
Computational Aesthetics in Graphics, Visualization, and Imaging (2009)
O. Deussen and P. Hall (Editors)

Style Nodes and Repolygonization for Hierarchical
Tree-Based Implicit Surface Modelling

Pauline Jepp1, Bruno Araujo1, Joaquim Jorge1, Brian Wyvill2, and Mario Costa Sousa3

1 INESC-ID, Lisboa, Portugal
2 University of Victoria, Canada
3 University of Calgary, Canada

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract

In this paper we present an extension to a hierarchical tree based implicit surface modelling system that includes
interactively controlling style and appearance, and also creating a more accurate curvature based polygonal
approximation. Multiple styles can be layered and applied to objects so that they are guided by local geometry
although not strictly bound by it. To achieve this a new node, the Style Unary Node, is added to the ShapeShop
BlobTree, which creates a style blending region inspired by primitive field blending. As visualization of implicit
surfaces in interactive environments is often based on polygonization a more accurate curvature based polygoni-
sation algorithm is also presented.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]:

1. Introduction

Techniques used for scientific illustration often combine sev-
eral rendering styles to create an image where particular as-
pects of a model or scene are emphasized. Altering a model’s
appearance includes changing: the colour; the style of ren-
dering eg pen-and-ink, wireframe, shading styles; and trans-
parency.

Illustration style choices are often guided by geometry,
but not necessarily bound by it. There are two common ap-
proaches to illustrating a model with multiple styles. One
approach is to associate appearance attributes with parts of
a model (or scene), for example using shapes, primitives or
vertices. Alternatively, a viewing lens can be used to high-
light a region of interest where there is no connection to the
underlying geometry.

In skeletally based Implicit Surface Modelling (ISM) sys-
tems primitives (individuals or groups) naturally define parts
of an object, using these boundaries can be very useful in at-
tributing appearance or style. Associating appearances that
are strictly limited to primitives, however, does not offer any
complexity in terms of blending multiple styles over regions
of a model. Lenses are very effective at blending styles and
avoiding strict object or geometric boundaries. But because

Figure 1: The Gecko model with SUNs. Top: Continuation
algorithm. Bottom: Curvature based polygonization.

there is no connection to the underlying shape, benefits of
using the geometry are lost.

In this research a method is presented that combines the

c© The Eurographics Association 2009.

DOI: 10.2312/COMPAESTH/COMPAESTH09/041-048

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH09/041-048


P. Jepp, B. Araujo, J. Jorge, B. Wyvill and M. C. Sousa / StyleNodes

strengths of both primitive-assigned attributes and lenses.
The method is applied to ShapeShop [SWG05] a sketch
based, tree structured ISM system, where complex objects
are constructed from simpler primitives.

Implicit surfaces provide a solution of choice for volume
modelling applications. This is due to the representational
compactness and the rich set of editing operators that can
easily be defined.

Multiple styles can be combined (or layered) and applied
so as not to be strictly limited to shape boundaries, rather
they are guided by them. Using Implicit Surfaces allows
styles to be blended between regions in much the same way
that primitives can be blended. A new node has therefore
been added to an ISM tree. The Style Unary Node (SUN)
is only used for altering the appearance of of an object and
does not affect its geometry. This node facilitates assignment
of styles to regions of interest whilst not limiting the styles to
traditional primitive boundaries. It also allows layering and
blending of multiple styles and can be moved interactively
anywhere in the modelling tree.

A secondary contribution of the work presented in this pa-
per is a curvature based polygonization algorithm. Interac-
tive visualization of implicit surfaces generally use a spatial
subdivision, continuation algorithm for speed. Although is is
a fast method the results are not very smooth when viewed
with resolutions used in interactive ISM systems. We present
a curvature based algorithm that produces more accurate ap-
proximations of the surface in acceptable times.

The remainder of this paper is organised as follows: in
Section 2 the related work is discussed. Section 3 contains
the details about the implementation of the Style Unary
Node. The polygonisation method for better approximation
of the surface is described in Section 4. Results are presented
in Section 5 and Conclusions and Future Work in Section 6.

2. Related Work

An Implicit surface [BBB∗97] S, is composed of the set of
points derived from a scalar field function f (p) as follows:

S = {p ∈ <3 : f (p) = iso} (1)

where iso is a constant value defining the iso-surface and
p = (x,y,z). Functions f () are called Fields, and specific
values of f (p) are referred to as Field Values. Differential
geometry is used to ascertain geometric attributes, for ex-
ample, the gradient of f (p) defines the normal vector of the
surface and the second order derivative can be used to extract
shape characteristics such as curvature.

Implicit Surface Modelling (ISM) systems often employ
a tree-based data structure for model representation where
implicit primitives can be represented using geometric prim-
itives and modelling operations. In [WGG99], Wyvill et al.

propose a structure called the BlobTree, which is a hier-
archical tree-based method that allows arbitrary composi-
tions of models using blending, warping and boolean op-
erations from skeletally based primitives. Pasko [PASS95]
describes a function representation modelling system known
as FRep. In [AGCA06], Allègre et al. present a hybrid mod-
elling framework called the HybridTree, which is also an ex-
tended CSG tree. The HybridTree uses implicit models and
polygonal meshes for editing operations.

Sketch based ISM systems allow a user to create im-
plicit models directly from user’s strokes. Teddy [IMT07]
was the first free form sketch based modelling concept (al-
though it used polygonal models). Karpenko et al. [KHR02]
developed the concept further to achieve a smoother ap-
pearance by using variational implicit surfaces. Araujo and
Jorge [AJ03] improved the method presented by Karpenko
by improving the identificaiton of details. Convolution sur-
faces are used in ConvMo [TZF04]. And in FreeFormS-
ketch [AJ05b] Araujo presents a rich set of operators mix-
ing variational implicit surfaces and multi partition of unity
[OBA∗03].

In ShapeShop [SWSJ06], Schmidt et al. included hierar-
chical implicit volume models, specifically BlobTrees, to al-
low more complex objects to be created. The hierarchy can
be viewed as a construction history and individual sketched
components can be non-linearly edited. ShapeShop has pre-
viously only displayed objects in solid colours, using pen-
and-ink stipple and strokes [SIW06], or interactive decal
compositing [SGW06].

Several non-photorealistic rendering techniques have
been applied to implicit surfaces to enhance their appear-
ance. Rendering features such as the silhouette outlines
[BH98] improves the expressiveness of a model. Foster et
al. [FJW∗05] present a pen-and-ink rendering system using
a Witkin-Heckbert based particle system [WH94] to trace
the silhouette (in a similar manner to Bremmer and Hughes
[BH98]) and also track discontinuities or small scale details
of the surface. Differential geometry can be used to identify
ridges and valleys of an implicit surface [BPK98, OBS04]
and render them using a polygonal approximation.

Effects are generally applied to models globally without
allowing the user any fine control over the appearance and
combining styles. Changing the appearance of an object can
be achieved by using lens-type filters that have no connec-
tion to underlying geometry or by associating style prop-
erties with an object. Bier et al. presented MagicLensesTM

[BSP∗94] as user interface tools based on the principle of
a magnifying glass, which used filters to modify the ap-
pearance of application objects. This technique has been ex-
tended to viewing 3D objects [VCWP96, PC03, RH04].

Cole et al. [CDF∗06] use a technique similar to a lens that
is applied to 3D models for architecture. A “stylized focus”
effect (circular, spherical or planar) is created where a user

c© The Eurographics Association 2009.

42



P. Jepp, B. Araujo, J. Jorge, B. Wyvill and M. C. Sousa / StyleNodes

specified region of interest is automatically rendered to have
the focus of attention.

Techniques that associate styles with defining geometry
are frequently aimed at visualizing 3D scan data. Ebert and
Rheingans [ER00] combined volume rendering and non-
photorealistic rendering to produce a wide range of illus-
tration styles. Hauser et al. [HMiBG01] present a volume
rendering technique that allows the user to select render-
ing styles for different subsets of 3D data. VolumeShop
[BVG05] uses volume data in a dynamic 3D illustration
environment that combines artistic styles with visualization
techniques. In [BG07] Bruckner and Gröller introduce Style
Transfer Functions for segmented volume data. Styles are
captured from existing artworks and a single image com-
bines different shading styles.

Visualization of implicit surfaces requires the sampling
of a scalar field to create an image. Approximating implicit
surfaces using polygonal meshes (polygonizing) is used for
real-time visualization using commodity hardware. Cell par-
titioning techniques are the most popular method, where
a mesh is created based on space subdivision. Wyvill et
al. [WMW86] proposed a polygonization process by sub-
dividing the space into cubic cells. This is also the basis of
the Marching Cubes algorithm [LC87]. Surface tracking ap-
proaches such as Hilton’s [AHASJI96] Marching Triangles
follow the surface and minimises poor edge ratios and sam-
pling errors. Hartman [E.98] proposed a similar approach
based on point-set expansion. Cermak [CS02] proposed a
variant of Marching Triangles named Edge Spinning.

Adaptive polygonization captures local shape characteris-
tics without increasing the global resolution. Both Akkouche
[GA01] and Cermak [CS04] present extended marching tri-
angles. Similar methods using additional local subdivisions
steps were decribed by both Paiva [PLLdF06] and Bouthors
[BN07]. Karkanis [KS01] uses a curvature radius heuristic to
generate an adaptive. Araujo’s [AJ05b] curvature dependent
polygonization uses mean and gaussian curvature in heuris-
tics for triangle size definition. The approach, however, was
only supported by smooth variational implicit surfaces.

Previous sketch-based ISM systems do not concentrate on
providing flexibility for assigning styles. One of the moti-
vations for the work presented in this paper is to identify
a method of representing style choices in a coherent and
flexible manner. The ShapeShop BlobTree is ideal for this
task due to the sketch based metaphor and a hierarchical tree
structure. This provides an ideal base with which to enrich
an ISM system (capable of producing complex models) to
also include complexity in terms of appearance. As style vi-
sualization in interactive ISM systems is generally based on
polygonization, a secondary aim of this work is to provide
the user with a better approximation to the surface. Curva-
ture should be considered for a good approximation to an
implicit surface and also to accurately reproduce shape fea-
tures.

3. Style Nodes

Style Unary Nodes (SUNs) are inserted anywhere in the
modelling tree and affect the appearance of individual or
groups of primitives. Properties are applied to either sin-
gle primitives (child leaf nodes) or groups, which constitute
a sub-tree of the complete modelling tree. Any number of
nodes can be inserted anywhere in the tree and their appear-
ances are layered and blended.

Techniques inspired from implicit primitive blending al-
low styles to extend beyond shape boundaries to affect the
appearance of neighbours. Cached field values are refer-
enced to create a smooth and user-variable transition.

In Figure 1, a gecko has been rendered using a collection
of SUNs. The first is applied globally and defines that the
main colour is green, this SUN is applied to the whole tree,
i.e. it is inserted directly below the root node. Other SUNs
are applied to the front legs and tail to achieve the changes in
colour and style. Notice that the gecko’s tail (a single prim-
itive) has a SUN to specify that it should be drawn in wire-
frame, with a blend region where both transparent polygons
and wireframe are shown.

3.1. The Tree Traversal and SUN List Creation

SUNs are internal nodes and are treated like compositions
(blend, union, intersection, difference) in a tree traversal.
A traditional tree traversal evaluates compositions of prim-
itives to determine the final geometry of the object, i.e. the
field value for any point in space. Style nodes are evaluated
along with field evaluations. A tree traversal returns field val-
ues to be used in shape compositions and also any SUNs to
be used in style compositions. In order to keep shape com-
positions and style compositions separate Style Nodes are
implemented as unary nodes. They do not contribute to the
field value they merely pass the value from their descendants
through to the parent when an evaluation is made. A list of
SUNs is returned in the same evaluation step to minimise
computation time. SUNs store vertex field values for their
descendants during the tree traversal. Recalculation is nec-
essary only when the descendant subtree is altered.

3.2. Layering and Blending

Displaying multiple ancestors is achieved by layering styles.
There are three types of style changes that are considered:

1. Colour
2. Polygon appearance: wireframe, smooth polygons, trans-

parency
3. Lines: stipples, strokes, features

This does not create conflicting situations as can be seen
in Figure 2 where stipples, wireframe and smooth shading
are all used to illustrate a single model of a dolphin.

Blending regions are created between a child affected by
a SUN and its neighbours. The appearance of polygons is

c© The Eurographics Association 2009.

43



P. Jepp, B. Araujo, J. Jorge, B. Wyvill and M. C. Sousa / StyleNodes

Figure 2: The dolphin model polygonised using the curva-
ture based method and illustrated using SUNs to identify re-
gions with filled polygons, wireframe, stipples and silhou-
ettes.

blended between the two styles, for example a blend region
between a wireframe and smooth shaded part of a surface
is created and contains both the wireframe and transparent
filled polygons (details follow), see Figs. 2 and 1. Stipple
density is also reduced in blend regions relative to the cached
contribution of the blending primitives.

In general the blend region between implicit primitives is
defined as the volume between shapes where each primitive
contribution is less than iso but the combined contribution is
equal to iso. In this research the style blend region extends
primarily over the wireframe object where the contribution
from any neighbouring object is above a user variable value,
although in practice iso

2 gives good results.

As mentioned in Sec. 3.1 vertex field values are stored for
SUN descendent subtrees during the tree traversal and list
creation. These values are used to identify triangles that lie
in the blend region. To minimise computation time the field
values are stored for referencing rather than recalculated.

The final object is drawn using a collection of four
meshes. One for each of: shaded polygons; wireframe;
mixed wireframe and filled polygons; and stipples. Triangles
are evaluated for the mesh they belong to during the polygo-
nisation process. The SUN list is referenced for each vertex
to determine how triangles should be drawn, i.e. to which
mesh they are assigned.

A triangle is added to either the wireframe, mixed polyg-
onal or stipple mesh for rendering the surface. Stipples are
created from polygons, but are corrected to lie on the actual
implicit surface (rather than the polygonal approximation).
Therefore, the stipple mesh (where present) contains a copy
of all relevant triangles and the mesh is passed to the method
to create surface stipples, as explained in [SIW06]. The tri-
angles used for calculating the stipples are not drawn, as can
be seen in Figs 2 and 7.

if triangle == stipple then
StippleMesh.add(triangle)

else if triangle == WireFrame && triangle ∈
BlendRegion then

MixedMesh.add(triangle)
else if triangle == WireFrame && triangle /∈
BlendRegion then

WireFrameMesh.add(triangle)
else

PolygonMesh.add(triangle)
end if

3.3. Family Traits

SUNs affect either the family or only their children. Family
traits affect all of the descendants, which is useful for chang-
ing the appearance of a large region of the model i.e. an en-
tire subtree, See Figure 1 where the gecko’s front left leg is
red, the subtree contains the blended leg and foot primitves.

Child traits affect only immediate children, which is use-
ful for limiting the appearance of changes to restricted areas
of a surface. For example, see Figure 1 the front right leg has
its colour changed but the foot, its child node, has the colour
of the initial SUN (directly below the root node).

Where a style node is set to only pass on its appearance
traits to its immediate children, the descendants do not have
this SUN added to the list of contributing nodes.

4. Curvature based polygonization

A novel algorithm is presented to create controlled polyg-
onal approximations of implicit surfaces. Using a surface
tracking approach, a better approximation is achieved us-
ing regions of high curvature rather than spatial subdivision
approaches. This algorithm is able to generate an adaptive
mesh on the fly, in one step without requiring a post process-
ing re-meshing step. Larger triangles are created in regions
of low curvature and smaller ones where curvature is high.
This robust method overcomes the sensitivities of surface
tracking approaches: it avoids mesh overlap and has support
where the gradient is not defined. The polygonization algo-
rithm is guaranteed to be finite in a given volume. Adaptive
polygonization is achieved using edge length constraining
heuristics calculated during the mesh expansion. The heuris-
tics are based on the curvature information calculated from
derivative analysis of the implicit function.

4.1. Polygonization Cycle

Polygonization starts with a seed point computed from a
bounding box of the implicit surface volume. The seed point
is projected onto the surface using Newton Raphson steps
based on gradient evaluation of the field function. The set of
points is expanded using newly created vertices. New ver-
tices are created on the tangent plane of existing points and
corrected using on principal directions of curvature, expan-
sion angle and point adjacency information.

c© The Eurographics Association 2009.

44



P. Jepp, B. Araujo, J. Jorge, B. Wyvill and M. C. Sousa / StyleNodes

1: procedure POLYGONIZATION(implicit-surface)
2: pt0← GET-SEED-POINT(implicit-surface)
3: L ← CREATE-EMPTY-UNEXPANDED-POINT-

LIST()
4: M← CREATE-EMPTY-MESH()
5: INITIAL-EXPANSION(pt0,L,M)
6: while IS-NOT-EMPTY(L) do
7: pt← GET-POINT-MINIMAL-ANGLE(L)
8: REMOVE-POINT-FROM-LIST(pt,L)
9: ptI←CHECK-COLLISION(pt,L,M)

10: if ptI = NIL then . /* no collision */
11: EXPAND(pt,L,M)
12: else
13: LINK−POINT S(pt, ptI)
14: . /* duplicates pt and ptI */
15: EXPAND−DUPLICAT E(pt,L,M)
16: EXPAND−DUPLICAT E(ptI,L,M)
17: end if
18: end while
19: return M
20: end procedure

Figure 3: Adaptive Polygonization Algorithm pseudo-code

Figure 4: Expansion of the candidate point using the angle
formed with both neighbors, resulting in two new triangles
and one new point to the unexpanded point list.

Triangles are created using new points extruded from an
existing surface vertex. Each new point is evaluated until
there are no uncalculated points i.e. the surface approxima-
tion is complete. The first point expansion generates six new
points located on its tangent plane, and six triangles forming
a hexagon. Each new point is projected on the surface and its
implicit attributes are stored in a list of unexpanded points.
The algorithm then continues the polygonization cycle se-
lecting unexpanded points to be processed.

Points are selected based on the minimal expansion angle
which is defined by the “edge” between a point and two of
its neighbours.

4.2. Adaptive Point Expansion

The number of points required to cover an area is defined
by the angle θ between the original point and two neigh-

bours that are projected onto the local tangent plane, defined
by the principal curvature direction of the original (unex-
panded) point. As depicted in Figure 4, the number n of tri-
angles needed to complete the expansion is computed by di-
viding the angle θ by π

3 which produces quasi-equilateral
triangles. According to the number (n−1) of new edges re-
quired, new points are placed on the tangent plane at a dis-
tance from the original point given by the heuristic value.
The same approach was used by both Hartman [E.98] and
Araujo [AJ05a] reducing the possibility of mesh overlap
compared to non ordered FIFO or LIFO list policy. Explicit
representation of the mesh boundary (such as the front rep-
resentation used by these approaches does not need to man-
aged).

Before proceeding with the expansion, the distances be-
tween the current and the possible new points are estimated.
This desired distance can be a constant to produce a uni-
form polygonization, or based on a heuristic computed us-
ing curvature. A collision test searches all the neighbouring
points using the heuristic distance value. If no collision is
detected, the expansion proceeds and generates new unex-
panded points that are projected on the surface using a few it-
erations of Newton-Raphson steps to achieve predefined pre-
cision. Finally, the mesh is updated with new triangles that
join new unexpanded points. If the test fails, links between
the current point and the nearest point are created and points
are duplicated then expanded in order to connect both parts
of the mesh. The original point is then removed from the
expansion list and the adjacency information of both neigh-
bours of the point are updated considering the new triangu-
lation layout, as shown in Figure 4. This process is repeated
until no more expansion is possible. Figure 3 presents the
pseudo code of the algorithm.

The final edge length uses a weighted sum based on the
candidate point value, its neighbours and the distance be-
tween them. This algorithm is therefore less sensitive to high
curvature variation and provides a mesh with smooth trian-
gle size transition. Various strategies were followed to pro-
duce and control the quality of the adaptive mesh, specif-
ically triangle edge length for the heuristic distance value.
Principal curvature, mean, gauss and absolute maximum cur-
vature or shape index are computed. The heuristic-based
edge length uses a user-defined scale of the curvature mea-
surement. Thresholds are used to bound the minimum and
maximum accepted edge lengths. Binding this value avoids
too small or large triangles and the quality of the approxi-
mation. This value is used to estimate a local radius of cur-
vature heuristic because derivative analysis of the curvature
is not performed. This algorithm also evaluates the heuristic
on the neighbours of the candidate point providing a more
robust edge length definition related to possible curvature
variation.

c© The Eurographics Association 2009.

45



P. Jepp, B. Araujo, J. Jorge, B. Wyvill and M. C. Sousa / StyleNodes

Figure 5: Constant and Adaptive Polygonization using our
algorithm on the ShapShop BlobTree (from top left to bot-
tom right): shaded model, constant heuristic, mean heuris-
tic, gauss heuristic

4.3. Mesh Overlap Avoidance

Mesh overlap is a typical problem of surface tracking ap-
proaches and its avoidance is usually time consuming. The
test needs to be efficient and robust considering a dynamic
point set. Existing approaches perform the collision test be-
tween the boundary of the generated mesh and unexpanded
points. The mesh expansion can, however, lead to collisions
with interior parts of the mesh. Collision detection, in this
research, relies on an octree data structure which is updated
dynamically. This structure allows us to spatially store all the
points and reduce the neighbour query time. Octree cells are
subdivided when they contain more than a predefined num-
ber of points. The maximum capacity in our implementation
is 15. By doing so, the query which traverses the octree to
identify possible colliding points is efficient. Regarding the
point expansion, an additional cache is used storing the last
visited cells taking advantage of the spacial coherence of the
mesh growing process. Two different collision scenarios are
considered. If the nearest point is located in the boundary of
the mesh, both points are connected and we proceed with a
local expansion. If the nearest point is part of the mesh inte-
rior, the expansion of the point is simply aborted. These sce-
narios may arise from unstable values of the implicit func-
tion during the polygonization process.

5. Results

Results show that style assignment using an internal node to
a hierarchical tree-based system and curvature based poly-
gonization achieves results that are not available with other
ISM systems. Complexity and flexibility is achieved by us-
ing interactively placed SUNs that allow many different
combinations of styles in one image. SUNs can be used
to draw the attention to particular parts of a model or im-
age whilst also allowing for a blending region to achieve
a more visually smooth result. This complexity is achieved

Figure 6: Mesh overlapping avoidance: the collision test de-
tect colliding points, then a new link is created between the
candidate point and the closest colliding point, finally two
local expansions are applied avoiding point duplication on
the unexpanded point list

Figure 7: The termite rendered with a mixture of styles: stip-
ples, sillhouettes, wireframe and filled polygons.

using: layering and blending of styles; the method of asso-
ciating styles with subtrees whilst using blend regions to al-
low smooth transitions between neighbouring styles; and the
choice of inheritance properties of family traits .

The main drawback of the method is that some recompu-
tation of field values is necessary, therefore there is a per-
formance cost. This cost is minimised by using hierarchical
spatial caching [SWG05] and also allowing SUNs to cache
relevant field values.

The main bottleneck is, as is common with implicit sur-
faces, the field evaluations. For this reason models are gen-
erally constructed in relatively low resolution, using a rough
to detail approach. As the model is constructed a better ren-
dering of the model is achieved by increasing the resolution
(and therefore the approximation to the implicit surface).
Finally using the curvature based polygonisation method
achieves the best quality rendering in terms of a more ac-
curate approximation to the implicit surface.

The current continuation algorithm for polygonization is
fast and the results are adequate for the initial stages of
model creation and style assignment. Creating a higher qual-
ity image, however, is achieved using a curvature based poly-
gonization.

Figure 8 illustrates the gecko polygonized using the mean
curvature heuristic. The modelling tree of the gecko is com-
posed of 13 geometric nodes and 5 style unary nodes. For
this example there is a difference regarding the tracking sur-

c© The Eurographics Association 2009.

46



P. Jepp, B. Araujo, J. Jorge, B. Wyvill and M. C. Sousa / StyleNodes

Figure 8: The gecko rendered using Gaussian curvarure
based heuristic.

Gecko
contin const gauss

vertices 6782 6597 11261
triangles 13568 13187 22324
time 4.7 6.08 11.01
expansion per s - 1138.7 1085.9

Table 1: Statistics for polygonizing the gecko Figs. 8 and 1
Bottom.

face based polygonization time. The constant heuristic based
polygonization (Fig 1) is faster than the gaussian (Fig 8) as
less triangles were generated. However, the curvature based
polygonization is faster regarding the number of expansions
performed per second as less convergence steps are needed
to project points on the surface.

6. Conclusions and Future Work

In the research presented in this paper we have described an
extension to a hierarchical tree-based ISM system that in-
cludes interactively adding style and appearance properties
and creating a more accurate curvature based polygonal ap-
proximation.

The results presented here illustrate some of the capabil-
ities with using an internal BlobTree node for defining ap-
pearances. This includes using field information to evaluate
blending regions that extend style choices beyond traditional
primitive boundaries.

This method is extendible to other volumetric rendering
systems that use scan data. Style nodes can be adapted to
use data which is segmented in much the same way as SUN
currently are associated with primitives or subtrees.

Unfortunately adding the style nodes has an overhead and
requires a traversal of the BlobTree. Future work will re-
design the spatial caching to overcome this limitation.

Regarding the underlying polygonal representation of the
implicit surface, our approach presents a novel adaptive
polygonization algorithm based on curvature information
extracted from the scalar field. We follow a surface tracking
approach to generate a curvature dependent approximation

on the fly. Thanks to several speedup techniques, we achieve
a polygonization as fast as the traditional Marching Tetrahe-
dra creating a better approximation.

Acknowledgements

Bruno Araujo was supported by the Portuguese Foun-
dation for Science and Technology, grant reference
SFRH/BD/31020/2006.

References

[AGCA06] ALLEGRE R., GALIN E., CHAINE R.,
AKKOUCHE S.: The hybridtree: Mixing skeletal implicit
surfaces, triangle meshes, and point sets in a free-form
modeling system. Graphical Models 68, 1 (2006), 42–
64.

[AHASJI96] A. HILTON A. STODDART J. I. W. T.:
Marching triangles: range image fusion for complex ob-
ject modeling. In IP’96: Image Processing (1996),
pp. 381–384.

[AJ03] ARAUJO B. D., JORGE J.: Blobmaker: Free-form
modelling with variational implicit surfaces. In Encontro
Portugu de Computa Grafica (EPCG) (2003), pp. 17–26.

[AJ05a] ARAÚJO B., JORGE J. A. P.: Curvature depen-
dent polygonization of implicit surfaces, 2005.

[AJ05b] ARAUJO B. R. D., JORGE J. A. P.: A calli-
graphic interface for interactive free-form modeling with
large datasets. In SIBGRAPI ’05 (2005), p. 333.

[BBB∗97] BLOOMENTHAL J., BAJAJ C., BLINN J.,
CANI-GASCUEL M., ROCKWOOD A., WYVILL B.,
WYVILL G.: Introduction to Implicit Surfaces. Morgan
Kaufmann Publishers Inc., 1997.

[BG07] BRUCKNER S., GRÖLLER M. E.: Style trans-
fer functions for illustrative volume rendering. Computer
Graphics Forum 26, 3 (2007), 715–724.

[BH98] BREMER D., HUGHES J.: Rapid approximate sil-
houette rendering of implicit surfaces. In IS’98: Implicit
Surfaces (1998), pp. 155–164.

[BN07] BOUTHORS A., NESME M.: Twinned meshes for
dynamic triangulation of implicit surfaces. In GI ’07:
Graphics Interface (2007), pp. 3–9.

[BPK98] BELYAEV A. G., PASKO A. A., KUNII T. L.:
Ridges and ravines on implicit surfaces. In CGI ’98: Com-
puter Graphics International (1998), p. 530.

[BSP∗94] BIER E. A., STONE M. C., PIER K., FISHKIN

K., BAUDEL T., CONWAY M., BUXTON W., DEROSE

T.: Toolglass and magic lenses: the see-through inter-
face. In CHI ’94: Computer Human Interaction (1994),
pp. 445–446.

[BVG05] BRUCKNER S., VIOLA I., GRÖLLER M. E.:
Volumeshop: interactive direct volume illustration. In
ACM SIGGRAPH ’05 Sketches (2005), p. 60.

c© The Eurographics Association 2009.

47



P. Jepp, B. Araujo, J. Jorge, B. Wyvill and M. C. Sousa / StyleNodes

[CDF∗06] COLE F., DECARLO D., FINKELSTEIN A.,
KIN K., MORLEY K., SANTELLA A.: Directing gaze in
3D models with stylized focus. Eurographics Symposium
on Rendering (2006), 377–387.

[CS02] CERMAK M., SKALA V.: Polygonization by the
edge spinning *, 2002.

[CS04] CERMAK M., SKALA V.: Adaptive edge spinning
algorithm for poligonization of implicit surfaces. In CGI
’04: Computer Graphics International (2004), pp. 36–43.

[E.98] E. H.: A marching method for the triangulation of
surfaces. The Visual Computer 14, 2 (1998), 95–108.

[ER00] EBERT D., RHEINGANS P.: Volume illustration:
Non-photorealistic rendering of volume models. In VIS
2000: IEEE Visualization Conference (2000).

[FJW∗05] FOSTER K., JEPP P., WYVILL B., SOUSA M.,
GALBRAITH C., JORGE J.: Pen-and-ink for blobtree im-
plicit models. Computer Graphics Forum (EG ’05) 24, 3
(2005), 267–276.

[GA01] GALIN E., AKKOUCHE S.: Adaptive implicit sur-
face polygonization using marching triangles. In Com-
puter Graphics Forum (2001), vol. 20, pp. 67–80.

[HMiBG01] HAUSER H., MROZ L., ITALO BISCHI G.,
GRER M. E.: Two-level volume rendering. IEEE
Transactions on Visualization and Computer Graphics 7
(2001), 242–252.

[IMT07] IGARASHI T., MATSUOKA S., TANAKA H.:
Teddy: a sketching interface for 3d freeform design. In
ACM SIGGRAPH ’07 courses (2007), p. 21.

[KHR02] KARPENKO O., HUGHES J. F., RASKAR R.:
Free-from sketching with variational implicit surfaces.
Computer Graphics Forum 21, 3 (2002), 585–594.

[KS01] KARKANIS T., STEWART A. J.: Curvature-
dependent triangulation of implicit surfaces. IEEE Com-
puter Graphics Applications 21, 2 (2001), 60–69.

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes:
A high resolution 3d surface construction algorithm. SIG-
GRAPH Computer Graphics 21, 4 (1987), 163–169.

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK

G., SEIDEL H.-P.: Multi-level partition of unity implicits.
ACM Transactions on Graphics 22, 3 (2003), 463–470.

[OBS04] OHTAKE Y., BELYAEV A., SEIDEL H.-P.:
Ridge-valley lines on meshes via implicit surface fitting.
In ACM SIGGRAPH ’04 Papers (2004), pp. 609–612.

[PASS95] PASKO A., ADZHIEV V., SOURIN A.,
SAVCHENKO V.: Function representation in geometric
modeling: Concepts, implementation and applications
a.pasko 1, v.adzhiev 2, a.sourin 3, v.savchenko. In The
Visual Computer (1995), vol. 11, pp. 429–446.

[PC03] P. CIGNONI C. MONTANI R. S.: Magicsphere: an
insight tool for 3d data visualization. Computer Graphics
Forum 13, 3 (2003), 317–328.

[PLLdF06] PAIVA A., LOPES H., LEWINER T.,
DE FIGUEIREDO L. H.: Robust adaptive meshes for
implicit surfaces. In SIBGRAPI ’06 (2006), pp. 205–212.

[RH04] ROPINSKI T., HINRICHS K. H. (Eds.):. Real-
Time Rendering of 3D Magic Lenses having arbitrary
convex Shapes (2004), Winter School on Computer
Graphics.

[SGW06] SCHMIDT R., GRIMM C., WYVILL B.: Inter-
active decal compositing with discrete exponential maps.
In ACM SIGGRAPH ’06 Papers (2006), pp. 605–613.

[SIW06] SCHMIDT R., ISENBERG T., WYVILL B.: In-
teractive pen-and-ink rendering for implicit surfaces. In
ACM SIGGRAPH ’06 Sketches (2006), p. 98.

[SWG05] SCHMIDT R., WYVILL B., GALIN E.: Interac-
tive implicit modeling with hierarchical spatial caching.
In Shape Modeling and Applications (2005), pp. 104–
113.

[SWSJ06] SCHMIDT R., WYVILL B., SOUSA M. C.,
JORGE J. A.: Shapeshop: sketch-based solid modeling
with blobtrees. In ACM SIGGRAPH ’06 Courses (2006),
p. 14.

[TZF04] TAI C.-L., ZHANG H., FONG J. C.-K.: Proto-
type Modeling from Sketched Silhouettes based on Con-
volution Surfaces. Computer Graphics Forum 23, 1
(2004), 71–83.

[VCWP96] VIEGA J., CONWAY M. J., WILLIAMS G.,
PAUSCH R.: 3d magic lenses. In UIST ’96 (1996), pp. 51–
58.

[WGG99] WYVILL B., GALIN E., GUY A.: Extending
The CSG Tree. Warping, Blending and Boolean Opera-
tions in an Implicit Surface Modeling System. Computer
Graphics Forum 18, 2 (June 1999), 149–158.

[WH94] WITKIN A., HECKBERT P.: Using particles to
sample and control implicit surfaces. ACM SIGGRAPH
’94 (1994), 269–277.

[WMW86] WYVILL G., MCPHEETERS C., WYVILL B.:
Data structures for soft objects. The Visual Computer 2, 4
(1986), 227–234.

c© The Eurographics Association 2009.

48


