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Several example scenes rendered in realtime with 20 to 60 frames per second on the SaarCOR prototype hardware. From left to right:
UT2003, Quake3, Conference and Terrain. Adding support for dynamically modifying these scenes actually reduces the hardware re-
quirements.

Abstract
Realtime ray tracing has recently established itself as a possible alternative to the current rasterization approach
for interactive 3D graphics. However, the performance of existing software implementations is still severely limited
by today’s CPUs, requiring many CPUs for achieving realtime performance.
In this paper we present a prototype implementation of the full ray tracing pipeline on a single FPGA chip.
Running at only 90 MHz it achieves realtime frame rates of 20 to 60 frames per second over a wide range of 3D
scenes and includes support for texturing, multiple light sources, and multiple levels of reflection or transparency.
A particular interesting feature of the design is the re-use of the transformation unit necessary for supporting
dynamic scenes also for other tasks, including efficient ray-triangle intersection as well as shading computations.
Despite the additional support for dynamic scenes this approach reduces the overall hardware cost by 68 %.
We evaluate the design and its implementation across a wide set of example scenes and demonstrate the benefits
of dedicated realtime ray tracing hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Hardware Architecture]: Graphics processors,
Parallel processing I.3.7 [Three-Dimensional Graphics and Realism]: Ray Tracing, Animation

1. Introduction

Over the last two decades rasterization has become the dom-
inant approach for interactive 3D graphics. However, due to
its inability to directly access more than a single triangle at a
time, rasterization is increasingly limiting the advancement
of interactive 3D graphics and content creation. Without ac-
cess to the entire scene even such apparently simple things
as shadows, reflections, and indirect lighting are difficult to
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implement correctly and require non-trivial support from an
application.

Application programmers must spend an increasing amount
of their time working around these limitations instead of
concentrating on their main job. Similarly, content creators
struggle setting up special tricks and fakes necessary for at
least approximating the required effects. As an example, ren-
dering reflections of close-by objects requires to dynami-
cally generate reflection maps depending on the current view
and scene configuration. If applied to large or curved sur-
faces these maps must be applied carefully in order to avoid
exposing the inherent inaccuracies of this approach.
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Ray tracing does not suffer from the same issues because it
can directly, efficiently, and accurately simulate the path of
light through an entire scene. While this allows highly re-
alistic rendering and much simpler content creation, the re-
quired computations have been hugely expensive in the past
and only allowed for off-line rendering. Recently, however,
improved ray tracing algorithms and optimized software im-
plementations already achieved realtime performance even
on a single PC for simple scenes [Wal04]. But realtime per-
formance in larger scenes or with non-trivial lighting ef-
fects still requires the combined power of many proces-
sors [Wal04].

Realtime ray tracing can become a viable alternative
graphics technology if it can be offered within a sin-
gle desktop computer. This requires highly parallel hard-
ware that delivers the necessary floating point performance.
In the past a number of proposals have been made, in-
cluding the use of GPUs [PBMH02] and custom hard-
ware [Gre91, GH96, MKS98]. However, none of these pro-
posals was able to deliver realtime performance for non-
trivial scenes while supporting all the usual ray tracing fea-
tures.

In this paper we present an implementation of a fully fea-
tured ray tracing pipeline in hardware. Using a single FPGA
chip running at 90 MHz it offers realtime rendering per-
formance of 20 to 60 frames per second while supporting
all important ray tracing features, like Phong-like shading,
textures, reflections, transparencies, shadows, and indirect
lighting even in non-trivial scenes.

The hardware also supports interactively changing the scene
through an object-based approach that allows to affinely
transform entire groups of triangles. The same approach can
also be used to instantiate these objects multiple times at ar-
bitrary locations in the scene.

This technique requires frequent transformations of rays be-
tween different coordinate spaces using a dedicated trans-
formation unit. Unfortunately, this unit requires significant
hardware resources while remaining idle for long periods of
time during which other units perform different ray tracing
computations.

Consequently, we use special algorithms for ray-triangle in-
tersection computations as well as for important parts of the
shading computations that re-use the available but idle trans-
formation unit. This strategy greatly simplifies the intersec-
tion and shading units and reduces the overall hardware cost
by up to 68 %.

1.1. Previous Work

Ray tracing offers many benefits in the context of a hardware
implementation. In particular, it scales trivially and can eas-
ily be parallelized. For a detailed overview of the state-of-
the-art in interactive ray tracing see [WPS∗03].

Several approaches have already been realized on MIMD
and SIMD architectures [GP89, GP90, LS91]. Exploit-
ing this scalability by massive parallelization has re-
cently allowed interactive ray tracing to be achieved
in software. It was first realized on supercomputers
[Muu95, KH95, PSL∗99] and more recently, interactive per-
formance has been brought to clusters of standard PCs
[WBWS01, WPS∗03].

The availability of interactive ray tracing required efficient
algorithms to support dynamic scenes. Thus [RSH00] cov-
ered dynamic updates to scene data structures and [LAM01]
investigated lazy evaluation for scene data. More recently
[WBS03] presented dynamic scene management on a dis-
tributed rendering cluster. Furthermore there is the BART
suite [LAM00], a well designed benchmark suite to evaluate
implementations of dynamic ray tracing systems.

Our hardware implementation is based on an ex-
tended version of the software approach outlined in
[WBWS01, WBS03] which has been shown to efficiently
handle the BART suite. Section 5 shows that the prototype’s
performance is several times faster than the software ver-
sion on a single CPU over a wide range of different dynamic
scenes. Thus although we did not implement the BART suite
for the prototype we expect it to run well on our hardware.

Besides using existing architectures, several special pur-
pose hardware architectures for ray tracing have been de-
veloped. Initially hardware support was provided only for
the intersection operation [Gre91]. Later DSPs were used to
build PC-card based ray tracing accelerators [GH96]. Sev-
eral volume ray casters on PC-cards have been developed
[MKS98, PHK∗99, Pfi01] and there is a commercially avail-
able hardware architecture for high quality off-line ray trac-
ing [Hal01].

While these projects achieved remarkable results and work
well as accelerators for ray tracing, none of them is capable
of delivering full-screen realtime frame rates comparable to
those of current rasterization hardware. Recently, a proposal
for a complete hardware architecture for ray tracing has been
simulated that supports static scenes [KiSSO02].

Instead of designing special purpose hardware for ray trac-
ing, another interesting approach maps it to more general fu-
ture architectures: Using a multi-processor system on a sin-
gle chip [MPJ∗00], Purcell has developed a highly optimized
distributed ray tracer that would be capable of delivering
interactive performance [Pur01]. More recently, ray tracing
was also mapped to rasterization hardware using their pro-
grammable pipelines [PBMH02]. These two projects show
that ray tracing can in principle be realized on such multi-
processor single chip hardware architectures.
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1.2. Overview of the Paper

In this paper we explore the design of special purpose hard-
ware for ray tracing. In particular, this allows us to explore
the performance and efficiency with which ray tracing can
be implemented in hardware. As we will see later, the hard-
ware efficiency of those implementions on GPUs and CPUs
is rather low compared to our custom hardware implementa-
tion.

The design for our ray tracing hardware is based on the Saar-
COR [SWS02] architecture and adapts it for an implementa-
tion on modern FPGAs. We discuss the necessary changes to
the architecture and evaluate the implementation and its per-
formance using example scenes from several different appli-
cation scenarios.

This paper is structured as follows: We start with the presen-
tation of a ray tracing algorithm for dynamic scenes which
uses transformations and discuss the re-use of these transfor-
mations for other tasks. The architecture of our design and its
prototype implementation is then described in the Sections 3
and 4. We analyze and evaluate the design in Section 5 be-
fore discussing possible consequences and future work in
Section 6.

2. Ray Tracing of Dynamic Scenes

The basic ray tracing algorithm intersects rays with triangles
and stores the intersection that is closest to the ray’s origin.
To increase performance, a spatial index is used that sub-
divides space and allows to quickly locate objects in space.
Rays then only have to be intersected with objects located in
those spatial regions that are pierced by the ray. With hierar-
chical indices the expected runtime of ray tracing becomes
logarithmically in the scene complexity. This compares fa-
vorably to the linear complexity of a rasterization unit (un-
less the application implements similar techniques on top of
the rasterization engine, i.e. using occlusion queries).

However, the creation of the index is at least linear in the
number of scene primitives, which seems to remove the ad-
vantage for ray tracing in the case of dynamic scenes. For-
tunately, often large parts of dynamic scenes remain static
for long periods of time allowing for amortizing the cost of
building a spatial index over many frames. Additionally, we
can trade off the building cost against the quality of an in-
dex depending on its expected live time allowing us to spend
less time for building an index that cannot be amortized over
many frames.

We base our approach on [WBS03] where primitives are
split into separate objects that are either completely replaced
by modified content or which move under a single affine
transformation with respect to the scene. We focus on the
second approach which allows us to pre-compute and re-use
a separate bottom-level spatial index for each such object.
Each such index can then be positioned in the scene with an

affine transformation and is inserted into a top-level spatial
index, which must be rebuild whenever any object moves.

When a ray encounters an object in the top-level index it
is transformed into the object’s coordinate space and can
now continue traversing the pre-computed index of the ob-
ject [WBS03]. Objects can be instanciated multiple times
simply by storing multiple transformations together with
references to the original object. This approach maintains
the logarithmic cost in scene complexity even for dynamic
scenes with instances.

The same approach can also be applied to a hardware imple-
mentation of ray tracing but this requires that a functional
unit is provided for performing the transformation of the
rays. This unit is expensive in the number of floating-point
units that are required but remains idle most of the time.
Consequently, we investigated other uses of the transforma-
tion unit in ray tracing, which are discussed below.

2.1. Ray Triangle Intersection

As the core part of ray tracing is the computa-
tion of the intersection between a ray and a triangle,
this operation has received much attention in research
(see [MT97, Eri97, Wal04]). In this section, we present a
slightly extended version of Arenberg’s algorithm [Are88]
that is optimal for our purposes as it utilizes the transfor-
mation unit to perform most of the ray-triangle intersection
calculations and also computes the dot product between ray
direction and the normal of the triangle for free.

Figure 1 illustrates the unit triangle intersection method
which consists of two stages: First the ray is transformed
using a triangle specific affine triangle transformation to a
coordinate system in which the triangle is the unit triangle
∆unit with the vertices (1,0,0),(0,1,0), and (0,0,0). In the
second stage, a much simplified intersection test of the trans-
formed ray with the unit triangle is performed.

Figure 1: The unit triangle intersection method consists of
two stages: First the ray is transformed, using a triangle spe-
cific affine triangle transformation. In the second stage, a
simple intersection test of the transformed ray with the unit
triangle is performed.
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2.1.1. Affine Triangle Transformation

The affine triangle transformation to a triangle ∆ = (A,B,C)
with A,B,C ∈ ℜ3 is an affine transformation
T∆(X) = m ·X +N with m ∈ ℜ3,3 and X ,N ∈ ℜ3 that
maps the triangle ∆ to the unit triangle ∆unit such that the

normalized normal N =
(A−C)×(B−C)
|(A−C)×(B−C)|

of the triangle is
mapped to the normal Nunit = (0,0,1) of the unit triangle.

The inverse T−1
∆ of T∆ can easily be described by the follow-

ing equations:

T−1
∆





1
0
0



 = A T−1
∆





0
1
0



 = B

T−1
∆





0
0
0



 = C T−1
∆





0
0
1



 = N

These equations map the vertices of the unit triangle to the
vertices of the triangle ∆ and the normal Nunit to N. The so-
lution for T−1

∆ takes the form:

T−1
∆ (X)=





Ax −Cx Bx −Cx Nx −Cx
Ay −Cy By −Cy Ny −Cy
Az −Cz Bz −Cz Nz −Cz



·X +





Cx
Cy
Cz





The transformation T−1
∆ is unique and well defined. If the

triangle is not degenerate its inverse T∆ exists and is a one-
to-one affine transformation.

2.1.2. Unit Triangle Intersection

A ray R = (O,D) with the origin O ∈ ℜ3 and direction
D ∈ ℜ3 is intersected with a triangle ∆ by transforming R
using T∆ to the unit triangle space and intersecting the trans-
formed ray with the unit triangle. We do not directly com-
pute the point of intersection P but the intersection param-
eter t ∈ ℜ, such that P = O + t · D. The parameter t and
the barycentric coordinates of P within ∆ do not change un-
der a one-to-one affine transformation. Thus it is equivalent
to compute the ray-triangle intersection in world coordinate
space or in unit triangle space.

This transformation greatly simplifies the intersection com-
putation of the ray with the triangle. Let R′ = T∆(R) =
T∆(O,D) = (m · O + N,m · D) = (O′

,D′) be the ray trans-
formed to the unit triangle space, then the intersection can
be computed by:

t = −
O′

z
D′

z
, u = O′

x + t ·D′
x, and v = O′

y + t ·D′
y.

2.1.3. Dot Product Preservation

An additional analysis of Arenberg’s algorithm [Are88] al-
lows to compute the dot product between the ray direction
D and the normal of the triangle for free. Since the normal-
ized normal of the triangle was mapped to the normal Nunit

of the unit triangle, the dot product is simply D′ ·Nunit = D′
z.

This property can be exploited if designing shading units,
as shaders typically require the cosine between ray direction
and geometry normal for color calculation and ray genera-
tion (see next section).

2.1.4. Further Applications

This concept of first transforming a ray to a generic coordi-
nate space before intersecting it can also be applied to many
other types of geometric primitives, e.g. boxes, ellipsoids,
cylinders, etc. The advantage is that only a single represen-
tation (the transformation) needs to be stored together with
a flag indicating the type of primitive. Additionally only a
much simpler and smaller primitive-specific second stage in-
tersection unit must be added.

2.2. Shading

Shading a ray consists of two parts: computing the local scat-
tering of light and spawning new rays to gather the incident
light from certain directions. The transformation unit is well
suited for the second part as discussed below.

2.2.1. Transformation of the Normal

For advanced shading effects such as reflection and refrac-
tion, the normal of the triangle is used to calculate secondary
rays. This normal is specified in object coordinate space, but
needs to be transformed to world coordinate space. Obvi-
ously this transformation can be performed using the trans-
formation unit.

2.2.2. Ray Generation

Spawning of a ray requires several floating-point operations.
These operations can be specified using a transformation
T (X) = ( A B C ) ·X + D. For simplicity reasons we write
T = [A,B,C;D] to specify a transformation.

Using transformations for ray generation allows for using of
the transformation unit and thus reduces the complexity of
the shading unit. Therefore we compute a new ray Rnew by
providing a transformation Tnew and an initial ray R′

new to
the transformation unit which then calculates Rnew as input
to the remaining ray tracing units.

Primary Rays We specify a camera by its position Cp
and an orthonormal basis {Cr,Cu,Cd} formed by the right-
vector, the up-vector, and the viewing direction. The val-
ues x,y ∈ [−1, . . . ,1] parameterize the screen space with a
unit view frustum of 45 degree. For each pixel (x,y) on the
screen the initial ray R′

init = ((0,0,0),(x,y,1)) is mapped us-
ing the transformation Tinit = [Cr,Cu,Cd ;Cp] to the primary
ray Rinit = (Cp, x ·Cr + y ·Cu +Cd).
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Shadow Rays Shadow rays can be calculated very eas-
ily given the incident ray R = (O,D), its intersection pa-
rameter t, and the position of the light source L. Us-
ing Tshadow = [L,O,D;0] and R′

shadow = ((1,0,0),(−1,1, t))
yields the shadow ray Rshadow = (L, O+ t ·D−L).

Reflection Rays The calculation of the reflection ray re-
quires the normal N of the triangle, the normalized ray
direction D, the cosine c between N and D, and a
small positive value e to avoid self intersections. The ray
is computed using TR = [D,N,D;O] and the initial ray
R′

re f l = ((−e,0, t),(1,−2 · c,0)) yielding the reflection ray
Rre f l = ((O+ t ·D− e ·D),(D−2 · c ·N)).

Transparency Rays For calculating a transparency
ray simply the same transformation TR as for the
reflection ray can be used with the initial ray
R′

transp = ((e,0, t),(1,0,0)). A transparency ray then
evaluates to Rtransp = ((O+ t ·D+ e ·D),D).

Refraction Rays Unfortunately, the situation for refraction
rays is a bit more complicated but some part of the nonlinear
refraction calculation can be performed using the transfor-
mation TR as in the reflection case. In a first step we compute
µ = η · c−

√

1−η2 +(η · c))2 using c = N ·D, which has
been computed by the triangle intersection for free. The ini-
tial ray R′

re f r = ((t,0,e),(−η ,µ ,0)) is then mapped by TR
to the refraction ray Rre f r = (O+ t ·D+ e ·D, µ ·N −η ·D)
of a surface with the index of refraction η .

2.3. Implementation Issues

The transformation unit must perform a 3× 3 matrix mul-
tiplication and a vector addition for the origin of the ray as
well as another matrix multiplication for the ray’s direction.
Since a matrix multiplication is very costly in terms of hard-
ware resources, only one matrix multiplication unit together
with the vector addition is implemented. The transformation
of the direction is performed by feeding zeros to the cor-
rect coefficients. This requires two steps of the transforma-
tion unit to completely transform a ray. Fortunately, in many
cases the transformation unit is used to transform a sequence
of several rays sharing the same origin (e.g. primary rays
or shadow rays). In those cases this allows for reducing the
workload of the transformation unit for a sequence of n rays
from 2n to only n+1 steps.

In order to evaluate the hardware savings, we compare the
number of floating point units of four different ray tracer
designs. The first variant RTstatic consists of a static ray
tracing pipeline using a ray-triangle intersection algorithm
Iw based on Wald [Wal04] and simple shading unit S that
only performs the geometric calculations on rays with float-
ing point operations. The second variant RTDyn1 is a dy-
namic ray tracer using the optimizations described above and

therefore only contains floating point units in the transfor-
mation unit T and in the small primitive intersection unit.
Variant RTDyn2 is a dynamic ray tracer build with standard
methods using the units T, S and Iw. Similar to this vari-
ant, RTDyn3 only differs in the ray-triangle intersection algo-
rithm Ip based on Plücker [Eri97], which is a bit cheaper than
Moeller-Trumbore’s [MT97]. All designs have the traversal
unit K in common.

Table 1 shows that with the optimizations presented in this
paper, a dynamic ray tracing chip is already significantly
cheaper in terms of floating point units than an optimized
static ray tracer even though it offers additional new func-
tionality. Furthermore, re-using the transformation unit for
other purposes cuts the number of floating point units at least
in half.

FP cost ratio without Traversal full design

RTDyn1 / RTstatic 66% 75%
RTDyn1 / RTDyn2 46% 57%
RTDyn1 / RTDyn3 23% 32%

Table 1: Comparisons of the cost of four different ray tracers
measured in floating point units. It shows that the optimiza-
tions presented in this paper allow to significantly reduce the
hardware costs.

3. SaarCOR Hardware Architecture

We build on the SaarCOR ray tracing architecture first pre-
sented in [SWS02], which we extend with support for dy-
namically moving objects and multiple instantiations of ob-
jects. In [SWS02] the focus was on the ray tracing core of a
static ray tracer. It was shown, that the SaarCOR architecture
scales well in the number of ray tracing pipelines, in particu-
lar due to its good caching behavior and consequently low
memory bandwidth requirements. With approximately the
same amount of hardware it achieved roughly the same per-
formance compared to a rasterization based graphics card.

In order to remove the need to have the entire scene in graph-
ics memory, [SLS03] presented a virtual memory architec-
ture for ray tracing. This fully transparent technique uses
graphics memory only as a cache and loads necessary scene
data from host memory on-demand. Over a wide variety of
scenes even a slow standard PCI bus is able to support a
ray tracer with only a small impact on the rendering perfor-
mance.

3.1. Dynamic SaarCOR Architecture

The SaarCOR architecture for dynamic ray tracing (see Fig-
ure 2) is designed for a custom chip that is connected to the
host system bus and to several external memory chips, all
placed on a single PC board. Camera settings and scene data
are uploaded by the host. The memory chips store the scene
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Figure 2: The SaarCOR architecture for dynamic ray tracing is built into a custom chip connected to external I/O and memory.
The chip is split into three functional sections: The dynamic ray tracing pipeline (DynRTP) which contains the dynamic ray
tracing core (DynRTC) and the ray generation and shading unit (RGS). The RGS-units are controlled by a ray generation
controller (RGC). The memory interface (MI) manages the connection between the rendering units, the memory, and the host
system bus. Scalability is achieved by supporting several DynRTPs in parallel. Please note the simple routing scheme that uses
only point-to-point connections.

data including geometry, top- and bottom-level spatial index
structures (in our case KD-trees), materials and shaders, as
well as the frame buffer. The rendered image is displayed by
the Display-Controller.

The core ray tracing algorithm is contained in the dynamic
ray tracing pipeline (DynRTP). The tracing of a ray is started
at the ray generation and shading unit (RGS) which gener-
ates an initial ray R′ and transformation T which are sent to
the dynamic ray tracing core (DynRTC) via path a of Fig-
ure 2. The transformation T is applied to the ray R′ by the
transformation unit and the transformed ray is sent to the
traversal unit via path b.

The traversal unit then starts traversing the ray through the
top-level KD-tree until a leaf node is found. The ray with the
list of objects is then forwarded via path c to the mailboxed
list unit, which sequentially fetches objects referenced in the
list while omitting objects that have already been visited by
the same ray. This technique greatly improved performance
by avoiding the cost of multiple traversals of the same object.

Path d is used to send the ray together with the address of
a transformation to the transformation unit which maps the
ray into object space. The ray is sent to the traversal unit via
path b to start the bottom-level traversal.

The same process starts over except that leaf nodes now con-
tain lists of triangle transformations that are used to trans-
form the ray into triangle space before being forwarded to
the intersection unit via path e. The intersection results are
returned to the traversal unit via path f and the operation
continues at the list unit until all elements have been pro-
cessed (similarly at the object level). Finally, results are
handed back to the RGS unit for shading via path g.

In order to hide memory and other latencies multiple rays
are being processed simultaneously using a multi-threading
approach. Optionally packets of rays are used to further re-
duce the memory bandwidth in the ray tracing core. Schedul-
ing of rays in this complex pipeline is trivial requiring only
minimal state memory and simple logic to route rays to the
correct next stage.

All memory accesses of the DynRTP are handled by the
memory interface (MI) which contains individual caches for
each type of data (i.e. shading data, KD-tree nodes, lists, and
matrices for dynamical objects and triangles). All caches
share the same connection to the memory via the Simple
Routing unit. This unit acts like a multiplexer for mem-
ory requests and uses a labeled broadcast for memory re-
sponses [SWS02].
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The memory controller (Mem-Ctrl) manages accesses to ex-
ternal memory chips and uses a simple reordering algorithm
that optimizes the effective bandwidth of the memory chips
by avoiding unnecessary switching of memory-banks. This
performs close to optimally because the memory access pat-
tern of tracing many rays simultaneously are almost random
and thus statistically well distributed across the banks, which
allows for keeping them all busy.

For scalability several DynRTPs are supported. The work
performed in each DynRTP is controlled by the ray gener-
ation controller (RGC) which schedules screen-space pixels.
This performs dynamic load balancing between the ray trac-
ing pipelines while requiring only minimal bandwidth be-
tween the RGC and each of the DynRTPs.

The architecture exploits coherence between adjacent
rays by using packets of independent rays as described
in [SWS02]. This significantly reduces the bandwidth to the
caches as only one memory request is performed per packet
while the fetched data can be used for all rays. This greatly
simplifies the interface to the cache and increases the scala-
bility of the architecture.

3.2. Shading

The SaarCOR architecture is designed to support different
types of shading processors: multiple general purpose pro-
cessors like standard RISC-CPUs or shading units similar
to today’s rasterization hardware. A detailed description of
those features is beyond the scope of this paper.

In this paper we focus on a fixed function shading pipeline
that was implemented in the prototype. This shader supports
multiple light sources, multiple levels of reflection or trans-
parency and Phong-like shading with bilinearly filtered tex-
tures. For each ray that is shaded, shading data is fetched
from memory, including material color, normals, texture-
coordinates, and the texture base address. Additional mem-
ory requests are done for texture lookup. Each material and
texture color consists of RGB data and values specifying the
degree of specularity and opacity.

Rays are calculated using the formulas presented in Sec-
tion 2.2 by forwarding the transformation and initial ray to
the transformation unit via path a in Figure 2. Since for sim-
plicity all colors are currently processed as 24 bit integers no
floating point operations are required in the shading units.

4. Prototype and Implementation

While the original SaarCOR architecture already provided
promising simulation results, it was never proven in the real
world. Consequently, we decided to develop a prototype that
demonstrates the usefulness and performance of a complete
hardware implementation of ray tracing. The prototype was
developed on FPGA hardware in less than six month by a

small dedicated team of 3 students. It already provides re-
altime frame rates and all important features of ray tracing.
We describe and evaluate this prototype in the following sec-
tions.

4.1. Development Platform

The SaarCOR prototype is build using a Xilinx Virtex-II
6000-4 FPGA [Xil03], that is hosted on the Alpha Data
ADM-XRC-II PCI-board [Alp03]. The board contains six
independent banks of 32-bit wide SRAM (each 4MB) run-
ning at the FPGA clock speed, a PCI-bridge, and a general
purpose I/O-channel. This channel is connected to a simple
digital to analog converter implementing a standard VGA
output supporting resolutions of up to 1024×768 at 60 Hz.

The SaarCOR design was specified using JHDL [Bri03],
an OpenSource high-level hardware description language al-
lowing for fast and painless prototyping with the flexibility
of parameterized designs. Additionally, we used Xilinx tools
for schematic entry and low level synthesis. The system was
completely developed under Linux.

4.2. Implementation Issues

The floating-point units of SaarCOR implement single op-
erations, such as addition, comparison, and multiplication.
They were modeled in JHDL with a parameterized precision
in order to evaluate its effect on performance and rendering
quality. The results of several benchmark scenes showed that
24 bit floating-point numbers with 16 bit mantissa provide a
good compromise between accuracy and hardware cost. This
format is similar to those used in current graphics boards by
ATI.

Two of the six banks of SRAM are used to implement
a double-buffered frame buffer with resolutions of up to
1024× 768 pixels. A third SRAM stores all shading data,
while the remaining three banks contain the KD-tree and the
object and triangle transformation matrices.

The memory bandwidth for shading is rather low because
only a small amount of shading data is required (28 byte per
ray with bilinear texture filtering), and only the final pixel
color needs to be written to the frame buffer. No bandwidth
is required as for read-modify-write cycles of a Z-buffer or
the overhead of overdraw. The resulting bandwidth is low
enough (see Section 5) that it did not even require caches
(which nonetheless would be fairly effective as shown by
our simulations).

In [SWS02] it has been shown that 4 times more traversal
operations than intersection operations need to be computed
during the rendering of typical scenes. Since a single FPGA
can only hold one intersection unit (see Section 4.3) we use
packets of four rays which are traversed in parallel and are
intersected sequentially. If all units would be fully utilized,
they would require a raw bandwidth of 2 GB/s when running
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at 90 MHz. Due to small direct mapped caches that already
yield very good hit rates and non-perfect utilization we eas-
ily reduce the bandwidth to a small fraction of the 1 GB/s
available to the DynRTC (see Section 5).

4.3. Hardware Complexity

Table 2 lists the hardware resources required by a single ray
tracing pipeline measured in the number of floating-point
units for addition, multiplication, division, and comparison.
The rightmost column also provides the amount of internal
memory used for instance for ray-data and stacks that store
64 KD-tree traversal states per packet. These numbers in-
clude all additional index structures of the caches and dual
port memory bits are counted as 2 bits. It is obvious that the
arithmetic complexity and the internal memory requirements
are extremely low.

Unit Add Mul Div Cmp Mem

Traversal 4 – 4 13 44.5 KB
Mailboxed List – – – – 0.8 KB
Transformation 9 9 – – 9.3 KB
Intersection 3 2 1 – –
DynRTC-Cache – – – – 15.6 KB
Shader – – – – 4.8 KB

Total 16 11 5 13 75.0 KB

Table 2: Complexity of one ray tracing pipeline measured
in floating-point units for addition, multiplication, division,
and comparison, respectively. The rightmost column also
lists the internal memory requirements including any meta-
data and global state, such as parameters for 8 light-
sources. Each DynRTP uses 32 threads and contains caches
that store 512 data-items each.

Since the FPGA provided more capacities than required, we
implemented a system with 64 threads, shading with support
of 256 light sources, PCI interface, VGA interface, and per-
formance counting infrastructure. Still our design only uti-
lizes 56% of the FPGA’s logic cells and 78% of the FPGA’s
memory resources including wasted resources due to mem-
ory layout and mapping constraints. The prototype runs at a
frequency of 90 MHz and delivers a total of 4 billion FLOPs.

Much larger FPGAs are already available today that have
about 60% more logic cells and four times more memory and
multiplier blocks. This would support at least two additional
ray tracing pipelines because the memory and multiplier re-
sources have been the most limiting factor in the design of
the prototype.

Our design also compares well to today’s high end
rasterization hardware. For instance, Nvidia’s GeForce
5900FX [Nvi04] contains 125 million transistors (3-times
more than Intel’s Pentium-4). Its 400 FP-units running at a
frequency of 500 MHz yield 200 billion FLOPs, which is

50-times the performance of the SaarCOR prototype. De-
spite that a direct comparison is not really possible, these
resources would allow for quite a large number of parallel
ray tracing pipelines.

As shown below the memory bandwidth of SaarCOR includ-
ing un-cached shading is mostly far less than 300 MB/s plus
additional 135 MB/s to display the image in 1024× 768 at
60 Hz. As today’s graphics boards offer more than 30 GB/s
external memory bandwidth, this would support more than
100 independent ray tracing pipelines.

Together this indicates that SaarCOR could be scaled by one
to two orders of magnitude going from our current FPGA
technology to one used by today’s rasterization engines.

5. Benchmark-Scenes and Results

The previous incarnations of SaarCOR [SWS02, SLS03]
presented a ray tracer for static scenes and a virtual mem-
ory architecture, which were simulated and evaluated on the
register transfer level using a cycle accurate simulator. We
used the same simulator also for the Dynamic SaarCOR ar-
chitecture as presented above. This simulation used a ”stan-
dard” SaarCOR configuration with four parallel DynRTCs
and provided essentially the same results as for the previous
architectures: high cache hit rates, very low external mem-
ory bandwidth due to the use of larger packets and caching,
good usage of all pipeline stages, high scalability, and lower
hardware requirements for similar performance when com-
pared to rasterization. Please refer to these papers for more
detail.

In the following we focus on providing results of measure-
ments of the FPGA prototype as discussed in Section 4. Even
though the specific implementation and its parameters (such
as memory latencies, etc.) are very different, these measure-
ments confirm and verify the simulation results.

In particular we provide comparisons of the hardware pro-
totype with the highly optimized software implementation
of the OpenRT realtime ray tracing system [Wal04]. It uses
SSE-optimized code on packets of four rays and algorithms
almost identical to those of the prototype. The software runs
on a Intel Pentium-4 with 2.66 GHz and 1 GB RAM. The
SaarCOR prototype runs at 90 MHz on the configuration
described above. The host computer’s influence on the re-
sults are completely negligible since all computations are
performed directly on the SaarCOR hardware except for up-
loading changes to the scene between frames. This upload-
ing can be performed in parallel to rendering.

The configurations for the measurements differ in two ways
from results presented in earlier papers: we use new algo-
rithms for building KD-trees that greatly improve the qual-
ity and thus the traversal cost of KD-trees [Wal04]. This
speedup is included in both the software and the hardware
measurements given below. Furthermore all measurements
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include fully textured shading, which is quite costly on
CPUs [Wal04].

5.1. Scenes used for Benchmarking

Table 3 lists the scenes and its parameters used to evalu-
ate our prototype. Screen shots of some example scenes are
show in the images on the first page of this paper. Full reso-
lution images and videos can be found on the project’s home
page at http://www.SaarCOR.de.

To cover a wide range of 3D applications, we use a vari-
ety of scenes ranging from simple scenes, such as a simple
room with table and chairs as in Scene6 up to huge scenes
with hundreds of millions of triangles using instantiation of
complex objects as in SunCOR (5,622 sunflowers each con-
sisting of 33,288 triangles). We render the full details of all
scenes with no level-of-detail mechanisms, as ray tracing
handles such complex scenes easily due to its logarithmic
computational complexity and its output sensitive computa-
tion that only ever touches visible parts of the scene.

Other more realistic examples are taken from computer
games, such as Castle [Act02], Quake3 [Id-99], and
UT2003 [Epi03]. While Quake3 and UT2003 only contain
static meshes, Quake3-p also includes 16 moving players
and monsters. The Castle scene also shows some nice ray
tracing effects including multiple reflections. The videos to
this paper include a small shooter game running on top of
the ray tracer using the UT2003 environment.

The other three scenes, Office, Conference, and Terrain pro-
vide more examples of indoor and outdoor scenes and show
an office, a conference room with many light sources, and
a large outdoor scene with complex trees casting detailed
shadows.

The plug-and play concept of ray tracing allows to quickly
and easily create such benchmark scenes: every object is de-
scribed by its own self-contained shader independent of any
other objects or shaders. All global effects resulting from in-
teractions of multiple objects and shaders are computed cor-
rectly and on-demand during ray tracing. No manual tweak-
ing or preprocessing is required except for building the spa-
tial index structures.

This property of ray tracing greatly simplifies and speeds up
content creation compared to rasterization, which requires
many tricks to obtain approximations of global effects and
care must be taken to avoid exposing their limitations.

5.2. Results

Table 3 compares the performance of the SaarCOR proto-
type to the OpenRT software implementation when render-
ing the benchmark scenes at 512× 384 pixel using primary
rays only, but including fully textured shading. It shows, that

although the CPU is clocked 30 times faster than the Saar-
COR prototype, the hardware is still 3 to 5 times faster. Thus,
the 90 MHz prototype is theoretically equivalent to an 8 to
12 GHz CPU.

Looking at the raw FLOPs of the underlying hardware and
comparing the resulting frame rates shows that SaarCOR
uses its floating point resources 7 to 8 times more efficiently
than the SSE-optimized OpenRT software on a Pentium-4.
This means that even the highly optimized software ray trac-
ing code uses the available floating point hardware only to
a small fraction, indicating that the current CPU designs are
non-optimal for ray tracing (even ignoring their insufficient
maximum floating point performance).

In comparison, the fastest published ray tracer on GPUs
delievers 300K to 4M rays per second on an ATI Radeon
9700PRO [Pur04]. In contrast, our simple FPGA prototype
already achieves 3M to 12M rays per second at a much lower
clock rate and using only a fraction of both the floating point
power and the bandwidth of this rasterization hardware. An
implementation in a comparable ASIC technology should al-
low us to significantly scale the ray tracing performance even
further by at least an order of magnitude.

#frames per second

Scene #triangles #objects SaarCOR OpenRT Speed-Up

Scene6 806 1 60.8 12.9 4.7
Castle 20 891 8 23.8 9.2 2.6
Office 34 312 1 48.9 10.4 4.7

Quake3 39 424 1 33.6 11.1 3.0
Quake3-p 52 790 17 26.7 7.9 3.4

UT2003 52 479 1 25.4 8.0 3.2
Conference 282 805 54 22.1 8.1 2.7

Terrain 10 469 866 264 15.9 3.5 4.5
SunCOR 187 145 136 5622 32.1 7.5 4.3

Table 3: This table lists our fully textured benchmark scenes
with their complexity (number of triangles and dynamic ob-
jects). The three rightmost columns compare the perfor-
mance of the SaarCOR prototype with only one render-
ing pipeline running at 90 MHz to the OpenRT software
ray tracer with SSE-optimized code on an Intel Pentium-4
2.66 GHz. The images were rendered at 512×384 pixel us-
ing primary rays only but including fully textured shading. It
shows, that although the CPU is clocked 30 times faster than
the SaarCOR prototype, the hardware is still 3 to 5 times
faster. While all scenes use bilinear filtered textures, Scene6
and Office were rendered with unfiltered textures since oth-
erwise the shading bandwidth would slightly limit the per-
formance (10% at most).

Table 4 provides a more detailed view on the external mem-
ory bandwidth and the cache hit rates. These measurements
were taken at a screen resolution of 1024×768. In addition
this table lists the usage ratios for the units of the DynRTC.
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Usage Rate [in %] Cache Hit Rate [in %] Ext. Bandwidth [in MB/s]

Scene fps Trav List Transf Int Trav List Tranf DynRTC Shading Total

Scene6 15.3 68 16 85 41 99 97 99 8 218 226
Castle 5.9 73 18 74 48 99 82 94 50 138 188
Office 12.4 76 16 72 36 99 71 90 69 246 246

Quake3 8.5 87 15 45 21 99 49 79 104 197 301
Quake3-p 6.8 92 13 35 16 99 66 82 65 157 222

UT2003 6.5 82 19 66 42 98 63 86 105 152 257
Conference 5.7 89 25 51 28 98 63 78 135 132 267

Terrain 4.2 80 27 34 18 97 27 43 283 98 381
SunCOR 8.7 46 36 29 12 90 2 6 513 202 715

Table 4: This table provides details on the performance of the SaarCOR prototype running at 90 MHz and with a resolution
of 1024× 768 pixels using primary rays only but with bilinear-filtered textured shading. We provide the usage for each unit
of the DynRTC, the hit rates of the all caches, as well as the external memory bandwidth (excluding frame buffer readout for
display). It shows that multi-threading allows to efficiently keep most of the units busy and high hit rates are achieved even
with tiny caches of only 4, 2 and 6 KB for traversal, list, and transformation, respectively. Please note that shading is uncached
and while all scenes use bilinear filtered textures, Scene6 and Office were rendered with unfiltered textures since otherwise the
shading bandwidth would slightly limit the performance (10% at most).

They provide insight into the hardware efficiency looking at
the ratio between the number of cycles a unit was busy ver-
sus the total number of cycles it took to render the image.

Our multi-threading approach results in high usage rates.
Multi-threading increases performance almost linear up to
32 threads per DynRTP. Using 64 threads further improves
performance by only about 10%. However, since the re-
sources were still available on the FPGA we used the larger
number of threads for our measurements.

Even in complex scenes the external bandwidth in total
is small (mostly well below 300 MB/s, ignoring the fixed
135 MB/s required for frame buffer readout due to image
display at a resolution of 1024×768 with 60 Hz). The band-
width of the DynRTC is very efficiently reduced already by
tiny caches of only 12 KB total. The bandwidth requirements
for shading are constant per frame as ray tracing shades ev-
ery pixel exactly once and no caches are used. Only a single
texture with bilinear filtering is used in the examples because
the need for complex multi-texturing is greatly reduced in
ray tracing as light, reflection, and environment maps are re-
placed by tracing the necessary rays. Bandwidth is further
reduced by not having to generate these maps in the first
place.

We only provide measurement data for primary rays as the
performance measured in rays per second for secondary rays
is identical, as it only depends on the specific arrangement
of geometry in particular scenes, e.g. the placement of light
sources and complexity of the scene visible through reflec-
tions. This means that switching on secondary rays can even
improve the overall performance measured in rays per sec-
ond.

These results confirm the results of earlier simula-

tions [SWS02] and are obvious since the number of oper-
ations required to trace a ray and the amount of memory
transfered only depends on the location of the ray in a spe-
cific scene and not on its type. The same holds for the mem-
ory bandwidth as ray coherence is mostly preserved when
generating secondary rays. Secondary rays do influence the
cache depending on the amount of additional data that is ac-
cessed, which again depends on the specific scene.

When using packets of rays, the performance also depends
on the coherence of rays within a packet. However, coher-
ence has been much higher than generally expected. Shadow
and reflection rays are mostly coherent except for extreme
cases. But even global illumination computations can be
designed to use highly coherent rays [BWS03]. Our mea-
surements on the prototype using 200 (virtual) point light
sources for approximating the indirect illumination in a
scene showed that the number of rays computed per sec-
ond are constant compared to rendering the scene without
shadow rays.

6. Conclusion and Future Work

Ray tracing is still perceived by many as an offline technique
for high-quality images. Even though realtime software im-
plementations are available for some time now, their depen-
dence on larger clusters of PCs for good performance has
been a major drawback.

With this paper we present what we believe to be the first
realtime ray tracing hardware. With the prototype hardware
we demonstrate that ray tracing is at least as well suited for
hardware implementation as the ubiquitous rasterization ap-
proach. Even the rather simple prototype implementation of
ray tracing already achieves realtime performance for a wide
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variety of scenes. Furthermore due to its performance which
is several times higher than any current CPU, it could also be
used to accellerate ray tracing in offline rendering packages.

Ray tracing hardware allows to overcome two of the main
limitations of rasterization hardware. The external memory
bandwidth requirements of ray tracing are only a tiny frac-
tion compared to rasterization, where bandwidth has been a
major limiting factor. Furthermore, ray tracing offers almost
unlimited and very efficient scalability by adding multiple
pipelines per chip, multiple chips per board, and/or multiple
boards per PC.

Scalability is mainly limited by the bandwidth to the scene
data. However, exactly this bandwidth can easily be reduced
using packets of rays, caching, or (cached) replication of the
read-only data. Ray tracing greatly benefits from its demand-
driven and output-sensitive type of processing that mini-
mizes the processing to only the relevant parts of the data.

Ray tracing hardware allows to overcome many limitations
of the current rasterization approach. As demonstrated it
supports huge and complex scenes, accurately computes
many advanced rendering effects, and simplifies content cre-
ation significantly.

In particular we have shown that integrating a shared trans-
formation unit into the ray tracing pipeline provides many
benefits. It offers support for object-based changes to a scene
by applying affine transformations to entire groups of primi-
tives. In addition, the same unit can be re-used for greatly
simplifing intersection computation as well as for imple-
menting important parts of the shading and ray generation
process.

Surprisingly, the addition of this new functionality actually
reduces the overall hardware requirements because it factors
several costly but underutilized parts of the pipeline into a
single well utilized component. We were able to reduce the
hardware costs by 68% compared to other implementations
for dynamic ray tracers and still 25% compared to a simple
static implementation with less functionality.

Of course, our prototype implementation still leaves room
for many additional features and improvements. Perfor-
mance seems mainly a question of getting access to more ca-
pable hardware technologies and adapting the parameters of
the architecture to the capabilities of the new environment.
Still, there is certainly room for extending and further im-
proving the efficiency and performance of several parts of
the current architecture.

Regarding additional features hardware ray tracing greatly
benefits from the research in software implementations of
realtime ray tracing. Most of the techniques developed there
can be carried over to hardware with only minor changes
or adaptations. This is particularly important in the con-
text of an API for ray tracing. We believe that the OpenRT

API [DWBS03] would also work well for a hardware ray
tracing engine. It is currently being ported to the prototype.

Even though object-based dynamics already coveres the ma-
jority of cases, the support for dynamically changing scenes
is still too limited. More flexibility is required by many ap-
plications, most notably computer games and visual simula-
tions.

Probably the important missing feature is programmable
shading, which would finally provide the full capabilities
of ray tracing to applications and users. Together with the
ability to easily implement global effects this seems like the
killer application for ray tracing.

Finally, it remains to be seen what will be the preferred
platform for realtime ray tracing in the future. Available
are high-performance general purpose CPUs, large paral-
lel programmable processing engines such as GPUs or ar-
rays of RISC-like CPUs, or finally custom hardware. Cus-
tom hardware seems to offer the most benefits for the core
ray tracing pipeline especially since it uses its floating point
resources most efficiently, while other parts of ray tracing,
such as shading, seem better suited for or even require gen-
eral purpose-like engines. As a consequence a combination
of custom hardware and more flexible engines seems like a
promising approach.
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