Accelerated 5D Ray Tree construction on the GPU
 Ravi Kammaje
 Benjamin Mora

Fig. 1

Tree Building times	Random rays
CPU	451 ms
GPU	21 ms

5 bits determined as shown above indicate a ray's child node Each node has 32 child nodes and the value of the specifies provides the child node
Fig. 2

The first 3 bits indicate the root node to Each consecutive 5 bits indicate the clild node of the node represented by the earlier bits. The 5D coordinates of the ray are compared to the mid point fo the 5D hypercube. which this ray belongs to. It is simply
the dominant axis of the ray.

Fig. 3

Identify root nodes of ray tree

- Find dominant axis of rays.
- Indicate

$$
\begin{aligned}
& -X \text { as } 0,+X \text { as } 1, \\
& -Y \text { as } 2,+Y \text { as } 3, \\
& -Z \text { as } 4 \text { and }+Z \text { as } 5
\end{aligned}
$$

- Sort the rays of node
- Ensures rays are together
- Count the number of rays in each node
- The range of the five dimensions is now:

$$
\begin{aligned}
& \mathrm{X}_{\min } \text { to } \mathrm{X}_{\max }, \mathrm{Y}_{\min } \text { to } \mathrm{Y}_{\max }, \\
& \mathrm{Z}_{\min } \text { to } \mathrm{Z}_{\max }, \mathrm{U}(-1,1), \mathrm{V}(-1,1)
\end{aligned}
$$

References

[AK87] Arvo J., KIRK D.: Fast ray tracing by ray classification. SIGGRAPH Comput. Graph 21 (August 1987), 55-64. 1
[GL10] Garanzha K., Loop C.: Fast ray sorting and breadthfirst packet traversal for gpu ray tracing. Computer Graphics Forum 29, 2 (2010), 289-298. 1
[RAH07] Roger D., Assarsson U., Holzschuch N.: Whitted ray-tracing for dynamic scenes using a ray-space hierarchy on the gpu, jun 2007. 1
[RSH05] Reshetov A., Soupikov A., Hurley J.: MultiLevel Ray Tracing Algorithm. ACM Transacrions on Graphics (Proceedings of SIGGRAPH 2005) 24, 3 (2005), 1176-1185. 1
[SHG09] Satish N., Harris M., Garland M.: Designing efficient sorting algorithms for manycore gpus. Pasallel and Distributed Processing Symposium, Invernarional O (2009), 1-10. 2
[WS01] Wald I., Slusallek P.: State of the Art in Interactive Ray Tracing. In Siate of the Art Reports, EUROGRAPHICS 2001. EUROGRAPHICS, Manchester, United Kingdom, 2001, pp. 2142. 1

Build the lower levels of the ray tree

- Find mid point of each active node (five dimensional hypercube)
- $X_{\text {mid }}$, $Y_{\text {mid }}, Z_{\text {mid }}$, $U_{\text {mid }}, V_{\text {mid }}$
- Classify each ray
- 5D representation (x, y, z, u, v)
- Find orientation with respect to mid point of node
- Use 5 bits to represent this. (As shown above)
- Sort the rays of node
- Ensures rays are together
- Count number of rays in each node
- If any nodes contains fewer than leafNodeRays, make it a leaf node. i.e. do not divide it further
- Continue until all nodes are leaf nodes
- Sorting is very expensive, even on GPUs
- To optimize, find full classification as shown in Fig(3)
- Sort this 32 bit integer and use 5 bit values for current level.
- Replace highlighted step with a simple lookup.

