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Abstract 
Bucket rendering is a technique in which the framebuffer is sub- 
divided into coherent regions that arc rendered independently. 
The primary benelits of this technique are the decrease in the size 
of the working set of framebuffer memory required during ren- 
dering and the possibility of processing multiple regions in paral- 
lel. The drawbacks of this technique are the cost of computing the 
regions overlapped by each triangle and the redundant work re- 
quired in processing triangles multiple times when they overlap 
multiple regions, Tile size is a critical parameter in bucket ren- 
dering systems: smaller tile sizes allow smaller memory footprints 
and better parallel load balancing but exacerbate the problem of 
redundant computation. 

In this paper, we use mathematical models, instrumentation, 
and trace-driven simulation to evaluate the impact of overlap and 
conclude that the problem of overlap is limited in scope. If trian- 
gles arc small, the overlap factor itself is also small. If triangles 
arc large, overlap is high but pixel work dominates the rendering 
time. In pipelined rendering systems, the worst-case impact of 
overlap occurs when the area of an input triangle is equal to the 
area for which the pipeline is balanced-that is, the triangle- 
related computation time is equal to the pixel-related computation 
time. Thus, as the current trends of exponentially increasing tri- 
angle rate, slowly increasing screen resolution, and increasing 
per-pixel computation continue to push this balance point toward 
triangles with smaller area, bucket rendering systems will be able 
to utilize smaller tiles efficiently. 

CR Categories and Subject Descriptors: 1.3.1 [Computer 
Graphics]: Hardware Architecture. 

1 INTRODUCTION 
Bucket rendering is a technique in which the framebuffer is sub- 
divided into coherent regions that are rendered independently. 
This technique has two primary benelits: a reduced framebuffer 
memory working set and the ability to process multiple regions in 
parallel. Standard rendering requires random access to frdmebuf- 
fer data for the entire screen, implying a memory system that is 
simultaneously large and fast. Bucket rendering requires random 
access to only a single tile, and smaller tiles arc better as they lead 
to smaller (and thus faster) working memories. Additionally, 

bucket rendering allows for the possibility of rendering into a 
working set memory that is much deeper than the framebuffer 
itself: the tile working set memory can hold color, transparency, 
depth, stencil, etc., for multiple samples while the framebuffer 
retains only the display color. Bucket rendering also introduces 
image-space parallelism to the rendering pipeline and allows for 
multiple rasterizers that can render into independent tiles simulta- 
neously. One advantage of such a subdivision is the fact that each 
triangle does not necessarily have to be processed by every 
rasterizer. In a tile-based parallel rastcrizer, smaller tiles have the 
advantage of improving rasterization load balancing. The primary 
drawback of bucket rendering with small tiles is the large number 
of tiles overlapped by each triangle. As overlap increases, the 
work required to sort triangles into the appropriate tiles increases. 
More importantly, the fixed per-triangle work associated with 
rendering a triangle into a tile must be performed repeatedly. 

The goal of this paper is to show that the impact of overlap on 
systems using small tiles is limited despite high overlap factors. 
We develop two simple models of the efficiency of bucket ren- 
dering, focusing on the impact of redundant work due to overlap. 
We first analytically model the per-pixel and per-triangle compu- 
tations performed after bucket sorting, including triangle setup, 
scan conversion, texturing, depth buffering, and composting. 
Then, we present quantitative data on the overhead of tiling and 
compare it with the predictions of the analytic model. We con- 
clude that the problem of overlap is limited in scope. If triangles 
are small, the overlap factor itself is also small. If triangles are 
large, overlap is high but per-pixel work dominates rendering 
time. In systems where triangle work and pixel work are pipe- 
lined, the worst-case impact of overlap occurs when the area of an 
input triangle is equal to the area for which the pipeline is bal- 
anced-that is, the triangle-related computation time is equal to 
the pixel-related computation time. Thus, as the current trends of 
exponentially increasing triangle rate, slowly increasing screen 
resolution, and increasing per-pixel computation continue to push 
this balance point toward triangles with smaller area, bucket ren- 
dering systems will be able to utilize smaller tiles efficiently. 

2 RELATED WORK 
Bucket rendering, also known as tiled rendering or chunking, is a 
feature of many previous systems including RenderMan [12], 
Talisman [I I ], PixelPlanes 5 [4], PixelFlow [IO], and two systems 
developed at Apple [6][7]. Tiling in RenderMan serves to limit 
the large framebuffer memory working set required for oversam- 
pling, true transparency, CSG, motion blur, and other advanced 
features. In Talisman, the Apple systems, PixelPlanes 5, and 
PixclFlow, tiling is used to fit the working set into on-chip mem- 
ory. In PixelPlanes 5 and PixelFlow, multiple tiles are also proc- 
essed simultaneously by independent rendering engines. 

Bucket rendering incurs redundant work that is characterized 
by the overlap factor (the number of tiles a triangle covers). Most 
systems approximate the tiles that a triangle overlaps by comput- 
ing the intersection of the triangle’s bounding-box with the grid of 
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Terminology 

m Definition 

a The area of a triangle, in pixels. 

P The ratio of the area of the bounding-box of a trian- 
gle to the area of the triangle. 

S The length of the side of a screen tile (assumed to 
be square), in pixels. 

0 The overlap factor that represents the average num- 
ber of tiles a triangle (or its bounding-box) over- 
laps. 

k The ratio of the processing time for a triangle to the 
processing time for a pixel. 

R The inefficiency due to overlap: the ratio of ren- 
dering time with tiling to rendering time without 
tiling. 

Figure 1: Terminology used in the models. 

tiles [1][3][4][10][1 I]. Molnar [8] presents an equation for the 
expected overlap of rectangular bounding-boxes on rectangular 
tiles that is experimentally verified in both Molnar [9] and Cox 
[2]. Sorting triangles into tiles exactly, rather than by bounding- 
box, is certainly possible and would result in lower overlap fac- 
tors, but we are not aware of an analysis of the costs and benefits 
of such a technique or of any systems that use it. 

Previously, the impact of bucket rendering has been analyzed 
by Cox [2] on a specific PC-based bucket rendering architecture. 
The paper concludes that for small tiles (32x32 pixels), the redun- 
dant storage and transfer of triangles due to high overlap factors 
can overwhelm current PC memory and I/O systems. In that 
work, the impact of triangle overlap is analyzed as it pertains to 
the architecture and bandwidths of a particular system. Our work 
focuses on the fundamental relationship between the overlap fac- 
tor and the relative costs of per-triangle and per-pixel work within 
a general rendering framework. 

3 ANALYTIC MODELS 
In this paper, we model the pixel and triangle processing per- 
formed in relation to rasterization (i.e., after the object-space tri- 
angle has been transformed and sorted into the appropriate tiles). 

. _ - - -. Pixels 
: o- ,- 

--_. Triangle (tiled) ,* ,’ 
Triangle (untiled) .s’. ’ ,’ _’ 

0 20 40 60 80 100 

Triangle area (pixels) 
Figure 2: Approximate relationships between per-pixel 
computation, per-triangle computation in an untiled system, 
and per-triangle computation in a tiled system (the original 
per-triangle computation multiplied by the overlap factor). 
Assumes k set to 25 and S set to 32. 

The key terms used in our analytic model are presented in Figure 
1. The computation required for a pixel is assumed to be con- 
stant, though our model could be extended to analyze the render- 
ing of scenes with a mix of rendering modes on systems with 
varying fill rates. The computation required for processing a sin- 
gle triangle in a non-tiled system is also assumed to be constant. 
The per-pixel cost is normalized to one, and the per-triangle cost, 
denoted by k, is normalized to a multiple of the per-pixel cost. In 
a bucket rendering system, when a triangle overlaps multiple tiles, 
its per-triangle costs are multiplied by the overlap factor, 0. 
Figure 2 shows the simple relationships between triangle area, 
overlap factor, and the costs associated with per-pixel work and 
per-triangle work. We use this graph as a baseline for creating 
two models of a rasterization system, a software model and a 
hardware model. 

The software model abstracts a system with a single unit for 
both triangle and pixel processing. The hardware model is moti- 
vated by the fact that many systems perform triangle and pixel 
processing on independent units in a pipeline. Figure 3 shows the 
relationship of triangle area to processing time on several such 
systems: the Silicon Graphics 02, RealityEngine, and InfiniteRe- 
ality. When triangles are small, the processing times are fixed. 
When triangles are large, the processing times are directly pro- 
portional to triangle area. As we will show, these characteristics 
significantly change the effect of overlap on pipelined systems 
when compared to non-pipelined systems. 

3.1 Modeling Overlap 
Overlap of multiple tiles by a single triangle is characterized by 
the overlap factor, 0, and is central to evaluating the efficiency of 
bucket rendering. Due to the high cost of calculating the exact 
tiles overlapped by a triangle, we instead calculate overlap using 
axis-aligned bounding-boxes. The exact overlap factor for a spe- 
cific triangle can be calculated easily, but for general analytic 
calculations, the Molnar-Eyles equation [8] can be used to calcu- 
late approximate bounding-box overlap. The equation approxi- 
mates the expected overlap factor of a triangle by utilizing S (the 
dimension of a tile), a (the triangle area), and p (the ratio of the 
area of a triangle’s bounding-box to the area of the triangle): 

lo0 200 

Triangle area (pixels) 

Figure 3: The graph above shows the average rendering 
time per triangle as triangle area changes on an SGI 02, Re- 
alityEngine, and InfiniteReality. Triangles are isolated, axis- 
aligned, right isosceles, flat-shaded, and untextured with 
depth buffering and blending disabled. 
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The primary source of error in this approximation is the assump- 
lion of unit aspect ratio (i.e., a square bounding-box). Further- 
more, if we interpret Equation I to account for a set of triangles in 
a scene rather than a single triangle, we must assume that all of 
the bounding-box areas are the same. Unit aspect ratio is a best 
case for overlap 121, while uniform triangle area is a worst case 
(see the Appendix for a derivation). The two effects tend to offset 
each other in the simple form of the equation above and adjusting 
the equation to account for one and not the other generally results 
in worse agreement with measured overlap. Analytic calculations 
in this paper use the simple form above, and use the approxima- 
tion p= 3 (as justified in [g]). 

3.2 Software Model 
In our software model of rasterization. a single processing unit is 
responsible for both the per-triangle work and the per-pixel work 
associated with the rasterization of a triangle. Thus, the total 
processing time required for a triangle is equal to the sum of the 
per-triangle and per-pixel times, With our normalization of the 
per-pixel cost to one, the total processing time for a triangle is 
simply k+u. In a tiled system, the per-triangle cost is incurred 0 
times, making the total processing time kO+u. Thus, the cxpectcd 
ratio of the processing time of a triangle with tiling to that without 
tiling is: 

R _ SUM (kfl. (1) kO+o 
JW - =- 

SUM(k,a) k +o 
(2) 

Figure 4 shows R,,, for k = 25 and S = 32, with overlap calculated 
analytically using Equation I. We define CI,,,,~,,, to be the value 01 
a which maximizes R,,,; this is the triangle area that results in the 
worst efficiency. The formula for deriving this value can be 
found in the Appendix. A formula for the limiting value of R,,,, as 
a approaches infinity is also given in the Appendix. Equation 2 
describes the inefficiency ratio of tiling for a single triangle. 
However, because the terms involved are linear, we can USC the 
same equation for calculating the inefficiency ratio for a distribu- 
tion of triangles by interpreting a as the average triangle area and 
0 as the average overlap. 

3.3 Hardware Model 
The hardware model of rasterization abstracts a system in which 
triangle and pixel processing are performed by independent proc- 

1.7 - 
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Figure 4: The graph above shows the expected ratio of 
rasterization time with tiling to that without tiling for a soft- 
ware system (R,,,) as triangle area (a) changes. The values 
for the graph are computed from Equation 2 with k set to 25, 
p set to 3, and S set to 32. 

essing units in a pipeline. Furthermore, we assume perfect pipe- 
lining between these two units, meaning that an infinite amount of 
buffering exists between the two. This buffering decouples the 
pixel work from the specific triangle that generated it; thus, the 
total processing time for a triangle is the maximum of the total 
time spent in per-pixel processing and the total time spent in per- 
triangle processing. We experimentally evaluate the effects of the 
infinite buffering assumption in Section 4.3. 

In Figure 2, the curve for pixel processing intersects the curves 
for triangle processing with and without tiling, dividing the range 
of triangle areas into three regions. For triangles with area less 
than k, triangle processing dominates both the tiled and untiled 
cases. For triangles with area between k and k’, triangle process- 
ing dominates the tiled case while pixel processing dominates the 
untiled case. For triangles with area greater than k’, pixel proc- 
essing dominates both cases. The value of k’ is derived in the 
Appendix, and the expected ratio of the processing time of a sin- 
gle triangle with tiling to that without tiling is given by: 

R 
/I M’ 

= MAX(k0.a) = 

MAX(k,a) 

0 O<n<k 

k0 - k<a<k’ (3) 
u 

I k’<a 

Figure 5 shows Rhlv with overlap calculated analytically using 
Equation I. The triangle area with the lowest efficiency (u,,.,,) 
occurs at k pixels, independent of the tile size. This property of 
the hardware model is derived in the Appendix. Equation 3 was 
derived for a single triangle, but we can generalize it to a distribu- 
tion of triangles because the assumption of intinite buffering de- 
couples the pixel work from any specific triangle. In this case, u 
is simply the average triangle area of the triangle distribution, and 
0 the average overlap. 

The key point of Equation 3 and Figure 5 is that the inefti- 
ciency of tiled rendering due to triangle overlap is limited in 
scope. For large triangles, pixel costs dominate. For small trian- 
gles, the overlap factor is small, and thus the inefficiency is small. 
Interestingly, the worst case behavior for the hardware model 
occurs at precisely the triangle area for which the system is bal- 
anced between triangle processing and pixel processing (k pixels). 
Furthermore, this worst case is independent of the tile size. 

I.6 

I.5 

I.4 

d I.3 

I.2 

I.1 

0 20 40 60 80 100 120 140 160 180 200 

Triangle area (pixels) 
Figure 5: The graph above shows the expected ratio of 
rasterization time with tiling to that without tiling for a 
hardware system (R,,,,) as triangle area (a) changes. The val- 
ues for the graph are computed from Equation 3 with k set to 
25, p set to 3, and S set to 32. 
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Figure 6: Statistics for the five test scenes used to evaluate 
our models are shown in the table above. The bounding-box 
overlap factors of these scenes (which were measured on a 
triangle-by-triangle basis) are shown in the graph. 

4 EXPERIMENTAL EVALUATION 
In Section 3, we provided analytic calculations that characterize 
the overhead associated with overlap in a bucket rendering sys- 
tem. We now present experimental data on this overhead in order 
to confirm the predictions of the analytic models and expose the 
shortcomings of the various assumptions that were made in for- 
mulating the equations. 

4.1 Datasets 
In order to gather relevant real-world experimental data, we cap- 
tured seencs by tracing OpenGL programs with an OpenGL 
Stream Codec (GLS) [ 131 tracing tool. One frame from each of 
five test scenes is used in this study, two with texture and three 
without texture. These scenes, summarized in Figure 6, were 
rendered at 1024x768 screen resolution with varying tile sizes. 
Pictures of these frames can be found at the end of this paper. 
These scenes were selected due to the wide variation in the avcr- 
age triangle size. This leads to a wide range of overlap factors: 
Figure 6 also shows the exact bounding-box overlap factor for 
these scenes for a variety of tile sizes. These values are derived 
by summing the number of tiles overlapped by the bounding-box 
of each individual triangle and dividing by the total number of 
triangles. At one extreme, Head has an overlap of only 2.4 even 
when there are 12,288 tiles (8x8 tiling). At the other extreme, 
Quake has an overlap of 132 at that same tiling. 

128 64 32 16 8 

I28 64 32 16 8 

Cylhead 2.38 

2.0 

I.5 

Id 

12x 64 32 16 8 

Head 1.67 
I.5 I -l-l / 

128 64 32 16 8 
Tile dimension (in pixels) 

I Pixel Cl Scanline 0 Triangle 

Figure 7: Measured K of software rasterization in Argus. 
The three categories are per-pixel work, per-scanline work 
and per-triangle work. Per-triangle work includes triangle 
setup. 

4.2 Software Model 
The computational overhead of tiling for a uniprocessor software 
renderer was measured by rendering the test scenes through our 
research rendering system Argus. In order to gather accurate, 
tine-grained timing information, Argus was run on top of the full 
machine simulator SimOS [5]. The instrumentation capabilities of 
SimOS allowed measurements to be taken at a per-pixel granular- 
ity without altering timing behavior. 

Figure 7 shows the ratio of rasterization time with tiling to that 
without tiling for each of the test scenes, as measured in Argus. 
The rasterization time is separated into per-pixel, per-scanline, 
and per-triangle categories. Computation time which could not be 
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1.2 

Avg. triangle area 
Figure 8: Comparison of the inefficiency as measured in the 
Argus renderer and as calculated from the software model 
using both measured and calculated overlap. a,,,,,:,, equals 70 
for non-textured scenes. The curves for the two k’s (textured 
and non-textured) are separated. All data is for an 8x8 tiling. 

easily assigned to one of these categories was measured, but was 
less than four percent in all cases and is not included in the figure. 

Processing times for Quake, Flight, and Studio are dominated 
by pixel processing, limiting the effect of overlap. For Cylhead 
and Head, scanline and triangle processing dominate. Note that in 
all scenes, per-pixel processing is independent of the tile size. All 
of the test scenes have significantly better efticiency than their 
overlap alone would indicate. Rendering efficiency is close to 
100% for all scenes with 128x128 tiles. The best efficiency at 
8x8 tiles is I .37 for Quake, which has the highest overlap at 132. 
The worst efficiency is 2.38 for Cylhead, with an overlap of 7.2. 
As expected from the model, the worst efficiency occurs for the 
scene with triangles of moderate size. 

In order to quantify the effect of approximations used in the 
model, we need k, 0 and a for use in the R,, calculation in 
Equation 2. Two values of k for Argus were measured from test 
data, one for non-textured rendering (k = V.3) and one for textured 
rendering (k = 3.6). The overlap is derived in two ways: Ore,,, 
uses data from measured bounding-box overlap, and O,,,,,. uses the 
Molnar-Eyles equation. The average triangle area of each scene is 
used for u. Figure 8 shows R,, calculated with the two overlap 
factors along with the inefficiency ratios measured from Argus. 
Artwu,,,n is the same data shown in Figure 7. Argus,,,, ,,,,,n is the 
same data without the scanline costs. 

Figure 8 shows that each of the derivations of R,,, generate 
qualitatively similar curves. All curves peak at Cylhead and drop 
off sharply on either side of Cylhead. However, the software 
model has significant limitations. Comparing R,dO,,,,J and 
Rd0,.1,) to Avow,, .vcon, notice the large gap between R,,,(O,,,,,) 
and A rwu, .,( ,,,,, for Cylhead. This gap is due to the error from 
the Molnar-Eyles overlap factor approximation (Equation I). 
Comparing Argus,, ,,~nn and Argus,,,, ,,,,, n to R,v,.(O,,,,,), notice the 
deviation of Argus,, rc,,~ from other curves for scenes Studio, 
Flight, and Quake. This gap shows that the lack of a scanline 
processing factor is also a significant source of error in the ana- 
lytical model of Section 3.2. 
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t-Quake ~ 
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128 64 32 I6 8 
Tile dimension (in pixels) 

Figure 9: Observed H for a simulated rasterizer with a single 
triangle of buffering between pipelined triangle and pixel 
processors. Simulated fork = 25. 

4.3 Hardware Model 
In the analytic equations of Section 3.3, we assumed that a hard- 
ware rasterizer consisted of a triangle unit and a pixel unit sepa- 
rated by an infinite amount of buffering. In order to evaluate the 
overhead of tiling for a hardware rasterizer without the assump- 
tion of perfect pipelining, we simulated a system with only a sin- 
gle triangle of buffering between the triangle and pixel processing 
stages. For each triangle, for each tile overlapped by the triangle, 
the number of pixels in the tile which arc covered by the triangle 
is counted. The rendering of these pixels is pipelined with the 
triangle processing for the following triangle, so the maximum of 
k and the number of covered pixels is counted toward the total 
rendering time. 

Figure V shows the ratio of the simulated rasterization time 
with tiling to that without tiling for each of the test scenes for k = 
25. Rendering efficiency is close to 100% for all scenes at 
128x128 pixel tiles. The best efficiency at 8x8 pixel tiles is I .62 
for Studio, with an overlap of 37. As expected from the model, 
the scene with the worst efficiency is again Cylhead at 3.63. 

In order to quantify the effect of approximations used in the 
model of Section 3.3, we need k, 0 and a for use in the Rhw cal- 
culations of Equation 3. The value of k is set to 25, as in the 
simulation. The overlap 0 is derived in two ways: from measured 
data (Or,,,,) and from the Molnar-Eyles equation (Or,,lr). The av- 
erage area of each scene is used for a. Figure IO compares the 
inefficiency ratios measured using the simulator (Simp,,,,) to those 
calculated using Equation 3 (I$,,). Both Rhw(Orrol) and Rhw(Oc,,lc) 
assume the buffer between the triangle and pixel stages can hold 
an unlimited number of triangles. Despite this simplifying as- 
sumption, our simple model predicts correctly that the inefti- 
ciency ratios will peak for scenes with triangle area close to k, as 
in Cylhead. 

It is interesting to understand why Sim,,,,,, is smaller than 
Rhw(O,& for Cylhead but larger for Studio, Flight, and Quake in 
Figure IO. To understand this phenomenon, we must first look at 
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Flight which is missing for R,,,,(O~,,,~) is also due to overlap cal- 
culation error. 

Avg. triangle area 
Figure 10: Comparison of the inefficiency of the simulated 
rasterizer and the inefficiency predicted by the hardware 
model using both measured and calculated overlap. k is set 
to 25 for both the simulation and the calculations. The value 
of ~w,w,1 is 2.5 and the value of k’ is 3670. All data is for an 
8xX tiling. 

how triangles with varying size are handled in each timing. The 
only difference between Simli,,,,u and Rhc(Oru,,,) is the size of the 
buffer space between the triangle and pixel stages. In general, the 
pipeline will stall if the per-triangle stage cannot find a slot to 
store the intermediate data for a new triangle. More buffer space 
means that the pixel stage has a larger window of triangles with 
which to catch up to the triangle stage, thus avoiding some stalls. 
The exact relationship between this buffer size and rendering time 
depends on the distribution of triangles. In general, buffering is 
most effective when triangle area is close to k. For scenes with 
average triangle areas far greater than k, the pixel stage is likely to 
determine total processing time regardless of buffer size. For 
scenes with average triangle areas far less than k, the triangle 
stage is the limiting step, and buffering again has little effect. 

The observations above are experimentally confirmed. With- 
out tiling, the simulated processing time for Quake with finite 
buffering is 1.496 million cycles, while with infinite buffering it is 
predicted to be slightly lower at 1.492 million cycles. The change 
is small because the average triangle area (2784 pixels) is much 
greater than k (25 pixels). If we take tiling into account, when 
Quake is rendered with 8x8 tiles, the simulated processing time 
with a single triangle of buffering is 2.57 million cycles, while 
with infinite buffering, it is predicted to be 1.77 million cycles. 
Using an 8x8 tiling lowers the average effective triangle area seen 
by the rasterizer to 21 pixels, and infinite buffering significantly 
lowers the rendering time. This results in R,,,(O,,,,,) being signiti- 
cantly lower than Sim,,,,,, for Quake (Flight and Studio behave 
similarly). The same reasoning explains the reverse behavior 
observed for Cylhead in Figure IO. Cylhead benefits significantly 
from buffering without tiling, but 8x8 tiling moves the effective 
triangle area below the region where buffering is effective. This 
results in R,,,JO,~,,,) being greater than Sim,i,,,,r for Cylhead. 

The agreement of Sim,,~,,~, and Rha(OrnlJ for Cylhead is coinci- 
dental - the buffering effect described above closely matches the 
error in the Molnar-Eyles overlap for Cylhead. The small peak at 

5 SUMMARY AND DISCUSSION 
In this paper, we have evaluated simple models of the impact of 
overlap on the efficiency of rastcrization in bucket rendering sys- 
tems. The impact is shown to be highest for scenes in which tri- 
angle and pixel work are approximately balanced rather than for 
scenes with very large triangles (and correspondingly high over- 
lap factors). In particular, the impact of overlap in pipelined sys- 
tems is limited to a window of triangle sizes around the design 
point of the system. This in turn limits the magnitude of the ob- 
served overheads at levels far below the raw overlap factors. 

The analytic models used in this paper are quite simple, and 
have a number of limitations. First, a system might have a sig- 
nificant amount of work associated with each scanline. Second, 
we assume that triangle meshing is not maintained through the 
bucket sorting stage. Rasterization accelerators that take advan- 
tage of meshing (e.g., for efficient communication of triangles) 
will suffer in a bucket rendering system if meshing is not main- 
taincd. Even though meshing can be maintained, vertex redun- 
dancy will occur at tile boundaries. Third, triangle and pixel op- 
erations are not necessarily independent. For instance, changing 
the processing order of triangles can affect texture locality and 
thus the cost of pixel processing. Fourth, the possible effects of 
tiling on graphics state change overhead is not modeled by our 
framework. Finally, the cost of sorting triangles into tiles is not 
currently modeled. 

Our experiments focused on a rasterizer with k = 25, a design 
point we consider representative of current and near-future archi- 
tectures. The behavior of systems at the extremes of this design 
space is instructive. A system with k = 0 performs all processing 
on a per-pixel basis. Such a system is insensitive to triangle 
overlap. A system with k = S2 rasterizes a triangle into a tile in 
time independent of the number of pixels covered, as in the Pixel- 
Planes 5 system [4]. The efficiency of this system suffers in di- 
rect proportion to overlap. 

It is interesting to consider the use of current pipelined rasteri- 
zation accelerators, or similar devices, in bucket rendering sys- 
tems. These rasterizers are being designed for smaller and smaller 
triangles. Given that the impact of overlap is greatest at this de- 
sign point, the worst-case overlap factors will decrease. Design- 
ing for smaller triangles would seem to indicate that more chip 
resources should be dedicated to triangle processing. However. 
the cost of pixel processing is increasing rapidly due to features 
such as tri-linear mip-mapping, multi-texturing, and anti-aliasing. 
This decreases the relative impact of engineering the rasterizer for 
these smaller triangles, or even over-engineering it to accommo- 
date overlap. 

It is also interesting to consider the use of rasterization accel- 
erators in parullel tiled rendering systems. Such systems can be 
highly scalable in both triangle rate and pixel rate, but rendering 
efficiencies degrade for two reasons. Inefficiencies due to the 
overlap factor of tiling, as described in this paper, limit the ideal 
speedup of a parallel system over a non-tiled system; this limit 
can be raised by utilizing larger tiles. Parallel tiled systems also 
suffer from spatial and temporal load imbalance. To combat this 
load imbalance, smaller tiles (with higher inefficiencies) may be 
used, or a dynamic load balancing algorithm may be employed. 
We are currently exploring the tradeoffs between dynamic tile 
scheduling and static assignment of small tiles, with the goal of 
creating scalable architectures based on tiled rasterization. 
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APPENDIX 

Worst-Case Overlap Factor 
The expected number of tiles overlapped by two triangles of total 
bounding-box area 2B is: 

o=( “‘?I +( s-q 

The derivative of 0 is 

which is positive for b < B, zero at 6 = B, and negative for b > B. 
Therefore 0 is maximized at b = B, i.e., any two triangles of a 
given total area have maximum expected overlap if their areas are 
equal. This derivation can be generalized to conclude that any set 
of triangles has a maximum expected overlap if all of the triangle 
areas are equal. 

Value of aworst 
In the software model, bucket rendering efficiency is described by 
Equation 2: 

R -kO+a -- SW k+a 

The overlap factor can be estimated with Molnar-Eyles equation: 
I - \2 

o= wpa - 
i 1 s 

The maximum value of R,y, can be derived by substituting the 
Molnar-Eyles overlap into Equation 2 and taking the derivative of 
the resulting expression. The triangle area where R,, is maximum 
is: 

kp+ 
a Wor.sf = 

In the hardware model, bucket rendering efficiency is described 
by: 

R,, =0 O<alk (3.1) 

k0 z- 
a 

=I k’<a 

Equation 3.1 is a monotonically increasing function while Equa- 
tion 3.2 is a monotonically decreasing function. Therefore, the 
triangle area where Rhw is maximum is: 

Value of k’ 
The triangle area at which the per-pixel processing curve and the 
tiled per-triangle processing curve intersects is indicated by k’. 
To find k’, find the triangle area such that: 

kO=a 

Using the Molnar-Eyles equation to estimate the overlap factor in 
the above equation, the triangle area of the intersection point is: 

Value of Rbw as triangle area approaches infinity 
Using the Molnar-Eyles overlap in Equation 2, and taking the 
limit as a approaches infinity, R,, approaches: 

R. =I+9 .\ w 
S2 
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Quake - frame 22
Courtesy  of id Software

Cylhead  - frame 12
Courtesy  of Picture-Level  Benchmarks

Flight - frame  122
Courtesy  of Silicon  Graphics  Reality  Demo  Suite

Head  - frame 12
Courtesy  of Picture-Level  Benchmarks

Studio - frame 12
Courtesy  of Picture-Lcvcl  Benchmarks
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