F., CLEMENTELLI R.,
VOLLERO L.: Adaptive Streaming on Heterogeneous Networks.
In WMuNeP *05: Proceedings of the 1st ACM Workshop on Wire-
less Multimedia Networking and Performance Modeling (Mon-
treal, Quebec, Canada, 2005), ACM Press, pp. 16-23.

[CNSD*92] CRuz-NEIRA C., SANDIN D. J., DEFANTI T. A,,
KENYON R. V., HART J. C.: The CAVE: Audio visual experi-
ence automatic virtual environment. Commun. ACM 35, 6 (1992),
64-72.

[CS03] CARSON M., SANTAY D.: NIST Net: A Linux-based
Network Emulation Tool. SIGCOMM Computer Communication
Review 33, 3 (2003), 111-126.

[GRHS08] GEORGIEV l., RUBINSTEIN D., HOFFMANN H.,
SLUSALLEK P.: Real Time Ray Tracing on Many-Core-
Hardware. In Proceedings of the 5th INTUITION Conference
on Virtual Reality (Oct 2008).

[KD05] KUSMIEREK E., Du D. H. C.: Streaming video delivery
over internet with adaptive end-to-end QoS. J. Syst. Softw. 75, 3
(2005), 237-252.

[KROO] KuRosE J. F., Ross K. W.: Computer Networking: A
Top-Down Approach Featuring the Internet. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[KWCcF03] KRaAsic C., WALPOLE J., CHI FENG W.: Quality-
Adaptive Media Streaming by Priority Drop. In NOSSDAV ’03:
Proceedings of the 13th International Workshop on Network and
Operating Systems Support for Digital Audio and Video (New
York, NY, USA, 2003), ACM Press, pp. 112-121.

[LGO5] LEIZ., GEORGANAS N. D.: Adaptive video transcoding
and streaming over wireless channels. J. Syst. Softw. 75, 3 (2005),
253-270.

[LWRS08] LOHSE M., WINTER F., REPPLINGER M.,
SLUSALLEK P.: Network-Integrated Multimedia Middle-
ware (NMM). In MM ’08: Proceedings of the 16th ACM
international conference on Multimedia (2008), pp. 1081-1084.

[Mar02] MARCO LOHSE AND MICHAEL REPPLINGER AND
PHILIPP SLUSALLEK: An Open Middleware Architecture for
Network-Integrated Multimedia. In Protocols and Systems for
Interactive Distributed Multimedia Systems, Joint International
Workshops on Interactive Distributed Multimedia Systems and
Protocols for Multimedia Systems, IDMS/PROMS 2002, Pro-
ceedings (2002), vol. 2515 of Lecture Notes in Computer Sci-
ence, Springer, pp. 327-338.

[MCEF94] MOLNAR S., CoxX M., ELLSWORTH D., FUCHS H.:
A sorting classification of parallel rendering. IEEE Computer
Graphics & Applications 14, 4 (1994), 23-32.

[Mic05] MICHAEL REPPLINGER AND FLORIAN WINTER AND
MARCO LOHSE AND PHILIPP SLUSALLEK: Parallel Bindings
in Distributed Multimedia Systems. In Proceedings of the 25th
IEEE International Conference on Distributed Computing Sys-
tems Workshops (ICDCS 2005) (2005), IEEE Computer Society,
pp. 714-720.

[NOO6] NGUYEN D. T., OSTERMANN J.: Streaming and Con-
gestion Control using H.264/AVC Scalable Video Coding. 15th
International Packet Video Workshop 7, 5 (May 2006), 749-754.

[RLRS08] REPPLINGER M., LOFFLER A., RUBINSTEIN D.,
SLUSALLEK P.: URay: A Flexible Framework for Distibuted
Rendering and Display. Tech. Rep. 2008-01, Department of
Computer Science, Saarland University, Germany, 2008.

(© The Eurographics Association 2009.

