
Hardware Challenges for Ray Tracing and Radiosity
Algorithllls

Frederik Wo Jansen, Aljan J. F. I(ok and Theo VeTelst

ABSTRACT
Computer graphics algorithms and graphics hardware have mainly been developed
along two lines: real-time display and realistic display. Real-time display has been
achieved by developing dedicated hardware for projective, depth-buffer display algo
rithms. Increased realism has been achieved by ray tracing and radiosity algorithms,
which generally are implemented on standard workstations because the complexity
of the computation makes it difficult to implement these algorithms in hardware. In
this paper we review these different approaches and discuss the feasibility of using
special hardware to enhance the ra.diosity and ray tracing computation. In particular
we will explore the use of the intersection of a frustrum of rays with patches in a scene
as a basic computational primitive for these algorithms and their implementation in
hardware.
Keywords and phrases: rendering, radiosity, ray tracing, graphics hardware, parallel
proceSS1l1g.

1.1 Introduction

Over the last decade, computer graphics research has been very successful in achieving
two aims: increased real-time display and increased realism of display. However, both
aims have not been realized so far within one approach. Real-time display has been suc
cessfully achieved by implementing the viewing pipeline of the projective depth-buffer
hidden- surface algorithm in special hardware, and increased realism has been achieved
by extending the traditional ray tracing algorithm to include also diffuse interrefiection
and soft shadmvs.

Since the introduction of the geometry engine [9], the depth- buffer based display sys
tems have shown a steady increase in performance, both in speed and quality. Starting
with a display rate of 30,000 polygons per second in the early eighties, current systems are
now able to display more than a million polygons per second, allowing display of reasonable
complex scenes in real-Lime [41, 1, 24]. Although the depth-buffer algorithm, inherently a
projective algorithm, is not able to handle optica.l effects such as shadows, highlights and
mirroring reflections in a natural way, several techniques have been developed to enhance
realism by adding textures, anti-aliasing, motion-blur, depth-of-field, etc. [17J. Also dif
fuse inten:;eflection and area light sources have been incorporated by adding a radiosity
preprocessing pass that subdivides the scene into a mesh of small surface patches and
elements, and that calculates the exchange of energy between these patches to account
for the diffuse inLerrefiection between surfaces [11, 29]. Rendering these elements makes
it possible to display scenes in real-time while still maintaining a high-degree of shading
accuracy [5, 6, 4]. Summarizing, within the paradigm of depth-buffer-based projective
display of polygons a whole set of techlliques have been developed to increase realism
without sacrificing real-time performance. However, the projective approach will never be
able, despite all clever tricks, to achieve real realism, because it lacks the possibilities of

true mirroring reflections and subtle shadowing effects.
'Ete other display paradigm, the family of ray tracing based display techniques, has

123

http://www.eg.org
http://diglib.eg.org

Frederik \\'. Jansen, Arjan J. F. Kok and Theo Verelst

always been appreciated for its high-quality rendering capabilities. The initial 'recursive'
ray tracing algorithm [45] did effectively model shadows and optical effects such as mir
roring reflection and transparancy. '''lith stochastic ray tracing the repertoire of optical
effects was further expanded to anti-aliasing, soft shadows, motion blur and depth-of
focus [13, 15, 27, 28]. The addition of Monte Carlo sampling techniques to capture also
the indirect light has even further increased the realism and accuracy of the illumination
calculation [20], and so did improved reflection models [14J and texture filtering [18]. As
realism increased, however, computation times exploded. Efficiency improving techniques
that have been developed such as adaptive ray tracing [30] and spatial subdivision tech
niques [16] are effective, but processing times for complex scenes are still in the order of
minutes and not of seconds, not to speak about tenths of seconds. For that reason ray
tracing has always been a popular subject for parallel processing. Although good speed-up
figures have been reported for many multi-processor systems, interactive image update
rates are still not achieved. The alternative of designing special VLSI hardware, the pop
ular route for the depth-buffer approach mentioned above, has not been tried so much for
ray tracing. The efforts of Kedem and Ellis [21, 22] and Pulleyblank and Kapenga [31,32]
are the notable exceptions so far.

In line with P~lleyblank and Kapenga [31, 32], Shen et al. [35,36, 34] have proposed to
enhance the radiosity anel ray tracing computation by using special VLSI hardware. They
extend the earlier approach by considering the intersection computation of a frustrum of
rays with a set of patches as the basic computational primitive to be supported by special
VLSI hardware. In this paper we explore the feasibility of this approach both for real-time
and realistic rendering.

The paper is structured as follows. In section 1.2, the requirements for realistic rendering
are summarized and the state-of-the-art for global illumination calculation reviewed. In
section 1.3, the different hardware approaches are discussed. In section 1.4, the basic
outline of a family of ray tracing algorithms with radiosity preprocessing is given based
on the computational primitive of the ray frustrum intersection. In section l.5 some
experiments are reported to give an indication of the total required computation for the
different versions of this algorilhm for rendering a reasonable complex scene. In section l.6
the different options are discussed and conclusions are given.

1.2 Realis111 in conlputer graphics

Realism can only be a.chieved by (1. combination of sophisticated modeling and rendering
techniques, including techniques for modeling curved surfaces, specifying procedural mod
els, applying texture sampling and filtering, light source models, local reflection models
(isotropic/anisotropic, diffuse/specular reflection, refraction, absorption, etc.) and global
illumination (interrefiection patterns between surfaces, simulation of soft shadmvs, mir
roring refiecLions and participat.ing media). Although all of these subjects are important,
global illumination is currently considered to be most crucial, in particular in applications
for architecture and interior design.

To give an indication of the complexity of the interreflection problem, some of the
paths travelled b.y the light. leaving a light source before it reaches the eye are shown in
figure 1.1. The situation is simplified in the sense that surfaces are assumed to be either
purely diffuse or purely specular. Path 1 represents the direct diffuse refiectiol1, path 2 the
diffuse-specular reflection, path :3 the diffuse-diffuse reflection and path 4 the specular
diffuse reflection. Other possible paths, e.g. only specular (highlight) or specular-specular
reflection are not included in tlle figure.

124

Hardware Challenges for Ray Tracing and Radiosity Algorithms

Standard projective algorithms (depth-buffer, scan-line, etc.) will only account for light
following path 1 and for the direct specular reflection of light, however without shadow
testing. Standard ray tracing does sample light f9110wing path 1 (including shadow detec
tion) and 2 but it does not account for the indirect reflection of light as a result of the
diffuse interreflection between surfaces in the scene (path 3) and also not for the light that
is first rc1ected by a specular surface before it is diffusely reflected by a visible surface
(path 4). To capture this light it will be necessary to cast at each intersection of a view
ing ray wi th a diffuse snrfa.ce, addi tional secondary rays into the directions of all other
surfaces to capture the light that is reflected by these surfaces, and even then it is very
unlikely that the light will exactly hit the light source as suggested by path 4.

specular

eyepoint light source

image plane
specular

FIGURE 1.1. Different paUls of light. reflection

A better approach therefore is to do a preprocessing, also known as the radiosity pass,
to access the global light distribut.ion in a scene and to precompute the amount of light
that each surface receives from its environment [11, 29]. This radiosity pass can be done
either by calculating the energy exchange between surfaces in the scene by simultaneous
solving a set of linear equat.ions, or by a progressive radiosity method that 'shoots' light
from light sources to other patches, light which in turn is re-shot to other surfa.ces, and
so on, recursively, until a good enough approximation of the final light distribution is
reached [10]. Because it is not feasible to do such a calculation for each point in the scene, it
is done only for a limited number of samples points, and the value of intermediate points is
interpolated from these. Alternatively, the surfaces can be subdivided into smaller patches
or elements and the energy exchange between these surface elements can be calculated.
To avoid seeing the boundaries betweell the elements, the values over the patches are also
smooth interpolat.ed.

The resolution of the sample poillts (resp. the size of the patch subdivision) is a criti
cal factor in the efficiency and quality of the radiosity calculation. A resolution too high
will give a too expensive and too accurate solution while a resolution too low will not
be adequate to represent correctly the shading gradients. Therefore adaptive meshing
techniques have been developed t.hat provide locally a higher resolution to accommodate
shading discontinuities [12]. A furthcr improvemcnt ca;1 be obtained by applying an exact
meshing technique t1lilt let.s the bOllndaries of elemcnts coincide with shading discontinu
ities [7, 19]. In t.hat. casE', I!O\\,e\"cr. it is illC'\"itablc that. (l priori knowledge ahout shading
discontinuities is available, obtained for instancc by projecting surface contours onto other
patches. This is of course a w; y expensive and complex kind of (object-space-ofiented)

125

Frederik W. Jansen, Arjan .J. F. Kak and Thea Verebt

preprocessing, in particular if curved surfaces are involved.
Summarizing, for high-quality rendering there arc the following combinations of pre

processing and display (see also table 1.1):
- pmjective (depth-buffer) display with a radiosiiy preprocessing (alg. 1 in table 1.1);

here an extensive preprocessing is needed Lo accurately represent shading discontinuities
because the results of the preprocessing are directly displayed as the 'shading' of the sur
faces (including shadows); the mesh should therefore be as accurate as possible, possibly
exact. Although the preprocessing may take a considerable amount time, the display can
be done at interactive rates, and is therefore attractive for walk-through applications [6].

- ray tracing algorithms with a radiosily]J'/'eprocessing; also known as the two-pass
radiosity methods [42, 43]; here several versions are possible (alg. 2a, 2b, 2c in table 1.1);
the first one is a ray tracing algorithm that takes the precomputed radiosity value as
the diffuse intensity of the patch and only adds the specular reflection component to it
by tracing secondary rays [40]; this version requires ,a preprocessing that is comparable
with the projedive display algorithms above because the shadovvs from the major (point)
light sources are implicitly included in the racliosity shading; the second version only uses
the precomputed l'adiosity intensity as an improved 'ambient' term and it re-samples
the light from the most important light sources and patches to calculate more accurate
shadows [37, S, 26, 25]; this version does a source seledion or source classification during
the radiosity pass to determine \\~hich patches can be considered as important light sources;
the contributions of these select.ed sources are then not included in the precomputed
radiosity values; finally, the third version re-samples all the light by shooting secondary
rays to all diredions [3:3]; now the radiosity shading is not used at all for display but only
to quantify the light that is dif!'usely reflected by each patc.h and that is sampled during
the rendering by the secondary (sha.dow) rays.

- ray trac£ng algorithms wilhoul a mdiosity preprocessing (alg. 3 in table 1.1); these
algorithms sample a.ll the light by shooting secondary rays into all directions, but now
these secondaTy rays hit other surfaces for which no radiosity intensity is known, and
thus the sampling has to be done recursively [20]; sampling efficiency can be improved
by applying importance sampling strategies [:38, 2, 2:3] and by exploiting coherence, for
instance in the form of 'illuminance caching' [44].

In fact the last two algorithms can be generalized and merged into one algorithm when
the recursive sampling is combined wilh a rac\iosity pass. For instance at a certain level
of recursion it may be advisable to take a precomputed value instead of continuing the
sampling or taking an arbitrary inLensit..y \'a.lue. \Vhcther recursion is only done to the
first level, 'one-level path tracing' [:3:3], or deeper can be made dependent on the intensity
of the patch or t.he chance of shading discontinuities (highlights, shadow boundaries, etc.)
in the neighborhood. The racliosit.y pass can be less extensive if one accepts to sample
deeper, and vice versa.

The choice of algorit.hm for a certain application is of course very much dependent
on a mix of the following fadors: the quality of the picture (e.g. shadow accuracy), the
display rate (e.g. real-time, interactive, or overnight), the amount of preprocessing time
and memory use t.hat can 1)(" accepted. anel finally also the available hardware.

1.3 Hardware <lpproachcs

Having reviewed the different preprocessing and display algorithms, in this section \ve
discuss the possible hardware pla(Jorms.

Dominant in the markd are (high-end) graphics workstations with one or multiple

126

Hardware Challenges for Ray Tracing and Radiosity Algorithms

algorithm meshing display light source shadow time
sampling accuracy

1 extensive, depth-buffer no dependent real-time
exact on mesh

2a extensive, ray-tracing no dependent long
exact on mesh

2b moderate ray-tracing yes good longer

2c low ray- tri'.cing sampling in better even
all directions longer

3 no ray- tracing recursIve better longest
sampling

TABLE L1. Different versions of high quality rendering methods

fast processors and additional hardware support for fast display of polygon models; most
workstations with more than one processor work in shared-memory mode. The natural
algorit.hm for this type of workstation is the projective depth-buffer display algorithm
with a radiosity preprocessing with accurate or even exact meshing.

A second category of multi-processor workstations comprises the systems with dis
tribut.ed rnemory (i.e. transputer systems). Hay tracing is a popular subject for this type
of syst.em. A large number of implementations of radiosity and ray tracing algorithms have
been published in recent years. All have shown good to excellent speed-up rates. Overall
performances however are still slow in part.icula.r for cases where the object database is
too big to be duplicated on each processor and has to be distributed over the processors,
Until the communication bandwidth will have been improved, no real-time performances
can be expected from these systems.

Special VLSI implementations of ray tracing aJgorithms have been scarse. \Vell-known
is the ray ca.sting engine of Keelem and Ellis [21, 22] which to our knowledge has been
built. Another design was published by Pulleyblank and Kapenga [31, 32J. This work
was done at the VLSI-group of t.he Electrical Engineering department of the TU Delft.
\Vork on this subject has since then continued anel was extended to (two-pass) radiosity
algorithms [46]. In 1990 a project was started to develop a 'radiosity engine' in the form
of a plug-in board to enhance t.he performances of standard workstations for high-quality
rendering. Although not aiming at real-time performances as such, it should give at least
an order of magni tude speed-up for the radiosity calculation compared to conventional
hardware a.pproaches.

As the basic computational primitive for hardware implemen ation was chosen the
interse(,;011 of a frustrum (hemisphere or part of hemisphere) of rays with a. set of patches
(polygons or bicubic patches). Given several computational units to ca.lculate the ray
patch intersection, it was a.ssumed that the ma.in bottle-neck would be the communication
b.~!",ween the patch database, managed b:y the host, and the intersection computa.tion units.
A:.;suming coherence among neighboring rays in a frustrum, it wa.s envisioned that if the
ray frustum could be subdivided into segments in a way tha.t would reflect the pa.tch
distribution, then the number of calls to tile database would be minimal. For this purpose
a special data st.ructure was devised that segments the ray frustrums into sectors (see
figure 1.2).

All ra.ys in one sector are loa.ded 011 one intersection computation unit. The size (angle)

127

Frederik W. Jansen, Arjan J. F. Kok and Theo Verelst

grid of regular space subdivision

\

FIGURE 1.2. Ray [rustrum and sectors

of the sector is made dependent on the patch density and distribution, and thus on the
expected computation load, to ensure a good load balancing over the various intersection
units. A further reduction in the communication with the central database has bee·n
achieved with a hierarchy of caches. See for further details and simulation results [35, 36,
34}.

1.4 Algorithrns for a radiosity engine

It is interesting to speculate about possible algorithms that \vould fit the radiosity engine
concept and in particular the computational primitive of 'ray frustrum intersection' as
explained above. First of all noie that ray frustrums can be used both in the radiosity
preprocessing for shooting, as well as in the rendering pass for sampling. The computa
t.ional primitiveof ray frustrum shooting/sampling is thus indeed very versatile in the
context of radiosity and ray tracing algorithms and probably will take care of the larger
part of the total computation load.

However, there is also a drawback. The ray frustrum method is mainly intended for
undirected shooting and sampling (see figure 1.:3), which is to avoid overhead at the host
for determining the number and directions of the rays t.hat would leave the intersection
computation units idle for certain moments. This mea,ns that rays are cast without aiming
at a specific patch or a specific point (e.g. a vertex). This fits well in the context of a l\llonte
Carlo type of sampling (undirected shooting) but not very well in a progressive radiosity
method as in [43J. See for a discussion on the advantages and disadvantages of directed
and undirected sampling [39] where these are called implicit and explicit sampling.

The undirected sampling poses also some additional constraints on the resolution of
the mesh and the resolution of the rays (see again figure 1.:3). If the number of rays is too
low and the mesh resolution too high then some elements of the mesh will not receive a
contribution; this is likely to happen because as the distance over which the rays travel

128

Hardware Challenges for Ray Tracing and Radiosity Algorithms

FIGURE 1.3. Direct.ed (left) versus undirected shooting (right)

increases, the rays will get more separated and thus the mesh resolution can never be
optimally adapted to the ray density. This can be accommodated by using an hierarchical
mesh data structure that assigns intensity values to levels corresponding with the density
of the receiving rays (3). This would require some extra memory. At the end of the radiosity
pass, the different levels could t.hen be merged to obtain the radiosity values of the patch
or vertices.

Nevertheless, there will always be an order of magnitude difference in efficiency be
tween directed and undirected shooting (see also section 1..5). It will therefore almost
be inevitable (unless the hardware is extremely fast) to find some compromise between
both extremes. The only control wit.hin the undirected shooting is the choice of number
of rays for each sector and the dist.ribution of rays within each sector. These parameters
can be made dependent on different fa.ctors, for instance: the (expected) density of the
patches in a sector, the sizes of the pa.tches, the distance of the patches from the ray
origin, the intensit.y of the pa.tches (during display), the chance of sha.ding discontinuities
(bot.h during radiosity preprocessing and display), the reflection properties of the patches,
the resolution of the mesh on the patches, etc., etc. Also source selection and source clas
sification criteria could be applied here [25, 8]. The ray density would then reflect the
'importance' of the shooting/sampling direction of that sector. In this way the undirected
shooting would take over charade:·ist.ics of the directed shooting and sampling. However,
the paramet.er estimation should not t.ake too much overhead and should not require too
much a priori knowledge about which patches actually will be intersected.

Summarizing, anel taking into account all considerations, the radiosity engine could be
used in the following way (see figure 1.4):

extensive
radiosity
preprocessing

moderate
radiosity
preprocessing

-- mesh for
direct display --

__ meshf~r __
ray tracing pass

depth-buffer
display

ray tracing

FIGURE lA. Combinat.ions of radiosity preprocessing and dispJay algorithms

129

Frederik W. Jansen, Arjan J. F. Kok and Theo Verelst

- for a radiosity pass only: this is a standard progressive radiosity algorithm; starting
with the patch with the highest il1tensity /energy level, energy is distributed by shooting
frustrums of rays into the scene until the energy distribution converges to a solution; the
mesh can dynamically be adapted to the required resolution (which also may be viewpoint
dependent); a final result is obtained in the form of explicit elements that can be converted
to polygons for direct display with conventional display hardware, if needed in a viewpoint
dependent way.

- for a radiosity pass and a ray tracing pass: the radiosity pass is similar to the radiosity
preprocessing above, except that the preprocessing need not be so extensive and the mesh
resolution can be coarse. The mesh is used in the second pass not for display but to provide
secondary rays with intensity values. If a secondary ray hits a surface then sampling can
be continued (recursive sampling) or the precomputed radiosity value can be taken as the
sampling intensity.

For both uses, the number of sectors and the density distribution of the rays within
each sector to find an optimal sampling strategy, will be an important factor for efficiency.

1.5 Experiments

The differences between directed and undirected shooting can very well be illustrated
with the example of a light source in front of a rectangular patch. The patch is regularly
subdivided into 256 elements. Figure 1..5 shows the result of the radiosity pass (shooting
from the source to the patch). Directed shooting takes 289 rays (figure l.5h right-below)_
A comparable quality can only be obtained with more than 100,000 rays shot in a uniform
way (see figure 1..5a-g).

FIGURE 1.5_ Results of radiosity pass for a patch ill front of a light source. Undirected shooting a: 1, b:
10, c: 100, d: 1000, e: 10000, f: 100,000 rays, and directed shooting: h: 289 rays

A radiosity pass for a simple scene will give the following results (see figure 1_6); for
the directed version (figure 1.63.), and for the undirected version (figure 1.6b) almost the
same number of rays (approximately 5000) per shooting (per hemisphere in undirected
shooting) is used.

The undirected version shows deficiencies due to mismatch between the hemisphere
resolution and the meshing of the receiving patches. Also, the positions of the hemispheres
are noticeahle at those places where the receiving patches a.re close to the shooting patches

130

Hardware Challenges for Ray Tracing and Radiosity Algorit.hms

fiGURE 1.6. Results of a radiosity pass for a simple scene; directed shootillg (left) and undirected
shoot.i ng (right.)

(see wall left. of cabinet). This illustrate the importance of some kind of cont.rol over

the l1umlwr of IWll1isplwres. a.nd t.he ray density and the directions of the rays within a

frust.rull1 sedor. Ho\\"('\,('L too complicated calculations to adapt the ray directions and

density to the patch dist.rihution ill a sector docs not fit very well within the hardware
approach, but SOIlle' form of directiollal control will be llC'eded. This will be subject for
further research.

1.6 Conclusions

To our opillion a radiosi!y cllgine bascd OIl til<' gcnera.! COlllput.aLiolla.l primitive of a ray
frusirulll call be a vcrsil.tik picc(' of hardware to ellhallce high quality rClldering. First
of all it call 1)(' llsed to speed up til(' radiosit.y calculat.ions ill (\ syst.elll that uses depLh

buffer hardware for real-tim(' display as well ill a system tlIat uses a two pass mcLhod,

and secondly it. Cilli be used (lS (l rCllderillg cngiJJc for il (wo-pass radiosity algorit.hm.
Compa.riJlg tll<' apprO<lCh wit h other algorithms and hardware solut.ions, it has to be

t.akcll into accoullt thai ulldirected shootillg/samplillg is less efficiellt t!Jan directed shoot
ing and therefore is illdecd a p11re br1lte-force approach. At the other hand, this approach
is I)('Ucr suited for pilrcdkl illlplell1ClItatioll 011 specialised \lLSI hardwa.re. TIl(' overall
pCrfOrlll<lIlC<' of t 1)(' radiosi!.\" ellgine' will depclld to a l;uge ext.Cllt Oll the abilit.y' t.o tunc

the ray dellsi ty alld d i reci iOlls \\" i Lll i 11 each frustrul1l s('ctor to the Jli) t.ell d islri bu Lioll.

A ck IIOW \e<lgelllCllts

'I'll<' idcils reported ill t his paper Ilaw growli out of discussiolls wi! II Ed lkprd Jere and Li

Shcng S]](,ll of the Hadiosity ElIgi])e' Project of the :\ct work! lwory Sectioll at tIl<' Faculty

of Electrical Ellgill('(Tillg of lklft l-lIiQ'rsily of TccllllO]ogy.

1. 7 n dcrC'llC(,S

[I] l~. A]';('I('y alld T . .J (,rIl 10] 11 k. Iligh-pcrforIll<tII("(' pOlygOll ITll(krillg. ('(JlllfJlllcr (,'/'{/Jih
. ')')(1) .)J() >1(' (" ! "i) l()'" ICS ::.., ./ : :.). <'I I . . 'J/(}ql'OjJ I i'i(\, '0::-;.

131

Frederik W. Jansen, Arjan J. F. Kok and Theo Verelst

[2] J. Arvo and D. Kirk. Particle transport and image synthesis. Computer Graphics
24 (4) :63-66, Siggraph '90, 1990.

[3] F. Asensio. A hierarchical ray casting algorithm for radiosity shadows. P1'Oceedings
of the 3rd Eurographics Workshop on Rendering, B1'istol, 1992.

[4] D.R. Baum, S. Mann, KP. Smith, and J.M. Winget. Making radiosity usable: Auto
matic preprocessing and meshing techniques for the generation of accurate radiosity
solutions. Computer Graphics 25(4): 51-60, 1991.

[5] D.R. Baum, R.E. Rushmeier, and J.M. \Vinget. Improving radiosity solutions
through the use of analytically determined form-factors. Computer Gmphics 23(3):
325-334, 1989.

[6] D.R. Baum and J.M. Winget. Real time radiosity through parallel processing and
hardware acceleration. Compute?' Graphics 24(2): 67-75, 1990.

[7] A.T. Campbell and D.S. Fussell. Adaptive mesh generation for global diffuse illumi
nation. Computer Graphics 24(4): 155-164, Siggraph'90, 1990.

[8] S.E. Chen, H. Rushmeier, G. Miller, and D. Turner. A progressive multi-pass method
for global illumination. Computer Graphics 25(4): 165-174, Siggraph'91, 1991.

[9] J. Clark. The geometric engine: A VLSI geometry system for graphics. Computrr
graphics 16(3): 127-133, Siggraph'82, 1982.

[10] M.F. Cohen, S.E. Chen, J.R. Wallace, and D.P. Greenberg. A progressive refiE(:>
ment approach to fast ra.diosity image generation. Computer Gmphics 22(4): '75-84,
Siggraph '88, 1988.

[11] M.F. Cohen and D.P. Greenberg. The hemi-cube: A radiosity solution for complex
environments. Compute!' Graphics 19(3): 31-40, Siggraph'85, 1985.

[12] M.F. Cohen, D.P. Greenberg, D.S. Immel, and P.J. Brock. An efficient radiosity
approach for realistic image synthesis. IEEE Computer Graphics and Applications
6(3): 26-35, 1986.

[13] R.L. Cook. Stocha.stic sampling in computer graphics. ACA1 Transactions on Graph
ics 5{1): 51-72, 1986.

[14] R.L Cook and ICE. Torrance. A reflectance model for computer graphics. A eM
Transactions on Graphics 1 (1): 7-24, 1982.

[15J M. Dippe and E.H. Wold. Antia.liasing through stochastic sampling. Computer
Gmphics 19(3): 69-78, Siggraph '85, 198.5.

[16] A.S. Glassner. Introduction to ray tracing. Academic P1'ess, 1989.

[17] P. Reaberli and K. Akeley. The accumula.tion buffer: Hardware support for high
quality rendering. Compute7' Graphics 24(4): 309-318, Siggmph'90, 1990.

[18J P.S. Heckbert. Survey of t.exture mapping. Computer Graphics and Applications
6(11): 56-67, 1986.

[19J P.S. Heckbert. Discontinuity meshing for radiosity. Proceedings of the 31'd Euro
graphics VVorksho]J on Rendering, 1992.

132

Hardware Challenges for Ray Tracing and Radiosity Algorithms

[20] J.T. Kajiya. The rendering equation. Computer Graphics 20(4): 143-150, Sig
graph '86, 1986.

[21] G. Kedem and J.L. Ellis. The ray casting machine. Proc. IEEE Int. Conf. on
Computer Design: VLSI in Computers (ICCD'84), IEEE Computer Society Pr'ess j

533-538, 1984.

[22] G. Kedem and J.1. Ellis. Chapel Hill Conference on VLS!, 1985.

[23] D. Kirk and J. Arvo. Unbiased sampling techniques for image synthesis. Computer
Graphics 25(4): 153-156, Siggraph '91, 1991.

[24] D. Kirk and D. Voorhies. The rendering architecture of the DNlOOOOVS. Computer
Graphics 24 (4): 299-307, Siggraph '90, 1990.

[25] A.J.F. Kok and F.\V. Jansen. Source selection for the direct lighting computation
in global illumination. Proceedings of the 2nd Eurographics Workshop on Rende1'ing,
199L

[26] A.J.F.Kok, F.W. Jansen, and C. Woodward. Efficient complete radiosity ray tracing
using a shadow coherence method. Rep01't of the Faculty of Technical Mathematics
and Inf01'matics, m'. 91-63, 1991. Submitted for publication, 1991.

[27] M.E. Lee, A. Redner, and S.P. Uselton. Statistically optimized sampling for dis
tributed ray tracing. Computer Graphics 19(3): 61-67, Siggraph'85, 1985.

[28] D.P. Mitchell. Generating antialiased images at low sampling densities. Computer
Graphics 21 (4): 65-72, Siggraph '87, 1987.

[29] T. Nishita and Naka.mae E. Continuous tone representation of three-dimensional
objects taking account of shadows and illterreflection. Computer Graphics 19(3):
23-30, Siggraph '85, 1985.

[30] J. Painter and K. Sloan. Antialiased ray tracing by adaptive progressive refinement.
Computer Graphics 23(3): 281-288, Siggraph '89, 1989.

[31] R.W. Pul1eyblank and .1. Kapenga. VLSI chip for ray tracing bicubic patches. In:
Advances in Compute1' Graphics Hardwa1'e I, Springer Verlag, Proceedings Fi1'st Eu
rographics Workshop on Hardware, 125-140, 1986.

[32] R.W. Pulleyblank and J. Kapenga. The feasibility of a VLSI chip for ray tracing
bicubic patches. Computer' Graphics and Applications 7(3): 33-44, 1987.

[33] H. Rushmeier. Realistic image synthesis for scenes with radiatively participating
media. PhD thesis, Comell University, 1988.

[34] L-S. Shen and E. Deprettere. A parallel-pipelined multiprocessor system for the
radlosity method. Seventh Eurographics Workshop on Graphics HardwaTe, 1992.

[35] 1.-S. Shen, E. Deprettere, and P. Dewilde. A new spa,ce partitioning for mapping
computations of the radiosity onto a highly pipelined pa,rallel architecture (I). Fifth
Eurographics l'f/orkshop on Graphics Ha1'dwaTe, 1990.

[36] 1.-S. Shen, F.A . .1. Laarakker, and E. Deprettere. A new space partitioning for map
ping computations of the radiosit.y onto a highly pipelined parallel architecture (II).
Sixth Eurographics vV01'kshop on Graphics Hardware, 1991.

133

Frederik W. Jansen, Arjan J. F. Kok and Theo Verelst

[37] P. Shirley. A ray tracing method for illumination calculation in diffuse specular
scenes. Proceedings Computer Graph£cs Interface: 205-212, 1990.

[38] P. Shirley and C. Wang. Direct lighting calculation by monte carlo integration.
Proceedings of the 2nd Eurographics Workshop on Rendering, Barcelona, 199L

[39] P. Shirley and C. Wang. Distributed ray tracing: Theory and practice. Proceedings
of the 3rd EUlOgraphics WOTkshop on Rende1'ing, B1'istol, 1992.

[40] F. Sillion and C. Puech. A general two pass method integrating specular and diffuse
refiection. Computer Graphics 23(3): 335-344, Siggraph '89, 1989.

[41] J.G. Torborg. A parallel processor architecture for graphics arithmetic operations.
Computer Graphics 21 (4): 197-204, Siggraph '87, 1987.

[42] J.R. Wallace, M.F. Cohen, and D.P. Greenberg. A two-pass solution to the rendering
equation: A synthesis of ray tracing and radiosity methods. Computer Graphics
21 (4): 311-320, Siggraph '87, 1987.

[43] J.R. Wallace, K.A. Elmquist, and Haines E.A. A ray tracing algorithm for progressive
radiosity. Computer Graphics 28(2):815-824, Siggraph '89, 1989.

[44] G.J. Ward, F.M. Rubinstein, and R.D. Clear. A ray tracing solution for diffuse
interrefiection. ComputeT Graphics 22(4): 85-92, Siggraph '88, 1988.

[45] T. Whitted. An improved illumination model for shaded display. Communications
of the ACM 23(6): 343-349, 1980.

[46] A.C. Yilmaz, C. Hagestein, E. Deprettere, and P. Dewilde. A hardware solution
to the generalized two-pass approach for rendering of artificial scenes. Advances in
Graphics Hardware IV, Proceedings EUl'ographics HaTdwa.l'e Workshop 1989, 65-79,
1989.

134

