
Depth Complexity in Object-Parallel Graphics
Architect ures

Michael Cox
Pat Hanrahan

ABSTRACT
We consider a multiprocessor graphics architecture object-parallel if graphics prim
itives are assigned to processors without regard to screen location, and if each pro
cessor completely renders the primitives it is assigned. Such an approach leads to
the following problem: the images rendered by all processors must be merged, or
composited, before they can be displayed. At worst, the number of pixels that must
be merged is a frame per processor. Perhaps there is a more parsimonious approach
to pixel merging in object-parallel architectures than merging a full frame from each
processor.
In this paper we analyze the number of pixels that must be merged in object-parallel
architectures. Our analysis is from the perspective that the number of pixels to be
merged is a function of the depth complexity of the graphics scene to be rendered,
and a function of the depth complexity of each processor's subset of the scene to
be rendered. We derive a model of depth complexity of graphics scenes rendered on
object-parallel architectures. The model is based strictly on the graphics primitive
size distribution, and on number of processors. \Ve validate the model with trace
data from a number of graphics applications, and with trace-driven simulations of
rendering on object-parallel architectures.
The results of our analysis suggest some directions in design of object-parallel ar
chitectures, and suggest that our model can be used in future analysis of design
trade-offs in these architectures.

1.1 Introduction

1.1.1 Graphics Parallelism

Let us agree to call the two types of parallelism in computer systems horizontal parallelism
and vertical parallelism. The former has been referred to as data parallelism, multiprocess
ing, and parallel processing; the latter has been referred to as instruction-level parallelism
and pipelining.

Let us further agree to call the two graphics variants of horizontal parallelism image
parallelism and object-parallelism. The former has also been referred to as screen-space
parallelism. In this approach, each processor in a multiprocessor system is assigned a

region of the screen, and is responsible for rendering the portions of an primitives that
intersect the region. The latter has also been referred to as image-composition [14, 20] In
this approach, each processor is assigned some subset of the primitives to be rendered,
and may generate pixels in any portion of the screen.

Both vertical parallelism and image parallelism have been successfully employed in
many systems, both research [6, 7, 8, 9,24] and commercial [1, 2, 16]. Object parallelism
has received some attention [13, 14, 18, 20, 23], but has neither received the attention
nor implementation that image parallelism has received, in spite of apparent advantages.
Vve plan to explore the tradeoffs between object- and image-parallel in future forums, but
briefly:

204

http://www.eg.org
http://diglib.eg.org

Michael Cox, Pat Hanrahan

FIGURE 1.1. Generic object-parallel rendering architecture

• As image-parallel machines scale, each processor has fewer and fewer pixels; thus, the
ratio of communication overhead for assignment of objects to processors increases.

• The per-primitive setup time also increases, since for each primitive that covers the
screen-space of k processors, k processors must perform the setup calculations for
rendering (which may include such expensive operations as vertex shading).

• All primitives in image-parallel architectures must be transformed to screen-space
before they can be assigned to processors for rendering; this can be expensive for
databases of many small primitives, or when high-level object descriptions have high
cost of transformation and boundary testing. In any event, this requirement limits
potential parallelism by serializing an essentially parallel problem .

.. 1HMD object-parallel systems will be inherently more flexible, allowing, for example,
different processors to implement entirely different graphics rendering pipelines.

• Primitives do not require reassignment between frames in object-parallel systems;
thus, such animations as "architectural walk-throughs" can be either faster or cheaper.

• As processors are added to image-parallel architectures, so are wires to frame buffer
memory. For many processors, this is a serious routing and engineering problem [3]

However, there is one obvious problem with the object parallel approach to graphics
hardware: since any processor's objects almost certainly overlap (when projected into
screen coordinates) with objects from other processors, the pixels rendered by all proces
sors must be merged (i.e. z-buffered) before they can be written to and displayed from a
global frame buffer.

We refer to this as the pixel merge problem and believe that. it will be the rate-limiting
component in object-parallel architectures.

1.1.2 Object-Parallel Graphics Architectures

A generic object parallel architecture is shown in Figure 1.1. We view rendering on this
architecture as comprising three phases: object assignment to processors, rendering, and

205

Depth Complexity in Object-Parallel Graphics Architectures

pixel merging. We begin with a graphics scene, which comprises a collection of graphics
primitives, or graphics objects. These primitives are assigned to the processors via the
front-end network. Each processor then renders its Stl bset of the graphics scene, performing
local hidden surface removal by z-buffering, and producing pixels into a local frame buffer.
In the final phase, the pixels from all processors' local frame buffers are merged via the
back-end network into the global frame buffer. Of course, in a particular implementation of
this object-parallel architecture, the front-end network may also be the back-end network,
there may be no local frame buffer, etc.

Now, for each screen position (i.e. frame-buffer coordinate) (x, y), we define the depth at
(Xl y) in a graphics scene to be the number of primitives that render a pixel to (x; y).l We
define the depth complexity distribution of a graphics scene as the distribution of depth
over all screen coordinates (x, y); in this paper we will informally refer to the average
of this distribution as the depth corq,plexity. We can also speak of the depth complexity
distribution of any subset of a graphics scene, and in particular of the depth complexity
distribution of an arbitrary processor's subset of the graphics scene.

Notice that scenes with larger depth complexity require more processing for z-buffering
when rendered on a uniprocessor. In an object-parallel architecture, scenes with larger
depth complexity potentially generate more back-end pixel traffic than those with lower
depth complexity. This is because each primitive in the initial graphics scene may overlap
arbitrarily many other primitives (when projected onto the frame buffer). If all such
primitives are rendered by the same processor (as they are in image-parallel architectures),
then z-buffering is performed entirely at the local frame buffer; if on the other hand such
primitives are rendered by different processors, z-buffering must also be performed on the
back-end network or at the global frame buffer. Thus, higher depth complexity potentially
means greater traffic on the back-end network, and if all depth complexity is removed by
local (per-processor) z-buffering, the back-end traffic is minimized. Thus, we can analyze
both local frame buffer requirements, and back-end traffic by analyzing the depth complexity
distribution.

In particular, note in Figure 1.1 that a graphics scene's depth complexity is potentially
removed at three sites: the local frame buffers, the back-end network, and the global frame
buffer. The current paper investigates the first of these, local depth complexity removal.
Since the back-end network is left undefined, the conclusions of the current paper are
applicable to object-parallel architectures in general. In particular, our conclusions bear
upon local frame buffer design in object-parallel architectures, and upon the pixel traffic
that can be expected on the back-end network of an object-parallel architecture after local
depth complexity removal.

In this paper, we derive an analytic model of the depth complexity distribution and
apply it to some "typical" graphics scenes, and to the partitions of those scenes as they
might be rendered on an object-parallel multiprocessor. We validate the model against
trace data taken from a number of graphics applications, and against trace-driven sim
ulations of rendering on object-parallel architectures. The traces we employ have been
gathered from instrumentation of the RenderMan graphics package from Pixar [22], and
of the Graphics Library (GL) interface from Silicon Graphics Inc. [19]. Finally, we draw
conclusions both from the analytic model and from the trace data and trace-driven sim
ulations.

I'We assume in this paper that each primitive's projection to screen coordinates is not self-overlapping.

206

Michael Cox, Pat Hanrahan

1.2 Analytic Model of Depth Complexity

Let

,A = the area of the screen, in pixels.

R = the set of graphics primitives to be rendered.

N=IRI·

For each l' E R, 11'1 = the number of pixels to which graphics primitive l' renders.
That is, 11'1 is the projected size of primitive 1'.

Rk = {1'1 11'1 = k}; that is, Rk is the subset of R comprising primitives of size k.

n = the number of processors on which the scene is rendered

Pd = the probability that (after rendering) the depth at an arbitrary pixel in an
arbitrary processor's local frame buffer is exactly d. When n = 1, this is the prob
ability that the depth at an arbitrary pixel from a rendering of the initial graphics
scene is exactly d.

In addition, we will informally refer to the "underlying size distribution" of particular
graphics scenes (or simply to the "size distribution"). By this we mean the probability
density function defined over k by P[1' E R, 11'1 = k] = Rk / N.

In this paper, we derive a generating function of the probability density of depth com
plexity in graphics scenes. The model we derive depends upon measured or assumed values
for N, Nk (1 ~ k ~ A), and n. In the current paper we measure the Nk and N of various
graphics scenes, and explore the dependence on n by sensitivity analysis.

The model depends on the following assumptions:

(1) We assume that screen coverage by l' E R is uniformly and randomly distributed. More
precisely, we assume that for arbitrary pixels (x,y) and (w,z), and randomly selected
primitive l' E R, that the probability that l' renders to (x, y) is equal to the probability
that l' renders to (w,z).

(2) We assume that graphics primitives are uniformly and randomly assigned to processors
to be rendered.

We model rendering as follows. A primitive1' is randomly selected (without replacement)
from the graphics scene R, is randomly assigned to a processor, and is rendered by that
processor. The depth at each pixel (in the processor's local frame buffer) to which l'

renders increases by one. Primitives are selected, assigned to processors, and rendered
until no primitives remain.2

Consider this process from a single pixel location (x, y) in an arbitrary processor's local
frame buffer. A single primitive 1',11'1 = k renders to (x,y) with probability k/(An) (by
assumptions 1 and 2). The generating function of this probability is

20£ course, primitives may be assigned in one phase and rendered in another, or rendering may occur concur
rently, etc,

207

Depth Complexity in Object-Parallel Graphic.s Architectures

Generating functions are useful tools in exploring probability density functions (d.
[12, 25]). In H k (v), for example, the coefficient of VO expresses the probability that r

does not render to (x,y), the coefficient of VI expresses the probability that it does.
Generating functions can be multiplied to obtain the convolution of the probability density
functions they represent, provided that probabilities are independent. Thus, for example,
the coefficient of v 2 in H k (v)2 expresses the probability that given two primitives of size
k, both render to pixel (x, y).

Now, consider all primitives r E RI<:. The probability that exactly d of these render
to (x,y) is binomially distributed, and is expressed (by assumptions 1 and 2) by the
coefficient of vd in the generating function

Hk{v)Nk = [(1- In) + ln v]Nk

Finally, the generating function G of the probability density of depth complexity is the
product of H k (v tk over all possible graphics primitive sizes, that is

(1)

Recall probability Pd that an arbitrary pixel in an arbitrary processor's local frame buffer
has depth exactly dj this is the coefficient of vd of G(v). It remains to extract these
coefficients; we show in Appendix .1 that the probabilities obey the following recurrence:

_ d-l i=.!l:: [A (_k_)i+I] . Pd - i:j :::o d 2:k:::1 Nk An-k Pd-l-J when d> 0 (2)

and

(3)

Thus, given the graphics primitive size distribution for a given scene, and the number of
processors in the object-parallel architecture, we can predict the depth complexity prob
ability density function. We can also therefore calculate the expected depth complexity,
and variance, and the expected number of active pixels per local frame buffer, which we
define to be the number of pixels to which at least one primitive renders. Active pixels are
important because they are those that must be transmitted from the local frame buffer
over the back-end network to the global frame buffer in an object-parallel architecture.

Note that Po is the probability that for an arbitrary pixel (x,y), no primitive r E R
renders to (x,y), and therefore that the probability that a pixel is active is simply

Pr[arbitrary pixel (x, y) is active] = (1 - Po) (4)

Finally, though ~e do not focus on these statistics in the current paper, the expected
depth complexity, EG, and variance of depth complexity, VG are, respectively

and

208

Michael Cox, Pat Hanrahan

1.3 Traces and Trace-Driven Simulations

We have instrumented several graphics packages to generate traces of the pixels generated
during rendering of graphics scenes. To date, RenderMan [22] and a software implementa
tion of SGI's GL [19) have been instrumented. In addition, we have developed or borrowed
several translators from other formats into either RenderMan or GL. Of course, Render
Man renders by oversampling, and thus we trace "samples" rather than pixels; however,
the treatment of samples is made virtually identical by considering each a pixel of a larger
screen, or by considering a pixel a sample set of size one. We will not distinguish between
pixels and samples in this paper, and will use the terms interchangeably.

Pixel traces are generated by placement of library calls into the rendering package at the
sites at which pixels are generated, and before they are z-buffered. Thus, we trace every
pixel that is generated by the graphics package. The library calls write compressed pixel
records to trace files that can be later processed for statistics, and used as input to drive
simulations of rendering in object-parallel architectures. Each pixel comprises roughly the
following fields: screen-x, screen-y, eye-coordinate-z, red, green, blue, and parent graphics
primitive (i.e. the primitive whose scan conversion generated the pixel).

Some statistics can be gathered directly from the trace files (e.g. the depth complexity
distribution of the original scene, the number of primitives, and the size distribution).
Some statistics require simulated assignment of the primitives to the processors of an
object-parallel architecture. Since each pixel contains a pointer to the primitive that
generated it, the set of primitives can be culled from the trace file. This set can be
assigned by simulation to n processors, and each processor can be considered to have
rendered exactly those pixels whose "parent graphics primitive" record field matches a
primitive assigned to that processor.

For all trace-driven simulations reported in the current paper, assignment of primitives
has been by round-robin. That is, primitives have been assigned sequentially (mod n) in
the order in which they were encountered in the original graphics model. This assignment
strategy can be expected to lead to good computational load balancing in an object
parallel architecture (the primitive "scattering" of [14]), and has the additional advantages
that 1) it requires very little computation by the processor that assigns objects, 2) it does
not require a processor that explicitly assigns objects: if all processors have shared access
to the graphics database, each processor i can scan the database and select for rendering
every ith primitive (mod n).

Some of the scenes below were traced by applying an instrumented version of Render
Man to an input file in RenderMan RIB file format [22); subsequent trace-driven simulation
of their rendering has been done by separately assigning each primitive encountered in the
RIB file to a proceSSOL Some of the scenes below were traced by rendering them through
an instrumented software implementation SGI's GL [19], and storing a trace of the GL
primitive calls; subsequent trace-driven simulation of their rendering has been done by
separately assigning each GL primitive to a processor.

We report on results from the following traces in the current paper. Basic statistics of
these scenes are summarized in Table 1.1.

" Bike - This scene was produced by E. Ostby and B. Reeves using RenderMan,
and appeared on the cover of SIGGRAPH '87 [15]. The scene is in the form of a
Rendedvlan RIB file. The Bike is under copyright [15).

". Cube - This scene is the RenderMa.n RIB file produced from Exercise 2.6 of [22].
The scene comprises thousands of tiny cubes packed together to form a large cube.

209

Depth Complexity in Object-Parallel Graphics Architectures

~ Zinnia - This scene was produced by Deborah Fowler while at the University of
Regina, and appears in [17]. The scene comprises a number of plant stems in a vase,
The scene is in Rayshade format [11], which we convert to GL with the Rayshade
utility rayview. This scene is under copyright [17].

III Roses - This scene was also produced by Deborah Fowler, and appears in [17].
The scene comprises three quite photorealistic roses, with stems and ornamental
greenery, and was traced by the same procedure as was Zinnia. This scene is under
copyright [17].

III Wash.ht - This scene is the result of several levels of translation. From U.S. Geologic
Survey DEMformat data [21], we convert to Rayshade heightfield format (which is
simply a two-dimensional array of z-values) [11]. We then convert from heightfield
format to RenderMan RIB format by creating a mesh of triangles. This scene is a
craggy mountain. We simulate the scene's assignment in an object-parallel archi
tecture by assuming that all processors receive the heightfield data, and themsel yes
render every nth triangle created when the mesh is created.

III Brooks - This scene is Fred Brooks' model of an entire house, from the University
of North Carolina [4]. We convert the UNC format into RenderMan RIB formaL
This scene is under copyright [4].

III Capitol- This scene is AutoCAD output of a model of the U.S. Capitol building.
The output is in RenderMan RIB format.

III Rad - This scene is output from the radiosity algorithm of [10J; the scene is the
room model that appears in that publication. The algorithm partitions a scene into
a mesh chosen specifically to maximize photorealism and minimize the number of
polygons produced. One can imagine a "walk-through" with output from just such
an algorithm on an object-parallel architecture: the radioisty calculations are done
off-line, and the walk-through is performed in real-time by real-time object-parallel
rendering.

TABLE 1.1. Graphics Scenes Traced

Trace name Primitives (pre-dipping) Primitives (post-dipping) Total pixels in trace Scene screen area A verage depth

Bike 16144 9618 2032965 1258408 1.62

Cube 48000 47459 6459105 806520 8.01
Zinnia N/A 11458 420246 786432 0.53
Rose$ N/A 123820 963872 196608 4.90
l1'ash.ht 441800 49999 2822472 894916 3.15
Brooks 9995 9345 4944040 1449616 3.41
Capitol 7153 7153 1322980 1572864 0.84
Rad 7096 7096 1615499 1449616 1.14

Due to spa.ce limita.tions, we do not include photos of these scenes in the current paper.
The interested reader may find some of them in their original publications; most of them
appear with full trace and simulation statistics in an extended version of this paper [5].
However, the distributions of graphics primitive sizes appears in Figure 1.2. Recall from

210

Michael Cox, Pat Hanrahan

.::c:: .::c::
QI .~ 10000 .!::!
fI.I fI.I
Q 100 Q

ti fI.I 1000 QI

~ .~
~

:~ e 100
10 ·C

Q. Q.
t.. t..

.8 .8 10
e e
= 1 = Z Z

100 1000 10000 100000 100

k k
.::c:: .::c::
QI Bike QI Cube

.!::! .!::!
fI.I en 1000 Q Q

fI.I 100 fI.I
QI QI

.~ ~ -·s ·s
·c

10
·c 100

Q. Q.
t.. t..
QI ~
~ ~

e e
= 1 = 10 Z Z

100 1000 10000 100

k k
.::c:: .::c::
~ Rad ~ Wash.ht

.!::! N
fI.I ·iil 10
Q Q

en en
~ ~ . ~ ... - ;e 10 ·s e ·c ·c
Q. Q.
r.. t..
~ ~
~ ~

e e
= 1 = 1 Z Z

100 1000 10000 100000 100 1000 10000 100000

k k
.::c:: .::c::

~ Zinnia ~
·iil ·iil

100 Q
100

Q

~ ti .:: .~ - ~ ·s e ·c 10 ·C 10
Q. Q.
t.. t..
~ ~
~ ~

e e
= 1 = Z Z

100 1000 10000
k

Capitol Brooks

FIGURE 1.2. Size distributions of models analyzed

211

Depth Complexity in Object-Parallel Graphics Architectures

Section 1.2 that these distributions serve essentially as the independent variable in our
model of depth complexity.

Notice in Table 1.1 and Figure 1.2 the wide range of model complexity (number of
primitives, number of samples generated, screen coverage) and depth complexity, and the
large variability in the underlying primitive size distributions of the models (in particular
the large differences in scale of x- and y-axes).

1.4 Results

''Ie have analyzed both predicted and observed statistics of the scenes described in Section
1.3. Predicted statistics have been computed using equations 2 and 4, with the parameter
Nk taken directly from the underlying size distributions shown in Figure 1.2. Observed
statistics have been computed by trace-driven simulation as discussed in Section 1.3.

1.4.1 Fit of Model

Figure 1.3 shows a trend in predicted vs. observed depth complexity that occurs in all
traces evaluated in the current paper. The fit of the model of Section 1.2 may (or may
not) be a good predictor of observed depth complexity in graphics scenes rendered on a
uniprocessor (n = 1); however, the fit becomes better as n increases. In Figure 1.3 it can
be seen that by n = 8 the fit is very close.

Recall in the model of Section 1.2 that an assumption was made that graphics primitives
are uniformly and randomly distributed with respect to their placement on the screen.
Clearly, not all graphics models possess this property (in particular, note the Cube for
n = 1 in Figure 1.4); there may be strong spatial coherence in the organization of the
scene's graphics primitives.

However, recall from Section 1.3 that in our trace-driven simulations of depth com
plexity, primitives have been assigned to processors in round-robin fashion in the order
in which they occurred in the original graphics model. Such object assignment can be
expected to destroy any spatial coherence present in an initial model; and, in fact, it
appears to do so. Note the Cube in Figure 1.4. Even though for n = 1, the model predicts
depth complexity far from the observed values, by the time the scene is split across 16
processors, the predicted and observed values of depth complexity are close. For many of
the scenes traced, the model provides a reasonable fit even for n = 1 [5], and for all scenes
traced provides a very good fit for very small n (further examples are shown in Figure
1.5). Furthermore, for the scenes evaluated, once the model of Section 1.3 converges with
observed depth complexity, its fit remains good for larger values of n [5].

1.4.2 A verage Active Samples

As each processor in an object-parallel architecture renders its subset of the graphics
scene, it does not necessarily write to each pixel in its local frame buffer. In fact, while
most of the graphics scenes evaluated cover most of the screen (when n = 1), their screen
coverage steeply declines when they are split between multiple processors.

The model of Section 1.2 predicts well the observed screen covera.ge, especially as n
increases, and closely matches the observed decline in screen coverage. This can be seen
in Figures 1.6 and 1.7.

It can be seen that on average, the fraction of active samples in ea.ch processor's local
frame buffer is small even for very few processors. This observation may affect two design
choices in object-parallel architectures:

212

Michael Cox, Pat Hanrahan

;;' 0.2
II

-=
Q.
<lJ

"t:I 0.1 Q:;'

0.0

;;'
0.4

II
.c
C.
<l.> 0.2 "t:I

Q:;'

0.0

0.8

;;' 0.6
II

-= - 0.4 Q.
f.Ij

"t:I

i5:." 0.2

0.0

I Observed depth complexity
-- Predicted depth complexity.

0 10 20 30

d

Wash.ht, n :: 1

0 5 10

d

Wash.ht, n = 4

0 2 4 6

d

Wash.ht, n = 16

0.3

;;'
II 0.2 .c -Q.
f.Ij

"t:I

i5:." 0.1

0.0

0.6

;;'
II

0.4 .c: -Q.
f.Ij

~
Q., 0.2

0.0

0.8

;;'
II

0.6
.c
Q. 0.4 f.Ij

"0
i5:."

0.2

0.0

0

~.

0

0

5 10 15 20

d

Wash.ht, n = 2

2 4 6 8 10

d

Wash.ht, n = 8

2 4 6

d

Wash.ht, n = 32

FIGURE 1.3. Depth complexity distribution in Wash.hi

213

0.3

Depth Complexity in Object-Parallel Graphics Architectures

I Observed depth complexity
-- Predicted depth complexity.

0.6

':'

::; ::;
0.4 Ii 0.2 II

~ ~
c..
~

"C

Q..
~

::2-
~ 0.1

c.. 0.2

0.0 0.0
0 10 20 30 40 0 2 4 6 8

d d

Cube, n = 1 Cube, n = 16

FIGURE 1.4. Depth complexity in Cube

• As discussed in Section 1.1.2, in object-parallel architectures, pixels produced by the
multiple processors must be merged from local frame buffers across some back-end
network. One strategy is to merge an pixels from all local frame buffers [14]. Alter
natively, our results suggest that strategies that merge only those pixels rendered
have the potential of greater speed (since the back-end network must support less
traffic).

• Since only a fraction of each local frame buffer is utilized each frame, most of the local
frame buffers represent unused hardware. Our results suggest that object-parallel
architectures that employ sparse local frame buffers have the potential of reduced.
cost. Of course, such frame buffers must be cheaper themselves than standard frame
buffers. Also, since some processors will render more pixels than average, local frame
buffers must be sized appropriately. This is addressed briefly in the following section.

1.4.3 Active Sample Distribution and Maximum

Any object-parallel architecture that employs sparse local frame buffers in order to take
advantage of the observations of the previous section must handle the worst-case.

As discussed in [5], in general, the fraction of active samples in all local frame buffers
is close to the average value. However, if the fraction of active samples is large in any
frame buffer, then all sparse local frame buffers must be sufficiently sized to handle this
case. Clearly, there will be some frame buffer that contains as many active samples as
the largest primitive, and if many primitives are large, we might expect that many local
frame buffers will be substantially full.

On the other hand, if almost all local frame buffers contain very few samples, then most
local frame buffers will be substantially unused. As discussed in [5], as n increases, almost
all processors render about the expected number of active samples (which, as shown in
Figures 1.6 and 1.7, is small). Two examples of this trend are shown in Figure 1.8. Note
that for n = 64, only one (Roses) or two (Bike) processors need more than a fifth of their
local frame buffers to render their assigned primitives. .

Thus, by far the the most common case is that each processor renders very few pixels.
Although each processor must be able to handle the worst ca.se, it seems wasteful that

214

:c
II

..c -c.
<IJ

"t:l
~

~

'e
II

..c
""' c.
QJ

'"0

c:'

Michael Cox, Pat Hanrahan

iii Observed depth complexity
-- Predicted depth complexity.

0.0
0 5 10 15 20

d

Bike, n = 2
0.8

0.6

0.4

0.2

0.0 -.-
0 5 10 15

d

Zinnia, n = 2

0.8

0.6 ,~
:~

0.4

0.2

0.0
0 2 4 6 8

d

Capitol, n = 4

:r:;' 0.4
II

-= -C.
<IJ

"t:l
Q:;' 0.2

0.0

0.4

:c
II -Q. 0.2
QJ

"t:l
Q:;'

0.0

0.6

:c
II

..c 0.4
C.
QJ

'"0
Q:;'

0.2

0.0

0 2 4

d

Rad, n = 2

0 10 20 30

d

Roses, n = 4

0 2 4 6

d

Brooks, n = 8

FIGURE 1.5. Depth complexity in Bike, Rad, Zinnia, Roses, Capitol, and Brooks

215

6

40

8

Depth Complexity in Object-Parallel Graphics Architectures

-- Predicted average active samples, Bike. -- Predicted average active samples, Zinnia.
X Observed average active samples, Bike. X Observed average active samples, Zinnia.

- - - . Predicted average active samples, Cube. - - _. Predicted average active samples, Roses.
'" Observed average active samples, Cube. • Observed average active samples, Roses.

I
0.8 \ 0.8

'" I e.;
\ "E.

E 0.6 \

fll \ 9,

'" ...
"E.

0.6 E
fll

~ \
.~ 0.4' y ,
-< '\

<U .:: 0.4 -y

<
0.2 0.2 ...
0.0 0.0

50 100 50 100
Number of processors Number of processors

Bike and Cube Zinnia and Roses

FIGURE 1.6. Active Samples, Bike, Cube, Zinnia, and Roses

--Predicted average active samples. Wash.ht. -- Predicted average active samples. Capitol.
X Observed average active samples. Wash.ht. X Observed average active samples, Capitol.

- - - . Predicted average active samples, Rad. - - -' Predicted average active samples. Brooks.
.. Observed average active samples, Rad. .. Observed average active samples. Brooks.

0.8 0.8

'"

1 0.6

II.> 0.4 .:: -... <
0.2

'" I ...
"E. 0.6

I

S I

fll \

II.>
I

;. 0.4 I
;; \

Col. .' <
0.2 \

'11',

~---.. --
0.0 0.0

50 100 50 100
Number of processors Number of processors

Wash.ht and Rad Brooks and Capitol

FIGURE 1.7. Active Samples, Wash. hi, Rad, Brooks, and Capitol

216

~
.e; = ~ .. = <9l
~
Co e gs

.s=

.~

.s=
it:
c
0
III ..
~
~

~ ..
Co
0 ..
Q"I
~ e
:;)

z

Michael Cox, Pat Hanrahan

32

16

8

4

2

-- Observed distribution. n = 64
• •• - _. Observed distribution. n = 8
- - - . Observed distribution. n = 2

0.00 0.20 0.40 0.60 0.80 1.00

Fraction r or active samples

Bike

Q"I

.e; -(,) = Q"I .. = '" Q"I c.. e gs

.c:

.~

.c:
~
c
0
III ..
0
~
~

~ ..
Co
"-
0 ..
Q"I
~ e
:;)

z

32

16

8

4

2

• .'
"
" · . · ~ · , : .

0.00 0.20 0.40 0.60 0.80 1.00

Fraction r of active samples

Roses

FIGURE 1.8. Per-processor Distribution of Active Samples, Bike and Roses

almost always the worst case will not occur. Perhaps the appropriate design will employ
a sparse local frame buffer, with appropriate mechanism to handle spill-over.

1.4.4 Local Depth Complexity Removal

Our mod(:1 and trace results show that for smaller n, especially for scenes with many
primitives, local depth complexity removal can continue to playa significant role in object
paranel architectures (some scenes for n = 8 are shown in Figure 1.9 - note that d = 0
has been removed from these graphs and that the y-axis scale has changed).

On the other hand, as expected, as n grows large, very few pixels have depth greater
than one [5]. For these larger machines, depth complexity removal plays essentially no
role in reduction of back-end network traffic. Perhaps an object-parallel design of many
processors, and no local frame buffer, can exploit this.

1.5 Conclusions

We find several results from analysis of the predicted vs. observed depth complexity
distribution for the scenes discussed in this paper. These are, in summary:

It The fit of the model to observed depth complexity distributions on uniprocessors
is sometimes good; the fit to observed depth complexity on multiprocessors is very
good even for small n, and becomes better with increasing n.

It The model predicts well the fraction of "active samples" in local frame buffers of
object-parallel multiprocessors; this predictive validity is weaker for very small n
but becomes remarkably good as n increases.

Furthermore, the model predicts well a behavior observed in trace-driven simula
tions: the fraction of active samples in local frame buffers declines quite quickly as
n increases. This observation has consequences for back-end object-parallel merging
strategies, and may have consequences for local frame buffer design.

217

::c 0.2

II

-= -c.
QJ

0.1 "0
~

0.0

03

;;'
II 0.2 -= -c.
QJ

"0

t:." 0.1

0.0

Depth Complexity in Object-Parallel Graphics Architectures

m Observed depth complexity
-- Predicted depth complexity.

2 4 6 8 10

d

Wash.ht, n = 8

5 10 15 20

d

Roses, n = 8

::e
II

-= -C.
QJ

"0
t:."

::c
II

.c
CI.
<I.>
"0
Q:;'

0.2

0.1

0.0
2 4 6

d

Brooks, n =8

0.3

0.2

0.1

0.0
2 4 6 8

d

Cube, n = 8

FIGURE 1.9. Depth Complexity on Small Machines

8

10

• Graphics scenes may contain one or a few very large primitives (e.g. a floor); the
smallest local frame buffer in an object-parallel architecture can in some sense be
no smaller than the largest such primitive.

However, the observed distribution of depth complexity across n processors in the
scenes traced suggests that most local frame buffers in an object-parallel architecture
need be only a small fraction of a full frame buffer. This observation suggests that
local frame buffers may be most cost-efficient when they are small, with an additional
mechanism for spill-over of (infrequent) large primitives.

.. On small machines, local depth complexity removal can be significant in reducing
what would otherwise be back-end traffic in an object-parallel architecture. On the
other hand, while local depth complexity removal in larger machines is insignificant
in back-end traffic removal, vanishingly few pixels in these large machines' local
,frame buffers have depth greater than one; this observation suggests that large
machines with no local frame buffers warrant investigation.

Acknowledgements:

'vVe are grateful to Joel Friedman of Princeton, whose suggestion to consider, multinomials
led to a nice improvement of equation lover a previous version; our thanks also go to
Michael Hirsch of Princeton, whose suggestion to take subsequent derivative; and evaluate
at zero is implemented in Appendix .1

218

Michael Cox, Pat Hanrahan

We are grateful to Tony Apodaca of Pixar for the source code required to trace Render
Man, and for the AutoCad output that is the Capitol of Section 1.3. Thanks to Craig Kolb
of Princeton, whose help with Rayshade allowed Zinnia, Roses, and Wash.ht to be traced,
and many thanks to Deborah Fowler and Przemyslaw Prusinkiewicz of the University of
Calgary who provided the elegant Zinnia and Roses .

. 1 Coefficients of G (v)

Let

[vd]G(v) = the coefficient of vd of G(v).

dJ!1 = d to the "falling power of m", that is n~(;t(d - i)

As discussed in Section 1.2, Pd = [vd]G(v). That is

G(v) = L:=oPd vd

We will approach the extraction of [vd]G(v) as follows. It can be verified that the mth

derivative of G, G(m) is of the form

Thus in general

and in particular

Thus, we can extract the coefficients of G(v) by repeated differentiation and evaluation
at zero.

Logarithmic differentiation of G yields a form for G' in terms of G and some F. Subse
quent derivatives of G' yield a form in terms of (again) G and in terms of some function
of higher derivatives of F. We will proceed by finding a closed form for the derivatives of
F, which therefore provides us with a form for the derivatives of G.

Differentiating the logarithm of equation 1 yields G'(v)jG(v), and

G'(v) = G(v)F(v)

where

Lemma 1:

(j) A j., [I<] j+1 F (v) = LI<=1 (-1) J. NI< An-k+kv

Proof: As basis, note that

F'(v) =: L~=l -NI<[An-t+kvf

The inductive step is simply

2J9

when j ~ 0 (5)

Appendix. Depth Complexity in Object-Parallel Graphics Architectures

F U+1)(v) ",A (. + 1)(1)5 .~ TV k k j +1 [1]i+2 = L..k=l - J - J. 1 ~ k An-k+kv

"+2
",A (. 1)'(1)5+1 N [k]J = L..k=l) + . - k An-k+kt!

Now, for readability, let G = G(v), G(m) = G(m)(v), F = F(v), and p(m) = p(m)(v).

Lemma 2:

G(m) = Ej::i} (m; 1) pWG(m-l-j) (6)

Proof: As basis, note that

G(l) = (~) p(O)G(O)

Differentiating G(m) , we find that

. G(m+l) = Ej=r} (m; 1) F(i+l)G(m-l-j)

+ (m; 1) p(i)G(m-j)

Separating these two terms into separate summations, substituting (j - 1) for j in the
first summation, recombining terms, and discarding terms that are 0, we have that

G(m+1) = ,£j=o (7 ~ 11) F(i)G(m-j) + (m; 1) FU)G(m- j)

= '£}=o (7) p(i)G(m-j)

Finally, substituting equation 5 in equation 6, and setting v - 0, we have equations
2 and 3.

220

Michael Cox, Pat Hanrahan

.2 References [: .. 1

[2]

[3]

[4]

·{5]

,
[6]

l [:r] ... :.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

K. Akeley, T. Jermoluk, "High-Performance Polygon Rendering":, Com-
puter Graphics, v. 22, no. 4, August 1988. .

B. Apgar, B. Bersack, A. Mammen, "A Display System for the Stellar
Graphics Supercomputer Model GSlOOO", Computer Graphics, v.22, no.
4, August 1988.

F. Baskett, Silicon Graphics Inc., personal communication, 1991.

F. Brooks, "Fred Brooks' House", Dataset from Department of Computer
Science, University of North Carolina at Chapel Hill, 1991.

M. Cox, P. Hanrahan, "Depth Complexity in Object-Paranel Graphics
Architectures," Tech. Report No. 382-92, Department of Computer Sci
ence, Princeton University, Princeton NJ, Septe~ber 1992.

H. Fuchs and J. Poulton, "Pixel-Planes:. AYLSI-Oriented Desiiri: for a
Raster Graphics Engine'," VLSI Design, VoL z,,~o. 3, Q3 1981.

H. Fuchs, J. Poulton, J, Eyles, T. Greer, J. Gqldfeather, D. Ellsworth, S.
Molnar, G. Turk, B. Tebhs,L. Israel, '(Pixd-Pla,ies 5: A Heterogeneous
Multiprocessor Graphics System Using Processor-Enhanced Memories",
Computer Graphics, v. 23, no. 3, July 1989.

N. Gharachorloo; S. Gupta, E. Hokenek, P. Balasubramanian, B.
Bogholtz, C, Mathie.u,·C.ZouIas, «Subnan~second Pixel Renderhlg with
Million Transistor Chips", Computer Graphics,v.22, no. 4, August 1988.

N. Gharachorloo, S. Gupta, R. F. Sproull, L g. Sutherland, "A Charac
terization of Ten Rasterization Techniques", Ce711Puter Graphics, v. 23,
no. 3, July 1989.

P. Hanrahan, D. Salzman, and L. Aupperle, "A Rapid Hierarchical Ra
diosity Algorithm", Computer Graphics, v. 25, no. 4, July 1991.

C. E. Kolb, Rayshade User's Guide and Reference Manual, Draft 0.4,
Department of Computer Science, Princeton University, Princeton NJ,
1992.

R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Math, Addison
Wesley, Reading MA, 1989.

S. Molnar, "Combining Z-buffer Engines for Higher-Speed Rendering",
in Advances in Compute'r Graphics Hardware III, Springer-Verlag, New
York NY, 1988.

S. Molnar, Image-Composition Architectures for Real-Time Image Gen
eration, TR91-046, University of North Carolina at Chapel Hill, October
1991.

E. Ostby and B. Reeves, "A Night in the Bike Store", cover of Computer
Graphics, v. 21, n. 7, July 1987.

221

[16]

[18]

[19]

[20]

[21]" .. (j
~'I;" ,.,.

[23]

, , J2~r";',I;
",' ,_.I 1 i' : ," .'~:':: ! ;

[25]

Appendix. Depth Complexity in Object-Parallel Graphics Architectures
;.i.

M. Potmesil, E.M. Hofert, "The Pixel Machine: A Parallel Image Com
puter", Computer Graphics, v. 23, no. 3, July 1989'.\" ,.'~j:' ";: p

'P; Prusinkiewicz and A. Lindenmayer, with J1 Hanan, F. D. FraccNlt, D.
R. Fowler, M. J. M. de Boer, and L. Mercer, The Algorithmic Be~uty of

. Plants, Springer-Verlag, New York NY, 1990.

B. Schneider and U. Claussen, "PROOF: An Architecture for Render
ing in Object Space" , in Advances in Computer Graphics Hardware III,
Springer-Verlag, New York NY, 1988.

Silicon Graphics, Graphics Library Programming Guide, Document
.Number 007-1210-040, 1991. :;

Gr Shaw,}v.LGreen, J. Schaeffer, "A VLSI Architecture for Image Com
p,,"pq,~ition,\)ri' :4dvances in Computer Graphics Hardware III, Sprlhger

',,':yer~ag, New York NY, 1988.
(,~. • J ' _ ~'" " ,. . ,

'; U~)S. ,Geological Survey, "Digital Elevation Model (DEM)" datasets, con
"ta.ct.Ea.'rthScience In{qrrp.atibIi Center, USGS, 507 National Center, Re-

,0 . ~£oIi VA'22092. '.' .

. . :,f1~f~A~n,;~Th~ RendefMa,n'Companion, Addison-Wesley, Readirlgi MA,
>:1'9'89. ,'", ... ' , ") "

j" L.-t . ~l.·~',' i>"",

R. We?n:berg~ '''Parallel Processing Image Synthesis and Anti-Aliasing",
ComP'lfter/Jr(Lphics, v. 15 n07,3, A1)gust 1981.

,L:~'~l . 'r" ~, ("' "r,;l

k:<'WMtman, MUltiproc'essor: Methods /0'1' Computer Graphics Re~derin9,
'j ,j:~~Jdneg'~Iid 'Bartlett 'PublisherrdIItel'natiorial, Boston MA, 1992.

'rH.S! WiU;Generating/unctiondlo9,!A :Academic Press Inc., San Diego CA,
\,;1'990.' ';" ; j,' .. ,);

I ~ ,)t l. /". \ ,';,

""'j

222

