
Fourth Eurographics Workshop on Parallel Graphics and Visualization (2002)
D. Bartz, X. Pueyo, E. Reinhard (Editors)

An Interleaved Parallel Volume Renderer With PC-clusters

Antonio Garcia 1 and Han-Wei Shen 1

1Department of Computer and Information Sciences, The Ohio State University, Columbus, Ohio, USA

Abstract

Parallel Volume Rendering has been realized using various load distribution methods that subdivide either the
screen, called image-space partitioning, or the volume dataset, called object-space partitioning. The major ad-
vantages of image-space partitioing are load balancing and low communication overhead, but processors require
access to the full volume in order to render the volume with arbitrary views without frequent data redistributions.
Subdividing the volume, on the other hand, provides storage scalability as more processors are added, but re-
quires image compositing and thus higher communication bandwidth for producing the final image. In this paper,
we present a parallel volume rendering algorithm that combines the benefits of both image-space and object-space
partition schemes based on the idea of pixel and volume interleaving. We first subdivide the processors into groups.
Each group is responsible for rendering a portion of the volume. Inside of a group, every member interleaves the
data samples of the volume and the pixels of the screen. Interleaving the data provides storage scalability and in-
terleaving the pixels reduces communication overhead. Our hybrid object- and image-space partitioning scheme
was able to reduce the image compositing cost, incur in low communication overhead and balance rendering
workload at the expense of image quality. Experiments on a PC-cluster demonstrate encouraging results.

1. Introduction

Volume rendering is a process that directly projects three-
dimensional scalar data into two-dimensional images with-
out generating intermediate geometry. Since the amount of
computation needed for data sampling and projection is usu-
ally large, it is difficult to perform volume rendering at an
interactive rate. Intensive research has been conducted in the
past decade to accelerate volume rendering. Among the ex-
isting techniques, parallel volume rendering is an effective
approach that can potentially handle very large sized volume
data and generate high resolution images.

Parallel volume rendering algorithms can be generally di-
vided into two categories based on how the workload is dis-
tributed among the processors. One is the image-space parti-
tioning scheme which subdivides the screen into small tiles
and assigns each processor one or multiple tiles. The other
is the object-space partitioning scheme which subdivides the
volume into small subvolumes and each processor is respon-
sible for rendering one or multiple subvolumes. Generally
speaking, image-space partitioning techniques require less
communication at the image compositing stage. This is be-
cause the screen tiles assigned to different processors usu-

ally do not overlap, thus no compositing is needed to as-
semble the final image. However, image-space partitioning
can incur in higher data redistribution overhead when the
viewer changes position, because different portions of the
volume will be projected onto different image tiles. If the
entire volume data is not replicated and stored locally with
each processor, data must be redistributed among the proces-
sors when the view is changed. Most of image-space parti-
tioning volume rendering techniques choose to replicate data
to avoid the costly data redistribution operations.

Compared to image-space partitioning techniques, object-
space partitioning techniques do not require data redistribu-
tion or replication when the view is changed because each
processor is responsible for the same data blocks regardless
of viewing parameters. This allows object-space partitioning
scheme to exhibit a better storage scalability when increas-
ing the size of the dataset and/or the number of processors.
However, since a pixel can receive color contributions from
several data blocks assigned to different processors, assem-
bling the final image requires compositing the partial images
from different processors, which incurs in higher communi-
cation cost. As a result, the communication overhead to per-
form image compositing in object-space partitioning tech-

c
�

The Eurographics Association 2002.

51

http://www.eg.org
http://diglib.eg.org


Garcia and Shen / An Interleaved Parallel Volume Renderer With PC-Clusters

niques can become a major bottleneck when the size of the
rendered image is large.

To reduce the communication overhead at the image com-
positing stage and to increase the algortihm’s scalability for
large scale datasets, we devise a hybrid image- and object-
space partitioning algorithm to perform parallel volume ren-
dering. Our algorithm first divides the processors into sev-
eral groups, and performs an object space partitioning to dis-
tribute the volume data among the processor groups. Within
each processor group, we perform image-space partitioning
by interleaving pixels and let processors render alternating
rows and columns of pixels. To reduce the amount of data
that is required by each processor, we use a volume inter-
leaving scheme to distribute the volume data among the pro-
cessors within each group and approximate the final render-
ing result. This approximation is directly related to the ad-
justing of a user-specified parameter called interleaving fac-
tor. Based on this factor, the behavior of our algorithm can
be steered from performing pure image-space partitioning to
pure object-space partitioning. The goals of our pixel and
volume interleaving algorithm are: a) keep communication
cost as low as that of image-space partition techniques, and
b) maintain low memory overhead in each processor similar
to object-space partition techniques. The cost of our algo-
rithm is a moderate loss of image quality when the inter-
leaving factor is high. We implemented our parallel algo-
rithms using both ray casting and hardware texture mapping
as the core rendering component, and have tested our imple-
mentation on several volume datasets to monitor rendering
performance and image quality. In addition, we tested sev-
eral screen sizes to study the cost of compositing and of load
balancing.

This paper is organized as follows: section 2 reviews pre-
vious techniques, section 3 describes our algorithm in detail,
section 4 discusses and compares the results of our tests, sec-
tion 5 presents conclusions, and section 6 suggests new di-
rections for extending our work.

2. Related Work

Volume Rendering as described by Derbin1 has been realized
in several ways, of which raytracing 2 and texture hardware
3 are at opposite ends when comparing rendering speed.

Ma et al.presents a divide-and-conquer algorithm for par-
allel volume rendering 4. Their method is a pure object-space
partitioning scheme, where each processor receives a par-
tition of the volume. Once rendering is done on the par-
tition, neighboring processors repeatedly exchange half of
their current images for compositing until all processors hold
a small tile of the final image. Scalability is a major advan-
tage of this algorithm, but load imbalance is a drawback.

Other partition schemes as classified by Molnar et al.5

subdivide the screen into tiles or contiguous arrays of pixels.
Each tile is assigned to a different processor and rendering is

done according to that tile. However, load imbalance is very
high if the projected bounding box of the dataset does not
fall in the tile or has a small contribution to the tile. This is
a big problem for either object-space or image-space parti-
tion schemes. Either dividing the final image or the dataset
does not guarantee the same rendering time for every proces-
sor because of data coherence or data randomness. Molnar 5,
Neumann6 and Lee 7 agreed that interleaving pixels or block
of pixels distributes the work evenly among processors.

Interleaving has other uses such as described by Keller
and Heidrich 8, where the idea of interleaving not only pix-
els but also sampling planes is described. The main idea
was to generate an image with reduced or removed arti-
facts as if rendered with the methods proposed by Cullip and
Neumann3 or Wilson et al.9, which use either image-aligned
or object-aligned polygons to render the final image in back-
to-front order. Keller and Heidrich 8 divided the full image
into blocks of pixels, then performed rendering in a mul-
tipass fashion. Their results present far better quality than
traditional 3D texture hardware rendering.

To further increase data scalability, one can use mul-
tiresolution techniques. In essence, multiresolution render-
ing techniques first create multiple levels of detail for the
underlying dataset, where each level is a filtered then sub-
sampled version of a higher resolution data. At run time,
certain criteria are used to choose appropriate levels of de-
tail for the volume when producing the final image. LaMar
10 and Weilder 11 are examples for 3D texture hardware and
Danskin 12 for ray tracing. These techniques can greatly re-
duce, in the case of 3D texture hardware, the bottleneck that
results from trasmitting data into texture memory or, in the
case of ray tracing, the traversal of voxels. Because of the
subsampling at each level, fine data features can be missed
in the final image when low resolution of data are used.

Finally, PC-clusters are increasingly being used in mas-
sive parallel computations because of their low cost and
high expandability. However, the interconnection network
for communications between processors, though becoming
faster and faster, is orders of magnitude slower than internal
CPU and memory buses found in supercomputers, therefore,
reducing the amount of bandwidth needed by global opera-
tions such as compositing and final assembly of the image is
paramount. Samanta 13 focused on these goals for polygons.

In our work, we combine the benefits of Keller8, Ma 4 and
LaMar 10, and use raycasting 2 and texture hardware 3 as
volume renderers to obtain an interleaved volume renderer.

3. Algorithm

3.1. Overview

Our algorithm is based on a combined pixel and volume in-
terleaving scheme. Hereafter interleaving is referred to as
distributing samples to processors in a round-robin fashion

c
�

The Eurographics Association 2002.

52



Garcia and Shen / An Interleaved Parallel Volume Renderer With PC-Clusters

with a predefined pattern. The purpose of using interleaving
are twofold: reduce communication overhead among pro-
cessors during the image compositing stage, and reduce the
amount of data needed by each processor to perform render-
ing.

Given N processors, a screen with P2 pixels, and a vol-
ume with S3 samples, we first subdivide the processors into
groups. The number of processors per group is determined
based on a user-specified parameter, called interleaving fac-
tor, which will be explained later. Depending on how many
groups, the volume is partitioned repeatedly along alter-
nating dimensions into subvolumes. Each subvolume is as-
signed to one group.

Inside of a group, the screen is subdivided into sets of pix-
els. Each pixel set is assigned to a processor which becomes
responsible for computing the pixels’ final colors based on
the assigned subvolume. The pixels are assigned by alternat-
ing rows and columns. In addition, the subvolume is also in-
terleaved among the processors, so that each processor holds
only a portion of the subvolume. Up to this point, everything
has been done off-line. The on-line part of the algorithm in-
cludes the rendering and the global operations.

Rendering is performed locally on each processor and its
result is a partial image that will serve as input for image
compositing and global gathering. Image compositing is re-
quired to composite partial images from processors in differ-
ent groups that have pixels corresponding to the same screen
locations. Inside each group, image compositing is not nec-
essary since no two processors will attempt to render the
same pixels due to the interleaving effect. Once compositing
is completed, gathering operations generate the final image.
In the following, we explain each of the important stages of
our algorithm in detail.

3.2. Interleaving Factor

The combination of an image-space partitioning and an
object-space partitioning scheme is decided by an interleav-
ing factor. This factor divides the workload into groups of
processors. As this factor increases, the number of groups
decreases and the number of processors per group increases.
The number of groups (G), the number of processors per
group (M) and the interleaving factor (i) are related as fol-
lows:

M � 2i (1)

G � N � M (2)

Choosing 0 for i yields N groups with 1 member holding a
partition of the volume. Choosing the highest number avail-
able for i, on the other hand, yields 1 group with N members.
The later would suggest that each member holds the full vol-
ume to generate its pixels, but scalability is one concern that

is treated in the next section. Choosing any other number for
i yields G groups with 2i members.

It is also important to mention, that a processor inside of
a group will hold an identification number that it’s local to
the group. This local id is used to interleave volume and
pixel samples, which will determine the processor’s work-
load. The id results from a simple mod operation:

localID = globalID mod M

The globalID is a number that a processor is assigned ini-
tially.

3.3. Object-space volume partition

Once we determine the number of groups based on the in-
terleaving factor, we partition the volume so that each group
receives one subvolume. We use a Kd partitioning scheme
similar to Ma 4 to subdivide the dataset. Starting with the
longest dimension, processors with lower globalIDs are as-
signed the lower half of a partition, while processors with
higher globlaIDs the upper half of a partition. This partition
process is recursively performed for each dimension until the
number of partitions equals the number of groups.

However, if every member of the group holds the entire
subvolume with size E and the size of the full volume is S3,
the memory requirements will become prohibitively expen-
sive as the interleaving factor i increases. This is because
the splitting process uses the number of groups to create the
partitions, thus:

E � S3 � G (3)

But from (1) and (2)

E � S3 ��� N � 2i � (4)

E � 2iS3 � N (5)

In the extreme cases, i � 0 gives every processor S3 � N,
which is optimal; while i � log2 � N � gives every processor a
subvolume with a size equal to S3, which is certainly not
optimal. To fix this problem, we use a volume interleav-
ing scheme to ensure that every processor only holds S3 � N
amount of data. We now explain the volume interleaving
scheme.

3.4. Volume interleaving

Each processor will accommodate a subvolume that remains
the same until the end of the rendering. To reduce the size
of local volume stored in each processor, we interleave the
subvolume assigned to each processor group in alternating

c
�

The Eurographics Association 2002.

53



Garcia and Shen / An Interleaved Parallel Volume Renderer With PC-Clusters

SubVolume

Interleaved
Subvolume 0

Interleaved
Subvolume 1

Figure 1: Volume Interleaving of a subvolume’s slice dis-
tributed to 2 processors. Starting from the lower left corner
of the slice, a processor finds its initial sample. Processor 0
takes every other sample starting from the corner, while pro-
cessor 1 takes every other sample but starting at an offset of
1 from the corner.

x, y, or z planes and distribute the partition results to the pro-
cessors. The purpose of volume interleaving is to keep the
size of data stored in each processor equal to S3 � N regard-
less of the interleaving factor, but at the expense of moderate
rendering quality losses. Figure 1 shows an example in two
dimensions of how samples are divided into 2 processors.

With nothing else but subsampling to create the inter-
leaved subvolumes, rendering artifacts will be noticeable. To
solve this problem, we filter the volume before interleaving.
Filtering effectively distributes the value of each voxel to its
neighborhood, which ensures that features from the original
data will not be completely lost when volume interleaving is
performed, Filtering also smoothes the intermediate subvol-
umes and reduces the high frequencies that can create dis-
continuities at rendering. Inevitably, since processors have
different filtered data samples, it is possible that some pro-
cessors hit volume features, while others miss the same fea-
tures resulting in discontinuities. This is noticeable at edges,
silhouettes and features that are in the size of a few voxels.
However, our experimental results showed that these discon-
tinuities were moderate.

3.5. Pixel Interleaving

Before rendering starts, we assign pixels to the proces-
sors within each group according to the interleaving factor.
This part is view-dependent, because we calculate the pro-
jected bounding box of the subvolume, then divide along
the longest dimension until the number of division stages
reaches i, the interleaving factor. For instance, if the horizon-

0, 1, 2, 3

0, 2 1, 3

0 1

2 3

Figure 2: Pixel interleaving with 4 processors that are in
the same group. Starting with the horizontal dimension, even
processors take the left side and odd processors take the
right side. Next, the process repeats separately on each par-
tition but this time the top or bottom side are distributed. At
this point the splitting terminates since there is only 1 pro-
cessor per partition.

tal dimension of the projected bounding box is longer, the
pixels in the columns are interleaved first, then the rows, then
the columns and so on. If the vertical dimension is longer,
then the interleaving sequence is rows, columns, rows and so
on. Since each processor is responsible for a different pixel
set, the partial image it generates has less resolution than the
final image.

As we alternate between the horizontal and vertical di-
mensions of the screen, the processors are recursively split-
ted into two partitions: the first partition selects every other
processor starting from the first, while the other partition
takes the rest. This way the first partition gets either the left
or bottom screen partition and the second partition gets ei-
ther the right or top screen partition. The splitting uses the
localID to assign pixels, so that the same pixel interleaving
pattern is followed by one processor in each group. The rea-
son for this distribution is to simplify the global operation
gathering, which alternates between dimensions to collect
data. Figure 2 shows an example of how 4 processors are
arranged to select their pixels.

The number of pixels assigned to a processor equals
P2 � 2i. However, this is an upper bound, since the projected
bounding box of the subvolume of a processor is at most P2.

c
�

The Eurographics Association 2002.

54



Garcia and Shen / An Interleaved Parallel Volume Renderer With PC-Clusters

In the extreme cases, the upper bound equals P2 when i � 0,
and P2 � N when i � log2 � N � .

3.6. Rendering

Once we have determined the pixel and volume interleaving
patterns and distributed the data accordingly, each proces-
sor is ready to perform local rendering of its assigned sub-
volume. The renderer takes a 3D lattice of scalar values, a
transfer function, a camera and a transformation matrix, and
returns an array of pixels comprised each of 4 values: the 3
color channels, red, green and blue, plus the alpha channel,
which holds accumulated opacity.

A couple of considerations must be taken into account
when the interleaving factor is greater than 0: a) the transfer
function must be corrected, and b) volume samples must be
rendered at their original positions. The first is because, pro-
cessors inside of a group hold a subvolume that has been fil-
tered and interleaved, therefore, there are less samples taken
than in the original subvolume. As rays traverse these in-
terleaved subvolumes, opacity must be compensated to pro-
duce the correct color. We use LaMar’s strategy 10 to vary
the transfer function. The second consideration rests in the
fact that all volume samples will contribute to the final im-
age and need to remain at their original positions. Multireso-
lution techniques average samples and assign low resolution
subvolumes to replace the original data at the same world po-
sition. In our case, that simple replacement will translate into
pixel shifting and extreme blurriness for our images, there-
fore, we take into account the offsets of the initial positions
when volume interleaving.

3.7. Compositing and Gathering

After rendering is completed, we perform a binary-swap im-
age compositing similar to the method that Ma 4 proposed.
According to the bounding box of the full volume, we start
splitting either horizontally or vertically and alternate be-
tween the screen dimensions for the next splits. At every
split, processors exchange half their partial image to com-
posite and repeat the process log2 � N ��� i times. Therefore,
in the extreme cases, when i � 0, the number of composit-
ing stages needed is maximum and equals the original bi-
nary swap algorithm, which is a pure object-space partition-
ing scheme. On the other hand, when i � log2 � N � , no com-
positing at all takes place since it is a pure image-space par-
titioning scheme. For any other value of i, the number of
compositing stages decreases as i increases.

Inside the groups, each processor has its own local ID.
At the compositing stage this number comes into play, only
processors in different groups with the same local ID need
to composite since they hold the same volume and pixel in-
terleaving pattern.

At the end of compositing, the tiles generated will re-
semble the numbering of the pixel interleaving section, thus

Group 0

Group 1

Even
Rows

Odd
Rows

GlobalID 0
LocalID 0

GlobalID 1
LocalID 1

GlobalID 2
LocalID 0

GlobalID 3
LocalID 1

Compositing

Gathering

Rearranging

Figure 3: Compositing, gathering and rearranging of 4 pro-
cessors with interleaving factor 1. Processors 0 and 2 who
are in different groups exchange and composite halves to
produce correct pixels on the even rows, while at the same
time processors 1 and 3 take care of odd rows. Since inter-
leaving factor is 1, there are only 2 groups and therefore 1
compositing stage is needed. Next all tiles are collected and
finally rearranged for display. The background colors are set
for illustration purposes.

gathering can and will alternate between screen dimensions.
At each stage, gathering joins the tiles and repeats the pro-
cess until 1 processor holds all pixels. Finally, if the inter-
leaving factor is greater than 0, the pixels of the collected
tiles must be rearranged since they do not represent contigu-
ous set of pixels but interleaved ones. Figure 3 shows the
traveling of pixels before they are displayed on screen.

4. Results

We performed experimental tests on a 8-node PC-cluster.
Each node had a Pentium III (993.334Mhz) with a GEForce
II graphics card and a CLAN 1000 network interface card
using the virtual interface architecture (VIA). All machines
were connected to a Fast Ethernet network. The Code

c
�

The Eurographics Association 2002.

55



Garcia and Shen / An Interleaved Parallel Volume Renderer With PC-Clusters

was written in C++, and it was linked to MPI for par-
allel communication and to OpenGL/GLUT 14 for hard-
ware rendering. Three datasets were used in our experi-
ments: Hipip (64x64x64), shockwave (128x128x128) and
skull (256x256x256). Every sample in the dataset was rep-
resented by a 8-bit unsigned character. The transfer func-
tions were lookup tables of 256 entries, and each entry has
4 floating-point RGBA values. All rendered pixels were 4-
tuples (RGBA) of 8-bit values, but they became 3-tuples
(RGB) of 8-bit values before gathering. When interleaving
factor was not 0, every filtered dimension used the tent filter
15.

4.1. Rendering

We implemented our parallel algorithm using two differ-
ent volume rendering techniques. One is a software-based
raytracer, and the other is a hardware-based 2D-texture vol-
ume renderer. In the raytracer implementation, the processor
casts a ray from every pixel to sample the subvolume. At
every sample, the ray trilinearly interpolates the eight neigh-
boring samples to obtain the sample density. Normals are
calculated at every sample, and used for local lighting cal-
culation to generate the sample colors. As the ray marches
through the subvolume, samples are blended in a front-to-
back order. We early terminate the ray once it has accumu-
lated enough opacity. In our 2D-texture hardware renderer
implementation, subvolume slices are loaded into texture
memory and each texture is rendered over a simple quadri-
lateral. Rendering is done in back-to-front order and lighting
is disabled. As expected, raycasting dominates the rendering
time in the parallel raytracing program. Loading data into
the hardware’s texture memory and reading pixels from the
hardware’s frame buffer into main memory are the bottle-
necks for texture hardware rendering.

Figure 4 shows the speedups for rendering one frame with
varying interleaving factor and number of processors. The
charts show the results obtained from rendering the skull
dataset at 1024x1024 pixel resolution. The behavior is al-
most identical for the other datasets and different resolu-
tions. We notice that for raytracing, speedups go beyond lin-
ear acceleration, which is an effect of volume interleaving.
Even though processors have the same amount of data to
render, the interleaved subvolumes are in a way lower reso-
lution versions of the subvolumes at i � 0, thus rays traverse
them faster.

Texture hardware rendering does not exhibit the same
super-linear property. This is mainly because the speedup
gained from rasterizing a slightly smaller number of poly-
gons is negligible compared to other factors such as clearing
or reading back the frame buffer. From Figure 4, we can see
that the hardware texture rendering time reduced proportion-
ally to the different number of processors.

Other factors for texture hardware are texture loading,

0 1 2 3i

Raytracing

Texture Hardware

5

10

15

1248 1248 1248 1248N

0 1 2 3i

2

4

6

1248 1248 1248 1248N

Figure 4: Speedups for raytracing and texture hardware for
the skull dataset at 1024x1024 pixel resolution. The hori-
zontal axis represents different interleaving factors, and the
vertical axis shows speedups. The multiple bars for each in-
terleaving factor represent different number of processors

which is affected by the size of data, and pixel read back,
which is affected by the size of the screen. Our volume and
pixel interleaving scheme keeps processors with the same
amount of data and reduces the number of pixels read back
from the frame buffer. Table 1 and 2 shows timings for all
datasets and all screen sizes tested. Both stages scale well
with the number of processors.

A study involving frames-per-second is certainly war-
ranted. However, such a study must be considering the op-
tion of texture color table lookups turned on, so that transfer
functions can be changed on the fly without reloading of tex-
tures; otherwise, the cost of texture loading will slow down
rendering performance. This feature was not implemented in
this study, but we ceratinly consider the possibility for future
work.

Load imbalance is a major concern for parallel process-
ing. Raytracing exhibit major load imbalances for purely
object-space partition, when interleaving factor equals to
0. Most of our results indicated that as interleaving in-
creased, load imbalance decreased. However, Figure 5 shows
a change in this pattern. Hipip and Shockwave could be con-
sidered symmetric data, that is top and bottom view are sim-
ilar, left and right view are similar and front and back view
are similar; Skull, on the other hand, is not. This means that
volume interleaving might generate subvolumes that have

c
�

The Eurographics Association 2002.

56



Garcia and Shen / An Interleaved Parallel Volume Renderer With PC-Clusters

Dataset Num. of Processors Interleaving factor
0 1 2 3

Hipip 1 0.069042
(64x64x64) 2 0.036717 0.036425

4 0.019623 0.020353 0.019646
8 0.009849 0.011388 0.011471 0.009802

Shockwave 1 0.538468
(128x128x128) 2 0.273060 0.270793

4 0.138192 0.141305 0.138130
8 0.069262 0.072650 0.072881 0.069118

Skull 1 4.327917
(256x256x256) 2 2.173000 2.167407

4 1.076563 1.082972 1.075233
8 0.538956 0.541802 0.541316 0.537077

Table 1: Timings for loading data slices into texture memory (in seconds)

Image Num. of Processors Interleaving factor
Size 0 1 2 3

256x256 1 0.005373
2 0.003560 0.002403
4 0.002084 0.001773 0.001390
8 0.001329 0.001267 0.001096 0.000908

512x512 1 0.021043
2 0.014088 0.010232
4 0.007948 0.006498 0.005034
8 0.004471 0.003764 0.003212 0.002396

1024x1024 1 0.067127
2 0.042891 0.022831
4 0.020285 0.013864 0.011250
8 0.009063 0.003810 0.006876 0.000848

Table 2: Timings for reading pixels from the hardware’s frame buffer onto memory (in seconds)

unequal contributions to the final image. Figure 6 shows vi-
sually the skull’s case.

4.2. Compositing and Gathering

Operations in this stage include compositing of partial im-
ages, conversion from 4-tuples (RGBA) to 3-tuples (RGB)
of 8-bit values, gathering of tiles, and rearranging of pixels
into their respective positions in the final image. The com-
munication cost incurred by image compositing and gather-
ing are affected by the interleaving factor. Figure 7 shows
a general breakdown of the four stages involved to gener-
ate the final image. We can see, starting from the top, the
fully interleaved schemes, i.e., when 2i equals to the number
of available processors, no compositing was needed and the
conversion of partial images into tiles is optimal since par-

tial images are non-overlapping portions of the screen. When
the interleaving factor is small, our algorithm behaves more
like a purely object-space partitioning algorithm, and thus
has higher communication costs due to larger image trans-
fer time. Figure 7 presents the results of Hipip dataset at
one of the resolutions tested. Table 3 shows that the com-
positing time reduces when the interleaving factor increases.
The same behavior was obtained from the other screen res-
olutions. These results provide the answer to our goals. As
interleaving increases, the amount of compositing decreases
faster with respect to gathering. This achieves behavior sim-
ilar to pure image-space partitioning schemes. Furthermore,
the fact that processors only allocate a portion of the volume,
which remains the same regardless of interleaving, achieves
behavior similar to pure object-space partitioning schemes.

Even though, it is possible to implement the rendering unit

c
�

The Eurographics Association 2002.

57



Garcia and Shen / An Interleaved Parallel Volume Renderer With PC-Clusters

Image Interleaving factor
Num. of Processors 0 1 2 3

1 0.000002
2 0.088542 0.000002
4 0.133079 0.043364 0.000003
8 0.115259 0.068798 0.022516 0.000003

Table 3: Compositing times as interleaving increases for 1,2,4 and 8 processors

0 1 2 3
0

2

6

8

10

12

Hipip

Shockwave

Skull

%

Interleaving factor

Figure 5: Load imbalance percentages for the 3 datasets at
1024x1024 pixel resolution, 8 processors and varying inter-
leaving factor

a)

b)

Figure 6: Since Skull concentrates its data on one side, pro-
cessors rendering on that side terminate their rays faster,
while those on other side continue traversing until they exit
the volume. Therefore, traversal of voxels is slower. Further-
more, the amount of empty space traversed is greater at b)
with i � 2 than at a) with i � 1.

such that partial images are comprised of two separate ar-
rays: one for color channels and the other for opacity, so that
before gathering we can simply drop the array of opacity
and have no conversion; it is also possible to combine gath-
ering and rearranging into one stage, such that they overlap

0.05

0.10

0.15

0.20

sec

Compositing

Conversion

Gathering

Rearranging

0 1 2 3i

Figure 7: Time breakdown of compositing, conversion, gath-
ering and rearranging for Hipip at 1024x1024. The multiple
bars for each interleaving factors represent different number
of processors.

in time. We chose contiguous data arrangements for simplic-
ity and efficiency of network communication.

4.3. Image Quality

Although most features are still present in the rendering,
even the small ones such as those in skull, minor image
quality degradations are indeed noticeable. The degradation
mostly happens at the edges and silhouettes because features
can be missed by sampling rays as a result of volume inter-
leaving. For small datasets such as Hipip 643, artifacts are
more noticeable, but for large datasets we see that it becomes
less of a problem. See the images on Figure 8, where each
dataset’s final image is shown side-by-side with interleaved
counterparts. The projection size of the voxels determines
how much the artifacts appear in the final image. The smaller
their sizes the less processors interleave the feature. Hence,
artifacts will be less noticeable.

c
�

The Eurographics Association 2002.

58



Garcia and Shen / An Interleaved Parallel Volume Renderer With PC-Clusters

5. Conclusion and Future Work

We present an algorithm that combines the benefits of scal-
ability from object-space partitioning schemes and low-
communication from image-space partitioning schemes. Our
interleaving factor controls the combination of these two
schemes and according to our results, low interleaving fac-
tors can effectively reduce the cost of compositing and keep
quality close to that of a purely object-space partition.

In the implementation of our parallel algorithm, we have
intentionally left out several known techniques to acceler-
ate the rendering process, so that we can concentrate on the
effects of the interleaving factor. Nevertheless, we feel that
those techniques can be incorporated into our algorithm with
no major changes, especially those that can skip regions that
do not contribute much to the final image either because they
have low opacity or because they are totally occluded by the
accumulated partial image. We suspect that techniques that
are data-dependent will incur in more load imbalance, but
interleaving in conjunction with heuristics to better partition
the data can present better load balancing.

Multiresolution techniques such as those by LaMar 10 and
Danskin 12 with their corresponding acceleration techniques
are also good candidates for extending our algorithm.

Volume interleaving remains an open topic for enhance-
ment. The better interleaved subvolumes resemble the orig-
inal subvolumes, the less artifacts will be present at edges
and silhouettes. Filtering provided us with better results than
simple subsampling, however, better approximations require
further study.

Finally, the study of time varying volume data in paral-
lel environments is an area that will certainly benefit from
our algorithm, specially in the reduction of global operations
overhead.

References

1. R. Derbin, L Carpenter, and P Hanrahan. Volume ren-
dering. Computer Graphics, 22(4):65–74, 1988.

2. M. Levoy. Efficient ray tracing of volume data. ACM
Transactions on Graphics, 9(3):245–261, 1990.

3. T. Cullip and U. Neumann. Accelerating volume recon-
struction with 3d texture hardware. Technical Report
UNC Chapel Hill, 1994.

4. K.-L. Ma, J.S. Painter, C.D. Hansen, and M.F. Krogh.
Parallel volume rendering using binary-swap image
composition. IEEE Computer Graphics and Applica-
tions, 14(4):59–68, 1994.

5. S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sort-
ing classification of parallel rendering. IEEE Computer
Graphics and Applications, 14(4):23–32, 1994.

6. U Neumann. Communication costs for parallel volume

rendering algorithms. IEEE Computer Graphics and
Applications, 14(4):49–58, 1994.

7. T. Lee, C. Raghavendra, and J. Nicholas. Image com-
position schemes for sort-last polygon rendering on 2d
mesh multicomputers. In Proceedings of IEEE Paral-
lel Rendering Symposium 95, pages 55–62. IEEE Com-
puter Society Press, Los Alamitos, CA, 1995.

8. A. Keller and W. Heidrich. Interleaved sampling.
In Proceedings of Eurographics Rendering Workshop,
pages 269–276, 2001.

9. O. Wilson, A. Van Gelder, and J. Wilhelms. Direct vol-
ume rendering via 3d textures. Technical Report UCSC-
CRL-94-19, University of California, Santa Cruz, June
1994.

10. E. LaMar, B. Hamann, and K. Joy. Multiresolution
techniques for interactive texture-based volume visu-
alization. In Proceedings of Visualization ’99, pages
355–361. IEEE Computer Society Press, Los Alamitos,
CA, 1999.

11. M. Weiler, R. Westermann, C. Hansen, K. Zimmer-
mann, and T. Ertl. Level-of-detail volume rendering
via 3d textures. In Proceedings of the 2000 IEEE sym-
posium on Volume visualization, pages 7–13, 2000.

12. J. Danskin and P. Hanrahan. Fast algorithms for vol-
ume ray tracing. In Proceedings of 1992 Workshop on
Volume Visualization, pages 91–98. ACM SIGGRAPH,
1992.

13. S. Samanta, J. Zheng, T. Funkhouser, K. Li, and
J. Singh. Hybrid sort-first and sort-last paral-
lel rendering with a cluster of pcs. In In Eu-
rographics/SIGGRAPH Workshop on Graphics hard-
ware, pages 99–108, 2000.

14. M. Woo, J. Neider, T. Davis, and D. Shreiner. Opengl
programming guide. Addison-Wesley, 1999.

15. K. Turkowski. Filters for common resampling tasks.
Graphics Gems I, Academic Press, 1990.

c
�

The Eurographics Association 2002.

59



60



Garcia and Shen / An Interleaved Parallel Volume Renderer With PC-Clusters

Figure 8: Datasets: Left: Hipip(64x64x64), Middle: Shockwave (128x128x128), Right: Skull (256x256x256). The first row
represent the original images, the second row goes as follows: Hipip with i � 1, shockwave with i � 2 and skull with i � 3.

c
�

The Eurographics Association 2002.

147




