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ABSTRACT 
Computer graphics algorithms and graphics hardware have mainly been developed 
along two lines: real-time display and realistic display. Real-time display has been 
achieved by developing dedicated hardware for projective, depth-buffer display algo
rithms. Increased realism has been achieved by ray tracing and radiosity algorithms, 
which generally are implemented on standard workstations because the complexity 
of the computation makes it difficult to implement these algorithms in hardware. In 
this paper we review these different approaches and discuss the feasibility of using 
special hardware to enhance the ra.diosity and ray tracing computation. In particular 
we will explore the use of the intersection of a frustrum of rays with patches in a scene 
as a basic computational primitive for these algorithms and their implementation in 
hardware. 
Keywords and phrases: rendering, radiosity, ray tracing, graphics hardware, parallel 
proceSS1l1g. 

1.1 Introduction 

Over the last decade, computer graphics research has been very successful in achieving 
two aims: increased real-time display and increased realism of display. However, both 
aims have not been realized so far within one approach. Real-time display has been suc
cessfully achieved by implementing the viewing pipeline of the projective depth-buffer 
hidden- surface algorithm in special hardware, and increased realism has been achieved 
by extending the traditional ray tracing algorithm to include also diffuse interrefiection 
and soft shadmvs. 

Since the introduction of the geometry engine [9], the depth- buffer based display sys
tems have shown a steady increase in performance, both in speed and quality. Starting 
with a display rate of 30,000 polygons per second in the early eighties, current systems are 
now able to display more than a million polygons per second, allowing display of reasonable 
complex scenes in real-Lime [41, 1, 24]. Although the depth-buffer algorithm, inherently a 
projective algorithm, is not able to handle optica.l effects such as shadows, highlights and 
mirroring reflections in a natural way, several techniques have been developed to enhance 
realism by adding textures, anti-aliasing, motion-blur, depth-of-field, etc. [17J. Also dif
fuse inten:;eflection and area light sources have been incorporated by adding a radiosity 
preprocessing pass that subdivides the scene into a mesh of small surface patches and 
elements, and that calculates the exchange of energy between these patches to account 
for the diffuse inLerrefiection between surfaces [11, 29]. Rendering these elements makes 
it possible to display scenes in real-time while still maintaining a high-degree of shading 
accuracy [5, 6, 4]. Summarizing, within the paradigm of depth-buffer-based projective 
display of polygons a whole set of techlliques have been developed to increase realism 
without sacrificing real-time performance. However, the projective approach will never be 
able, despite all clever tricks, to achieve real realism, because it lacks the possibilities of 

true mirroring reflections and subtle shadowing effects. 
'Ete other display paradigm, the family of ray tracing based display techniques, has 
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always been appreciated for its high-quality rendering capabilities. The initial 'recursive' 
ray tracing algorithm [45] did effectively model shadows and optical effects such as mir
roring reflection and transparancy. '''lith stochastic ray tracing the repertoire of optical 
effects was further expanded to anti-aliasing, soft shadows, motion blur and depth-of
focus [13, 15, 27, 28]. The addition of Monte Carlo sampling techniques to capture also 
the indirect light has even further increased the realism and accuracy of the illumination 
calculation [20], and so did improved reflection models [14J and texture filtering [18]. As 
realism increased, however, computation times exploded. Efficiency improving techniques 
that have been developed such as adaptive ray tracing [30] and spatial subdivision tech
niques [16] are effective, but processing times for complex scenes are still in the order of 
minutes and not of seconds, not to speak about tenths of seconds. For that reason ray 
tracing has always been a popular subject for parallel processing. Although good speed-up 
figures have been reported for many multi-processor systems, interactive image update 
rates are still not achieved. The alternative of designing special VLSI hardware, the pop
ular route for the depth-buffer approach mentioned above, has not been tried so much for 
ray tracing. The efforts of Kedem and Ellis [21, 22] and Pulleyblank and Kapenga [31,32] 
are the notable exceptions so far. 

In line with P~lleyblank and Kapenga [31, 32], Shen et al. [35,36, 34] have proposed to 
enhance the radiosity anel ray tracing computation by using special VLSI hardware. They 
extend the earlier approach by considering the intersection computation of a frustrum of 
rays with a set of patches as the basic computational primitive to be supported by special 
VLSI hardware. In this paper we explore the feasibility of this approach both for real-time 
and realistic rendering. 

The paper is structured as follows. In section 1.2, the requirements for realistic rendering 
are summarized and the state-of-the-art for global illumination calculation reviewed. In 
section 1.3, the different hardware approaches are discussed. In section 1.4, the basic 
outline of a family of ray tracing algorithms with radiosity preprocessing is given based 
on the computational primitive of the ray frustrum intersection. In section l.5 some 
experiments are reported to give an indication of the total required computation for the 
different versions of this algorilhm for rendering a reasonable complex scene. In section l.6 
the different options are discussed and conclusions are given. 

1.2 Realis111 in conlputer graphics 

Realism can only be a.chieved by (1. combination of sophisticated modeling and rendering 
techniques, including techniques for modeling curved surfaces, specifying procedural mod
els, applying texture sampling and filtering, light source models, local reflection models 
(isotropic/anisotropic, diffuse/specular reflection, refraction, absorption, etc.) and global 
illumination (interrefiection patterns between surfaces, simulation of soft shadmvs, mir
roring refiecLions and participat.ing media). Although all of these subjects are important, 
global illumination is currently considered to be most crucial, in particular in applications 
for architecture and interior design. 

To give an indication of the complexity of the interreflection problem, some of the 
paths travelled b.y the light. leaving a light source before it reaches the eye are shown in 
figure 1.1. The situation is simplified in the sense that surfaces are assumed to be either 
purely diffuse or purely specular. Path 1 represents the direct diffuse refiectiol1, path 2 the 
diffuse-specular reflection, path :3 the diffuse-diffuse reflection and path 4 the specular
diffuse reflection. Other possible paths, e.g. only specular (highlight) or specular-specular 
reflection are not included in tlle figure. 

124 



Hardware Challenges for Ray Tracing and Radiosity Algorithms 

Standard projective algorithms (depth-buffer, scan-line, etc.) will only account for light 
following path 1 and for the direct specular reflection of light, however without shadow 
testing. Standard ray tracing does sample light f9110wing path 1 (including shadow detec
tion) and 2 but it does not account for the indirect reflection of light as a result of the 
diffuse interreflection between surfaces in the scene (path 3) and also not for the light that 
is first rc1ected by a specular surface before it is diffusely reflected by a visible surface 
(path 4). To capture this light it will be necessary to cast at each intersection of a view
ing ray wi th a diffuse snrfa.ce, addi tional secondary rays into the directions of all other 
surfaces to capture the light that is reflected by these surfaces, and even then it is very 
unlikely that the light will exactly hit the light source as suggested by path 4. 

specular 

eyepoint light source 

image plane 
specular 

FIGURE 1.1. Different paUls of light. reflection 

A better approach therefore is to do a preprocessing, also known as the radiosity pass, 
to access the global light distribut.ion in a scene and to precompute the amount of light 
that each surface receives from its environment [11, 29]. This radiosity pass can be done 
either by calculating the energy exchange between surfaces in the scene by simultaneous 
solving a set of linear equat.ions, or by a progressive radiosity method that 'shoots' light 
from light sources to other patches, light which in turn is re-shot to other surfa.ces, and 
so on, recursively, until a good enough approximation of the final light distribution is 
reached [10]. Because it is not feasible to do such a calculation for each point in the scene, it 
is done only for a limited number of samples points, and the value of intermediate points is 
interpolated from these. Alternatively, the surfaces can be subdivided into smaller patches 
or elements and the energy exchange between these surface elements can be calculated. 
To avoid seeing the boundaries betweell the elements, the values over the patches are also 
smooth interpolat.ed. 

The resolution of the sample poillts (resp. the size of the patch subdivision) is a criti
cal factor in the efficiency and quality of the radiosity calculation. A resolution too high 
will give a too expensive and too accurate solution while a resolution too low will not 
be adequate to represent correctly the shading gradients. Therefore adaptive meshing 
techniques have been developed t.hat provide locally a higher resolution to accommodate 
shading discontinuities [12]. A furthcr improvemcnt ca;1 be obtained by applying an exact 
meshing technique t1lilt let.s the bOllndaries of elemcnts coincide with shading discontinu
ities [7, 19]. In t.hat. casE', I!O\\,e\"cr. it is illC'\"itablc that. (l priori knowledge ahout shading 
discontinuities is available, obtained for instancc by projecting surface contours onto other 
patches. This is of course a w; y expensive and complex kind of (object-space-ofiented) 
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preprocessing, in particular if curved surfaces are involved. 
Summarizing, for high-quality rendering there arc the following combinations of pre

processing and display (see also table 1.1): 
- pmjective (depth-buffer) display with a radiosiiy preprocessing (alg. 1 in table 1.1); 

here an extensive preprocessing is needed Lo accurately represent shading discontinuities 
because the results of the preprocessing are directly displayed as the 'shading' of the sur
faces (including shadows); the mesh should therefore be as accurate as possible, possibly 
exact. Although the preprocessing may take a considerable amount time, the display can 
be done at interactive rates, and is therefore attractive for walk-through applications [6]. 

- ray tracing algorithms with a radiosily ]J'/'eprocessing; also known as the two-pass 
radiosity methods [42, 43]; here several versions are possible (alg. 2a, 2b, 2c in table 1.1); 
the first one is a ray tracing algorithm that takes the precomputed radiosity value as 
the diffuse intensity of the patch and only adds the specular reflection component to it 
by tracing secondary rays [40]; this version requires ,a preprocessing that is comparable 
with the projedive display algorithms above because the shadovvs from the major (point) 
light sources are implicitly included in the racliosity shading; the second version only uses 
the precomputed l'adiosity intensity as an improved 'ambient' term and it re-samples 
the light from the most important light sources and patches to calculate more accurate 
shadows [37, S, 26, 25]; this version does a source seledion or source classification during 
the radiosity pass to determine \\~hich patches can be considered as important light sources; 
the contributions of these select.ed sources are then not included in the precomputed 
radiosity values; finally, the third version re-samples all the light by shooting secondary 
rays to all diredions [3:3]; now the radiosity shading is not used at all for display but only 
to quantify the light that is dif!'usely reflected by each patc.h and that is sampled during 
the rendering by the secondary (sha.dow) rays. 

- ray trac£ng algorithms wilhoul a mdiosity preprocessing (alg. 3 in table 1.1); these 
algorithms sample a.ll the light by shooting secondary rays into all directions, but now 
these secondaTy rays hit other surfaces for which no radiosity intensity is known, and 
thus the sampling has to be done recursively [20]; sampling efficiency can be improved 
by applying importance sampling strategies [:38, 2, 2:3] and by exploiting coherence, for 
instance in the form of 'illuminance caching' [44]. 

In fact the last two algorithms can be generalized and merged into one algorithm when 
the recursive sampling is combined wilh a rac\iosity pass. For instance at a certain level 
of recursion it may be advisable to take a precomputed value instead of continuing the 
sampling or taking an arbitrary inLensit..y \'a.lue. \Vhcther recursion is only done to the 
first level, 'one-level path tracing' [:3:3], or deeper can be made dependent on the intensity 
of the patch or t.he chance of shading discontinuities (highlights, shadow boundaries, etc.) 
in the neighborhood. The racliosit.y pass can be less extensive if one accepts to sample 
deeper, and vice versa. 

The choice of algorit.hm for a certain application is of course very much dependent 
on a mix of the following fadors: the quality of the picture (e.g. shadow accuracy), the 
display rate (e.g. real-time, interactive, or overnight), the amount of preprocessing time 
and memory use t.hat can 1)(" accepted. anel finally also the available hardware. 

1.3 Hardware <lpproachcs 

Having reviewed the different preprocessing and display algorithms, in this section \ve 
discuss the possible hardware pla(Jorms. 

Dominant in the markd are (high-end) graphics workstations with one or multiple 
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algorithm meshing display light source shadow time 
sampling accuracy 

1 extensive, depth-buffer no dependent real-time 
exact on mesh 

2a extensive, ray-tracing no dependent long 
exact on mesh 

2b moderate ray-tracing yes good longer 

2c low ray- tri'.cing sampling in better even 
all directions longer 

3 no ray- tracing recursIve better longest 
sampling 

TABLE L1. Different versions of high quality rendering methods 

fast processors and additional hardware support for fast display of polygon models; most 
workstations with more than one processor work in shared-memory mode. The natural 
algorit.hm for this type of workstation is the projective depth-buffer display algorithm 
with a radiosity preprocessing with accurate or even exact meshing. 

A second category of multi-processor workstations comprises the systems with dis
tribut.ed rnemory (i.e. transputer systems). Hay tracing is a popular subject for this type 
of syst.em. A large number of implementations of radiosity and ray tracing algorithms have 
been published in recent years. All have shown good to excellent speed-up rates. Overall 
performances however are still slow in part.icula.r for cases where the object database is 
too big to be duplicated on each processor and has to be distributed over the processors, 
Until the communication bandwidth will have been improved, no real-time performances 
can be expected from these systems. 

Special VLSI implementations of ray tracing aJgorithms have been scarse. \Vell-known 
is the ray ca.sting engine of Keelem and Ellis [21, 22] which to our knowledge has been 
built. Another design was published by Pulleyblank and Kapenga [31, 32J. This work 
was done at the VLSI-group of t.he Electrical Engineering department of the TU Delft. 
\Vork on this subject has since then continued anel was extended to (two-pass) radiosity 
algorithms [46]. In 1990 a project was started to develop a 'radiosity engine' in the form 
of a plug-in board to enhance t.he performances of standard workstations for high-quality 
rendering. Although not aiming at real-time performances as such, it should give at least 
an order of magni tude speed-up for the radiosity calculation compared to conventional 
hardware a.pproaches. 

As the basic computational primitive for hardware implemen ation was chosen the 
interse( ,;011 of a frustrum (hemisphere or part of hemisphere) of rays with a. set of patches 
(polygons or bicubic patches). Given several computational units to ca.lculate the ray
patch intersection, it was a.ssumed that the ma.in bottle-neck would be the communication 
b.~!",ween the patch database, managed b:y the host, and the intersection computa.tion units. 
A:.;suming coherence among neighboring rays in a frustrum, it wa.s envisioned that if the 
ray frustum could be subdivided into segments in a way tha.t would reflect the pa.tch 
distribution, then the number of calls to tile database would be minimal. For this purpose 
a special data st.ructure was devised that segments the ray frustrums into sectors (see 
figure 1.2). 

All ra.ys in one sector are loa.ded 011 one intersection computation unit. The size (angle) 
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grid of regular space subdivision 

\ 

FIGURE 1.2. Ray [rustrum and sectors 

of the sector is made dependent on the patch density and distribution, and thus on the 
expected computation load, to ensure a good load balancing over the various intersection 
units. A further reduction in the communication with the central database has bee·n 
achieved with a hierarchy of caches. See for further details and simulation results [35, 36, 
34}. 

1.4 Algorithrns for a radiosity engine 

It is interesting to speculate about possible algorithms that \vould fit the radiosity engine 
concept and in particular the computational primitive of 'ray frustrum intersection' as 
explained above. First of all noie that ray frustrums can be used both in the radiosity 
preprocessing for shooting, as well as in the rendering pass for sampling. The computa
t.ional primitiveof ray frustrum shooting/sampling is thus indeed very versatile in the 
context of radiosity and ray tracing algorithms and probably will take care of the larger 
part of the total computation load. 

However, there is also a drawback. The ray frustrum method is mainly intended for 
undirected shooting and sampling (see figure 1.:3), which is to avoid overhead at the host 
for determining the number and directions of the rays t.hat would leave the intersection 
computation units idle for certain moments. This mea,ns that rays are cast without aiming 
at a specific patch or a specific point (e.g. a vertex). This fits well in the context of a l\llonte 
Carlo type of sampling (undirected shooting) but not very well in a progressive radiosity 
method as in [43J. See for a discussion on the advantages and disadvantages of directed 
and undirected sampling [39] where these are called implicit and explicit sampling. 

The undirected sampling poses also some additional constraints on the resolution of 
the mesh and the resolution of the rays (see again figure 1.:3). If the number of rays is too 
low and the mesh resolution too high then some elements of the mesh will not receive a 
contribution; this is likely to happen because as the distance over which the rays travel 
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FIGURE 1.3. Direct.ed (left) versus undirected shooting (right) 

increases, the rays will get more separated and thus the mesh resolution can never be 
optimally adapted to the ray density. This can be accommodated by using an hierarchical 
mesh data structure that assigns intensity values to levels corresponding with the density 
of the receiving rays (3). This would require some extra memory. At the end of the radiosity 
pass, the different levels could t.hen be merged to obtain the radiosity values of the patch 
or vertices. 

Nevertheless, there will always be an order of magnitude difference in efficiency be
tween directed and undirected shooting (see also section 1..5). It will therefore almost 
be inevitable (unless the hardware is extremely fast) to find some compromise between 
both extremes. The only control wit.hin the undirected shooting is the choice of number 
of rays for each sector and the dist.ribution of rays within each sector. These parameters 
can be made dependent on different fa.ctors, for instance: the (expected) density of the 
patches in a sector, the sizes of the pa.tches, the distance of the patches from the ray 
origin, the intensit.y of the pa.tches (during display), the chance of sha.ding discontinuities 
(bot.h during radiosity preprocessing and display), the reflection properties of the patches, 
the resolution of the mesh on the patches, etc., etc. Also source selection and source clas
sification criteria could be applied here [25, 8]. The ray density would then reflect the 
'importance' of the shooting/sampling direction of that sector. In this way the undirected 
shooting would take over charade:·ist.ics of the directed shooting and sampling. However, 
the paramet.er estimation should not t.ake too much overhead and should not require too 
much a priori knowledge about which patches actually will be intersected. 

Summarizing, anel taking into account all considerations, the radiosity engine could be 
used in the following way (see figure 1.4): 

extensive 
radiosity 
preprocessing 

moderate 
radiosity 
preprocessing 

-- mesh for 
direct display --

__ meshf~r __ 
ray tracing pass 

depth-buffer 
display 

ray tracing 

FIGURE lA. Combinat.ions of radiosity preprocessing and dispJay algorithms 
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- for a radiosity pass only: this is a standard progressive radiosity algorithm; starting 
with the patch with the highest il1tensity /energy level, energy is distributed by shooting 
frustrums of rays into the scene until the energy distribution converges to a solution; the 
mesh can dynamically be adapted to the required resolution (which also may be viewpoint 
dependent); a final result is obtained in the form of explicit elements that can be converted 
to polygons for direct display with conventional display hardware, if needed in a viewpoint 
dependent way. 

- for a radiosity pass and a ray tracing pass: the radiosity pass is similar to the radiosity 
preprocessing above, except that the preprocessing need not be so extensive and the mesh 
resolution can be coarse. The mesh is used in the second pass not for display but to provide 
secondary rays with intensity values. If a secondary ray hits a surface then sampling can 
be continued (recursive sampling) or the precomputed radiosity value can be taken as the 
sampling intensity. 

For both uses, the number of sectors and the density distribution of the rays within 
each sector to find an optimal sampling strategy, will be an important factor for efficiency. 

1.5 Experiments 

The differences between directed and undirected shooting can very well be illustrated 
with the example of a light source in front of a rectangular patch. The patch is regularly 
subdivided into 256 elements. Figure 1..5 shows the result of the radiosity pass (shooting 
from the source to the patch). Directed shooting takes 289 rays (figure l.5h right-below)_ 
A comparable quality can only be obtained with more than 100,000 rays shot in a uniform 
way (see figure 1..5a-g). 

FIGURE 1.5_ Results of radiosity pass for a patch ill front of a light source. Undirected shooting a: 1, b: 
10, c: 100, d: 1000, e: 10000, f: 100,000 rays, and directed shooting: h: 289 rays 

A radiosity pass for a simple scene will give the following results (see figure 1_6); for 
the directed version (figure 1.63.), and for the undirected version (figure 1.6b) almost the 
same number of rays (approximately 5000) per shooting (per hemisphere in undirected 
shooting) is used. 

The undirected version shows deficiencies due to mismatch between the hemisphere 
resolution and the meshing of the receiving patches. Also, the positions of the hemispheres 
are noticeahle at those places where the receiving patches a.re close to the shooting patches 
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fiGURE 1.6. Results of a radiosity pass for a simple scene; directed shootillg (left) and undirected 
shoot.i ng (right.) 

(see wall left. of cabinet). This illustrate the importance of some kind of cont.rol over 

the l1umlwr of IWll1isplwres. a.nd t.he ray density and the directions of the rays within a 

frust.rull1 sedor. Ho\\"('\,('L too complicated calculations to adapt the ray directions and 

density to the patch dist.rihution ill a sector docs not fit very well within the hardware 
approach, but SOIlle' form of directiollal control will be llC'eded. This will be subject for 
further research. 

1.6 Conclusions 

To our opillion a radiosi!y cllgine bascd OIl til<' gcnera.! COlllput.aLiolla.l primitive of a ray 
frusirulll call be a vcrsil.tik picc(' of hardware to ellhallce high quality rClldering. First 
of all it call 1)(' llsed to speed up til(' radiosit.y calculat.ions ill (\ syst.elll that uses depLh

buffer hardware for real-tim(' display as well ill a system tlIat uses a two pass mcLhod, 

and secondly it. Cilli be used (lS (l rCllderillg cngiJJc for il (wo-pass radiosity algorit.hm. 
Compa.riJlg tll<' apprO<lCh wit h other algorithms and hardware solut.ions, it has to be 

t.akcll into accoullt thai ulldirected shootillg/samplillg is less efficiellt t!Jan directed shoot
ing and therefore is illdecd a p11re br1lte-force approach. At the other hand, this approach 
is I)('Ucr suited for pilrcdkl illlplell1ClItatioll 011 specialised \lLSI hardwa.re. TIl(' overall 
pCrfOrlll<lIlC<' of t 1)(' radiosi!.\" ellgine' will depclld to a l;uge ext.Cllt Oll the abilit.y' t.o tunc 

the ray dellsi ty alld d i reci iOlls \\" i Lll i 11 each frustrul1l s('ctor to the Jli) t.ell d islri bu Lioll. 

A ck IIOW \e<lgelllCllts 

'I'll<' idcils reported ill t his paper Ilaw growli out of discussiolls wi! II Ed lkprd Jere and Li

Shcng S]](,ll of the Hadiosity ElIgi])e' Project of the :\ct work! lwory Sectioll at tIl<' Faculty 

of Electrical Ellgill('(Tillg of lklft l-lIiQ'rsily of TccllllO]ogy. 
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