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ABSTRACT 
We consider a multiprocessor graphics architecture object-parallel if graphics prim
itives are assigned to processors without regard to screen location, and if each pro
cessor completely renders the primitives it is assigned. Such an approach leads to 
the following problem: the images rendered by all processors must be merged, or 
composited, before they can be displayed. At worst, the number of pixels that must 
be merged is a frame per processor. Perhaps there is a more parsimonious approach 
to pixel merging in object-parallel architectures than merging a full frame from each 
processor. 
In this paper we analyze the number of pixels that must be merged in object-parallel 
architectures. Our analysis is from the perspective that the number of pixels to be 
merged is a function of the depth complexity of the graphics scene to be rendered, 
and a function of the depth complexity of each processor's subset of the scene to 
be rendered. We derive a model of depth complexity of graphics scenes rendered on 
object-parallel architectures. The model is based strictly on the graphics primitive 
size distribution, and on number of processors. \Ve validate the model with trace 
data from a number of graphics applications, and with trace-driven simulations of 
rendering on object-parallel architectures. 
The results of our analysis suggest some directions in design of object-parallel ar
chitectures, and suggest that our model can be used in future analysis of design 
trade-offs in these architectures. 

1.1 Introduction 

1.1.1 Graphics Parallelism 

Let us agree to call the two types of parallelism in computer systems horizontal parallelism 
and vertical parallelism. The former has been referred to as data parallelism, multiprocess
ing, and parallel processing; the latter has been referred to as instruction-level parallelism 
and pipelining. 

Let us further agree to call the two graphics variants of horizontal parallelism image
parallelism and object-parallelism. The former has also been referred to as screen-space 
parallelism. In this approach, each processor in a multiprocessor system is assigned a 

region of the screen, and is responsible for rendering the portions of an primitives that 
intersect the region. The latter has also been referred to as image-composition [14, 20] In 
this approach, each processor is assigned some subset of the primitives to be rendered, 
and may generate pixels in any portion of the screen. 

Both vertical parallelism and image parallelism have been successfully employed in 
many systems, both research [6, 7, 8, 9,24] and commercial [1, 2, 16]. Object parallelism 
has received some attention [13, 14, 18, 20, 23], but has neither received the attention 
nor implementation that image parallelism has received, in spite of apparent advantages. 
Vve plan to explore the tradeoffs between object- and image-parallel in future forums, but 
briefly: 
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FIGURE 1.1. Generic object-parallel rendering architecture 

• As image-parallel machines scale, each processor has fewer and fewer pixels; thus, the 
ratio of communication overhead for assignment of objects to processors increases. 

• The per-primitive setup time also increases, since for each primitive that covers the 
screen-space of k processors, k processors must perform the setup calculations for 
rendering (which may include such expensive operations as vertex shading). 

• All primitives in image-parallel architectures must be transformed to screen-space 
before they can be assigned to processors for rendering; this can be expensive for 
databases of many small primitives, or when high-level object descriptions have high 
cost of transformation and boundary testing. In any event, this requirement limits 
potential parallelism by serializing an essentially parallel problem . 

.. 1HMD object-parallel systems will be inherently more flexible, allowing, for example, 
different processors to implement entirely different graphics rendering pipelines. 

• Primitives do not require reassignment between frames in object-parallel systems; 
thus, such animations as "architectural walk-throughs" can be either faster or cheaper. 

• As processors are added to image-parallel architectures, so are wires to frame buffer 
memory. For many processors, this is a serious routing and engineering problem [3] 

However, there is one obvious problem with the object parallel approach to graphics 
hardware: since any processor's objects almost certainly overlap (when projected into 
screen coordinates) with objects from other processors, the pixels rendered by all proces
sors must be merged (i.e. z-buffered) before they can be written to and displayed from a 
global frame buffer. 

We refer to this as the pixel merge problem and believe that. it will be the rate-limiting 
component in object-parallel architectures. 

1.1.2 Object-Parallel Graphics Architectures 

A generic object parallel architecture is shown in Figure 1.1. We view rendering on this 
architecture as comprising three phases: object assignment to processors, rendering, and 
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pixel merging. We begin with a graphics scene, which comprises a collection of graphics 
primitives, or graphics objects. These primitives are assigned to the processors via the 
front-end network. Each processor then renders its Stl bset of the graphics scene, performing 
local hidden surface removal by z-buffering, and producing pixels into a local frame buffer. 
In the final phase, the pixels from all processors' local frame buffers are merged via the 
back-end network into the global frame buffer. Of course, in a particular implementation of 
this object-parallel architecture, the front-end network may also be the back-end network, 
there may be no local frame buffer, etc. 

Now, for each screen position (i.e. frame-buffer coordinate) (x, y), we define the depth at 
(Xl y) in a graphics scene to be the number of primitives that render a pixel to (x; y).l We 
define the depth complexity distribution of a graphics scene as the distribution of depth 
over all screen coordinates (x, y); in this paper we will informally refer to the average 
of this distribution as the depth corq,plexity. We can also speak of the depth complexity 
distribution of any subset of a graphics scene, and in particular of the depth complexity 
distribution of an arbitrary processor's subset of the graphics scene. 

Notice that scenes with larger depth complexity require more processing for z-buffering 
when rendered on a uniprocessor. In an object-parallel architecture, scenes with larger 
depth complexity potentially generate more back-end pixel traffic than those with lower 
depth complexity. This is because each primitive in the initial graphics scene may overlap 
arbitrarily many other primitives (when projected onto the frame buffer). If all such 
primitives are rendered by the same processor (as they are in image-parallel architectures), 
then z-buffering is performed entirely at the local frame buffer; if on the other hand such 
primitives are rendered by different processors, z-buffering must also be performed on the 
back-end network or at the global frame buffer. Thus, higher depth complexity potentially 
means greater traffic on the back-end network, and if all depth complexity is removed by 
local (per-processor) z-buffering, the back-end traffic is minimized. Thus, we can analyze 
both local frame buffer requirements, and back-end traffic by analyzing the depth complexity 
distribution. 

In particular, note in Figure 1.1 that a graphics scene's depth complexity is potentially 
removed at three sites: the local frame buffers, the back-end network, and the global frame 
buffer. The current paper investigates the first of these, local depth complexity removal. 
Since the back-end network is left undefined, the conclusions of the current paper are 
applicable to object-parallel architectures in general. In particular, our conclusions bear 
upon local frame buffer design in object-parallel architectures, and upon the pixel traffic 
that can be expected on the back-end network of an object-parallel architecture after local 
depth complexity removal. 

In this paper, we derive an analytic model of the depth complexity distribution and 
apply it to some "typical" graphics scenes, and to the partitions of those scenes as they 
might be rendered on an object-parallel multiprocessor. We validate the model against 
trace data taken from a number of graphics applications, and against trace-driven sim
ulations of rendering on object-parallel architectures. The traces we employ have been 
gathered from instrumentation of the RenderMan graphics package from Pixar [22], and 
of the Graphics Library (GL) interface from Silicon Graphics Inc. [19]. Finally, we draw 
conclusions both from the analytic model and from the trace data and trace-driven sim
ulations. 

I'We assume in this paper that each primitive's projection to screen coordinates is not self-overlapping. 
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1.2 Analytic Model of Depth Complexity 

Let 

,A = the area of the screen, in pixels. 

R = the set of graphics primitives to be rendered. 

N=IRI· 

For each l' E R, 11'1 = the number of pixels to which graphics primitive l' renders. 
That is, 11'1 is the projected size of primitive 1'. 

Rk = {1'1 11'1 = k}; that is, Rk is the subset of R comprising primitives of size k. 

n = the number of processors on which the scene is rendered 

Pd = the probability that (after rendering) the depth at an arbitrary pixel in an 
arbitrary processor's local frame buffer is exactly d. When n = 1, this is the prob
ability that the depth at an arbitrary pixel from a rendering of the initial graphics 
scene is exactly d. 

In addition, we will informally refer to the "underlying size distribution" of particular 
graphics scenes (or simply to the "size distribution"). By this we mean the probability 
density function defined over k by P[1' E R, 11'1 = k] = Rk / N. 

In this paper, we derive a generating function of the probability density of depth com
plexity in graphics scenes. The model we derive depends upon measured or assumed values 
for N, Nk (1 ~ k ~ A), and n. In the current paper we measure the Nk and N of various 
graphics scenes, and explore the dependence on n by sensitivity analysis. 

The model depends on the following assumptions: 

(1) We assume that screen coverage by l' E R is uniformly and randomly distributed. More 
precisely, we assume that for arbitrary pixels (x,y) and (w,z), and randomly selected 
primitive l' E R, that the probability that l' renders to (x, y) is equal to the probability 
that l' renders to (w,z). 

(2) We assume that graphics primitives are uniformly and randomly assigned to processors 
to be rendered. 

We model rendering as follows. A primitive1' is randomly selected (without replacement) 
from the graphics scene R, is randomly assigned to a processor, and is rendered by that 
processor. The depth at each pixel (in the processor's local frame buffer) to which l' 

renders increases by one. Primitives are selected, assigned to processors, and rendered 
until no primitives remain.2 

Consider this process from a single pixel location (x, y) in an arbitrary processor's local 
frame buffer. A single primitive 1',11'1 = k renders to (x,y) with probability k/(An) (by 
assumptions 1 and 2). The generating function of this probability is 

20£ course, primitives may be assigned in one phase and rendered in another, or rendering may occur concur
rently, etc, 
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Generating functions are useful tools in exploring probability density functions (d. 
[12, 25]). In H k ( v), for example, the coefficient of VO expresses the probability that r 

does not render to (x,y), the coefficient of VI expresses the probability that it does. 
Generating functions can be multiplied to obtain the convolution of the probability density 
functions they represent, provided that probabilities are independent. Thus, for example, 
the coefficient of v 2 in H k ( v)2 expresses the probability that given two primitives of size 
k, both render to pixel (x, y). 

Now, consider all primitives r E RI<:. The probability that exactly d of these render 
to (x,y) is binomially distributed, and is expressed (by assumptions 1 and 2) by the 
coefficient of vd in the generating function 

Hk{v)Nk = [(1- In) + ln v]Nk 

Finally, the generating function G of the probability density of depth complexity is the 
product of H k ( v tk over all possible graphics primitive sizes, that is 

(1) 

Recall probability Pd that an arbitrary pixel in an arbitrary processor's local frame buffer 
has depth exactly dj this is the coefficient of vd of G( v). It remains to extract these 
coefficients; we show in Appendix .1 that the probabilities obey the following recurrence: 

_ d-l i=.!l:: [A (_k_)i+I] . Pd - i:j :::o d 2:k:::1 Nk An-k Pd-l-J when d> 0 (2) 

and 

(3) 

Thus, given the graphics primitive size distribution for a given scene, and the number of 
processors in the object-parallel architecture, we can predict the depth complexity prob
ability density function. We can also therefore calculate the expected depth complexity, 
and variance, and the expected number of active pixels per local frame buffer, which we 
define to be the number of pixels to which at least one primitive renders. Active pixels are 
important because they are those that must be transmitted from the local frame buffer 
over the back-end network to the global frame buffer in an object-parallel architecture. 

Note that Po is the probability that for an arbitrary pixel (x,y), no primitive r E R 
renders to (x,y), and therefore that the probability that a pixel is active is simply 

Pr[arbitrary pixel (x, y) is active] = (1 - Po) (4) 

Finally, though ~e do not focus on these statistics in the current paper, the expected 
depth complexity, EG, and variance of depth complexity, VG are, respectively 

and 
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1.3 Traces and Trace-Driven Simulations 

We have instrumented several graphics packages to generate traces of the pixels generated 
during rendering of graphics scenes. To date, RenderMan [22] and a software implementa
tion of SGI's GL [19) have been instrumented. In addition, we have developed or borrowed 
several translators from other formats into either RenderMan or GL. Of course, Render
Man renders by oversampling, and thus we trace "samples" rather than pixels; however, 
the treatment of samples is made virtually identical by considering each a pixel of a larger 
screen, or by considering a pixel a sample set of size one. We will not distinguish between 
pixels and samples in this paper, and will use the terms interchangeably. 

Pixel traces are generated by placement of library calls into the rendering package at the 
sites at which pixels are generated, and before they are z-buffered. Thus, we trace every 
pixel that is generated by the graphics package. The library calls write compressed pixel 
records to trace files that can be later processed for statistics, and used as input to drive 
simulations of rendering in object-parallel architectures. Each pixel comprises roughly the 
following fields: screen-x, screen-y, eye-coordinate-z, red, green, blue, and parent graphics 
primitive (i.e. the primitive whose scan conversion generated the pixel). 

Some statistics can be gathered directly from the trace files (e.g. the depth complexity 
distribution of the original scene, the number of primitives, and the size distribution). 
Some statistics require simulated assignment of the primitives to the processors of an 
object-parallel architecture. Since each pixel contains a pointer to the primitive that 
generated it, the set of primitives can be culled from the trace file. This set can be 
assigned by simulation to n processors, and each processor can be considered to have 
rendered exactly those pixels whose "parent graphics primitive" record field matches a 
primitive assigned to that processor. 

For all trace-driven simulations reported in the current paper, assignment of primitives 
has been by round-robin. That is, primitives have been assigned sequentially (mod n) in 
the order in which they were encountered in the original graphics model. This assignment 
strategy can be expected to lead to good computational load balancing in an object
parallel architecture (the primitive "scattering" of [14]), and has the additional advantages 
that 1) it requires very little computation by the processor that assigns objects, 2) it does 
not require a processor that explicitly assigns objects: if all processors have shared access 
to the graphics database, each processor i can scan the database and select for rendering 
every ith primitive (mod n). 

Some of the scenes below were traced by applying an instrumented version of Render
Man to an input file in RenderMan RIB file format [22); subsequent trace-driven simulation 
of their rendering has been done by separately assigning each primitive encountered in the 
RIB file to a proceSSOL Some of the scenes below were traced by rendering them through 
an instrumented software implementation SGI's GL [19], and storing a trace of the GL 
primitive calls; subsequent trace-driven simulation of their rendering has been done by 
separately assigning each GL primitive to a processor. 

We report on results from the following traces in the current paper. Basic statistics of 
these scenes are summarized in Table 1.1. 

" Bike - This scene was produced by E. Ostby and B. Reeves using RenderMan, 
and appeared on the cover of SIGGRAPH '87 [15]. The scene is in the form of a 
Rendedvlan RIB file. The Bike is under copyright [15). 

". Cube - This scene is the RenderMa.n RIB file produced from Exercise 2.6 of [22]. 
The scene comprises thousands of tiny cubes packed together to form a large cube. 
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~ Zinnia - This scene was produced by Deborah Fowler while at the University of 
Regina, and appears in [17]. The scene comprises a number of plant stems in a vase, 
The scene is in Rayshade format [11], which we convert to GL with the Rayshade 
utility rayview. This scene is under copyright [17]. 

III Roses - This scene was also produced by Deborah Fowler, and appears in [17]. 
The scene comprises three quite photorealistic roses, with stems and ornamental 
greenery, and was traced by the same procedure as was Zinnia. This scene is under 
copyright [17]. 

III Wash.ht - This scene is the result of several levels of translation. From U.S. Geologic 
Survey DEMformat data [21], we convert to Rayshade heightfield format (which is 
simply a two-dimensional array of z-values) [11]. We then convert from heightfield 
format to RenderMan RIB format by creating a mesh of triangles. This scene is a 
craggy mountain. We simulate the scene's assignment in an object-parallel archi
tecture by assuming that all processors receive the heightfield data, and themsel yes 
render every nth triangle created when the mesh is created. 

III Brooks - This scene is Fred Brooks' model of an entire house, from the University 
of North Carolina [4]. We convert the UNC format into RenderMan RIB formaL 
This scene is under copyright [4]. 

III Capitol- This scene is AutoCAD output of a model of the U.S. Capitol building. 
The output is in RenderMan RIB format. 

III Rad - This scene is output from the radiosity algorithm of [10J; the scene is the 
room model that appears in that publication. The algorithm partitions a scene into 
a mesh chosen specifically to maximize photorealism and minimize the number of 
polygons produced. One can imagine a "walk-through" with output from just such 
an algorithm on an object-parallel architecture: the radioisty calculations are done 
off-line, and the walk-through is performed in real-time by real-time object-parallel 
rendering. 

TABLE 1.1. Graphics Scenes Traced 

Trace name Primitives (pre-dipping) Primitives (post-dipping) Total pixels in trace Scene screen area A verage depth 

Bike 16144 9618 2032965 1258408 1.62 

Cube 48000 47459 6459105 806520 8.01 
Zinnia N/A 11458 420246 786432 0.53 
Rose$ N/A 123820 963872 196608 4.90 
l1'ash.ht 441800 49999 2822472 894916 3.15 
Brooks 9995 9345 4944040 1449616 3.41 
Capitol 7153 7153 1322980 1572864 0.84 
Rad 7096 7096 1615499 1449616 1.14 

Due to spa.ce limita.tions, we do not include photos of these scenes in the current paper. 
The interested reader may find some of them in their original publications; most of them 
appear with full trace and simulation statistics in an extended version of this paper [5]. 
However, the distributions of graphics primitive sizes appears in Figure 1.2. Recall from 
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Section 1.2 that these distributions serve essentially as the independent variable in our 
model of depth complexity. 

Notice in Table 1.1 and Figure 1.2 the wide range of model complexity (number of 
primitives, number of samples generated, screen coverage) and depth complexity, and the 
large variability in the underlying primitive size distributions of the models (in particular 
the large differences in scale of x- and y-axes). 

1.4 Results 

''Ie have analyzed both predicted and observed statistics of the scenes described in Section 
1.3. Predicted statistics have been computed using equations 2 and 4, with the parameter 
Nk taken directly from the underlying size distributions shown in Figure 1.2. Observed 
statistics have been computed by trace-driven simulation as discussed in Section 1.3. 

1.4.1 Fit of Model 

Figure 1.3 shows a trend in predicted vs. observed depth complexity that occurs in all 
traces evaluated in the current paper. The fit of the model of Section 1.2 may (or may 
not) be a good predictor of observed depth complexity in graphics scenes rendered on a 
uniprocessor (n = 1); however, the fit becomes better as n increases. In Figure 1.3 it can 
be seen that by n = 8 the fit is very close. 

Recall in the model of Section 1.2 that an assumption was made that graphics primitives 
are uniformly and randomly distributed with respect to their placement on the screen. 
Clearly, not all graphics models possess this property (in particular, note the Cube for 
n = 1 in Figure 1.4); there may be strong spatial coherence in the organization of the 
scene's graphics primitives. 

However, recall from Section 1.3 that in our trace-driven simulations of depth com
plexity, primitives have been assigned to processors in round-robin fashion in the order 
in which they occurred in the original graphics model. Such object assignment can be 
expected to destroy any spatial coherence present in an initial model; and, in fact, it 
appears to do so. Note the Cube in Figure 1.4. Even though for n = 1, the model predicts 
depth complexity far from the observed values, by the time the scene is split across 16 
processors, the predicted and observed values of depth complexity are close. For many of 
the scenes traced, the model provides a reasonable fit even for n = 1 [5], and for all scenes 
traced provides a very good fit for very small n (further examples are shown in Figure 
1.5). Furthermore, for the scenes evaluated, once the model of Section 1.3 converges with 
observed depth complexity, its fit remains good for larger values of n [5]. 

1.4.2 A verage Active Samples 

As each processor in an object-parallel architecture renders its subset of the graphics 
scene, it does not necessarily write to each pixel in its local frame buffer. In fact, while 
most of the graphics scenes evaluated cover most of the screen (when n = 1), their screen 
coverage steeply declines when they are split between multiple processors. 

The model of Section 1.2 predicts well the observed screen covera.ge, especially as n 
increases, and closely matches the observed decline in screen coverage. This can be seen 
in Figures 1.6 and 1.7. 

It can be seen that on average, the fraction of active samples in ea.ch processor's local 
frame buffer is small even for very few processors. This observation may affect two design 
choices in object-parallel architectures: 
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• As discussed in Section 1.1.2, in object-parallel architectures, pixels produced by the 
multiple processors must be merged from local frame buffers across some back-end 
network. One strategy is to merge an pixels from all local frame buffers [14]. Alter
natively, our results suggest that strategies that merge only those pixels rendered 
have the potential of greater speed (since the back-end network must support less 
traffic). 

• Since only a fraction of each local frame buffer is utilized each frame, most of the local 
frame buffers represent unused hardware. Our results suggest that object-parallel 
architectures that employ sparse local frame buffers have the potential of reduced. 
cost. Of course, such frame buffers must be cheaper themselves than standard frame 
buffers. Also, since some processors will render more pixels than average, local frame 
buffers must be sized appropriately. This is addressed briefly in the following section. 

1.4.3 Active Sample Distribution and Maximum 

Any object-parallel architecture that employs sparse local frame buffers in order to take 
advantage of the observations of the previous section must handle the worst-case. 

As discussed in [5], in general, the fraction of active samples in all local frame buffers 
is close to the average value. However, if the fraction of active samples is large in any 
frame buffer, then all sparse local frame buffers must be sufficiently sized to handle this 
case. Clearly, there will be some frame buffer that contains as many active samples as 
the largest primitive, and if many primitives are large, we might expect that many local 
frame buffers will be substantially full. 

On the other hand, if almost all local frame buffers contain very few samples, then most 
local frame buffers will be substantially unused. As discussed in [5], as n increases, almost 
all processors render about the expected number of active samples (which, as shown in 
Figures 1.6 and 1.7, is small). Two examples of this trend are shown in Figure 1.8. Note 
that for n = 64, only one (Roses) or two (Bike) processors need more than a fifth of their 
local frame buffers to render their assigned primitives. . 

Thus, by far the the most common case is that each processor renders very few pixels. 
Although each processor must be able to handle the worst ca.se, it seems wasteful that 
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almost always the worst case will not occur. Perhaps the appropriate design will employ 
a sparse local frame buffer, with appropriate mechanism to handle spill-over. 

1.4.4 Local Depth Complexity Removal 

Our mod(:1 and trace results show that for smaller n, especially for scenes with many 
primitives, local depth complexity removal can continue to playa significant role in object
paranel architectures (some scenes for n = 8 are shown in Figure 1.9 - note that d = 0 
has been removed from these graphs and that the y-axis scale has changed). 

On the other hand, as expected, as n grows large, very few pixels have depth greater 
than one [5]. For these larger machines, depth complexity removal plays essentially no 
role in reduction of back-end network traffic. Perhaps an object-parallel design of many 
processors, and no local frame buffer, can exploit this. 

1.5 Conclusions 

We find several results from analysis of the predicted vs. observed depth complexity 
distribution for the scenes discussed in this paper. These are, in summary: 

It The fit of the model to observed depth complexity distributions on uniprocessors 
is sometimes good; the fit to observed depth complexity on multiprocessors is very 
good even for small n, and becomes better with increasing n. 

It The model predicts well the fraction of "active samples" in local frame buffers of 
object-parallel multiprocessors; this predictive validity is weaker for very small n 
but becomes remarkably good as n increases. 

Furthermore, the model predicts well a behavior observed in trace-driven simula
tions: the fraction of active samples in local frame buffers declines quite quickly as 
n increases. This observation has consequences for back-end object-parallel merging 
strategies, and may have consequences for local frame buffer design. 
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10 

• Graphics scenes may contain one or a few very large primitives (e.g. a floor); the 
smallest local frame buffer in an object-parallel architecture can in some sense be 
no smaller than the largest such primitive. 

However, the observed distribution of depth complexity across n processors in the 
scenes traced suggests that most local frame buffers in an object-parallel architecture 
need be only a small fraction of a full frame buffer. This observation suggests that 
local frame buffers may be most cost-efficient when they are small, with an additional 
mechanism for spill-over of (infrequent) large primitives. 

.. On small machines, local depth complexity removal can be significant in reducing 
what would otherwise be back-end traffic in an object-parallel architecture. On the 
other hand, while local depth complexity removal in larger machines is insignificant 
in back-end traffic removal, vanishingly few pixels in these large machines' local 
,frame buffers have depth greater than one; this observation suggests that large 
machines with no local frame buffers warrant investigation. 
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. 1 Coefficients of G ( v ) 

Let 

[vd]G( v) = the coefficient of vd of G( v). 

dJ!1 = d to the "falling power of m", that is n~(;t(d - i) 

As discussed in Section 1.2, Pd = [vd]G( v). That is 

G(v) = L:=oPd vd 

We will approach the extraction of [vd]G(v) as follows. It can be verified that the mth 

derivative of G, G(m) is of the form 

Thus in general 

and in particular 

Thus, we can extract the coefficients of G( v) by repeated differentiation and evaluation 
at zero. 

Logarithmic differentiation of G yields a form for G' in terms of G and some F. Subse
quent derivatives of G' yield a form in terms of (again) G and in terms of some function 
of higher derivatives of F. We will proceed by finding a closed form for the derivatives of 
F, which therefore provides us with a form for the derivatives of G. 

Differentiating the logarithm of equation 1 yields G'(v)jG(v), and 

G'(v) = G(v)F(v) 

where 

Lemma 1: 

(j) A j., [ I< ] j+1 F (v) = LI<=1 ( -1) J. NI< An-k+kv 

Proof: As basis, note that 

F'(v) =: L~=l -NI<[An-t+kvf 

The inductive step is simply 

2J9 

when j ~ 0 (5) 
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F U+1)(v) ",A (. + 1)( 1)5 .~ TV k k j +1 [ 1 ]i+2 = L..k=l - J - J. 1 ~ k An-k+kv 

"+2 
",A (. 1)'( 1)5+1 N [ k ]J = L..k=l ) + . - k An-k+kt! 

Now, for readability, let G = G(v), G(m) = G(m)(v), F = F(v), and p(m) = p(m)(v). 

Lemma 2: 

G(m) = Ej::i} ( m; 1 ) pWG(m-l-j) (6) 

Proof: As basis, note that 

G(l) = ( ~ ) p(O)G(O) 

Differentiating G(m) , we find that 

. G(m+l) = Ej=r} ( m; 1 ) F(i+l)G(m-l-j) 

+ ( m; 1 ) p(i)G(m-j) 

Separating these two terms into separate summations, substituting (j - 1) for j in the 
first summation, recombining terms, and discarding terms that are 0, we have that 

G(m+1) = ,£j=o ( 7 ~ 11 ) F(i)G(m-j) + ( m; 1 ) FU)G(m- j ) 

= '£}=o ( 7 ) p(i)G(m-j) 

Finally, substituting equation 5 in equation 6, and setting v - 0, we have equations 
2 and 3. 
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