
A Breadth-First Approach To Efficient Mesh Traversal

Tulika Mitra Tzi-cker Chiueh

Computer Science Department
State University of New York at Stony Brook

Stony Brook, NY 11794-4400
{mitra,chiueh}@cs.sunysb.edu

Abstract

Complex 3D polygonal models are typically rep-
resented as triangular meshes, especially when
they are generated procedurally, or created from
volumetric data sets through surface extraction.
Existing 3D rendering hardware, on the other
hand, processes one triangle at a time. Therefore
triangle meshes need to be converted to individ-
ual triangles when they are fed to the graphics
pipeline. The design goal of such conversion algo-
rithms is to minimize the number of vertices that
are sent redundantly to the rendering pipeline.
This paper proposes a breadth-first approach to
traverse triangle meshes that reduces vertex re-
dundancy to very close to the theoretical min-
imum. With the proposed scheme, no triangle
vertices need to be specified multiple times, bar-
ring exceptional cases. In addition, owing to
a prefetching technique, the on-chip storage re-
quirement for effective mesh traversal remains
small and largely constant regardless of the mesh
size. Our experimental results show that assum-
ing a 64-vertex buffer, the redundant transfor-
mation overhead associated with the proposed
approach is between 1.00% and 7.330/o, for a set
of 8 triangle meshes whose size ranges from 2,992
to 40,000 triangles.

Keywords: triangular mesh, 3D polygonal ren-
dering, breadth-first traversal, prefetching.

1 Introduction

Polygonal graphics rendering systems consist of a geomet-
ric transformation engine and a rasterization engine. Al-
though high-end graphics systems such as SGI’s dedicate

l’crn~~~wn IO mahs drgtlal of- hwd copies ofall or part oftbis work for
pcrs~mal or classnm~~ usz IS granted without fee provided that copies
WC 1m1 made or distributed for profit or commercial advantage and that
copw~ bcw thlh nouce and the fill citation on the first page. To copy
othmwise, to republish. to post on servers or to redistribute to lists,
~c‘quwcs prior specific pcnnission and/or a fee.

I ‘NS Workshop on Graphics Hardware Lisbon Portugal
Copyright ACM 1998 I -5X 11%097-d3818...$5.00

special hardware to both transformation and rasterization,
most low-end PC-class systems only support rasterization in
hardware. As a result, the geometric transformation stage
tends to become the bottleneck of PC graphics pipelines.
Our measurement shows that a 233-MHz Pentium-II procea-
sor can transform about 2OOK triangles per second, while a
Voodoo 3DFX graphics card can rzsterize up to 350K trian-
gles per second even when advanced features such as texture
mapping, fogging, and anti-aliasing are ail turned on. The
motivation of this work is to reduce the geometric trans-
formation load by eliminating redundant vertex processing
during traversal of the 3D model database.

3D polygon models are typically represented as trian-
gle meshes for storage efficiency, especially those that are
generated automatically from programs. However, existing
graphics systems render 3D objects on a triangle-by-triangle
basis. Therefore, conversion from triangle meshes to indi-
vidual triangles is necessary. A naive conversion algorithm
is to send each triangle in the mesh to the graphics sye-
tern independently of each other. If a vertex participates
in X triangles in the mesh, it will be sent X times. This
redundancy not only increases the input traffic of the graph-
ics subsystem, but also imposes additional workload on the
geometric transformation subsystem because each incoming
vertex is processed and transformed independently.

OpenGL, the de facto 3D application programming in-
terface maintains a %-entry stack for vertices that are already
sent to the graphics system. That is, a new triangle can be
constructed by specifying a new vertex together with two
vertices already in the stack. Vertices of a new triangle that
are not currently in the stack need to be specified explic-
itly and thus processed. After a triangle is formed, the new
vertex of the triangle is then pushed to the stack, displac-
ing the oldest stack entry at that time. In addition, GL
provides a swap primitive to exchange the positions of the
stack entries. This vertex storage model is optimized for
triangular strips, where a linear sequence of triangles can
be specified at the cost of one vertex per triangle asymp
totically. For general triangular meshes, such storage mod-
els are inefficient in that a significant percentage of vertices
need to be specified multiple times. It is possible to reduce
the percentage of redundant vertices by employing a more
general storage model than stacks to hold vertices that are
already sent to the graphics system. For example, a large
register set should offer more flexibility in vertex reuse, thus

31

reducing the need of specifying vertices redundantly and the
associated transformation overhead.

Intuitively there is a space/time tradeoff between the reg-
ister set size and the degree of vertex reusing. The approach
proposed in this work attempts to push this space/time
tradeoff to one extreme by minimizing the redundancy at
the expense of storage cost. More specifically, the algorithm
traverses a triangular mesh in the breadth-first order.

Each triangle vertex in the mesh is explicitly represented
exactly once in most cases. The breadth-first traversal sch-
eme has the desirable property that the vertex access pat-
tern is predictable. Consequently, only a small window of
the vertex buffer needs to be present on chip, and perfect
prefetching of the next window is possible. The on-chip stor-
age requirement for efficient mesh traversal is thus relatively
small and is independent of the mesh size.

The rest of this paper is organized as follows. Section
2 reviews previously proposed mesh traversal methods and
related efforts in reducing the overhead of geometric trans-
formation in 3D rendering. Section 3 describes the proposed
mesh traversal method and its software and hardware im-
plementation strategies. Section 4 presents the results and
analysis of a performance study of the proposed approach.
Section 5 concludes this paper with a summary of the re-
search results, and an outline of current work.

2 Related Work

OpenGL [g] supports triangular strips, and the SGI hard-
ware dedicates three registers for vertex storage to improve
its efficiency. GL [9] in addition provides a swap command
to support generalized lriangle strips. Akeley et. al. [l]
implemented a heuristic to convert triangular meshes to tri-
angle strips. Evans et. al. [6] improved upon this basic idea
by proposing a global patchification scheme to detect large
strips of quads and to dynamically triangulate partially tri-
angulated 3D models. Speckmann et. al. [lo] proposed a
faster scheme to create triangle strips by traversing a spe-
cial spanning tree of the dual graph of the input mesh in a
modified depth-first fashion.

Deering [4] proposed an extension of the existing hard-
ware architecture to store vertices in a finite stack, so that
an already visited vertex need not be respecified if it exists
in the stack. This is known as generalized triangle mesh and
it can potentially encode a mesh by specifying each vertex
exactly once. However, Bar-Yehuda et. al. [12] showed that
a stack of size at least 1.6494 is required to render a trian-
gle mesh on n vertices by sending each vertex exactly once.
This suggests that a prohibitively large stack size would be
required for big models. Taubin et. al. [11] proposed an ef-
ficient method to compress the connectivity information by
using just 2 bits per triangle. However, they assumed ran-
dom access to all vertex co-ordinates during decompression
which would require a large on-chip cache memory. Fol-
lowing this work, Chow [3] proposed various algorithms to
construct generalized triangular meshes that would require
average 0.67t vertices for t triangles using only 16 buffer
entries. The theoretical minimum is 0.5t vertices since n
vertices can form at most 2n triangles.

Denny et. al. [5] presented a completely different ap-
proach of encoding a straight-edge triangulation as a per-
mutation of its point set, and decoding it efficiently. But
this algorithm is more of theoretical interest as real models
might not have regular triangulation.

This work differs from all the work done so far in that
the proposed scheme traversed the mesh in the breadth-first

order, and as a result each traversed triangle requires at
most one explicitly represented vertex. In addition, effective
prefetching significantly reduces the amount of on-chip stor-
age required, and is possible because of predictable access
patterns. Both [3] and [6] chose to use small buffers due to
hardware limitations. Francine et. al. [6] showed that large
buffers only gave minimum improvement in vertex reuse.
We show that it is possible to reuse vertices effectively us-
ing a relatively large buffer provided that the accesses to
the memory is sequential. The sequential access pattern to-
gether with the alternate encoding scheme makes it possible
to specify 0.52t vertices for a triangular mesh of t triangles,
which is very close to the theoretical minimum.

3 Efficient Mesh Traversal

3.1 Breadth-First-Traversal

The goal of mesh traversal is to enumerate all the triangles
in a given triangle mesh, and to send them to the graphics
pipeline. By carefully traversing through the mesh, one can
reuse the vertices previously sent into the graphics subsys-
tem to enumerate subsequent triangles, thus avoiding the
redundant vertex problem. The efficiency of mesh traver-
sal therefore is strongly dependent on the storage interface
that the graphics subsystem exposes to the mesh traversal
program.

In earlier works, the mesh traversal program assumed a
stack-like storage interface so that each new triangle is con-
structed using a new vertex, which is explicitly represented,
and the last two vertices sent into the graphics pipeline.
These mesh traversal schemes visit the vertices in the mesh
in the depth-first order, since it works well with the stack
storage model. However, depth-fist traversal invariably
leads to significant redundant vertices, because the periph-
ery vertices of the strips created by depth-first traversal can
not be easily reused and thus need to be specified redun-
dantly. The traversal algorithm we proposed, called BFT
(Breadth-First Traversal) traverses the triangle mesh in the
breadth-first order. The performance goal is to explicitly
specify only one new vertex per enumerated triangle and no
vertex needs to be specified or processed more than once
even when it participates in multiple triangles.

Given a triangle mesh, BFT first picks a starting tri-
angle, whose edges form the current frontier. Formally a
frontier is an ordered sequence of vertices. Each frontier
forms an imaginary polygon. At each iteration, BFT es-
sentially enumerates all the triangles that have not been
accessed previously and that share an edge with the imag-
inary polygon corresponding to the current Irontier. More
concretely, BFT visits each edge of the current frontier, and
incrementally constructs the next frontier. For each edge,
BFT attempts to pair it with a third vertex to represent a
triangle in the mesh. In certain cases, no triangle can be
formed from the current edge. Such edges are called null
edges.

The third vertex used in enumerating a triangle could be
explicitly represented in terms of its coordinates, or some
vertex that appeared previously and thus could be repre-
sented implicitly as a pointer into the current frontier or
next frontier buffers. These pointers are specified as off-
sets with respect to the active cursor8 of these two buffers.
For the current frontier buffer, the active curaor is the fist
vertex of the edge that BFT visits currently. For the nezt
frontier buffer, the active cursor is the last vertex added to
the next frontier buffer. In general, the nezt frontier con-

32

7
II ’ I -\ Previous Frontier

IL.-- 11 ‘-
\

Next Frontier

1425361

15 6 51

Command Sequence

1. no-copy, non-null, new vertex 7, temporary-copy, no-next tri

4. no-copy, non-null, new vertex 8, no-copy, next-triangle, new vertex 9, no-copy,no next tri

2. no-copy, null

5. permanent copy, non-null, current frontier pointer 2, permanent-copy,no-next tri

3. no-copy, null

6. permanent-copy, non-null, next frontier pointer 2, no-next tri

Figure 1: An example mesh that illustrates how BFT enumerates triangles in the mesh by visiting each edge of the current
frontier and constructing the next frontier. The current frontier in this case is the vertex sequence (1, 4 , 2 , 5 ,3 ,6), shown
in bold. Vertex 1 is duplicated to maintain continuity. The triangles enumerated at this level are e, f, g, h, and i. Tkiangies
e, f, and g introduce new vertices whereas h refers to an entry in the current frontier, and i refers to an entry in the next
frontier. Since Vertex 7 is only needed at this level, it is temporarily added to the next frontier but is never written back
to the next frontier buffer. This is a case of no copy. Triangle k is a corner triangle, as it can not be covered by BFT. The
command sequence and the status of the current and next frontier buffers are also shown.

sists of vertices from the current frontier and new vertices
that are represented explicitly. A vertex is added to the nezt
frontier if and only if there is at least one un-visited triangle
that uses this vertex.

After visiting the last edge of the current frontier, BFT
starts the next level by converting the next frontier into
the current frontier, and initializing the next frontier to a
null sequence. To maintain continuity, the first vertex of
the first edge of the current frontier is duplicated as the
second vertex of its last edge. BFT continues this traversal,
level by level, until it reaches the level for which the nezt
frontier remains null when BFT hits the end of that level.
There is no guarantee that the BFT algorithm will cover all
the triangles in a given triangle mesh. Those triangles that
can not be enumerated by BFT are called corner triangles
and need to be explicitly represented with its three vertices.
However, corner triangles are very rare in triangle mesh of
a real object.

For an input mesh, BFT first pre-processes it to find
out the vertex visiting order and the current and nest fron-
tier3 at each level, and encodes the mesh into a command
sequence appropriately. At rendering time, application soft-
ware sends the command sequence to the the graphics en-
gine, which constructs triangles and maintains the current
and next frontier buffers according to the instruction en-
coded in the command sequence. Figure 1 shows the instruc-
tions sent to the graphics engine when the current buffer
consists of vertices 1, 4, 2, 5, 3, 6. Each command in the
command sequence rorrcsponds to an edge in the current
frontier and includes tllc following:

1. status of the act.ivc cltrsor vertex

(a) permanent ~‘ol~y - copy this vertex to the next
frontier permanently

2.

(b) temporary copy- copy this vertex to the next fron-
tier temporarily

(c) no copy- never copy this vertex to the next fron-
tier

triangle(s) sharing the edge formed by the current ver-
tex and its adjacent vertex

(a) null edge - no triangle associated with this edge

(b) non-null edge - triangle(s) associated with this
edge

i. the third vertex of the first triangle
A. current frontier pointer <pointer>

B. next frontier pointer <pointer>

C. new vertex <coordinates> <normals>
ii. status of the third vertex

A. permanent copy - copy this vertex to the
next frontier permanently

B. temporary copy - copy this vertex to the
next frontier temporarily

C. no copy - never copy this vertex to the
next frontier

iii. next triangle or no next triangle depending on
whether there is any more triangle associated
with this edge

If no future triangle is going to reference a vertex, the
vertex need not be copied to the nezt frontier. This cor-
responds to the no copy case. If some future triangles at
the current level but not following levels need to reference
a vertex, the vertex is temporarily copied to the next fron-
tier in the sense that it is removed when BFT advances to
the next level. Finally, if a vertex is going to be referenced
by triangles at future levels, it is permanently copied to the

33

nezt frontier and stays there as the nezt frontier is converted
into the current frontier at the next level. This requires 1
bit for the no-copy case and 2 bits for either permanent copy
or temporary copy.

Next, a l-bit flag specifies whether there is any triangle to
be constructed from the current edge. If the current edge is
associated with at least one triangle, then for each triangle,
a third vertex needs to be specified. Whether the third
vertex is explicitly represented, or implicitly represented as
pointers to the current or next frontiers, is distinguished by
a a-bit flag. When a vertex explicitly represented, it takes 24
bytes to specify its coordinates and normal vectors. When
it is implicitly represented as a pointer to the current/next
frontier, 5 bits are rcquirc.tl because we assume the active
windows of both frontier buffers have 32 entries each. In the
latter case, a vertex that participates in multiple triangles
only needs to be explicitly represented once, which leads to
reduction in input traffic to the graphics system as well as
in redundant vertex transformation. The application also
needs to tell the graphics engine, by using 1 or 2 bits, as
to whether the third vertex should be copied to the future
frontier and how. Note that each edge in the next frontier
could be associated with 0, 1 or multiple triangles. Hence,
one bit is required to specify whether there are any more
triangles that are associated with the current edge.

BFT achieves the goal of specifying only one vertex per
triangle in most cases. Vrrtices that are visited previously
are referenced as indicts into the current frontier and nezt
frontier buffers. Provided that we have infinite space for
these two buffers, the only vertices that need to be specified
redundantly are the vertices of the corner triangles. Another
overhead of BFT is the bits required to specify null edges,
which is specific to BFT because BFT has to visit every
edge in the current frontier. The original version of BFT
did not distinguish between permanent copy and temporary
copy when putting a vertex into the nest frontier. As a
result, about 50% of the edges visited were null edges. With
temporary copy, the percentage drops to 20010, because every
vertex in the current frontier is guaranteed to contribute to
at least one triangle in the current or following levels.

3.2 Prefetching of Active Frontier Window

The size of the current and next frontier buffer grows in pro-
portion to the maximum width of the breadth-first traver-
sal tree. For large triangle meshes, the space requirement
of these two frontier buffers for supporting BFT could be
too large to prevent them from being maintained on chip,
thus leading to longer execution time than expected due
to off-chip memory access overheads. Fortunately, because
BFT visits the vertices in a highly predictable way, perfect
prefetching for the frontier buffers is possible.

The key observation is that if the third vertex that pairs
with the current edge LO form a triangle is not represented
explicitly, it is in most cases a vertex that falls within a cer-
tain distance from the active CUTJOT of the current or the
next frontier buffer. As a result, such vertices are repre-
sented as offsets from the active cursor into the current or
next frontier buffer. IJor t,he current frontier, the third ver-
tex could only appear after the active cursor. For the next
frontier, the third vertex could only appear before the active
cursor. Because of this access pattern, the only portion of
the current/next frontier buffers that need to be present is a
small percentage of the total frontier buffer size. Moreover,
the fact that the active cursors of the frontier buffers are
known at run time, implies that its surrounding windows of

Current
Frontier
auf&r

Aelive Windmu

Figure 2: While BFT traverses through the current frontier
to enumerate triangles, only the active windows of the cur-
rent and next frontier buffers need to be kept on chip. Every
time BFT advances to the next edge in the current frontier,
the active window of the current frontier also advances by
one vertex entry, and the active window of the next frontier
can advance by 0, 1, or more entries.

a fixed size could be prefetched perfectly.
Whereas the entire current and next frontier buffers are

assumed to reside in off-chip memory, the active windows
of the current/next frontier buffer are each organized as an
on-chip circular FIFO queue, as shown in Figure 2. Every
time the active cursor of the current frontier moves forward,
the vertex following the active window is brought in from
the current frontier buffer in off-chip memory and replaces
the oldest entry in the window. When a vertex is added
to the next frontier, it replaces the oldest entry in the next
frontier’s active window. If the replaced entry is marked as
permanent copy, it has to be written back to the off-chip
next frontier buffer first. For temporary copy entries, the
write back is not necessary.

After visiting an edge in the current frontier, BFT brings
in a vertex from the current frontier buffer, and writes back
one or multiple vertices to the next frontier buffer. Ev-
ery time a triangle is constructed, the third vertex needs
to be transformed tist if it is explicitly represented, before
it could be added to the next frontier buffer. The vertices
in the current frontier buffer are already transformed by
construction. Then the resulting transformed triangle goes
through the rasterization stage. The time required for pro-
cessing triangles generated on an edge visit is expected to
be longer than the time for vertex read/write accesses to
the off-chip current/next frontier buffers. For example, the
time to transform and rasterize a triangle is on the order of 1
psec, whereas reading and writing a vertex (24 bytes) should
take less than 500 nsec. Therefore, the read/write delay to
maintain active frontier windows is completely masked. The
only scenario in which this is not true is when the current
edge is a null edge. Fortunately our measurements in the
next section show that null edges rarely occur in bursts and
therefore can not result in serious backlogs.

Maintaining only frontier windows rather than the entire
frontier buffers on chip incurs a performance overhead. That
is, when the third vertex falls out of the frontier window, it
can not be represented implicitly via a pointer. Such vertices
are called lost vertices and need to be explicitly represented,
thus incurring redundancy.

4 Performance Evaluation

4.1 Datasets

We choose eight 3D mesh datasets to evaluate the perfor-
mance of BFT. Six of those datasets are from Avalon 3D

34

No. of Vertices No. of Triangles
plane 1508 2992

skyscraper 2022 3692
triceratops 2832 56G0

power lines 4091 8966
honda 7106 13594
dodge 8477 16646
figure 9999 20000
skull 19999 40000

Table 1: The characteristics of the eight triangle meshes
used in this study.

plane
skyscraper
triceratops
power lines

honda
dodge

figure
skull

Requirement
(Bytes)

3288
3120
5400
2664
1848
4416
5448

Dataset Max Memory Max Frontier
Size

(no of entries)
128
121
214
102
71
177
218

1

16140 671

Table 4: The off-chip storage requirement for the test
meshes under BFT, which is proportional to the width of
the breadth-first tree.

models, and two (figure and skull) are scientific datasets.
These datasets vary widely in the numbers of vertices and
triangles. Table 1 shows the characteristics of the datasets.
Our preprocessing algorithm performs breadth first traversal
of the triangle mesh to find out the traversal order and the
current and next frontier for each level. The pre-processing
stage takes only one pass through the dataset.

1 Dataset)I 1 1 2 1 3 1 4 1 5 1 > 5 1
plane II 78.41 I 13.80 I 6.72 1 1.08 I 0.00 I 0.00 1

3kyJCTUpeT
triceratops

L

power lines
honda
dodge

figuTe
8kull

78.67
84.68
34.44
84.88
91.53
87.60
92.89

4.2 Results aud Analysis

0.00
0.00
4.31
0.00
0.00
0.09
0.05

0.00
0.00
25.46
0.00
1.03
0.11
0.00

Since the major goal of this work is to minimize the overhead
due to redundant vertex transformation, Table 2 shows the
additional transformation cost for the eight test meshes un-
der BFT. The minimlm~ number of vertex transformations
required is the same as the number of vertices. BFT comes
very close to this minimum, with the additional overhead
ranging from 1% to 7.33%. There are two sources of re-
dundant vertices: one is due to corner triangles, which are
triangles that can not be covered by BFT, and the other
is due to lost vertices, which are vertices that can not be
reused because they fall out of the active window of the
current/next frontiers. En& corner triangle costs three re-
dundant vertices.

The other consideration for efficient triangle mesh traver-
sal is to reduce the input traffic volume to the 3D graphics
pipeline. Table 3 shows the number of bytes required to tra-
verse each test mesh. ‘t’he Vertex Cost column represents
the cost to transfer the coordinate information for the ver-
tices in a mesh. This is equal to the number of vertices mul-
tiplied by ,24. Each c‘or’ncr triangle costs an additional 24x3
= 72 bytes. Each lost vertex costs an additional 24 bytes.
The Pointer Cost column represents the cost due to index
pointers when the third vertex is referenced from the active
windows of the current/next frontier buffers. If the size of
each active window is S, the number of bits per pointer is
log, S. The Command Cost is the cost spent in instruct-
ing the graphics subsystem how to enumerate triangles and
construct the next frontier while traversing the current fron-
tier. Each null edge costs a bit to indicate that it is not
associated with any triangle. The null edge cost is specific
to BFT. Since the olltput of a mesh traversal scheme is to
provide the graphics subsystem a sequence of triangles, the
best way to evaluate a traversal scheme’s space efficiency is
to measure the numbrr of bytes required to represent which
three vertices constitute each triangle in the mesh. The last
column in Table 3 provides exactly this measllre for BFT.
The average per-triangle uvrrhcnd for specifying the compo-

Table 5: The distribution of the length of null edge bursts.
Each column corresponds to one length. Each table entry
represents the percentage of null edge bursts in a data set
with a certain length.

nents of each triangle is between 1.03 to 1.83 bytes.
A major concern with breadth-fist mesh traversal sch-

emes is the size of the frontier buffers, although the frontier
buffers are assumed to be reside in off-chip memory. Ta-
ble 4 shows the maximum frontier size for the test meshes
in terms of the number of vertices and the actual number
of bytes. Because the next frontier buffer is dynamically
growing while the useful part of the current frontier buffer
is dynamically shrinking, the number of bytes required for
a mesh reported in Table 4 is the maximum of the sum of
the sizes of the next frontier buffer and the useful part of
the current frontier buffer. The sizes of the frontier buffers
do not appear to be proportional to the size of the triangle
mesh.

The key claim of the proposed BFT scheme is that at
any point in time, only a small window of the current/next
frontier buffers is needed to allow vertex reuse. As a result,
the on-chip window storage requirement is small and is in-
dependent of the input mesh size. Figure 3 demonstrates
that this is indeed the case by showing the third vertex hit
ratio versus the active window size for the current frontier
buffer. If the window size is N, and the third vertex of a
triangle to be enumerated is located within N entry from
the active cursor of the current frontier, such a third vertex
reference is considered a hit. The hit ratio is calculated by
using the total number of vertex references that fall in the
current frontier buffer as the denominator.

At a window size of 128 entries, close to 100% hit ratios
are observed for all 8 test meshes. 64-entry window also
gives very high hit ratios for all test meshes, better than
97%. The vertex reference hit ratio for the next frontier

35

Table 2: The amount of redundant transformation overhead for the test meshes under BFT. The percentages are calculated
with respect to the minimum number of transformations required.

Dataset

plane
skyscraper
triceratops

power lines
honda
dodge
figure
skull

Vertex Corner Lost Pointer
cost Triangles Vertices cost
36192 0 1704 891
48528 0 720 1135
679G8 0 2544 1703
98184 4032 300 3036
170544 0 2832 4016
203448 0 9432 4996
239976 0 13560 5497
479976 0 4776 12375

Command Nllll Per-Triangle
cost Edges Overhead
2395 140 1.71
2815
1415
8257
10738
12830
15341
30276

Table 3: The bandwidth overhead in numbers of bytes for the test meshes under BFT. Th e as co umn shows the per-triangle 1 t 1
space overhead.

‘;; 85
b
al 80

5 75
.z
I 70

65

60

55
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256

Number of current buffer entries Number of current buffer entries

Figure 3: ‘The vertex reference hit ratio versus the size of the active window for the current frontier buffer, for the eight test
meshes. Each hit ratio ~ueasurement for a given window size, S, represents the percentage of all vertex references to the
current frontier buffer th;lt are withill S entries from its active cursor.

36

2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
Number of next buffer entries Number of next buffer entries

Figure 4: The vertex reference hit ratio versus the size of the active window for the next frontier buffer, for the eight test
meshes. Each hit ratio measurement for a given window size, S, represents the percentage of all vertex references to the next
frontier buffer that ore within S entries from its active cursor.

buffer is similarly defined and exhibits almost identical be-
haviors, as shown in Figure 4. Tllese curves demonstrate
that there is strong spatial locality among the three vertices
that constitute a triangle, and the degree of this locality, as
reflected by the window size required to attain a fixed hit
ratio, is independent of the mesh size. These measurements
show that a total of 128 entries 64 for the current fron-
tier and 64 for the next frontier - is sufficient to attain high
vertex reuse.

Small active frontier window size is only possible if prefet-
thing is effectual. As explained earlier, the only scenario in
which the data access delay associated with active window
management can not be masked is when BFT encounters
a consecutive burst of null edges. Fortunately, most of the
null edge burst is of length 1, as shown in Table 5. That is,
null edges occur in isolation most of the time. This proves
that the off-chip memory accesses necessary for maintain-
ing the active windows can effectively overlap with triangle
processing.

The performance of BFT, in terms of amounts of redun-
dant transformation, drprnds on the choice of the triangle
that starts the traversal. Table 6 shows the comparison
of amount of redundant transformation among four possi-
ble choices of the start,ing triangle. The Center approach
chooses the triangle iu tile renter of’ the mesh. The Maxi-
mum and Minimurn ~~pproachcs cl~oose the t,riangle whose
center has the largest alld smallest magnitude. The Maxi-
mum Adjacency appro:lch chooses the triangle with max-
imum connectivity. Thcrc is no clear winner among the four
choices, although the performance difference among them
could be significant. RIorc work 011 how t,llc choice of the
starting triangle affects BF‘T’s performance is Ileeded.

Finally, Table 7 sl~ows the pre-proc-cssing time required
to convert a triangle mesh into the BFT command sequence.
These measurements arr taken from a PentiumPro 200-MHz
machine under FreeBSr) TJnix. This Ineasurcment is of inter-
est because in crrt,ain casts on-linr conversion is required,
e.g., displaying 3D mod~~is download& f’rorn the network.

In these cases, the pre-processing time should not out-weigh
the saving from reducing redundant vertex transformation.

5 Conclusion

The original motivation of this work was to reduce the ge-
ometric transformation overhead in 3D polygon rendering.
This is particularly important when geometric transforma-
tion is performed by software running on general-purpose
CPU, as in current PCs. Because an increasing percent-
age of polygon models in 3D applications are represented
as triangle meshes, an efficient mesh traversal scheme that
minimizes redundant vertex transformation significantly re-
duces the overall transformation load. This paper describes
an efficient mesh traversal scheme in detail and its evalu-
ation. The key insight is that vertex redundancy during
mesh traversal can be completely eliminated if there is suf-
ficient buffer space in the graphics pipeline, and as long as
the vertex access pattern is predictable, the size of the in-
dispensable portion of the vertex buffer can be kept small
and fixed. Based on this insight, the proposed approach
is breadth-first rather than depth-first traversal. Our ex-
periment shows that the mesh traversal scheme proposed in
this paper reduces on the average the redundant transfor-
mation to less than 8% of the transformation work inherent
in the 3D datasets. Moreover, through prefetcbing, the pro-
posed scheme achieves this performance level using only a
64-vertex buffer, regardless of the input mesh size.

This work is performed in the context of a parallel 3D
graphics engine project called Sunder, which integrates state-
of-the-art PC graphics cards with gigabit/set system area
network technology. We are currently implementing the
proposed mesh traversal scheme in Mesa, a public-domain
OpenGL-compatible polygon rendering tool. In addition,
we are exploring several variants of the proposed approach.
First, in this work we assume that the 3D dataset is pre-

37

p;ttaset Cente; Minimum Maximum Maximum Connectivity

plane

L..

72(4.77) 47(3.12) 99(6.56) 71(4.71)
skyscraper 63(3.12) 91(4.50) 59(2.92) 30(1.48)
triceratops 130(4.59) 121(4.27) 141(4.98) 106(3.74)
powrr lines 298(7.28) 217(5.30) 182(4.45) 300(7.33)

honda 97(1.36) 112(1.58) 63(0.88) llB(1.66)
dodge 414(4.88) 340(4.01) 331(3.90) 393(4.63)
fi,qure 545(5.45) 537(5.3?) 499(5.00) 565(5.65)
.skull 261(1.30) 330(1.65) 345(1.73) 199(1.00)

Table 6: The impact of different choices of the starting triangles on the amount of redundant transformation. The numbers
in the parenthesis are percentages with respect to the minimum number of transformations.

Dataset Preprocessing Time (set)
plane 0.03

skyscraper 0.10
triceratops 0.05

power lines 0.15
honda 0.18
dodge 0.45
figure 0.23
skull 1.21

Table 7: The preprocessing time of thr 13FT scheme to
convert a triangle mesh into a command sequence for the
test meshes. Measurments are taken from a PentiumPro
200-MHz machine running FreeBSD UNIX.

parsed, and therefore the “compilation” time is ignored. In
practice, 3D data sets could be downloaded from the net-
work in real time such as VRML files. Therefore efficient
run-time conversion is esserltial for the graphics system to
employ the proposed scheme in this case. Second, in this
work we assume that the entire triangle mesh need to be
traversed during rendering. However, in architectures that
support viewpoint-directed model traversal [2], this may not
be the case. However, combination of viewpoint-directed
traversal with efficient triangle enumeration is critical to re-
duce the overall geometric transformation overhead.

Acknowledgement

This research is supported by an NSF Career Award MIP-
9502067, NSF MIP-9710622, NSF IRI-9711635, a contract
95F138600000 from Community Management Staff’s Mas-
sive Digital Data System Program, as well as fundings from
Sandia National Laborat,ory, Reuters Information Technol-
ogy Inc., and Completer Associates/Cheyenne Inc.

REFERENCES

[l] K. Akeley, P. Haebcrli, and D. Burns. Tomesh.c: C
Program on SGI Developer’s Toolbox CD, 1990.

[2] Tzi-cker Chiueh. IIeresy: A Virtual Image-Space 3D
Rasterieation Architecture. In Proceedings of ACM
SIGGRAPH/Eurograplncs Graphics Hardware Work-
shop, August, 1997.

[3] Mike. M. Chow. Optimized Geometry Compression For
Real-Time Rendering. In Proceedings of the IEEE Vi-
sualization, 1997.

[4] M. Deering. Geometry Compression. In SIGGRAPH 95
Conference Proceedings.

[5] M. 0. Denny and C. A. Sohler. Encoding A Triangula-
tion As A Permutation Of Its Point Set. In Proceedings
of the Ninth Canadian Conference on Computational
Geometry, August 1997. (Electronic proceedings avail-
able at http://www.dgp.toronto.edu/cccg/cccg97)

[6] F. Evans, S. Skiena, and A. Varshney. Optimizing T’ri-
angle Strips For Fast Rendering. In Proceedings of the
IEEE Visualization, 1996.

[7] S. Mohmr, M. Cox, D. Ellsworth, and H. Fuchs. A Sort-
ing Classification Of Parallel Rendering. IEEE Com-
puter Graphics and Applications, 14(4):23-32, July
1994.

[B] Jackie Neider, Tom Davis, and Mason Woo. OpenGL
Programming Guide. Addison-Wesley, June 1995. ISBN
0-201-63274-B.

[9] Silicon Graphics Inc. Graphics Library Programming
Guide. 1991.

[lo] B. Speckmann and J. Snoeyink. Easy Triangle
Strips For TIN Terrain Models. In Proceedings of
the Ninth Canadian Conference on Computational Ge-
ometry, August 1997. (Electronic proceedings available
at http://www.dgp.toronto.edu/cccg/cccg97)

[ll] G. Taubin and J. Rossignac. Geometry Compression
Through Topological Surgery. IBM RC-20340, 1996.
(available at http:// www.research.ibm.com/vrml/bina-

ry)
[12] R. Bar-Yehuda and C. Gotsman. Time/Space Trade-

offs For Polygon Mesh Rendering. ACM Transaction
on Graphics, 15(2):141-152, April 1996.

1131 T.R. Halfhill. Beyond Pen&m II [IA-641. BYTE (In-
ternational Edition), 22(12):80-86, December 1997.

38

