
PARALLEL FIXED POINT DIGITAL DIFFERENTIAL
ANALYZER

Ramon P. Molla, Ricardo Quiros, Javier L1uch, Roberto Vivo.
Seccion de InformMica Grafica.

Departamento de Sistemas Informaticos y Computacion.

ABSTRACT

Universidad Politecnica de Valencia .
Camino de Vera, 14

46071 Valencia SPAIN
e-mail: rmolla@tierra.upv.es.rquiros@dsic .upv.es

Tel.+(34) 6 3877351
FAX: +(34) 6 3877359

Two main serial algorithms to scan convert straight lines have been
proposed: Bresenham and Digital Differential AnalyzeLThe Bresenham
algorithm has became a standard because of integer arithmetic . Many
theoretical solutions have been proposed to parallelize Bresenham algorithm
but its implementation is difficult. So most parallelizations take advantage of
repeated patterns, massive parallel computers and so on. Sequential Digital
Differential Analyzer shows better peformance than Bresenham if fixed point
arithmetic is used. This algorithm can be pipe lined and parallelized. It is
easily hardware implemented and scalable. Hardware cost is linear with speed
up. Utilization is nearly 100% and hardware waste is low.

KEY W ORD S : Digital Differential Analyzer, Line drawing, Fixed Point
Arithmetic, paralIelization , graphic coprocessors.

http://www.eg.org
http://diglib.eg.org

INTRODUCTION.

Scan conversion of straight line segments in a frame buffer is an important problem to solve
in any computer graphics system. Although Bresenham's algorithm [l] can generate line segments
at rates of more than one million pixels per second on many graphics workstations, many applications
require even higher speeds. Since thi s algorithm is quite optimized, parallelization becomes the best
solution for perfomance increase . Several methods to speed up Bresenham's a lgorithm have been tried
using parallelization techniques [2][6], or by trying to take advantage of the repeated patterns that the
algorithm generates [3](4) or by mixing both methods [5) .

In the solutions given above, speed up can be constrained to three main problems:

·the dependencies graph avoids short steps or
·the average number of active steps is reduced.
'when the ratio (amount of operators) / (speed up) is not linear, the hardware costs can be
prohibitive if speed up is high due to the amount of operators needed .

When we try to obtain a parallel version of an incremental algorithm such as Digital
Differential Analyzer (D.D.A.), we can see that the number of operators has a linear dependence
with the speed up but each operator is complex since floating point arithmetic is used . This is the
main reason why this algorithm has been inadequate for hardware implementation. So the key matter
is to diminish the hardware and timing cost of each operator. This can be done if calculations use
fixed point (F .P.D.D.A.) instead of floating point arithmetic (7) .

ALGORITHM DESCRIPTION

Let's suppose that we have sampled a point Pi (xi, yi) and the next n consecutive line
points are to be drawn. Assuming without loss of generality that line slope m belongs to [-1, 1),
the nex t n line points can be calculated by

P'+I = (Xj+ I , Yj+m);
P j+2 = (Xj+2, Yj+2 *m);

As in Bresenham ' s algorithm, an Initializa tion Phase (LP.) is neccesary to detect the scan
direction (X swept when the line slope m E [- 1,1] or Y swept when m E er-I ,-co] lJ r 1 ,cc])) . After
obtaining the scan direction, this phase uses a divider to calculate the slope m and some registers
to save initial points from where to start line drawing in the next phase . In thi s parallel version ,
an extra array of adders and wired shifters is needed to calculate j* m for every F.P.D.D.A.
operator.

In the Loop Phase n F.P.D.D.A. operators are needed to calculatc the next n line points
in paralel. So the operator j would have to

Addj to X j

Multiply j by m .

Addj+m to Y j •

The last point calcula ted Pj ' n' is used as Pi in the next loop step. Whcn the las t point sent
to video memory is detected , the Loop Phase is finished and another linc drawing can be
achicved .

A block diagram o f this algorithm can be ana ly zcd In Fig . I. A parall c l pseudocodc
Implementation of the described method is given be low:

16

Procedure PFPDDA (int XO, YO, Xf, Yf, color)
BEGIN

CONST ONEFP I IliA 1024 frame buffer, need I I decimal bits to avoid excessive errors.
INTEGER Ax, Xinic, Xfinal;
LONG INTEGER Ay, Yinic, m , slope[nJ, x[nJ, y[nJ;

Ax = Xf - XO;
Ay = (Yf - YO) « ONEFP; Iffhis shift translate from Integer format to Fixed Point Format

IF XO > Xf
THE Xinic = Xf; Xfinal = XO ;

Yinic = (Yf + 0.5) « ONEFP;

ELSE Xinic = XO; Xfinal = Xf;
Yinic = (YO + 0.5) « ONEFP;

ENDIF

IISlope Calculation.
m = Ay I Ax; //Integer division.

IlMultiple Slope Calculation .
ParFor i=O TO n-I IlPara leII FOR of n operators.
BEGIN slope [i] = i*m; ENDParFo r

plot (Xinic, Yinic, color) ;

IlParaleII Loop Phase
WHILE Xinic < Xfinal
BEGIN

E 'D
END

PARALELL IIFPDDA operators
BLOCKl
ParFor i=O TO n-I
BEGIN
xli] = Xinic + i;
y[i] = Yinic + slope[iJ;
ENDParFor
Yinic = y[n- I);
Xinic = x[n- I);
ENDBLOCKl

BLOCK2 IIQueue Manager. Serializer.
FOR i=O TO n-I
IF xli] <> Xfinal
THEN plot (x[i], y[iJ, color) ;
ENDIF

ENDBLOCK2
ENDPARALELL

IMPLEMENTATION

Init ia liza tion P hase (LP.)

Let's do k = log2 (max (N,M», where N and M are the length and width of a frame
buffer sized in pixels .

When we want to see a real scene on the screen, a projection of all objects is made

SCOn Direction Slope Colc\kl lbn
Muttiple Slope
ColaAotion F.P.DDA Operal""

XO. Xf. YD. Yf I I M.. Ay I DMDER I m 1
I I l I

~ -CD-
Cuouo -. ~ r- Me,.,...,

~ GJ-

~ -cb-
Xinic. Vinic. Xfinol I

Fig. I . P.F.PDD.A. Block Diagram

towards the screen plane. Intersections with the screen plane are floating point numbers. To
represent a line that joints two intersection points, a round operation must be done to translate
line ends to the screen integer coordinates since a raster is a discrete device. This round operation
introduces an error of 0 .5 pixels in the worst case. But if k+ I decimal bits are necessary to
perform F.P.D.D.A. [7], this round operation can be shifted to the least significative bit, reducing
the starting error 2 k+ l times and producing a more accurately line representation. This phase , as
shown in Fig. I , has three well defined parts:

'Scan Direction.
'Slope Calculation.
'Multiple Slope Calculation.

Scan Direction.

Both Bresenham and D.D.A. algorithms have a similar LP. In a first step, width (L»() and
height (b.y) arc obtained. The difference between them points to the scan direction . Using this
direction, initial points in the next phase are got easily .

From the beginning of this phase until this point, both Bresenham' s and DD.A. have
the same time delays .

Since Bresenham ' s algorithm need East increment, North-East and error function Fxy, the
hardware requirements are bigger than D.D.A. at a first glance because more latches and adders
are needed. Nevertheless Bresenham's time delay is increased only in one addition since many
extra operations can be overlapped.

All adders , buffers and buses used in this part are 2k+ I bits wide . Assuming that a cicle
IS one gate delay, the drawing direction can be calculated in less than 30 cycles aproximately
asuming k= 12 (2048x2048 frame buffer).

Slope Calculation.

Since D.D.A. needs the line slope to work, an integer division must be performed to
obta in it. This is the main drawback of the D.D.A. algorithm because it increases LP.
considera bly .

The integer divi sion has a dividend of 2k+) bits and the divisor k bits. The result is k+1
b its wide. Assuming no acceleration, k+) adders of k bits arc needed to perform thi s operation .

M llltiple S lope Calculation

As it has been seen before , in every step during the Loop Phase, the j opera tor must
multi ply j by m in order lo add it to Pi and obtain the y coordinate of Pi"i' Since both j and m are

18

constant, an improved version could do this product and store it In a register. In this case a
multiplication would be saved in each step during the Loop Phase

For this reason, in this parallel version , an extra array of adders and wired shifters are
used to calculate j*m for every D.D.A. operator.

As it can be seen in [7], these multiplications can be done using only wircd shifters and
adders if fixed point arithmetic is used in order "to obtain an Accelerated Multiplication Circuit
(A.M.C.).

If 1 = logln), this multiplier can be accomplished using less than 2'·1 adders , that is to
say, nl2 adders in the worst case. Temporal cost is 1-2 additions if 1~4 , I-I for 3~/~2 , and 0 fo r
1=1.

Loop Phase.

This part is called Loop Phase because a paralel loop of n F.P.D.D.A. operators works
to obtain n consecutive line pixels. This phase is composed of two main concurrent blocks that
work in a pipe lined fashion :

·F.PDD.A. operators.
'Queue Manager.

F.PDD.A. Operators (F.O.)

Input data for this phase is the line slope array of registers . The i-th element of this array
stores the value i* m and is assigned to the i-th Y -operator. These values were calculated during
the MSC phase by the multiplier. Other input data is the first line point to draw. Its coordinatcs
are stored in two registers called Xinit and Yinit. The X coordinate of the last point to draw is
stored in a register called XfinaJ . This register is used to detect the end of the Loop Phase Every
f .P.D.D.A. operator is compound of two suboperators called X-operator and Y -operator. The
former calculates the pi xci X coordinates and the latter the Y ones.

The j-th X-operator uses an adder to increase Xinit in j pixel s. Once thi s new coordinate
has been obtained, iCs inmediately compared to the XfinaJ register. If they are equal, a I is stored
in its status bit and vice versa . In any case, Xinit + j is stored in a register. So, the X-operator
performs onc addition of k bits, onc k bits comparison and a register load.

The j-rh Y -operator adds the j position of the slope register array to Yini t to obta in
Ymit+j*m. This operation cost onc addition of 2k+1 bits.

rf one of the status bits is set, then the fPDDA Operators phase is over and if there is
available data, another line starts to be drawn while the Queue Manager fin ishes to extract last
line final points to the video memory .

Queue Manager (Q .M .)

The first time the initial point coordinates are stored in Ximt and Ylno t reg isters, they arc
sent to video memory without checking them since the line is at least one pixel long.

When the control c ircuits detect that the new coordinates have been calculated , a register
load signal is ac ti vated. A n state machine begins to extract these coordinates to video memory.
The scan bit (ca lculated in the Initialisation Phase) helps to form the " ideo memory address.

When the status bit of a X-register is set, it means this is the last point to draw. So thi s
point will be sent to video memory and the queue manager cicle will be finished . The Queue
Manager will remain idle until another line command be ordered and calculated.

The latter sends the pixels calculated by the FPDDA Operators, to the video memory .
Meanwhile the former calculates the new pixe ls coordinates. When calculations are finished and
pixels have been sent to memory, a load of intermediate registers is ordered and both blocks can
go on.

VALIDATION

In order to see the differences between Bresenham's and FPDDA algorithms a
benchmark of 10,000 lines were generated. 100 packets of 100 lines were obtained. Only length
and slope I ine changed from one packet to other. Line length was incremented every time by 100
pixels . Line slope was incremented by 0.1

Pixel coordinates given by both Bresenham and FPDDA algorithms were compared to
the real ones. For every 100 lines packet, average errors were saved. The number of exactly
equal lines and the average number of different pixels between Bresenham's and FPDDA
algorithm were also saved.

Bresenham vs FPDDA
Errors, differences & coincidences

•. , r£'~~(04:::""::",-____ --=O.::.:'I(:..:. ":..: .. =In.:..:(::::04,",=,:..;":..::;",.o

.......... -............ 60

.........•.•...•....•...... . .. 10

Fig. 2a. Normal slope. Results vs length.

Bresenham vs FPOOA
Errors, differences & coincidences

Errot" (pi .. ,.) Oltt . .. coin. (pI_k .. ~I.)
0.320

~~ -~~:~~:
~ ~ ~ U ~ ~ U ~ ~ ~

Line elope

1- .~,-.-
- 01 _ •• 1101_.)

-,.I'IJ,tJA
- c.w.o ___ I"

Fig. 2.b . Normal slope. Results vs slope.

The results ean be seen in Fig. 2. While Bresenham's algorithm is much more accuratc
than FPDDA, the average differences are only 5% in the worst cases. While FPDDA errors are
lower or equal than Bresenham ' s when line length is inferior to 350 pixels, this error starts to
increase slowly. When line length is over 1000 pixels this error is nearly 7%. Errors were
expressed in pixels. This ean be also proved if we take a glanee at the average number of
different pixels per line . It increases when the line length does . The percentage of identical lines
when line Icngth is short is quite high (>70%) and it decreascs until 2% when line lcngth arrives

Bresenham vs FPOOA
Errors, differences & coincidences

("Of (pI .-,.) DIU. & c06n. 1,,1_ •• " .. ,

t~~~
100 200 300 ~ oo 600 eoo 700 800 GOD 1000

line length (pixels)

1- ._ .. ~ .. oo_
\- 0" _. 1.1_ .. '

Fi g. 2c . Periodic slope. Results vs length .

20

Bresenham vs FPOOA
Errors, differences & coincidences

0 .33 O,M

L ine slopo

C!:J r,..o.o ,. ..
~ C.'-f._"c: u / , '

Fig. 2d. Periodic slope . Results vs slope.

to 1000 pixels.

If these parameters were compared to the line slope, we could see that they were more
uniformly distributed. These results were better for periodic slopes (0 .3 and 0.6) .

SIMULATION RESULTS

Since the ava ilable circuit design tools didn ' t allow us to implement the whole
P.f .P.D.D.A. in a single circuit,it was split into basic operators and was simulated taking into
account real timing.

The simulations were done assuming no pipelining in the Initialisation Phase, althougth
the Initialisation Phase could be pipe lined with the FPDDA Operators and the Queue Manager
Nevertheless, if pipelining would have been used, the Initialisation Phase average time delay
would have been reduced and better results would have been obtained. So these graphics are the
worst case results. They can be seen in Fig. 3 .

The fig. 3a. shows the FPDDA Operators and the Queue Manager phases utilization
when no pipelining is assumed between them and the Initialisation Phase As it could be thought,
the Initialisation Phase overhead is high when line lengths are short. As the line length increased,

F.P.D.D .A. Operators were more time used and

Utilization P.F.P.D.D.A.
Ulll lullon
1~~~--------------------------,

::r······~······· ···---0.2 .. • .•. ... •

o ... ~.~~~.~~~~~~~~~~
260 600 160 1000 1250 \ 500 1760 2000

Line length

l -+- loo I) Ptl lo." -- Queue Manaoe' I
Fig 3a . Loop Phase, Queue Manager

Util iza tion

TIMES & PERFORMANCES
Time elelu Ullliutlon

2600 m~'TT-. .".""""''''''''''''''''''''''''''''''''''''""!''T'''''''-''''''''F-i''iTi 1.2
... -.

!,!!~I#~.oe· ~!' ~"~·71r-~~~~ ; i ~ .. .

Line leng th

I ~ TI... - VI"" VPFPOOA - VO ... ,

Fig 3b. Times and Performances.

this constant overhead reduced the proportion . So utilization and performance increscd with linc
length.

f ig . 3b. shows the same parameters as Fig. 3a . when Initialisation Phase and F.P.D.D.A .
Operators and Queue Manager pipelining was assumed. Initialisation Phase utilization can also
be seen .

Initialisation . Phase was constant and bigger than the F.P.D.D.A. Operato rs and Queue
Manager phases when line length was relatively short. We assumed an Initialisation Phase de lay
of 200 gates. We also assumed that the F.P.D.D.A. Operators and Queue Manager could send a
line point to the video memory every gate delay . For these reasons when line length sized in
pixels was lower than Initiali sation Phase sized in ga te delays, the timing cost was always equal
to the Initialisation Pha se time delay . But when line lengths were longer, the timing cost sized
in g.ale delays was equal to the line length, since the Initialisation Phase was completely
embedded in the F.P.D.D .J\ . Operators and Queue Manager phase .

CONCLU IONS AND IMPROVEMENTS

Following a top-down methodology, wc can see tha t pipeline is used to overlap both

Initialisation Phase and L.P. Pipeline is also used in the L.P. to overlap F.P .DD.A Operators and
Queue Manager An array of operators is used to increase speed up working all together in the
F.PDD.A Operators block. Little more can be done to accelerate these steps.

On the other hand, Initialisation ' Phase can be accelerated using pipe1ining. The
Initialisation Phase may be split into three steps:

'Initial Points and Scan Direction (IPSD) .
'Slope Division (SD).
-Accelerated Multipl ication Circuit (AMC).

IPSD time delay is no more than two or three adders and some glue logic . multiplier
last no more than logzCn) -2 adders delay . Normally n is eight or sixteen, so multiplier spends no
more than two adders delay, what is more or less the same as IPSD phase. Bottleneck is , of
course, the integer divi sion of (2k+ I)xk bits. This phase uses no less than k+ 1 (usually 12 or 13)
adders . But this phase can be pipelined also to reduce the division to steps of three adders time
delay , avoiding the bottleneck and aproximating the initialization phase timing cost to
Bresenham' s one (three adders and a few glue logic).

Another way of speeding up the circuit is to use fa ster operators. As we have seen
before, the adder is the basic unit to implement both Initialisation Phase and Loop Phase Apart
from using pipeline or not, wc can use Carry Lookahead Adders to reduce addition time delay,
and for this reason, accelerate the whole circuit.

Since the Loop Phase is scalable, the whole video memory bandwidth can be always
fulfilled . So the use of an acce lerated version of adder won't speed up performance, but perhaps
a lower cost Loop Phase could be obtained depending on the implementation (Lower number of
more complex operators) .

If the divider have to be split in several parts and every part needs at least onc regi ster
to store intermediate results , the whole pipeline divider is slower and hardware cost is bigger.
Perhaps this so lution is worst than using a Carry Lookahead Adder division (timing and hardware
cost).

Looking at the sequential implementation , some points are remarkable companng with
Bresenham's algorithm

·There are no floating poin t opera tions.
·There are only integer additions and comparisons in the main loop.
' Initialization is relatively short. There are only onc integer division and a few integer additions
and shi fts.
'Easier mathematical tools are needed to understand and demonstrate the algorithm, so
comprenhension and error correction arc eased .

'Hardware opera tors are even simpler.
'An average of 0.25 to 0 .5 additions and I comparison are saved in each loop step.

When the parallel vcrsion is analyzed , some points arc remarkable :

·If the chip technology used allows a gate delay lower than a video memory write cic lc, the
PFPDDA can be designed to use the whole video memory bandwidth .

·The FPDDA algorithm produces an error slightly higher than Bresenham ' s a lgorithm but th is
difference is not significative at all.

·Since the PFPDDA circuit is sca lable , speed-up can be increa sed as much as technology can
support. In the theorical limi t, asuming no technology limitations, a line eould be drawn in a
logarithm time with a linear hardware cost. These afirma tions arc relative to the line length.

·Operators utili zati on incrcases \Nith line length .
·The use of the simplest operators (integer adders and compara tors or regi sters) makes it suitahle
for hardware implementation. Thi s simplicity saves design timc and hardware .

22

·Pipelining increases productivity, chip utilization and speed up.
·This PFPDDA has a speed-up/(hardware cost) ratio constant.

REFERENCES

[1] Bresenham, J.E., "Algorithm for Computer Control of a Digital Plotter" , IBM Systems
Jo urnal, Vo!. 4, No. 1, 25-30. 1965

[2] Wright, W. E., "Paralellization of Bresenham· s Line and Circle Algorithms", IEEE CG&A,
Vo!. 10, No . 5, Pag. 60-67. 1990

[3] Eamshaw, R. A. , "Line Tracking for Incremental Plotters", The Computer Journal , Vo!. 23,
No . I, Pag. 46-52 . 1980

[4] Castle, C. M. A., Pitteway M. L. V., "An Applications of Euclid ' s Algorithm to Drawing
Straight Lines", Fundamentals Algorithm for Computer Graphics, NATO ASI F17, Springer
Verlag, Pag. 134-139, 1985

[5] Angel, E., Morrison, D. "Speeding up Bresenham's Algorithm" IEEE CG&A. Vol.ll No. 6,
Pag. 16-17. 1991

[6] Pang Alex T., "Line-Drawing Algorithms for Parallel Machines" IEEE C.G.&A. Pag. 54-59
Sept. 1990.

[7] Molla R., Quiros R., Vivo R. "Fixed Point Digital Differential Analyzer" Proceedings of
Compugraphics'92. Pag. 1-5. 14-17 Dec . 1992

