
New Models for High-Quality Surface
Reconstruction and Rendering

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

DISSERTATION

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

von

Dipl. Inform. Thomas Kalbe
geboren in Groß Gerau, Deutschland

Referenten der Arbeit: Prof. Dr. techn. Dieter W. Fellner
Technische Universität Darmstadt
Prof. Dr. Ing. Holger Theisel
AG Visual Computing, Universität Magdeburg

Tag der Einreichung: 18. Oktober 2010
Tag der mündlichen Prüfung: 8. März 2011

D 17
Darmstadt 2011

http://www.eg.org
http://diglib.eg.org

Neue Modelle zur Rekonstruktion und
Visualisierung von Oberflächen mit

hoher Qualität

Kurzzusammenfassung

Die effiziente Rekonstruktion und artefaktfreie Visualisierung von Oberflächen aus
gemessenen Daten realer Objekte ist in einer Vielzahl von Anwendungen von Wichtigkeit.
Beispielhaft seien medizinische oder wissenschaftliche Visualisierungen, Qualitätskon-
trolle von Bauteilen, oder Anwendung in Computerspielen, Film und Fernsehen genannt.
Der Hauptbeitrag dieser Arbeit besteht in der Entwicklung der ersten effizienten GPU-
basierten Rekonstruktions- und Visualisierungsmethoden basierend auf trivariaten Spli-
nes, das sind Splines definiert bezüglich geeigneter Tetraederzerlegungen des Raumes.
Wir zeigen, dass sich diese Splines sehr gut zur Rekonstruktion und Visualisierung
von Oberflächen aus Volumendaten in Echtzeit eignen, wobei die Oberflächen mit ho-
her visueller Qualität, also unter Vermeidung visueller Artefakte, angezeigt werden.
Wir entwickeln zudem einen neuen quasi-interpolierenden Operator, der auf einen C1-
differenzierbaren Spline mit Polynomen vom Grad zwei führt. Dies ist die erste di-
rekte Methode, um 3D Daten mit C1-differenzierbaren Polynomen vom Grad zwei zu
approximieren, ohne dass Tetraeder unterteilt werden müssen. Weiterhin entwickeln
wir eine neue Projektionsmethode zur Triangulierung von unstrukturierten Punktemen-
gen, die im Vergleich zu bestehenden Methoden hochqualitative Dreiecksnetze mit einer
garantierten numerischen Stabilität generiert.

i

ii

Zusammenfassung

Die Rekonstruktion und Visualisierung von Oberflächen aus gemessenen Daten ist ein ak-
tives Forschungsgebiet mit einer Vielzahl von Anwendungen. Im medizinischen Bereich
sind bildgebende Verfahren wie CT oder MRI in der Diagnose nicht mehr wegzudenken.
Diese Verfahren liefern skalare Messwerte auf regulären dreidimensionalen Gittern, so-
genannte Volumendaten. Weitere Einsatzgebiete von Volumendaten finden sich auch
in der industriellen Qualitätskontrolle, der strukturellen Biologie, sowie der Archäologie
und Geologie, etwa zum Auffinden von Ölfeldern. Einige Systemen zur Modellierung von
Freiformflächen im Computer Aided Geometric Design (CAGD) erzeugen ebenfalls Vol-
umendaten als Zwischenrepräsentation, aus denen die gesuchten Oberflächen extrahiert
werden müssen. Weiterhin fallen synthetische Volumendaten auch als Ergebnis von nu-
merischen Simulationen an. Eine zweite Klasse von Daten sind durch Laser-Abtastung
realer Objekte gewonnene Mengen diskreter 3D Punkte. Verfahren, die aus diesen un-
strukturierten Punktemengen Oberflächen rekonstruieren, finden insbesondere Anwen-
dung in industriellen Fertigungsprozessen, beispielsweise der Automobilindustrie, aber
auch in der Bewahrung von Objekten hoher kultureller Bedeutung, etwa Gebäude oder
Statuen.

Eine der an moderne Verfahren zur Oberflächenrekonstruktion gestellten Anforderun-
gen ist hohe visuelle Qualität, also eine möglichst artefaktfreie Darstellung der rekonstru-
ierten Objekte. Gleichzeitig sollte die Rekonstruktion in einer vertretbaren Geschwindig-
keit erfolgen. Eine der Schwierigkeiten dabei ist es, dass moderne Abtastverfahren sehr
große bis riesige Datenmengen erzeugen. Im medizinischen Bereich sind Volumendaten
mit Gittergrößen von 5123 Punkten heute üblich. Die im Digital Michelangelo Project
abgetasteten Objekte bestehen aus mehr als hundert Millionen Punkten. Rekonstruk-
tionsverfahren stellen somit hohe Anforderungen an die Hardware, sowohl in Bezug auf
benötigte Rechenzeit sowie Speicherverbrauch. Desweiteren ist der Scan-Prozess nicht
hundertprozentig exakt. Abhängig vom verwendeten Verfahren, den äusseren Bedin-
gungen, und dem zu scannenden Objekt können die erzeugten Datensätze erhebliches
Rauschen und Ungenauigkeiten aufweisen. Es ist daher für jede Rekonstruktionsmethode
von Bedeutung, dass Rauschen berücksichtigt wird, dabei aber nicht zu viele Detailin-
formationen verloren gehen.

In dieser Arbeit werden neue Rekonstruktionsverfahren und Visualisierungsmethoden
für gemessene Daten vorgestellt und analysiert. Der erste Teil der Arbeit befasst sich
mit Rekonstruktionsverfahren für Oberflächen aus Volumendaten, wobei wir einen rela-
tiv neuen Typ von Splines (stückweise zusammengesetzte Polynome) einsetzen, nämlich
trivariate Splines bezüglich geeigneter Tetraederzerlegungen des Raumes. Diese Splines
besitzen einige Vorteile gegenüber Standardverfahren, wie etwa Tensorprodukt-Splines,
aber auch eine deutlich komplexere Struktur, der für einen effizienten Rendering-Ansatz

iii

Rechnung getragen werden muss. Im zweiten Teil befassen wir uns mit der Oberflächen-
rekonstruktion aus unstrukturierten Punktemengen, wobei wir einen projektiven Ansatz
zur Generierung von Dreiecksnetzen hoher Qualität einsetzen. Ein Maß für die Qualität
eines Dreiecksnetzes ist hierbei hohe Regularität (die meisten Eckpunkte besitzen den
Kantengrad sechs), die Form der Dreiecke (möglichst gleichschenklige Dreiecke), und An-
passung an lokale Oberflächenstruktur. Unser Hauptbeitrag hierbei ist eine verbesserte
Projektionsmethode, die deutlich stabiler und effizienter als vorherige Methoden arbeitet.

Rekonstruktion und Visualisierung von Oberflächen aus
Volumendaten

Für die Visualisierung von Volumendaten ist es von zentraler Bedeutung, geeignete
mathematische Modelle zu entwickeln, die die Daten an den Gitterpunkten interpolieren
oder approximieren, und kontinuierlich zwischen den Gitterpositionen variieren. Ausge-
hend von den praktischen Erfordernissen effizienter Volumenvisualisierung, wie schnelle
Berechnung und Auswertung der Modelle, beweisbare Approximationseigenschaften für
die Werte sowie Ableitungen, und Unempfindlichkeit gegenüber Rauschen, werden heute
vor allem polynomiale Filter für die Interpolation und Approximation diskreter Volumen-
daten eingesetzt. Die meisten bekannten Ansätze basieren hierbei auf Tensorprodukt-
Splines in drei Variablen, wobei die prominentesten Vertreter die trilinear stetigen,
sowie triquadratisch und trikubisch differenzierbaren, Splines sind. Aufgrund seiner
Einfachheit kommt das trilineare Modell heute sehr häufig in Systemen zur Echtzeit-
Volumenvisualisierung zum Einsatz. Die Visualisierungen sind jedoch nicht glatt und
sichtbare und störende Artefakte, beispielsweise bei der Beleuchtung oder an den Silhou-
etten, sind fast unvermeidbar. Triquadratische und trikubische Splines reduzieren diese
Artefakte und haben ein glatteres Erscheinungsbild, führen aber auf Polynome in drei
Variablen vom totalen Grad sechs beziehungsweise neun. Neben dem damit verbunde-
nen deutlich höheren Aufwand für die Auswertung der Modelle sowie der Ableitungen
ist eine exakte Schnittberechnung mit den Sichtstrahlen bei Strahlverfolgungsverfahren
(Ray Casting) nicht möglich. Stattdessen müssen beispielsweise Intervall-Verfeinerungs-
methoden angewandt werden, die insbesondere an den Objektsilhouetten aufwendig sind.

Vor kurzem wurde erstmalig vorgeschlagen, eine neue Klasse von Splines als Modelle
zur Visualisierung zu verwenden, dies sind stückweise differenzierbar zusammengeset-
zte Polynome in drei Variablen definiert bezüglich geeigneter Tetraederzerlegungen des
Raumes. Die Vorteile dieser trivariaten Splines bezüglich der Visualisierung von Iso-
Oberflächen aus Volumendaten mittels Ray Casting sind

• minimaler totaler Grad der polynomialen Stücke

• exakte und effiziente Berechnung der Oberflächenschnitte durch Lösung quadra-
tischer und kubischer Gleichungen

• optimale Approximation der Ableitungen

iv

• direkte Anwendbarkeit von Standardwerkzeugen der CAGD und Bernstein-Bézier-
Techniken zur stabilen und effizienten Auswertung

• schnelles Überprüfen, ob ein gegebenes Polynomstück zur sichtbaren Oberfläche
beiträgt

• vernachlässigbar geringer Zusatzaufwand zur Bestimmung der Normalen

Genauer verwenden wir sogenannte Quasi-Interpolationsmethoden, die sich dadurch aus-
zeichnen, dass die Koeffizienten der Polynomstücke direkt durch geeignete Mittelungen
der Volumendaten in einer lokalen Nachbarschaft verfügbar sind. Bis heute sind nur
wenige Splines dieser Bauart bekannt, denn das Finden geeigneter Tetraederpartitionen
und Mittelungsoperatoren für die Koeffizienten, so dass eine ausreichende Approxima-
tionsgüte erreicht wird, ist insbesondere für niedrige Polynomgrade nicht trivial. Wir ver-
wenden quadratische Super-Splines und kubische C1 Splines bezüglich Typ-6 Tetrader-
zerlegungen, wobei jeder Datenwürfel des Volumengitters in vierundzwanzig kongruente
Tetraeder zerlegt wird. Weiterhin entwickeln wir einen neuen Quasi-Interpolanten, der
erstmalig das Problem einer lokalen Approximationsmethode von 3D Daten mittels Poly-
nomen vom Grad zwei bei gleichzeitiger Differenzierbarkeit an den Übergängen löst.
Dieser Spline basiert auf einer Zerlegung des Raumes in abgeflachte Oktaeder (trun-
cated octahedra, TO), die weiter in zwei Klassen von Tetraedern zerlegt werden. Wir
zeigen, dass dieser neue Spline die Werte an den Gitterpunkten mit beinahe optimaler
Ordnung approximiert, und eine optimale Approximationsordnung für die Gradienten
erreicht. Ein weiterer Vorteil der verwendeten Operatoren ist es, dass die zur Mittelung
benötigten lokalen Nachbarschaften sehr klein sind. Beispielsweise basiert der kubische
C1 Spline auf einer Nachbarschaft der 23 nächstgelegenden Werte, der quadratische C1

Splines benötigt 28 benachbarte Werte. Zum Vergleich sei erwähnt, dass trikubische
Tensorprodukt-Splines auf einer Mittelung von 64 Werten basieren.

Quasi-Interpolationsmethoden wurden bereits zur Visualisierung mittels Ray Cast-
ing erfolgreich eingesetzt, wobei gezeigt wurde, dass die Methoden das Potential be-
sitzen, realistische, natürlich aussehende und nahezu artefaktfreie Bilder zu erzeugen.
Dies ist insbesondere in der Medizin, aber auch in der Qualitätskontrolle von Bauteilen
von zentraler Bedeutung. Die ersten Ansätze zur Visualisierung dieser Splines waren
zunächst noch Software-basiert, wobei nur niedrige Bildraten erreicht werden konnten.
In den letzten Jahren wurden dagegen programmierbare Grafikprozessoren (GPUs) im-
mer leistungsfähiger und flexibler, wodurch eine Vielzahl von Ansätzen zur Echtzeit-
Visualisierung von Volumendaten mittels GPUs entwickelt wurden. Auch für Splines
auf Tetraederzerlegungen wurden Methoden zur Visualisierung mittels GPUs vorgeschla-
gen, die jedoch verschiedene ungelöste Schwierigkeiten aufwiesen. Beispielsweise war der
Speicherverbrauch für die Polynomkoeffizienten und die Hüllgeometrien (Tetraeder) sehr
hoch, wodurch im Vergleich zu Standardmethoden nur geringe Bildraten erreicht wurden
und nur kleine Datensätze überhaupt visualisiert werden konnten.

Ein Hauptbeitrag dieser Arbeit ist es, hoch effiziente Ansätze zur Visualisierung von
Oberflächen mittels GPUs basierend auf trivariaten Splines zu entwickeln. Wir gehen
dabei zunächst auf signifikante Verbesserungen der bekannten Ansätze ein, die auf einer

v

Projektion der Tetraeder auf den Bildschirm basieren. Wir zeigen hierbei, dass es
von großer Wichtigkeit ist, die Struktur der Splines für eine effiziente Visualisierung
zu berücksichtigen, um den Speicherverbrauch und die arithmetische Komplexität der
Berechnungen zu reduzieren. Unsere Ergebnisse zeigen eine deutlich verbesserte Perfor-
manz gegenüber vorherigen Methoden. Gleichzeitig zeigen wir aber auch die Grenzen
dieser Projektionsmethoden auf derzeitigen GPUs auf, da für praxisrelevante Daten-
sätze viele Millionen Tetraeder entstehen, und jeder dieser zur Oberfläche beitragende
Tetraeder separat behandelt werden muss.

Wir verfolgen daher einen weiteren, alternativen Ansatz zur Volumenvisualisierung
mittels trivariater Splines. Hierbei werden nicht mehr einzelne Tetraeder projiziert,
sondern es findet eine Strahltraversierung durch das gesamte Volumen statt. Wir ent-
wickeln hierfür effiziente Algorithmen zur Auslassung leerer Bereiche (empty space skip-
ping) sowie zur Traversierung der zugrundeliegenden gleichmäßigen Tetraederpartitio-
nen, wobei wir auch hierbei von den Vorteilen trivariater Quasi-Interpolanten profitieren
(schnelle Berechnung der Polynomstücke, kleine Nachbarschaften, effiziente Schnittbe-
rechnungen, etc.). Wir zeigen, dass in diesem bildbasierten Ansatz die Performanz
beinahe unabhängig von der Anzahl der auf der Oberfläche liegenden Tetraeder ist, und
wir somit auch große, praxisrelevante Datensätze mit hohen Bildraten anzeigen können.
Weiterhin zeigen wir, dass neue Programmieransätze auf GPUs jenseits der bekannten
Grafik-Pipeline, wie NVidia’s CUDA, zu unserem Vorteil ausgenutzt werden können. Im
Vergleich zur gewöhnlichen Grafik-Pipeline kann durch den Einsatz von CUDA auf der-
selben Hardware-Plattform eine Geschwindigkeitssteigerung um den Faktor drei erreicht
werden. Unsere Ergebnisse zeigen somit, dass trivariate Quasi-Interpolationsmethoden
für Echtzeit-Visualisierungen großer Datensätze mit hoher visueller Qualität auf heutiger
Grafik-Hardware sehr gut geeignet sind.

Dreiecksnetzrekonstruktion aus unstrukturierten
Punktemengen

Neben der Rekonstruktion und Visualisierung von Oberflächen aus Volumendaten be-
fassen wir uns in dieser Arbeit weiterhin mit der Erzeugung von Dreiecksnetzen aus
unstrukturierten Punktemengen. Diese Punktemengen werden üblicherweise durch 3D
Laser-Abtastung realer Objekte gewonnen, wobei jedoch in der Praxis gewisse Unge-
nauigkeiten, wie Messrauschen oder Selbstverdeckung, auftreten können. In der Li-
teratur sind bereits eine Vielzahl von Verfahren zur Erzeugung von Oberflächen aus
gemessenen Punkten bekannt, die verschiedene Vor- und Nachteile besitzen, wie beispiels-
weise Empfindlichkeit gegenüber Messrauschen, korrekte Behandlung von Rändern und
Löchern, Kontrolle über Form und Anzahl der erzeugten Oberflächenprimitive, Anpas-
sung an lokale Oberflächenstruktur, Behandlung von scharfen Kanten, oder Geschwin-
digkeit und Stabilität der Netzerzeugung.

Wir konzentrieren uns hier auf Projektionsmethoden, die ausgehend von einem be-
reits triangulierten Bereiches, der Front, weitere Punkte durch eine Heuristik voraus-
sagen und auf eine lokale Oberflächenapproximation projizieren. Der wesentliche Vorteil

vi

dieser als Advancing Front bekannten Methoden ist die hohe Qualität der erzeugten
Triangulierungen. Die entstehenden Dreiecke sind zumeist annähernd gleichseitig und
die Netze weisen eine hohe Regularität auf, d.h. die Mehrzahl der Eckpunkte besitzen
die Kantenvalenz sechs (ca. 75% der Eckpunkte in unseren Tests), die Valenzen der
übrigen Eckpunkte sind meist fünf oder sieben. Algorithmen zur späteren Nachbear-
beitung wie Subdivision-Verfahren oder Netzkompression, profitieren im hohen Maße
von einer Regularität der Dreiecksnetze. Die Form der Dreiecke hat direkten Einfluss
auf die Stabilität bei numerischen Approximationsverfahren. Weiterhin lässt sich der
Detaillierungsgrad der Dreiecksnetze steuern, und die Größe der Dreiecke passt sich dy-
namisch an die lokale Oberflächenstruktur an, so dass in Bereichen mit hoher Krümmung
mehr Dreiecke erzeugt werden, während annähernd flache Bereiche mit vergleichsweise
wenigen Dreiecken approximiert werden.

Von zentraler Bedeutung für Advancing Front Algorithmen ist die Bereitstellung eines
effizienten und robusten Projektionsverfahrens zur Abbildung der vorhergesagten Punkte
auf die lokale Approximation der Oberfläche, wobei in den letzten Jahren das Moving
Least Squares (MLS) Projektionsverfahren große Popularität erreicht hat. Wie unsere
Untersuchungen und gewisse Hinweise in der Literatur gezeigt haben, ist ein schwer-
wiegendes Problem von MLS jedoch, dass die Robustheit des Verfahrens nicht immer
garantiert werden kann. Die Ursache liegt in der Notwendigkeit zur numerischen Lösung
eines nicht-linearen Minimierungsproblems, bei dem die üblichen Schwierigkeiten bei der
Suche nach einem lokalen Minimum, das bestimmte Randbediungen erfüllen muss, auch
tatsächlich in der Praxis auftreten. Wir entwickeln in dieser Arbeit daher ein alter-
natives Projektionsverfahren, das sich gegenüber MLS durch deutlich bessere Rekon-
struktionseigenschaften und schnellere Berechnungen der Projektionen auszeichnet. Im
Gegensatz zu Projektionen mittels MLS kommt unser neues Projektionsverfahren ohne
die numerische Lösung nicht-linearer Optimierungs- und verwandter Probleme aus. Wir
zeigen, dass zur Durchführung des neuen Verfahrens lediglich Berechnungen benötigt
werden, für welche robuste und effiziente Algorithmen zur Verfügung stehen.

Unser Projektionsverfahren basiert auf einer 3D Delaunay-Triangulierung zur Er-
mittlung der Konnektivität der gegebenen Punkte in einem Vorverarbeitungsschritt.
Dies hat zum Einen den Vorteil, dass wir die Punkte in einer lokalen Nachbarschaft nach
der approximierten Riemann’schen Distanz gewichten können, anstelle wie bei MLS auf
die Euklidische Distanz angewiesen zu sein, was häufig zu Fehlprojektionen führt. Der
zweite Vorteil ist, dass geschätzte Normalen anfallen, die wir zu einer ersten Ausrichtung
der für die Projektion benötigten lokalen Koordinatensysteme verwenden können. Im
Gegensatz zu MLS funktioniert unser Verfahren daher auch dann besonders gut, wenn
keine gemessenen Normalen vorliegen. Die Oberflächen werden lokal durch bivariate
Polynome approximiert, wobei wir im Gegensatz zu MLS einen variablen Polynomgrad
verwenden. Die Idee dahinter ist es, dass Polynome von höherem Grad die Oberfläche
und die Krümmung besser approximieren, es aber zu Situationen kommen kann, in de-
nen die Polynomapproximation instabil wird (eine kleine Veränderung der Punkte führt
zu einem komplett anderen Polynom). In diesen Fällen reduzieren wir den Polynomgrad
und beginnen die Approximation erneut.

Unsere Ergebnisse zeigen, dass das neue Projektionsverfahren deutlich robuster ist als

vii

MLS und auch komplexe Oberflächenstrukturen zu rekonstruieren in der Lage ist. Die
Anpassung des Polynomgrads führt zudem auf verbesserte Triangulierungen, insbeson-
dere in Regionen mit hoher Krümmung.

viii

Erklärung zur Dissertation

Hiermit versichere ich die vorliegende Dissertation selbständig nur mit den angegebenen
Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen entnommen
wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher
Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 31.1.2011 Thomas Kalbe

x

Abstract

The efficient reconstruction and artifact-free visualization of surfaces from measured
real-world data is an important issue in various applications, such as medical and sci-
entific visualization, quality control, and the media-related industry. The main contri-
bution of this thesis is the development of the first efficient GPU-based reconstruction
and visualization methods using trivariate splines, i.e., splines defined on tetrahedral
partitions. Our methods show that these models are very well-suited for real-time re-
construction and high-quality visualizations of surfaces from volume data. We create a
new quasi-interpolating operator which for the first time solves the problem of finding a
globally C1-smooth quadratic spline approximating data and where no tetrahedra need
to be further subdivided. In addition, we devise a new projection method for point sets
arising from a sufficiently dense sampling of objects. Compared with existing approaches,
high-quality surface triangulations can be generated with guaranteed numerical stability.

Keywords. Piecewise polynomials; trivariate splines; quasi-interpolation; volume
data; GPU ray casting; surface reconstruction; point set surfaces

xii

Acknowledgements

I would like to thank the following people for supporting this thesis (in alphabetical
order): Prof. D. Fellner, Simon Fuhrmann, Prof. Michael Goesele, Thomas Koch, Arjan
Kuijper, Alexander Marinc, Markus Rhein, Christian Rössl, Tania Sorokina, Stefan
Uhrig, Dominik Wodniok, and Frank Zeilfelder.

xiii

xiv

For my beloved wife Jessica.

In memory of my parents.

xv

xvi

Contents

1 Introduction 1

2 Reconstruction and Visualization of Volume Data 7
2.1 Reconstruction Filters for Volume Visualization 7
2.2 Hardware-accelerated Volume Rendering 10
2.3 GPU Visualization of Trivariate Splines 13

3 Bernstein-Bézier Techniques for Multivariate Polynomials 15
3.1 Univariate Bernstein-Polynomials and Bézier Curves 15
3.2 The Space of Bivariate and Trivariate Polynomials 17

3.2.1 Lagrange Interpolation on Triangles 18
3.3 The Multivariate Bernstein Basis . 19

3.3.1 Barycentric Coordinates . 20
3.3.2 Bernstein Polynomials . 23

3.4 The Bernstein-Bézier Form . 26
3.4.1 The de Casteljau Algorithm . 26
3.4.2 Directional Derivatives of B-Form Polynomials 28
3.4.3 Blossoming . 29
3.4.4 Continuous Joins of Neighboring Polynomials 32

4 Spaces of Smooth Splines 35
4.1 Bivariate Splines for Data Approximation 35
4.2 Trivariate Splines for Data Approximation 37
4.3 Smooth Spline Spaces . 38

4.3.1 Quasi-Interpolating Splines . 39
4.4 Piecewise Quadratic and Cubic Approximation by Trivariate Splines . . . 40

5 Quadratic C1-Splines on Truncated Octahedral Partitions 45
5.1 Preliminaries . 46
5.2 Smoothness of Quadratic Splines on Truncated Octahedral Partitions . . 47
5.3 The Quasi-Interpolating Scheme . 51
5.4 Approximation Properties . 58
5.5 Numerical Results . 60
5.6 Conclusion and Remarks . 64

xvii

6 GPU Kernels for Piecewise Quadratic and Cubic Approximation 69
6.1 Hybrid Cell Projection / Ray Casting . 70

6.1.1 Preprocessing for Efficient Visualization 72
6.1.2 GPU Visualization Details . 75
6.1.3 Performance Analysis . 80

6.2 An Image Based Volume Ray Casting Approach 83
6.2.1 Empty Space Leaping . 83
6.2.2 Tetrahedra Traversal . 85
6.2.3 Performance Analysis . 87

6.3 Results . 89

7 Surface Reconstruction from Unstructured Points 97
7.1 Related Work . 99
7.2 A New Projection Method for Point Set Surfaces 101
7.3 Results . 104

8 Summary and Discussion 107

Appendices 115

A Publications 115

Bibliography 117

xviii

Chapter 1

Introduction

The reconstruction and visualization of surfaces from a variety of data sources has many
applications and is thus an active field of research. We can classify measured data ac-
cording to its sampling as either uniform (structured) or non-uniform (unstructured,
scattered). Scanning devices such as Computer Tomography (CT), Magnetic Resonance
Imaging (MRI), Positron Emission Tomography (PET) or 3D ultrasound produce scalar
data on regular volumetric (i.e., three-dimensional) grids and are important tools in
medical research and diagnosis, and in many fields of engineering. In structural biology,
data obtained from Cryo-Electron Tomography (CET) can be used to deduce the 3D
shape of cell structures and viruses. The type of data associated with the grid points
typically reflects the density of the scanned objects or the distinct reaction of the atomic
configuration of tissue when exposed to, e.g., magnetic fields or nuclear radiation. Syn-
thetic data may be generated for example from numerical simulations, or signed-distance
functions taken from polyhedral meshes. We refer to data sampled on a regular volu-
metric grid as volume data. The visualization of this data is a common task in various
applications. Examples are medical imaging, scientific visualization, industrial quality
control, geology, archaeology, reverse engineering, Computer Aided Geometric Design
and the visual media (TV, cinema, and computer games). Here, we are interested in
efficient methods leading to high-quality visualizations of the reconstructed objects, for
instance, human organs or machinery parts.

A different source of data is typically generated from laser range scanners as a dense
sampling of real-world objects. These scanners generate a set of 3D positions of discrete
points (unstructured point sets or point clouds) scanned from the object. Sometimes, we
also have an estimate of the normal, color, or reflection characteristics for each point.
Applications for this kind of data arise in, e.g., the automotive industry, architecture,
or archaeology. It is possible to generate a volumetric representation of point set data
for example by computing signed distance functions (SDF) [HDD∗92, SOM04, JBS06]
and then apply suitable reconstruction and visualization methods to the arising data on
a regular 3D grid, but usually we want methods that directly construct surfaces from
unstructured points.

Generally, the obtained data sets can be huge: in the process of oil-finding overlap-
ping volume data sets of several GBytes size are generated; in the Digital Michelangelo
Project [LPC∗00], the high-resolution scan of the David statue consists of over hundred
of million points. Surface reconstruction and visualization methods from real-world data
are thus computationally intensive and demand a substantial amount of memory for the

1

processing of the data. In addition, the scanning process is not necessarily accurate. De-
pending on the particular method and conditions of the sampling substantial amounts of
noise may be generated. It is thus important for surface reconstruction methods to be
insensitive to noise while at the same time no relevant information (i.e., surface detail)
should get lost.

A primary problem in this area is to develop appropriate continuous models of the mea-
sured data which fit our needs in terms of visual quality as well as computational costs
for the display and preprocessing of the data. Ideally, the approach involves real-time re-
construction: using a standard PC, the non-discrete model is immediately available from
the (typically huge) data sets while a certain approximation order is guaranteed, i.e., er-
rors decrease with a certain factor for increasing numbers of data points. Another goal
is that the continuous models provide high-quality. Independent from the viewer’s po-
sition visualizations should appear natural and overall smooth while disruptive artifacts
(imperfect silhouettes, undesired oscillations, stair-casing, etc.) are avoided. Further, we
demand that standard techniques from Computer Graphics (texturing, shading, lighting,
etc.) can be applied without too much effort. In this connection, simultaneous approxi-
mation of partial derivatives is important since it allows direct sampling of the gradients
for complex texturing algorithms or illumination computations. A crucial issue for the
visualization of the reconstructed objects is always interactivity with the user since, in
practice, the reconstructed objects should appear on high-resolution displays without
delays.

Volume Visualization

A standard approach for the visualization of regular volumetric data is to use trilin-
ear interpolation [Baj99, ML94] where the tensor-product extension of univariate linear
splines interpolating at the grid points results in piecewise cubic polynomials. A suffi-
ciently smooth function is approximated with order two, but in general, reconstructions
are not smooth and visual artifacts arise. However, the simplicity of this model has moti-
vated its widespread use. Alternatively, higher-order interpolation such as triquadratic,
or tricubic tensor-product splines can be used to construct smooth models. These splines
lead to piecewise polynomials of higher total degree, namely six and nine, which are thus
more expensive to evaluate.

In this work, we use smooth trivariate splines, i.e., piecewise polynomials of low and
lowest possible degree (namely, 2 and 3) on uniform tetrahedral partitions connected via
smoothness conditions. Since we are interested in real-time reconstructions our models
are based on quadratic and cubic quasi-interpolating splines in Bernstein-Bézier form (B-
form) [NRSZ05, SZ05, SZ07b], where the coefficients are simply set as local averages of
the uniform data. This is done with care such that approximation order two is guaranteed
for the model as well as the partial derivatives while smoothness conditions between
neighboring tetrahedral elements are satisfied simultaneously. Further, we develop a
new quasi-interpolating operator, which for the first time solves the problem of finding a
globally C1-smooth quadratic spline approximating local data where no tetrahedra need
to be further subdivided [RK09].

2

Figure 1.1: Blending of different isosurfaces reconstructed from real-world data sets using smooth trivari-
ate cubic splines . From left to right: VisMale (2563 voxels), Tooth (2562 × 161 voxels), and Foot (2563

voxels). VisMale and Tooth are smoothed with a Gaussian filter on the GPU. Choosing the desired
isosurfaces and smoothing to an appropriate degree is an interactive process.

Today, highly powerful programmable graphics processing units (GPUs) have become
a standard equipment in consumer PCs. Thus, a lot of recent research deals with the
development of algorithms for interactive and real-time reconstruction of surfaces and
general visualization of data. The main goal of this thesis is to develop the first GPU-
based reconstruction and rendering methods for trivariate splines where we use ray
casting for interactive high-quality visualizations of varying isosurfaces from volumetric
data [KTSZ08, KZ08, KKG09]. For examples of isosurfaces reconstructed using smooth
trivariate splines, see Figure 1.1. Here, the low total degree of the polynomials allows
for efficient and stable ray-patch intersection tests. Well-known techniques from CAGD,
like de Casteljau’s algorithm, or blossoming can be employed on the GPU for efficient
and stable evaluation of the splines. The derivatives needed for direct illumination are
immediately available as a by-product of the evaluation. On the other hand, our splines
have a more complex structure than those arising from, i.e., trilinear interpolation. Thus,
special care has to be taken in order to develop efficient algorithms for reconstruction
and visualization with trivariate splines which make optimal use of the limited memory
and the high parallelism provided by current GPUs.

Surface Reconstruction from Unstructured Points

Besides surface reconstruction from volume data we also discuss high-quality reconstruc-
tions of surfaces from scattered data. 3D laser scanners generate a (sufficiently dense) ap-
proximation of object contours as a set of unstructured points. Various approaches that
reconstruct a continuous surface from its discrete representation as point sets are known.
A common and versatile continuous surface representation are triangle meshes. They are
efficient in memory consumption and can be processed with high performance on current
graphics hardware. Therefore, the construction of meshes has received a lot of attention

3

Figure 1.2: Examples of high-quality surface triangulations obtained from our new projection method.
Left: Lucy model, approx. 880 000 triangles. Right: Dragon head, approx. 390 000 triangles.

with a substantial amount of literature, algorithms and techniques being published. The
notion of quality of the resulting mesh can refer to the sampling rate, regularity of the
mesh, or size and shape of the triangular elements, and is of significance for various
applications such as numerical simulations, refinement and subdivision, or mesh com-
pression. A certain type of method for mesh generation depends on a projection which
maps newly created vertices onto the surface. These projective methods are especially
well suited for a class of algorithms which allow for generation of high-quality meshes
that adapt to surface curvature. Mesh granularity can typically be controlled with few
user-specified, intuitive parameters. A very popular projective method is the Moving
Least Squares (MLS) approach for surface reconstruction [Lev98, ABCO∗01, ABCO∗03].
The power of MLS surfaces is the ability to naturally cope with input noise in the data.

We show that the MLS approach has some deficiencies and can lead to problems in the
computation of the tangent planes and the polynomial approximations of the surface.
Additionally, points that are beyond the vicinity of the surface are not guaranteed to be
correctly projected. We propose a new projection method based on local surface approxi-
mation with polynomials of varying degree [KFU∗09]. Unlike MLS, our method does not
involve a non-linear optimization or similar problem. Furthermore, we can project points
which have an arbitrary distance to the point set. We show that our method is more
robust and is able to produce better reconstructions, especially in problematic regions,
e.g., surface areas with high curvature. Examples of surface triangulations reconstructed
with our projection method are shown in Figure 1.2.

4

Chapter Overview
The remainder of this thesis is structured as follows:

• In Chapter 2, we give an overview on the current state of the art related to recon-
struction of surfaces from measured volume data as well as hardware accelerated
interactive visualization of these data. We conclude this chapter with a review of
recent work dealing with smooth trivariate splines for high-quality visualizations
and their applications in Computer Graphics.

• In Chapter 3, we lay the theoretical foundations needed for an understanding of the
mathematical concepts used in this thesis. This includes the Bernstein-Bézier form
(B-form) of the piecewise polynomials which is an ideal description for curves and
surfaces. We also describe important tools needed to analyze and evaluate these
polynomials, such as the de Casteljau algorithm and blossoming.

• In Chapter 4, we review the literature on (smooth) bivariate and trivariate splines.
We further introduce the notation used to describe these spline spaces and conclude
with two concrete examples of trivariate splines which are later used in this thesis
for efficient and high-quality visualization of sampled data.

• A new spline, which is based on a particular uniform tetrahedral partition of the
3D domain is presented in Chapter 5. For the first time this solves the problem
of finding an overall C1-continuous quadratic trivariate spline which approximates
local data and where no tetrahedra are further split. We conclude this chapter
with an analysis of the approximation properties of the spline.

• In Chapter 6, we give the details of our new GPU implementations for interactive
reconstruction and visualization of surfaces from real-world volume data. We show
that high-quality renderings of isosurface based on trivariate splines can be done
efficiently on modern GPUs. We further evaluate our methods and compare them
to related methods, both in terms of visual quality and performance.

• In Chapter 7, we address the problem of finding a surface triangulation which
approximates unstructured 3D point sets. We demand our triangulations to fulfill
certain quality criteria such as shape control over the triangular elements as well
as regularity of the triangulation. We further show that our method has improved
stability and delivers better triangulations in problematic regions than comparable
approaches.

• Finally, we summarize our main results and discuss directions for further research
in Chapter 8.

5

6

Chapter 2

Reconstruction and Visualization of Volume
Data

In this chapter, we give a brief overview of interactive volume visualization or volume
rendering, which is devoted to efficient computational techniques for the visualization of
volume data [Baj99, CKY00, Nie00, BW01]. We first discuss filtering functions to obtain
a continuous representation of a discretely sampled signal. Next, we consider the most
common interactive visualization techniques for scalar data on regular volumetric grids.
Volume rendering can be roughly categorized into two general classes. Basically, one
distinguishes between full volume rendering where the integral equation of a physical
emission-transport model has to be numerically solved along rays [Lev90], and isosur-
facing [ML94, PSL∗98, LHJ99, WS01] where surfaces of constant scalar values (called
isosurfaces) are extracted from the volume model. See Figure 2.1 for examples of both
techniques. We can classify isosurfacing further into methods that obtain discrete rep-
resentations of the surfaces, e.g., triangle meshes. A standard approach in this area is
marching cubes [LC87] and its variants [KBSS01, Nie04, SW04, NY06]. Alternatively,
one is only interested in visualizations of the isosurfaces which is often done by ray cast-
ing [Lev88]. In this case, the first intersection of each viewing ray with the surface is
determined for later illumination. A more detailed discussion on current visualization
techniques for interactive volume visualization can be found in the survey by Kaufmann
and Mueller [KM05], or the book by Engel et al. [EHKRS06].

We conclude this chapter with an outlook on the particular reconstruction and vi-
sualization methods which are presented in this thesis, namely trivariate splines on
tetrahedral partitions, and review related previous work.

2.1 Reconstruction Filters for Volume Visualization
In all methods for volume visualization we are interested in finding a continuous function
which approximates or interpolates the discrete values given at the grid points. Gener-
ally, finding a continuous function from discrete samples can be considered as convolving
with a filter function which essentially corresponds to taking weighted averages of the
samples. An evaluation of popular reconstruction filters can be found in the surveys by
Marschner and Lobb [ML94] and Theußl et al. [TMHG01]. According to the authors,
the “best” filter in terms of sampling theory is the three-dimensional sinc function. Any
band-limited signal can be exactly reconstructed from its discrete samples using the sinc

7

Figure 2.1: Visualizations of a data set obtained from a CT scan. Left: full volume rendering. Right:
isosurfaces

8

Figure 2.2: Visual comparison of cubic splines. Left: trilinear interpolation. Right: approximation by
smooth cubics.

filter. But, in practice, the sinc filter is difficult to use since it has infinite extend in the
space domain.

At the other extreme between reconstruction quality and simplicity of the filter is
trilinear interpolation, which is known from the marching cubes algorithm [LC87], and
leads to continuous piecewise cubic polynomials in three variables obtained from succes-
sive univariate linear interpolation along the grid lines. Trilinear interpolation is easy
to implement and can be very fast because only the 2× 2× 2 nearest samples are con-
sidered in the weightings. On the other hand, the visual quality which can be achieved
by trilinear interpolation is limited. The gradients are usually obtained from central
differences and are thus not smooth and visual artifacts such as aliasing, stair-casing or
fringed silhouettes arise. Nevertheless, trilinear interpolation is widespread in practical
applications. On the other hand, high quality visualization of volume data requires cer-
tain smoothness conditions to be involved (see Figure 2.2). Hence, instead of computing
separate derivative models for trilinear interpolation smooth higher-order filter kernels
have been proposed to improve the visual quality.

Higher order polynomials are a good compromise between computational complexity

9

and approximation of the optimal filter. Among these, tricubic BC-splines (see [ML94]),
which are a generalization of tensor-product B-splines and Catmull-Rom splines, have
been proven useful (see for example [HS05]). Thévenaz and Unser [TU01] and Barthe
et al. [BMDS02] use approximating C1-continuous triquadratic B-splines for isosurface
reconstruction. The piecewise polynomials of total degree six and nine of the tri-
quadratic and tricubic filters, respectively, increase computational complexity for the
evaluation of the polynomials compared with simple trilinear interpolation. This also
affects root-finding for ray-surface intersections and derivative computations. Entezari
and Möller [EM06] propose trivariate box splines which have the same smoothness and
similar reconstruction properties as tricubic B-splines but the kernels have very large
support (the 5× 5× 5 neighborhood is used) and are thus more smoothing. In addition,
evaluation of trivariate box splines is expensive and not always numerical stable [dB93].

Alternatively, truncated Gaussian and windowed sinc filters can be used. Besides the
problem of finding suitable window functions which reduce ringing artifacts, these kernels
can deliver high quality reconstructions at the expense of an extended support of the
filters. As pointed out by, e.g., [ML94], these filters are usually an order of magnitude
more expensive to compute than polynomial filters.

A different approach which is investigated in this thesis is based on trivariate splines
rather than tensor products, see also Chapter 4. These polynomial spaces have been
studied in the approximation theory literature of the recent years [Chu89, LS07]. Trivari-
ate splines are piecewise polynomials of low total degree defined on tetrahedral parti-
tions. More specifically, our visualization methods are based on quasi-interpolation for
quadratic super splines [NRSZ05] and cubic C1-splines [SZ07b] on type-6 tetrahedral
partitions, as well as quadratic C1-splines on truncated octahedral partitions [RK09].
Note that these models do not exceed the total polynomial degree of trilinear splines
while smoothness conditions are involved. The low degree allows to evaluate the splines
efficiently and allows to calculate ray-patch intersections analytically. In addition, the
spline is directly available from appropriate weightings in a small and local neighbor-
hood of the centering data value (usually the 3 × 3 × 3 neighborhood is used). Since
theses splines rely on the Bernstein-Bézier form (B-form) [dB87, Far86, PBP02, Far02]
of the piecewise polynomials well-known and approved Bernstein-Bézier techniques from
CAGD, such as the de Casteljau algorithm and blossoming [Ram87, Sei93], can be used
for stable and efficient evaluation and calculation of ray-surface intersections. Further,
the gradients needed for, e.g., illumination of surface points, are almost immediately
available as a by-product of the evaluation.

2.2 Hardware-accelerated Volume Rendering

The recent development of programmable graphics processing units (GPUs) has been a
massive impulse for interactive volume graphics on consumer hardware [EHKRS06]. The
main reason for this development lies in the highly parallel nature of GPUs applicable for
large scale local problems. Several techniques for interactive GPU volume rendering have
been developed in the recent years. Cell projection or splatting [Wes90, MJC00, CXZ05]

10

sp
lat

sp
lat

screen
eye

screen
eye

Figure 2.3: Left: the splatting principle for volume rendering. For each voxel, the contribution of the
kernel is projected onto the viewing plane. The projections are then blended to obtain the final image.
Right: ray casting. Each viewing ray is traced through the volume grid.

is an object-based visualization method where for each voxel a 3D reconstruction kernel
(for example a Gaussian) is projected onto the viewing plane and the contribution of
each kernel is blended to obtain a smooth image. An illustration of splatting is given in
Figure 2.3, left. An advantage of cell projection is the possibility to apply this technique
also to non-uniform sampled data. In the algorithm by Shirley and Tuchman [ST90]
tetrahedral cells of an unstructured grid are projected onto the image plane and the
resulting triangles are blended appropriately. One drawback of this algorithm is that
the cells need to be sorted according to their distance to the viewer’s position. While
the early splatting approaches suffered from severe aliasing artifacts, several people have
worked on improving the image quality obtained from splatting [MMC99, ZPvBG02].
Examples for GPU implementations of splatting are given by, e.g., Chen et al. [CRZP04],
and Neophytou and Müller [NM05].

In the object-based texture-slicing volume rendering the volume is sliced by a num-
ber of planes which are rendered using the texture hardware [KW03, XZC05], see also
Figure 2.4, left. The volume rendering integral is approximated by blending the slices
back-to-front in order to determine the final color for each fragment. This approach is
very simple to implement and can be very fast (real-time volume visualization of up to
5123 data points on consumer hardware is possible). Still based on trilinear interpola-
tion aliasing artifacts are not avoidable. Shear warp [Wes89, LL94] is closely related to
2D texture-slicing, see Figure 2.4, right. Here, the volume is sheared such that viewing
rays become perpendicular to one of the major axes of the data set and rows of vox-
els become aligned to rows of pixels in an intermediate image. This intermediate, but
distorted picture is then warped to obtain the undistorted final picture.

The most flexible technique for volume rendering which also allows for the best visual
quality is ray casting [Lev90, KW03, HLRSR09], see Figure 2.3, right. Rays emanating
from the viewer’s position are sent into the scene and we either integrate the equations
of light transport along the rays for full volume rendering or find the first valid intersec-

11

slicing planes

screen

shear

screen

warp

Figure 2.4: Left: texture slicing methods for volume rendering. The grid is sliced back-to-front by a
number of planes parallel to the viewing plane. Right: shear-warp is closely related to two-dimensional
texture slicing. Here, the volume itself is sheared such that viewing rays are perpendicular to one of the
major axes of the data set.

tion with the zero contour for isosurfacing. Several optimizations to this basic principle
have been proposed, for instance empty space skipping, early ray termination, deferred
shading, adaptive sampling, and sophisticated caching systems for large data sets, e.g.,
bricking [PSL∗98, HSS∗05, MRH08]. Due to the simplicity of trilinear interpolation a ba-
sic GPU implementation for volume ray casting is straightforward to implement. Thus,
most approaches are based on this local spline model and therefore trade visual quality
in favor of rendering speed. Gradients can be precomputed at the grid points at the
cost of increased memory and bandwidth consumption. Alternatively, the gradients are
computed on-the-fly using central differences which is an expensive operation. Either
way, the obtained gradients are not smooth and visual artifacts arise. An efficient im-
plementation for interactive isosurface visualization with higher order filtering has been
given by Hadwiger et al. [HS05, HSS∗05]. These C2-continuous splines lead to polyno-
mials of total degree nine for which no exact root finding algorithms exist. Therefore,
ray-surface intersections have to be found by interval refinement techniques. Due to
the tensor-product structure of these splines evaluation of gradients require additional
evaluations at the intersection point. Furthermore, data stencils are large (the 4×4×4-
neighborhood of the centering data value is used) and important features might get lost
resulting from the large support of the filter kernels.

A different technique is frequency domain volume rendering (FDVR) [TL93]. FDVR is
based on the Fourier projection slice theorem which states that extracting a slice perpen-
dicular to the image plane and including the origin from the Fourier transformed volume
data corresponds to the image obtained from integrating rays perpendicular to the image
plane in the spatial domain. Although computational complexity is reduced from O(n3)
(where n is the number of data points in each spatial direction) to O(n2 log(n)), FDVR
can only be used with parallel projections. Further, occlusion effects are difficult to
incorporate into FDVR with the consequence that the images resemble those obtained

12

from X-Rays. A GPU approach of FDVR is discussed in [VKG04].
In this chapter we discuss the most widespread reconstruction and visualization meth-

ods for volume data. Since our main contribution in this field is the development of effi-
cient visualization methods for smooth trivariate splines, i.e., splines defined on uniform
tetrahedral partitions of the volumetric domain, we give an overview of this related work
in the following section.

2.3 GPU Visualization of Trivariate Splines

In this thesis we concentrate on trivariate splines defined w.r.t. tetrahedral partitions
of the volumetric domain for high-quality visualization of volume data. Pure CPU
implementations for quadratic super splines have been previously developed for isosur-
facing [RZNS03, RZNS04a], explicit isosurface reconstruction by piecewise quadratic
polynomials [NRZ07], scattered data approximation [RZNS04b], and for direct volume
rendering [SZH∗05] using shear-warp. This work is concerned with developing the first
efficient GPU kernels for interactive reconstruction and visualization of isosurfaces based
on trivariate splines. The uniformity of the underlying partition, the small data sten-
cils and low polynomial degree of these quasi-interpolating splines and the availability
of repeated averaging type procedures for fast on-the-fly computation of spline coeffi-
cients correspond with the general requirements of GPUs in order to exploit the provided
parallelism.

In this thesis we develop and evaluate two different algorithms for interactive visualiza-
tion of isosurfaces based on trivariate splines. The first approach can be categorized as a
hybrid cell projection / ray casting technique where the bounding geometry of each poly-
nomial piece (i.e., a tetrahedron) is first projected onto the screen. Ray-surface intersec-
tion tests are then performed for each of the resulting fragments. GPU-implementations
based on this basic projection principle are described in the literature on visualization
of algebraic surfaces from trivariate polynomials [Rei05, LB06], and for the special cases
for piecewise quadratic polynomials in three variables [WMK04, SGS06, SWBG06], with
several applications, e.g, visualization of ball and stick models of protein data using
smooth ellipsoids. Using the B-form of a polynomial Loop and Blinn [LB06] exploit
the idea of testing for intersections needed for ray casting in screen space. Since, ac-
cording to their method, the projection step has to be done on the CPU only a small
number of tetrahedra can be processed in this way. While the approach by Sigg et al.
[SWBG06] works well for a set of (special) polynomials not being related by continuity
and smoothness conditions, Stoll et al. [SGS06] give a GPU implementation for quadratic
polynomials and particularly apply their approach to quadratic super splines. However,
still this is a pure polynomial GPU approach which requires full information, i.e., the
explicit geometry of each tetrahedron together with all the spline coefficients needs to
be transferred to the GPU. Obviously, this leads to extreme redundancies. The work by
Kloetzli et al. [KOR08] also considers splines on tetrahedral partitions and is thus closely
related to ours. The authors construct C0-continuous cubic splines on arbitrary uniform
tetrahedral partitions by a least squares approximation of the given volume data and

13

render isosurfaces using a modification of the approach by Loop and Blinn [LB06] which
is restricted to orthogonal projections. The spline structure is not fully exploited in this
approach as well, which results in a high memory demand and only small or subsampled
data sets can be rendered with interactive frame rates.

In contrast to this previous works our GPU implementations (involving the additional
and complex cases of quadratic and cubic C1-splines) show that more sophisticated al-
gorithms are needed to deal with splines. More precisely, we have to take the complex
structure of trivariate splines into consideration and organize the data streams determin-
ing the splines and their bounding geometry appropriately. In connection with improved
culling techniques this results in an essential improvement of frame rates, and less mem-
ory usage, see Section 6.1.

While the hybrid cell projection / ray casting approach works well for medium-sized
data sets and low performance GPUs our tests have shown that the bottleneck both in
terms of frame rates as well as memory usage lies in the sheer amount (several millions)
of tetrahedra which have to be processed in each frame. Note that this is also a prob-
lem of GPU algorithms based on refinement methods [SSS06b, BS05], or the display of
subdivision surfaces [BS02, SJP05, LS08], where triangle processing becomes a limiting
factor when the screen-space projections of the triangles are near pixel resolution (micro
polygons). Another problem is high overdraw, i.e., many fragments fall onto the same
pixel and costly operations need to be done for occluded fragments. Thus, our work has
motivated a pure image based and geometry free volume ray casting approach for trivari-
ate splines without the need to project each tetrahedron individually, see Section 6.2.
The regular structure of the tetrahedral partitions allows for a very efficient traversal
of rays throughout the volume where, unlike for irregular grids [WKME03], the needed
intersections with the faces of the tetrahedra can be found very quickly. Further, we
incorporate an efficient empty space skipping into the ray traversal based on octrees
which leads to real-time and high-quality visualizations of large real-world data sets.

Besides pure visualization GPUs are nowadays also used for reconstruction of geom-
etry from measured data. A variety of algorithms for hardware-based triangle mesh
generation from volume data exists, i.e., marching cubes [DZTS06, TSD07, NVI08a]
and marching tetrahedra [KW05]. These methods usually make use of parallel stream
compaction to remove empty cells from processing and thus improve performance and
memory usage of the generated meshes. To do that, one can use, e.g., parallel prefix
scans [Ble90, HSO07] on the GPU. We apply similar concepts to our smooth splines in a
preprocess prior to visualization in order to identify empty regions which can be excluded
from costly ray-patch intersection tests. Because of the high computing power and low
prices of current GPUs they are applied to many non-graphics related problems, a field
which is known as general purpose GPU (GPGPU) [LHK∗04]. This development and
increasing flexibility of GPU architectures gave rise to a number of frameworks for GPU
parallel programming beyond the graphics pipeline, one of the most mature and popular
being NVIDIA’s CUDA framework [NVI08a]. We show in Chapter 6 how we can benefit
from CUDA in order to improve the performance of reconstruction and visualization
algorithms based on trilinear splines.

14

Chapter 3

Bernstein-Bézier Techniques for
Multivariate Polynomials
In this chapter, we present the fundamentals of the Bernstein-Bézier form (B-form) for
curve and surface representations. We lay the theoretical foundations needed for a deeper
understanding of the mathematical concepts used in this thesis, and we also present the
tools needed to deal with B-form polynomials in a practical setting, for instance, its
evaluation and derivative calculation.

We first give an overview of the univariate case, i.e., curves of arbitrary degree in
B-form. This topic has already been extensively studied in the vast field of literature on
Computer Aided Geometric Design (CAGD), e.g., [dB87, HL93, Far02]. Thus, we only
recall the most important properties of curves in B-form here. The remainder of this
chapter is dedicated to bivariate and trivariate polynomials in B-form, i.e., Bézier trian-
gles and Bézier tetrahedra. Bézier triangles have been discovered by Paul de Casteljau in
the 1960’s as a generalization of univariate Bézier curves as a more natural surface rep-
resentation than tensor products. The extension of the B-form to the three-dimensional
simplex are the Bézier tetrahedra. The associated spline spaces, i.e., bivariate splines
defined on triangulations in the plane, and trivariate splines on tetrahedral partitions of
a three-dimensional domain, respectively, are discussed in Chapter 4.

The bivariate B-form naturally extends to the trivariate setting. Thus, for simplicity
of notation we mainly derive the concepts of multivariate polynomials in B-form for the
bivariate case, and just give the corresponding results for trivariate polynomials. Further
aspects of bivariate polynomials in B-form are discussed in, e.g., [BF83, Far86, Sei89,
PBP02, Far02, LS07]. The trivariate case is also briefly treated in [Far02, LS07].

3.1 Univariate Bernstein-Polynomials and Bézier Curves
According to the Approximation Theorem of Weierstraß, for any continuous function f
in one variable on an interval [a, b] we can find a polynomial which approximates f(x),
x ∈ [a, b] with arbitrary precision. More precisely, for an ε > 0, there exists a polynomial

p(x) :=
q∑
i=0

aix
i (3.1)

of degree q with ||f(x) − p(x)||∞ < ε, x ∈ [a, b]. Besides the monomial form (3.1),
several choices of polynomial bases are possible. For example, we could express p in

15

terms of Hermite or Lagrange basis polynomials or we could use the Newton basis. Each
basis has different properties in terms of numerical stability, efficiency of evaluation, ease
of geometric interpretation of the coefficients, etc. We use the Bernstein-Bézier form
(B-form) of p,

p(x) :=
∑
i+j=q

bijBij(x), (3.2)

where the bij are the Bernstein coefficients and the q + 1 univariate Bernstein basis
polynomials of degree q are given by

Bij(x) := q!
i!j!φ0(x)iφ1(x)j .

Here, the φµ := φµ(x), µ = 0, 1, are linear polynomials determined by φ0(x) := b−x
b−a and

φ1(x) := x−a
b−a = 1 − φ0(x), thus φ0(x) + φ1(x) = 1. The Bernstein coefficients bij are

associated with the q+ 1 Greville abscissae or Bézier points ξij := ia+jb
q , i+ j = q. The

Bernstein polynomials sum to one,∑
i+j=q

Bij(x) = 1, all x ∈ R, (3.3)

which follows from the binomial expansion

1 = (φ0 + φ1)q =
∑
i+j=q

q!
i!j!φ

i
0φ

j
1,

and for any x ∈ [a, b], we have Bij(x) ≥ 0. We can express the derivative w.r.t. φµ,
µ = 0, 1 of a Bernstein polynomial of degree q in terms of a Bernstein polynomial of
degree q − 1, for instance

∂Bij
∂φ0

= q ·
[(q − 1)!

(i− 1)!j!φ
i−1
0 φ1

]
= qBi−1,j .

Using the chain rule, we see that the derivatives w.r.t. x are given as

B′ij(x) = q!
i!j! ·

[−i
b− a

φi−1
0 (x)φj1(x) + j

b− a
φi0(x)φj−1

1 (x)
]

= q

b− a
· [Bi,j−1(x)−Bi−1,j(x)] ,

(3.4)

where we use the convention that Bernstein polynomials with a negative subscript are
considered as zero.

If we plot the graph of p(x) for x ∈ [a, b], we get the corresponding Bézier curve.
For a cubic example, see Figure 3.1. The control points (ξij , bij) of the curve have a
geometric interpretation: since φ0(a) = 1, φ0(b) = 0, and φ1(a) = 0, φ1(b) = 1, the
Bézier curve interpolates the Bernstein coefficients associated with a and b. Considering
that Bij(x) = 0, for x = a and i 6= q, and x = b, j 6= q, respectively, and Equation (3.4),
differentiating (3.2) in the endpoints of the interval simplifies to

p′(a) = q

b− a
· [bq−1,1 − bq0] and p′(b) = q

b− a
· [b0q − b1,q−1] .

16

a = ξ30 ξ03 = bξ21 ξ12

b30

b03

b21

b12

Figure 3.1: A cubic Bézier curve on an interval [a, b] within its control polygon (dashed blue lines).

This means that the Bézier curve is tangential in a to the line determined by the first
and second coefficient bq0 and bq−1,1, with a similar interpretation for the tangent in b.
Further, the Bézier curve is bounded by its control polygon, i.e., the convex hull of the
points (ξij , bij), which follows from Equation (3.3) and φ0, φ1 ≥ 0, for all x ∈ [a, b].

We can evaluate a Bézier curve numerically stable using the de Casteljau algorithm.
The theory of Bézier curves can be easily extended to univariate splines, i.e., piecewise
polynomials in one variable joining smoothly at the transitions. We close the discus-
sion on univariate Bézier curves at this point and refer the interested reader to the
vast amount of literature available on this topic, e.g., [PBP02, Far02]. Instead, in the
following we directly examine the extension of the univariate theory to the less-known bi-
variate and trivariate settings for surface representations w.r.t. triangles and tetrahedra,
respectively.

3.2 The Space of Bivariate and Trivariate Polynomials
In the following, let

Pq := span{xiyj : 0 ≤ i+ j ≤ q}

be the
(
q + 2

2

)
-dimensional space of bivariate polynomials of total degree q. For exam-

ple, the quadratic polynomials in two variables,

p(x, y) = a20x
2 + a11xy + a02y

2 + a10x+ a01y + a00, aij ∈ R,

define the well-known class of conic sections in R2, i.e., ellipses, parabolas and hyperbolas.

Analogously, we consider the
(
q + 3

3

)
-dimensional space of trivariate polynomials of

17

ξ030 ξ003

ξ300

ξ021 ξ012

ξ120

ξ210

ξ102

ξ201

ξ111

Figure 3.2: The domain points ξijk, i+ j + k = q, on a triangle for q = 3.

degree q,
Pq := span{xiyjzk : 0 ≤ i+ j + k ≤ q}.

As a popular example, the quadratic polynomials of the form

p(x, y, z) = a200x
2+a110xy+a101xz+a020y

2+a011yz+a002z
2+a100x+a010y+a001z+a000,

with aijk ∈ R, describe 3D surfaces known as quadrics, such as ellipsoids, paraboloids
or hyperboloids.

We proceed with a simple construction of a set of bivariate Lagrange polynomials,
which interpolates the values associated with a certain set of points arranged on a tri-
angle, before we define a more suitable basis for our purposes in Section 3.3.

3.2.1 Lagrange Interpolation on Triangles

Let M= [v0, v1, v2] be a non-degenerate triangle with vertices vµ = (xµ, yµ)T ∈ R2,

µ = 0, 1, 2 and a set of
(
q + 2

2

)
points

ξijk := iv0 + jv1 + kv2
q

, i+ j + k = q.

In the following, we call the ξijk domain points of M, and define the set of domain points
associated with M as Dq(M) := {ξijk}i+j+k=q. The domain points for q = 3 are shown in
Figure 3.2.

18

We now construct a bivariate polynomial of degree q, which interpolates given val-
ues zijk at the domain points ξijk of M, see [LS07]. To do this, we first define linear
polynomials aµ, bν , cκ such that

aµ(v) = 0 is the line passing through the points ξµjk with µ+ j + k = q,

bν(v) = 0 is the line passing through the points ξiνk with i+ ν + k = q, and
cκ(v) = 0 is the line passing through the points ξijκ with i+ j + κ = q,

with v := (x, y)T ∈ R2. For example,

a0(v) = (x− x1)(y2 − y1)− (y − y1)(x2 − x1)

describes the line passing through the points ξ0q0 and ξ00q, i.e., the edge opposite to ξq00.
The bivariate Lagrange polynomials of degree q

pijk(v) :=
i−1∏
µ=0

aµ(v)
aµ(ξijk)

j−1∏
ν=0

bν(v)
aν(ξijk)

k−1∏
κ=0

cκ(v)
cκ(ξijk)

,

where we use the convention that each product term with a negative superscript is set
to one, satisfy

pijk(ξµ,ν,κ) =
{

1, (i, j, k) = (µ, ν, κ),
0, (i, j, k) 6= (µ, ν, κ).

By construction of the pijk, it immediately follows that the unique polynomial of degree q
that interpolates the zijk at the domain points is

p :=
∑

i+j+k=q
zijkpijk.

It can be shown (see [LS07]) that p approximates smooth functions with an error
bound K solely dependent on the smallest angle in M and the polynomial degree q.

3.3 The Multivariate Bernstein Basis
In the following, we want to derive a basis of Pq which has several useful properties. This
basis is affine invariant, and stable and efficient techniques for (simultaneous) evaluation
of the polynomials and its derivatives are available. Further, smoothness conditions
between neighboring polynomials can be defined using simple averaging formulae, which
simplifies the structural analysis of smooth spline spaces. We first introduce the concept
of barycentric coordinates with respect to the simplexes in Rd, d = 2, 3, i.e., triangles and
tetrahedra. Next, we discuss Bernstein basis polynomials, which are based on barycentric
coordinates. The remainder of this chapter deals with the B-form of bivariate and
trivariate polynomials, along with the central tool for the evaluation of polynomials and
its derivatives, the de Casteljau algorithm.

19

3.3.1 Barycentric Coordinates
Let M be a non-degenerate triangle in the plane with vertices vµ := (xµ, yµ)T ∈ R2,
µ = 0, 1, 2. For any point v = (x, y)T ∈ R2 exists a set of three scalars φµ, µ = 0, 1, 2,
with

φ0 + φ1 + φ2 = 1,

such that v can be uniquely described by the affine combination

v = φ0v0 + φ1v1 + φ2v2.

This relation can be also written in matrix form asx0 x1 x2
y0 y1 y2
1 1 1

φ0
φ1
φ2

 =

xy
1

 . (3.5)

Let s = v1 − v0 and t = v2 − v0, the triangle’s area AM is one half of the area of the
parallelogram spanned by s and t. This area is determined by the length of the cross
product of the vectors s and t embedded in R3:

AM = 1
2 ||s× t||2,

where || · ||2 is the usual 2-norm and s = (sx, sy, 0)T, t = (tx, ty, 0)T. Note that the
length of the cross product corresponds to the determinant |MM|, where MM is the
matrix occurring in Equation (3.5):

AM = 1
2 |MM|.

From Cramer’s Rule it follows that the barycentric coordinate φ0 of v w.r.t. M is given by

φ0(v) =

∣∣∣∣∣∣∣
x x1 x2
y y1 y2
1 1 1

∣∣∣∣∣∣∣/|MM|, (3.6)

with analogous expressions for φ1 and φ2. By expanding (3.6),

φ0(v) = xy1 + x2y + x1y2 − x2y1 − x1y − xy2
x1y2 + x0y1 + x2y0 − x1y0 − x2y1 − x0y2

, (3.7)

we see that the φµ are linear polynomials with φµ(vµ) = 1 and φµ(vν) = 0, µ 6= ν, i.e.,

φµ(vν) = δµ,ν , µ, ν = 0, 1, 2,

where δµ,ν is Kronecker ’s symbol.
Let M0= [v, v1, v2],M1= [v0, v, v2] and M2= [v0, v1, v], we have the geometric interpre-

tation of barycentric coordinates as ratios of triangle areas,

φµ =
AMµ
AM

, µ = 0, 1, 2,

20

41

42

40

v2

v0

v1
v v

v1

v2

v0

v3

Figure 3.3: Left: The barycentric coordinates of a point v ∈ R2 w.r.t. a triangle M= [v0, v1, v2] are
given as ratios of the areas of the subtriangles M0= [v, v1, v2],M1,M2 with the area of M. Right: The
barycentrics of a point v ∈ R3 w.r.t. a tetrahedron T = [v0,v1,v2,v3] are analogously given as ratios
of the volumes of the subtetrahedra T0 = [v1,v2,v3,v], T1, T2, T3, with the volume of T .

see Figure 3.3, left. Further, a point v is inside M iff all barycentric coordinates of v
w.r.t. M are positive. Note that for points on the edges of M, at least one of the corre-
sponding barycentric coordinate is always zero.

Barycentric coordinates are affine invariant, i.e., for any affine map Φ of the form

Φ(v) := Av + w,

where Av is a linear map and w ∈ R2, we have

Φ(v) = A
2∑
i=0

(φivi) + w
∗=

2∑
i=0

(φiAvi) +
2∑
i=0

φiw =
2∑
i=0

φi(Avi + w) =
2∑
i=0

φiΦ(vi),

with the second step following from φ0 +φ1 +φ2 = 1. Thus, the barycentric coordinates
of a point v w.r.t. the original triangle M are the same as the barycentric coordinates of
the transformed point Φ(v) w.r.t. the transformed triangle Φ(M). Affine maps include
translations and rotations as special case.

The concept of barycentric coordinates can be easily extended to three dimensions.
The 3D simplex describing a volume is a tetrahedron T with vertices [v0,v1,v2,v3],
where vµ = (xµ, yµ, zµ)T ∈ R3, µ = 0, 1, 2, 3. For any point v = (x, y, z)T ∈ R3 exists a
set of four scalars φµ, µ = 0, 1, 2, 3, with

φ0 + φ1 + φ2 + φ3 = 1,

such that v is uniquely determined by the affine combination

v = φ0v0 + φ1v1 + φ2v2 + φ3v3.

Analogous to Equation (3.5), this can be written as
x0 x1 x2 x3
y0 y1 y2 y3
z0 z1 z2 z3
1 1 1 1

φ0
φ1
φ2
φ3

 =

x
y
z
1

 . (3.8)

21

The determinant of the matrix MT occuring in the above equation is connected to the
volume VT of T via 6 · VT = |MT |. For a point v, we have the barycentrics φµ, µ =
0, 1, 2, 3, as the ratios of the volumes of the subtetrahedra T0 = [v,v1,v2,v3], T1 =
[v0,v,v2,v3], T2 = [v0,v1,v,v3] and T3 = [v0,v1,v2,v], and T :

φµ(v) =
VTµ
VT

, µ = 0, 1, 2, 3,

see Figure 3.3, right. Again, the φµ are linear polynomials with φµ(vν) = δµ,ν , µ, ν =
0, 1, 2, 3, and v is inside of T iff all its barycentrics are positive. On each of the faces
of T , at least one barycentric coordinate is zero, and on each edge of T , at least two
barycentrics are zero.

Derivatives of Barycentric Coordinates

From Equation (3.7) it follows immediately that the derivatives

∂φµ
∂x

and ∂φµ
∂y

, µ = 0, 1, 2,

are constant scalars characterized by the relative positions of the vµ, i.e., the shape
and orientation of the triangle. For example, ∂φ0

∂x = (y1 − y2)/|MM|. We have similar
equations for the 3D simplex, where the derivatives

∂φµ
∂x

,
∂φµ
∂y

and ∂φµ
∂z

, µ = 0, 1, 2, 3

are also constant fractions solely dependent on the shape and orientation of the associated
tetrahedron.

Often, we need the inverse mappings of Equation (3.5), φ(v) = M−1
M · v, and Equa-

tion (3.8), φ(v) = M−1
T · v. For practical purposes, it is interesting to notice that the

rows of M−1
M and M−1

T correspond to the line and plane equations of the edges of M and
the faces of T , respectively, and are connected to the derivatives of the barycentrics. For
example, the line of the triangle edge opposite to vertex vµ, is given by

lµ(x, y) = ∂φµ
∂x
· x+ ∂φµ

∂y
· y + dµ

where ∂φµ
∂x ,

∂φµ
∂y , dµ are the components of the µth row of M−1

M .

Directional Coordinates

As shown in Section 3.3.1, the triple φµ, µ = 0, 1, 2, with
∑
µ φµ = 1, describes a point

in R2 w.r.t. a triangle M. Given two points a and b in R2, we gain a useful description
of the difference vector u = a − b using directional coordinates αµ, which are given as
the difference of the associated barycentric coordinates:

αµ(u) := φµ(a)− φµ(b), µ = 0, 1, 2.

22

Note that the directional coordinates of a vector sum to 0. Assume φµ(v), µ = 0, 1, 2,
are the barycentric coordinates of a point v and αµ(u), µ = 0, 1, 2 are the directional
coordinates of a vector u, then the barycentric coordinates of a point v+ t ·u, t ∈ R, are
given as

φµ(v + t · u) = φµ(v) + t · αµ(u), µ = 0, 1, 2. (3.9)

Differentiating Equation (3.7) and summing terms gives

∂φ0
∂x

+ ∂φ1
∂x

+ ∂φ2
∂x

= 0, and ∂φ0
∂y

+ ∂φ1
∂y

+ ∂φ2
∂y

= 0,

showing that the derivatives of barycentric coordinates are directional coordinates.
We can analogously define directional coordinates for 3D simplexes, where the differ-

ence vector u = a − b of two points a,b ∈ R3 can be described in terms of directional
coordinates as

αµ(u) := φµ(a)− φµ(b), µ = 0, 1, 2, 3,

with
∑
µ αµ = 0.

3.3.2 Bernstein Polynomials

Similar to the univariate case, we can define bivariate Bernstein basis polynomials of
degree q w.r.t. a triangle M as

Bq
ijk(v) := q!

i!j!k!φ0(v)iφ1(v)jφ2(v)k, i+ j + k = q,

and the trivariate Bernstein basis polynomials of degree q w.r.t. a tetrahedron T are
given as

Bq
ijk`(v) := q!

i!j!k!`φ0(v)iφ1(v)jφ2(v)kφ3(v)`, i+ j + k + ` = q.

We usually omit the superscript since it follows from the context. Since the φµ are linear
polynomials (see Section 3.3.1), the Bijk and Bijk` are polynomials of total degree q.
The basis polynomials form a partition of unity, e.g., for the bivariate case we have∑

i+j+k=q
Bijk(v) = 1, all v ∈ R2, (3.10)

which follows from the trinomial expansion

1 = (φ0 + φ1 + φ2)q =
∑

i+j+k=q

q!
i!j!k!φ

i
0φ

j
1φ

k
2.

Combining this with the fact that each φµ(v) ≥ 0 if v ∈M, we have

0 ≤ Bijk(v) ≤ 1, all v ∈M,

23

with an equivalent conclusion for the trivariate case. The derivative w.r.t. a barycentric
coordinate φµ of a Bernstein basis polynomial of degree q can be written in terms of a
basis polynomial of degree q − 1, e.g.,

∂Bijk
∂φ0

= q ·
[(q − 1)!

(i− 1)!j!k!φ
i−1
0 φj1φ

k
2

]
= q ·Bq−1

i−1,j,k, (3.11)

where Bernstein polynomials with negative subscripts are considered zero and with sim-
ilar expressions for the remaining cases.

There are exactly nM :=
(
q + 2

2

)
bivariate and nT :=

(
q + 3

3

)
trivariate Bernstein

polynomials, which is equal to the dimensions of the bivariate and trivariate polynomial
spaces Pq, respectively. It can be shown (see [LS07]) that the set of bivariate and
trivariate Bernstein polynomials form a basis for the space of bivariate and trivariate
polynomials Pq, respectively.

In the following, we imply a lexicographical order based on the multi-indices of the
basis polynomials and domain points. For example, the order for the cubic bivariate
basis polynomials is

B300, B210, B201, B120, B111, B102, B030, B021, B012, B003.

This allows to unambiguously define an invertible mapping from an integral index ι ∈
[0, n{M,T} − 1] to the corresponding multi-index i, j, k or i, j, k, `, respectively.

Directional Derivatives of Bernstein Basis Polynomials

Let f be a differentiable function, and u is a vector in R2. We now define the directional
derivative of f at a point v w.r.t. u as

Duf(v) := d

dt
f(v + tu)|t=0.

To derive the directional derivative of a bivariate Bernstein basis polynomial Bijk, we use
the connection between a vector u in R2 and its corresponding directional coordinates
(α0, α1, α2) and Equation (3.9) (see Section 3.3.1):

Bq
ijk(v + tu) = q!

i!j!k! · [φ0(v) + tα0(u)]i[φ1(v) + tα1(u)]j [φ2(v) + tα2(u)]k.

Differentiating w.r.t. t and evaluating at t = 0 gives

DuB
q
ijk(v) = q!

i!j!k! · [iα0φ
i−1
0 φj1φ

k
2 + jα1φ

i
0φ

j−1
1 φk2 + kα2φ

i
0φ

j
1φ

k−1
2].

Rearranging terms, we arrive at the directional derivative of Bq
ijk w.r.t. u:

DuB
q
ijk(v) = q ·

[
α0B

q−1
i−1,j,k(v) + α1B

q−1
i,j−1,k(v) + α2B

q−1
i,j,k−1(v)

]
, (3.12)

where we use the convention that terms with negative subscripts are considered zero.
The directional derivatives of a trivariate basis polynomial Bq

ijk` are defined in a similar
fashion.

24

4
v2 v0

v1

ξ0020 ξ0002

ξ2000

ξ0200

ξ0011

ξ1010 ξ1001

ξ0110 ξ0101

ξ1100

ξ0030 ξ0003

ξ3000

ξ0021 ξ0012

ξ1020

ξ2010

ξ1002

ξ2001

ξ1011

Figure 3.4: Examples of surfaces defined by functional polynomials in B-form. Left: Surface of a bivariate
polynomial, where the p(v) can be interpreted as height values over the domain triangle M. Middle:
(simple) zero contour of a trivariate quadratic polynomial defined w.r.t. a tetrahedron T along with the
domain points on T . Right: (simple) zero contour of a trivariate cubic polynomial. Only the domain
points on the front-most triangle are shown.

Maxima of Bernstein Basis Polynomials

We show that each Bernstein basis function Bijk w.r.t a triangle M= [v0, v1, v2] has a
unique maximum at the domain point ξijk := (iv0 + jv1 + kv2)/q, see [LS07]:

Bijk(v) < Bijk(ξijk), v ∈M, v 6= ξijk and i+ j + k = q.

First we consider the case where i, j, k > 0, i.e., the domain point ξijk lies in the interior
of M and Bijk vanishes on all three edges of M. In order to identify an extremum, we
have to calculate the derivatives of Bq

ijk in two different directions. Using the linearly
independent vectors v0 − v1 and v0 − v2, with associated directional coordinates u0 =
(1,−1, 0) and u1 = (1, 0,−1), respectively, in Equation (3.12) gives

Dv0−v1Bijk(v) = Bijk(v)
(
i

φ0
− j

φ1

)
,

Dv0−v2Bijk(v) = Bijk(v)
(
i

φ0
− k

φ2

)
.

Since Bijk(v) ≥ 0 and φ0 + φ1 + φ2 = 1, we can see that the two expressions vanish
simultaneously if and only if

iφ1 − jφ0 = 0,
i(1− φ0 − φ1)− kφ0 = 0.

Substituting the first equation into the second gives us the unique solution (φ0, φ1, φ2) =
(i/q, j/q, k/q), which are the barycentric coordinates of ξijk. It follows that Bijk has a
unique maximum at ξijk. The proofs for the remaining choices of i, j, k are similar.

The maxima of the trivariate basis polynomials are also given at the domain points,
which can be shown with a similar procedure.

25

3.4 The Bernstein-Bézier Form

Since the bivariate Bernstein polynomials span a basis of Pq, we can write any bivariate
polynomial p of degree q w.r.t. a triangle M in its Bernstein-Bézier form (B-form), i.e.,

p|M :=
∑

i+j+k=q
bijkBijk,

where the Bernstein coefficients or Bézier points bijk of p are associated with the domain
points ξijk of M. At vertex v0, Bq00 = 1 and the remaining basis polynomials are zero,
analogously for v1 and v2. Thus, the B-form interpolates the values at the vertices,
e.g., p(v0) = bq00. Polynomials in B-form are affine invariant, since they are defined
w.r.t. barycentric coordinates of a simplex and the basis functions sum to one. Since
the maxima of the basis functions are given at the domain points, see Section 3.3.2, it
immediately follows that for a point v ∈M, |p(v)| ≤ max (|bijk|).

A bivariate polynomial in B-form (a Bézier triangle) describes a smooth surface as
the graph of a bivariate function on the domain triangle M, where the points P (v) ∈ R3,
v = (x, y)T ∈M, of the surface are given by

P (v) :=
(

v
p(v)

)
=

∑
i+j+k=q

(
ξijk
bijk

)
Bijk(v),

see Figure 3.4, left.
If we allow the Bézier points to be vectors, then p(v) :=

∑
i+j+k=q bijkBijk(v), for

v ∈M, describes a parametric surface, where the bijk ∈ R3 form the control polygon of p,
see Figure 3.5.

We can analogously write any trivariate polynomial w.r.t. a tetrahedron T as

p|T :=
∑

i+j+k+`=q
bijk`Bijk`,

where the bijk` are associated with the domain points ξijk` of T . Trivariate polynomials
in B-form, i.e., Bézier tetrahedra, implicitly describe a smooth surface as a zero contour
by the set of points {v = (x, y, z)T : v ∈ T and p(v) = 0}. Examples of simple surfaces
defined as zero contours of trivariate quadratic and cubic polynomials are shown in
Figure 3.4, middle and right, respectively.

3.4.1 The de Casteljau Algorithm

From the definition of the Bernstein polynomials immediately follows the recurrence
relation

Bq
ijk = φ0B

q−1
i−1,j,k + φ1B

q−1
i,j−1,k + φ2B

q−1
i,j,k−1,

where terms with negative subscripts are considered to be zero. The de Casteljau algo-
rithm for evaluating a B-form polynomial p(v) =

∑
i+j+k=q bijkBijk(v) is based on this

26

Figure 3.5: Two examples of bivariate, cubic parametric Bernstein-Bézier patches with their control
polygons. The surface is visualized using a fine tessellation of the patches.

recursive definition of the Bernstein polynomials. Let b[0]
ijk := bijk, i + j + k = q, then

one de Casteljau step computes

b
[r]
ijk := φ0(v)b[r−1]

i+1,j,k + φ1(v)b[r−1]
i,j+1,k + φ2(v)b[r−1]

i,j,k+1, i+ j + k = q − r. (3.13)

We can rewrite any polynomial of degree q at v as a polynomial of degree q − r using
the intermediate coefficients b[r]ijk, i+ j + k = q − r as

p(v) =
∑

i+j+k=q−r
b
[r]
ijkB

q−r
ijk (v), 0 ≤ r ≤ q. (3.14)

Further, the value of p at v is given as

p(v) = b
[q]
000. (3.15)

Proof. The proof follows from induction on r. For r = 0, Equation (3.14) is trivially
true. Now, let us assume the equation holds for r− 1. Using the recurrence relation for
the B-polynomials of degree q − (r − 1) = q − r + 1, we have

p(v) =
∑

i+j+k=q−r+1
b
[r−1]
ijk Bq−r+1

ijk (v)

=
∑

i+j+k=q−r+1
b
[r−1]
ijk ·

[
φ0B

q−r
i−1,j,k(v) + φ1B

q−r
i,j−1,k(v) + φ2B

q−r
i,j,k−1(v)

]
.

If we split this sum into three individual sums and using an index shift, we have for the
first sum ∑

i+j+k=q−r+1, i≥1
φ0b

[r−1]
ijk Bq−r

i−1jk(v) =
∑

i+j+k=q−r
φ0b

[r−1]
i+1,j,kB

q−r
ijk (v).

Combining these sums again and using Equation (3.13) leads to (3.14). Finally, for
r = q, (3.14) reduces to (3.15), since the only B-polynomial of degree zero is B0

000 = 1.

27

b
[0]
300

b
[0]
030

b
[0]
003

b
[0]
120

b
[0]
210

b
[0]
021

b
[0]
012

b
[0]
201

b
[0]
102

b
[1]
200

b
[1]
020

b
[1]
002

b
[1]
110

b
[1]
101

b
[1]
011

b
[0]
111

b
[2]
100

b
[2]
010

b
[2]
001 b

[3]
000

Figure 3.6: The de Casteljau pyramid for a cubic Bézier triangle. Any polynomial of degree q at a point v
can be rewritten as a polynomial of degree q − r using the intermediate coefficients occurring in the de
Casteljau algorithm (shaded triangles).

The pyramid of coefficients b[r]ijk occurring in the de Casteljau algorithm for a cubic
bivariate polynomial is shown in Figure 3.6. The de Casteljau algorithm is numerical
very stable for a point inside of M, since in this case, the barycentric coordinates not
only sum to one, but are also positive and thus each de Casteljau step consists of convex
combinations of previously computed values.

The de Casteljau algorithm also delivers the derivatives of p in v w.r.t. the barycentric
coordinates of v as a byproduct of the evaluation process. Let us consider the next to
last step in the de Casteljau algorithm, where q − r = 1. Then, for example for φ0 and
using Equation (3.11), we have

∂p(v)
∂φ0

=
∑

i+j+k=1
b
[q−1]
ijk

∂B1
ijk

∂φ0
= b

[q−1]
100 ,

with similar results for the remaining cases. Differentiating again yields

∂2p(v)
∂φ2

0
=

∑
i+j+k=2

b
[q−2]
ijk

∂2B2
ijk

∂φ2
0

= 2b[q−2]
200 ,

and the cross derivatives are given as ∂2p(v)/∂φ0∂φ1 = 2b[q−2]
110 , etc.

3.4.2 Directional Derivatives of B-Form Polynomials

We can extend the concept of directional derivatives from Section 3.3.2 to polynomials
in B-form. First, we derive the derivative of p at v in the direction of v0 − v1, with
associated directional coordinates (1,−1, 0). Let us consider the next to last step of the

28

de Casteljau algorithm again, we have

Dv0−v1p(v) =
∑

i+j+k=1
b
[q−1]
ijk Dv0−v1B

1
ijk(v).

Using Equation (3.12), and collecting non-zero terms, we get

Dv0−v1p(v) = q ·
[
b
[q−1]
100 − b

[q−1]
010

]
.

We can generalize this concept to arbitrary directions u = a − b with associated direc-
tional coordinates αµ(u), µ = 0, 1, 2. The directional derivative of a polynomial p in
B-Form at v in the direction of u is given by

Dup(v) = q ·
[
α0b

[q−1]
100 + α1b

[q−1]
010 + α2b

[q−1]
001

]
,

where the b[q−1]
ijk , i + j + k = 1, are the intermediate coefficients arising from q − 1 de

Casteljau steps using v as argument. The evaluation of the directional derivative thus
corresponds to q−1 de Casteljau steps using the barycentric coordinates of v, followed by
one final de Casteljau step using the directional coordinates of u as input. This concept
of mixed arguments in the de Casteljau algorithm is related to the blossoming principle,
which gets a more in-depth treatment in Section 3.4.3.

Often, we need the derivatives of a polynomial in B-form in the direction of the Carte-
sian unit vectors, i.e., x, y ∈ R2 and x,y, z ∈ R3, for example to perform illumination
calculations for shading of a surface point. We have already shown in Section 3.3.1 that
the derivatives of the barycentric coordinates are directional coordinates. In fact, the
derivative of a bivariate polynomial in the direction of x is

Dxp(v) = q ·
[
∂φ0
∂x

b
[q−1]
100 + ∂φ1

∂x
b
[q−1]
010 + ∂φ2

∂x
b
[q−1]
001

]
, (3.16)

with similar expressions for the remaining cases.

3.4.3 Blossoming

The blossoming principle is a generalization of the de Casteljau algorithm where the
arguments may vary on the different levels [Ram87, Sei93]. Let p be a bivariate polyno-
mial in B-form of degree q. If we use a0 in the first level of the de Casteljau algorithm,
a1 on the next level, etc., then the blossom of p is denoted as

p [a0, . . . , aq−1] .

We often use the short notation v<n>, which means that v is used n-times in the de
Casteljau algorithm. It is easy to see that

p(v) = p
[
v<q>

]
.

29

b21 b12
b30

b03

a l
b

Figure 3.7: Bivariate blossoming for a cubic Bézier triangle. The straight line l on the domain triangle 4
is mapped to a cubic Bézier curve on the functional surface P (v).

Further, the blossom is symmetric. Let π be an arbitrary permutation of the arguments
a0, . . . , aq−1, then

p [a0, . . . , aq−1] = p [π(a0, . . . , aq−1)] .

This means that the order in which the arguments appear is not relevant. Following
[Far02, LS07], it is sufficient to show this exemplarily with a bivariate quadratic poly-
nomial. Let a and b be two points in R2, then

p [a, b] = φ0(b)(φ0(a)b200 + φ1(a)b110 + φ2(a)b101)
+φ1(b)(φ0(a)b110 + φ1(a)b020 + φ2(a)b011)
+φ2(b)(φ0(a)b101 + φ1(a)b011 + φ2(a)b002)

and

p [b, a] = φ0(a)(φ0(b)b200 + φ1(b)b110 + φ2(b)b101)
+φ1(a)(φ0(b)b110 + φ1(b)b020 + φ2(b)b011)
+φ2(a)(φ0(b)b101 + φ1(b)b011 + φ2(b)b002),

thus
p [a, b] = p [b, a] .

Because blossoms are evaluated using only linear combinations and the symmetry prop-
erty, blossoms are multi-affine, i.e., for a scalar λ and an arbitrary level 0 ≤ i ≤ q − 1,
it does not matter if we first form the barycentric combination of two (or more) points
a, b, or if we combine the two individual blossoms:

p [. . . , λ · a+ (1− λ) · b, . . .] = λ · p [. . . , a, . . .] + (1− λ) · p [. . . , b, . . .] .

30

A useful property of the blossom is that it can be used to obtain the Bernstein coeffi-
cients bijk of a polynomial p in B-form using the triangle vertices as input. For example,
if we use triangle vertex v0 with barycentric coordinates (1, 0, 0) as input for the first
step, the intermediate result

p [v0, . . .]

consists of all Bernstein coefficients with the first index i > 0. Further,

bq00 = p
[
v<q>0

]
,

and in general
bijk = p

[
v<i>0 , v<j>1 , v<k>2

]
,

meaning that bijk is selected from p by the blossom using v0 as input i times, j times v1
and k times v2, in arbitrary order. As a consequence, the Bernstein coefficients of the
univariate boundary curve along the edge v0, v1 are given by the blossoms

bq−i,i = p
[
v<q−i>0 , v<i>1

]
, i = 0, . . . q.

This can be generalized to arbitrary points a, b in the plane. Let l be the straight line
in the domain defined by a, b, then the blossoms

p
[
a<q−i>, b<i>

]
, i = 0, . . . q,

define a univariate Bernstein curve, which corresponds to the mapping of l onto the
functional surface defined by p, see Figure 3.7.

In Section 3.4.2 we have shown that the directional derivative Dup(v) corresponds to
q − 1 de Casteljau steps using v as input followed by one de Casteljau step using the
directional coordinates of u. If we not only allow barycentric coordinates of a point as
input to the de Casteljau algorithm, but also directional coordinates of a vector, we can
rewrite the directional derivative as the blossom

Dup(v) = q · p
[
v<q−1>, u

]
. (3.17)

This principle can be extended to higher order derivatives. The rth directional derivative
w.r.t. u in v is given by

Dr
up(v) = q!

(q − r)!p
[
v<q−r>, u<r>

]
.

Analogously, we obtain the mixed derivatives from the appropriate blossom. Let u0
and u1 be two vectors with associated directional coordinates, then

Dr,s
u0,u1p(v) = q!

(q − r − s)!p
[
v<q−r−s>, u<r>0 , u<s>1

]
is the rth directional derivative of p(v) w.r.t. u0, followed by the sth directional derivative
w.r.t. u1.

31

v0

v1

v2
ṽ2

v0

v1

v2
ṽ2

Figure 3.8: Bivariate C1-smoothness conditions on two neighboring triangles M= [v0, v1, v2] and M̃ =
[v0, v1, ṽ2]. Left: coefficients involved in each of the C1-smoothness conditions for a quadratic polynomial
are shown as shaded trapezoids. Right: coefficients involved for C1-smoothness in the cubic case.

3.4.4 Continuous Joins of Neighboring Polynomials

Until now, we have only considered single polynomials. In the following, we derive
the conditions for smooth joins between two neighboring polynomials with common
degree q. Let M= [v0, v1, v2] and M̃ = [v0, v1, ṽ2] be two neighboring triangles sharing
the edge e =M ∩M̃ = [v0, v1]. Let p =

∑
i+j+k=q bijkBijk and p̃ =

∑
i+j+k=q b̃ijkB̃ijk be

the two polynomials associated with M and M̃, respectively. Any line in the domain is
mapped onto a univariate curve on the surface, see Section 3.4.3. If the line crosses the
common edge, we get a composite curve with one segment in each triangle. If all of the
possible curves crossing e are Cr-continuous, then p and p̃ join with Cr-continuity. It
immediately follows that for C0-continuity, bij0 = b̃ij0, i+ j = q. For C1-continuity, we
demand that for any direction u not parallel to e,

Dup(v) = Dup̃(v), all v ∈ e.

Using Equation (3.17) and the symmetry of the blossoms we can write the above equation
as

p
[
u, v<q−1>

]
= p̃

[
u, v<q−1>

]
, all v ∈ e.

Since the barycentric coordinates φµ(v) w.r.t M, and φ̃µ(v) w.r.t. M̃, with µ = 0, 1, 2,
agree for each point v on the edge e, we have to consider the intermediate results from
the first step of the blossoms using u as input:

p [u, ...] = p̃ [u, ...] .

It suffices to handle the case u = ṽ2 − v0, since all directional derivatives of p(v) and
p̃(v) w.r.t. the edge e = [v0, v1] for all points v on e agree and derivatives in all other
directions are linear combinations of Du and Dv1−v0 . Let φµ(ṽ2), µ = 0, 1, 2, be the
barycentric coordinates of ṽ2 w.r.t. M. The directional coordinates αµ(u), µ = 0, 1, 2, of
u = ṽ2 − v0 w.r.t. M are then given by (φ0(ṽ2) − 1, φ1(ṽ2), φ2(ṽ2)), and the directional
coordinates α̃µ(u) of u w.r.t. M̃ are (−1, 0, 1). Now, it is easy to see that p ∩ p̃ is
C1-continuous across e if and only if

b̃ij1 = bi+1,j,0 φ0(ṽ2) + bi,j+1,0 φ1(ṽ2) + bi,j,1 φ2(ṽ2), i+ j = q − 1. (3.18)

32

Figure 3.9: Trivariate smoothness conditions for two neighboring cubic polynomials sharing the face
[v0,v1,v2]. Left: for C0-continuity, the two neighboring tetrahedra share the coefficients on the com-
mon face (orange dots). Right: coefficients involved for C1-smoothness across the common face of the
tetrahedra are shown as orange dots.

Examples of the coefficients involved in C1-smoothness for two quadratic and two cubic
bivariate polynomials, respectively, are shown in Figure 3.8, left and right. While in
general four coefficients are involved in each of these bivariate smoothness conditions,
they degenerate to univariate conditions if one of the barycentric coordinates vanishes
at ṽ2. This can happen for example if v2, v1, ṽ2 are collinear, since then φ0(ṽ2) = 0.

The above principle can be extended to higher order derivatives. In general, p∩ p̃ join
with Cr-continuity if

b̃ijn =
∑

ν+µ+κ=n
bν+i,µ+j,κB

n
νµκ(ṽ2), i+ j = q − n, n = 0, . . . , r,

see [Far02, LS07].
Smoothness between two trivariate polynomials can be similarly defined. Let T =

[v0,v1,v2,v3] and T̃ = [v0,v1,v2, ṽ3] be two tetrahedra sharing a common face F = T ∩
T̃ = [v0,v1,v2], and let p(v) =

∑
i+j+k+`=q bijk`Bijk` and p̃(v) =

∑
i+j+k+`=q b̃ijk`B̃ijk`

be the two polynomials associated with T and T̃ , respectively. Then, p ∩ p̃ ∈ C0 if

b̃ijk0 = bijk0, i+ j + k = q,

see Figure 3.9, left, for an example involving cubic Bézier tetrahedra, and p ∩ p̃ ∈ C1 if

b̃ijk1 = bi+1,j,k,0 φ0(ṽ3)+bi,j+1,k,0 φ1(ṽ3)+bi,j,k+1,0 φ2(ṽ3)+bi,j,k,1 φ3(ṽ3), i+j+k = q−1,

see Figure 3.9, right. There are five coefficients involved in each of these trivariate
smoothness conditions. They degenerate to bivariate conditions if one of the barycentric
coordinates vanishes at ṽ3, for example when the faces [v0,v1,v3] and [v0,v1, ṽ3] are
coplanar. If v3 and ṽ3 are collinear with either v0,v1 or v2, then two barycentric
coordinates are zero and the above equations reduce to univariate conditions.

33

34

Chapter 4

Spaces of Smooth Splines

In this chapter, we briefly review the literature on bivariate and trivariate splines before
we introduce the mathematical notation for a formal description of smooth spline spaces.
Finally, we give two explicit examples of trivariate quasi-interpolating operators which
have been proven useful for high-quality and real-time visualization of surfaces from
volume data, see also Chapter 6.

4.1 Bivariate Splines for Data Approximation
Bivariate splines defined on triangulations in the plane are more flexible than tensor
product splines since they can be defined both on uniform and on arbitrary triangula-
tions. In Figure 4.1 we show examples of uniform and non-uniform triangulations of
a planar domain. On the other hand, the spaces of smooth bivariate splines (let alone
trivariate splines) are much more complex than tensor products and many problems of in-
terest, such as the dimension (i.e., the number of coefficients which completely determine
the spline) and approximation properties are not generally solved. Bivariate methods
for data interpolation fall into two general classes: Classical finite element methods are
based on local Hermite interpolation of high polynomial degree [Ž70, Sch89, DNZ01].
The spline is determined by interpolating function values and rth order derivatives at
the vertices, and the cross-boundary derivatives at the edges of the triangulation. Splines
of lower degree can be defined if all triangles are split leading to macro-element meth-
ods [BF80, CH90]. Two popular examples are the cubic C1-continuous Clough-Tocher
interpolant where each triangle is split into three subtriangles [CT65], and the quadratic
C1 Powell-Sabin interpolant which is based on splitting each triangle into six subtrian-
gles [PS77]. Besides the high polynomial degree of finite elements and the high number
of triangles for macro-elements a major problem of these methods is that the derivatives
need to be estimated if they are not known. Local Lagrange interpolation by smooth
splines is based on finding sets of interpolation points which uniquely determine the
spline [NRSZ06]. No (cross-boundary) derivatives are needed but usually many of these
interpolation points do not lie at the vertices of the triangulation and have to be gen-
erated in some way which might have negative effects on the quality of visualizations
or the approximation properties. It is further difficult, often impossible for low poly-
nomial degrees, to find suitable local interpolation sets for smooth splines because the
degree of freedom is reduced by the continuity restrictions. This can be solved by using
macro-elements, or by priority or coloring methods, where only certain subsets of tri-

35

Figure 4.1: Left: a uniform triangulation of the rectangular domain. Right: an arbitrary non-uniform
triangulation of a planar domain.

angles are split. For a survey of scattered data fitting methods using bivariate splines
see [NZ00, Zei02].

A useful class for data approximation are quasi-interpolating operators where the
piecewise polynomials are directly available from appropriate weightings of the data
values [dBF73, MS07]. These methods often do not rely on triangle splits or prescribed
derivatives and no additional interpolation points have to be generated [HZDS01, CJ05,
SZ05]. The values at the grid points are approximated in a way such that a certain
approximation order can be guaranteed, i.e., the error decreases by a known factor
for increasing numbers of data points. On some uniform partitions, these splines have
higher degree of freedom than those arising from Hermite or Lagrange interpolation
which means that smoothness between neighboring polynomials can be achieved with a
lower polynomial degree.

Bivariate splines in B-form have been successfully applied to several problems of inter-
est in Computer Graphics. The curved PN triangles by Vlachos and Peters [VPBM01]
can be used to approximate a curved parametric surface from a given triangle mesh us-
ing only local triangle data (i.e., normals at the vertices). The resulting piecewise cubic
polynomials of this refinement method are C1-continuous only at the vertices of the trian-
gulation. Therefore, to achieve a smooth appearance of the surfaces, a separate quadratic
varying normal model is applied. A similar approach based on quadratic Bézier triangles
has been given by Bruijns [Bru98]. Zhao et al. approximate molecular surfaces with cubic
splines which are C1 only at the vertices and midpoints of the edges of the triangula-
tion [ZXB07]. Theisel extends the marching cubes algorithm to calculate aG1-continuous
representation of isosurfaces using rational cubic triangular Bézier patches [The02]. Reis
et al. apply triangular quartic C1 and C2-continuous quasi-interpolating splines in B-

36

form for smooth renderings of terrain data [RZHB∗08, HBRZ09]. An approach for GPU
visualization of two dimensional signed distance data using quadratic C1-continuous
quasi-interpolating splines has been given in [KTSZ08].

4.2 Trivariate Splines for Data Approximation

Trivariate splines are piecewise polynomials in three variables defined w.r.t. tetrahedral
partitions of a volumetric domain. The polynomials are connected via smoothness condi-
tions, see also Section 3.4.4. Worsey and Farin extended bivariate cubic C1 Hermite in-
terpolation to arbitrary n-dimensional simplexes [WF87, Sor06]. In the trivariate setting
each tetrahedron needs to be split into twelve sub-tetrahedra. A piecewise quadratic Her-
mite interpolation scheme was then given by Worsey and Piper [WP88]. C1-continuity is
achieved by splitting each tetrahedron into twenty four sub-tetrahedra. Besides some new
theoretical insights on the complex structure of trivariate spline spaces [HNR∗04, HNZ06]
several approximation and interpolation operators have been suggested recently. Local
Lagrange interpolation of scattered data with C1 quadratic and cubic trivariate splines
has been given in [NSZ05, HNSZ08, HNSZ09], where (certain) tetrahedra are split into
up to twenty four sub-tetrahedra. The cubic and quintic A-Patches by Bajaj et al., which
are C1 and C2-continuous, respectively, can be used to construct smooth surfaces from
the simplicial hull of a given surface triangulation [BCX95b, BCX95a]. These methods
also rely on splits of certain tetrahedra of the simplicial hull to obtain global smooth-
ness. Trivariate splines in B-form have been applied to several practical problems, e.g.,
the approximation of Navier-Stokes equations for 3D fluid simulation [AL04], the sim-
ulation of deformable models [WKG∗11], or numerical solutions of general fourth-order
differential equations [LW01]. While bivariate splines can be either used in a functional
or parametric setting trivariate splines usually describe a surface implicitly. Implicit
surfaces have higher degree of freedom and are closed under modeling operations such
as union or intersection [VdFG98]. On the other hand, no direct representation of the
surface exists and the zero contours are visualized indirectly, usually by Marching Cubes
or ray casting.

We focus on quasi-interpolating operators defined w.r.t. uniform tetrahedral parti-
tions for visualizations of volume data. Examples of commonly used tetrahedral parti-
tions are shown in Figure 4.2. A major advantage of these operators is that the spline
coefficients on each tetrahedron are immediately available from appropriate weightings
of the data points in a small neighborhood of the centering data value. Schumaker and
Sorokina [SS04] define quintic C1-continuous local Lagrange and Hermite operators as
well as a quasi-interpolating operator. They use the type-4 partition (see Figure 4.2, left)
where each data cube is split into five tetrahedra. Although the number of tetrahedra is
relatively low the high polynomial degree makes this method less suitable for interactive
GPU implementations. A good compromise between polynomial degree and number of
tetrahedra is given by the quadratic super splines and cubic C1-splines [NRSZ05, SZ07b]
which are based on the type-6 partition where each cube is split into twenty four congru-
ent tetrahedra (see Figure 4.2, right). In our work, we focus on these quasi-interpolating

37

Figure 4.2: Three different uniform tetrahedral partitions of a cubic grid (top). Left: the type-4 partition
is obtained by slicing each cube with four planes which results into five tetrahedra. Middle: in the
Freudenthal partition each cube is first split into two prisms which are then further split into three
tetrahedra each. Right: the type-6 partition is obtained by slicing each data cube with six planes
resulting in twenty four congruent tetrahedra.

operators which have been proven suitable for real-time and high-quality visualizations
of volume data, see Chapter 6. We further develop a new spline which is based on a
more complex tetrahedral partition of truncated octahedra. This operator solves the
problem of finding a C1-continuous quadratic spline approximating data without the
need to further subdivide any tetrahedra, see Chapter 5.

4.3 Smooth Spline Spaces
Let 4 be a triangular partition of the domain Ω ∈ R2, and let r be an integral value
with 0 ≤ r ≤ q. We then define by

Srq (4) := {s ∈ Cr(Ω) : s|M ∈ Pq, all M∈ 4}

the associated space of polynomial splines of degree q and smoothness r. Let Dq(4) :=⋃
M∈4Dq(M) be the union of the set of domain points associated with the triangles M of4.

It is easy to see that s ∈ S0
q is a continuous spline uniquely defined by the coefficients {bξ :

38

ξ ∈ Dq(4)}. Therefore, the dimension of the space of quadratic continuous splines S0
2(4)

is equal to the cardinality of Dq(4) and it follows that

dimS0
2 (4) = V + E,

where V,E are the number of vertices and edges in 4, respectively. Let M ⊆ Dq(4),
and bξ ∈ M be the associated B-coefficients, then we call M a determining set of Srq if
all the remaining coefficients bξ, ξ *M, are uniquely determined from the smoothness
conditions given in Section 3.4.4. It is easy to see that bξ = 0, all ξ ∈M, implies s = 0.

For some applications, it is useful to define splines which have extended smoothness
in certain points. For example, let V := {v0, . . . , vn} be the set of vertices in 4, then

Sr,r̃q (4) := {s ∈ Srq : s ∈ C r̃(v), all v ∈ V},

with r̃ > r, denotes the associated space of super splines which are C r̃-continuous in
all vertices of 4, and Cr-continuous everywhere else. The PN triangles [VPBM01] by
Vlachos and Peters are a popular example in Computer Graphics for a bivariate super
spline S0,1

3 , which is C1-continuous in each vertex of 4, but only continuous across the
edges of 4.

We can analogously define trivariate spline spaces w.r.t. tetrahedral partitions ∆ of a
volumetric domain Ω ∈ R3 by

Srq (∆) := {s ∈ Cr(Ω) : s|T ∈ Pq, all T ∈ ∆},

with similar definitions of Dq(∆), super splines Sr,r̃q , and determining sets M.

4.3.1 Quasi-Interpolating Splines

Quasi-interpolating operators are a very useful class of multivariate splines. We focus
on trivariate quasi-interpolating operators for real-time reconstruction and high-quality
visualization of volume data. Let ∆ be a tetrahedral partition and Ω ∈ R3 the domain
covered by ∆. Now, let f ∈ C(Ω) be a continuous function and N is a subset of points
in Ω (for example the grid points). We assume that the values of f are known at the
points in N . We now determine the Bézier coefficients bξ, ξ ∈ Dq(∆) of a continuous
spline s ∈ S0

q (∆) by
bξ =

∑
η∈N

αξ,ηf(η), ξ ∈ Dq(∆),

with αξ,η ∈ R and
∑
η∈N αξ,η = 1, for ξ ∈ Dq(∆). This defines a linear map Q :

C(Ω) → S0
q (∆), which has the important property that Q(1) = 1. We call Q a quasi-

interpolating operator for S0
q (∆). For each tetrahedron T we further define star1(T) := T

and recursively define stari(T), i > 1, as the union of stari−1(T) with the tetrahedra
in ∆ which have non-empty intersections with stari−1(T). We call Q local if there exists
an l ∈ N such that for all T ∈ ∆

aξ,η = 0, ξ ∈ Dq(T) and η /∈ starl(T).

39

We can thus calculate all coefficients bξ for each polynomial sf := Q(f) by the values
of f in a (small) neighborhood ΩT := starl(T) of the tetrahedron T .

If further holds that the error on each T is bounded by a constant CT > 0, i.e.,

||sf ||T ≤ CT ||f ||ΩT ,

then Q is a stable operator. If the quasi-interpolating operator Q is local and stable, then
the associated approximation method is also local and stable. Note that the constant
CT depends on f , the polynomial degree q as well as the smallest angle of the triangles
in ∆. This means that the choice of tetrahedral partition ∆ (the triangular partition for
bivariate splines) has a direct effect on the approximation quality of the splines.

If we choose the weights aξ,η appropriately such that the smoothness conditions (3.18)
are satisfied simultaneously for all faces of ∆, then we can also define an approximation
method w.r.t. smooth splines Srq (∆), r < q. In contrast to Hermite or Lagrange oper-
ators we have to verify that Q has the desired approximation properties, i.e., a certain
approximation order. Roughly said, a local and stable quasi-interpolating operator Q in-
herits the approximation order of a polynomial space Pq if Q reproduces this space, i.e.,
Q(p) = p for all p ∈ Pq. While it is almost trivial to construct continuous splines from
given data it is known [Chu89, HNZ06, LS07] that incorporating appropriate smoothness
conditions is a highly complex task for this type of splines. In particular, this holds true
when the polynomial degree q is low, say q ∈ {2, 3}. On the other hand, it is also known
[Nie00, WS01, BMDS02, RZNS04a, RZHB∗08] that sophisticated rendering methods
require smoothness conditions to be satisfied for the underlying trivariate models.

In the next section, we give two explicit examples of quasi-interpolating operators,
namely trivariate S0,1

2 and S1
3 splines on type-6 tetrahedral partitions ∆6. In Chapter 5

we further introduce a new S1
2 spline defined on a tetrahedral partition of truncated

octahedra.

4.4 Piecewise Quadratic and Cubic Approximation by
Trivariate Splines

For n ∈ N let V := {vijk = (ih, jh, kh)T : i, j, k = 0, . . . , n} be the cubic grid of (n+ 1)3

points with grid size h = 1/n ∈ R. We define a cube partition � := {Q : Q = Qijk}
of the domain Ω, where each Qijk ∈ � is centered at vijk and the vertices of Qijk are
(2i± 1, 2j ± 1, 2k ± 1)T · h/2, see Figure 4.2, top.

We consider trivariate splines on the type-6 tetrahedral partition ∆6, where each Q
is subdivided into twenty four congruent tetrahedra. This is done by connecting the
vertices of Qijk with the center vijk. Each of the resulting six pyramids is then further
split into four tetrahedra, see Figure 4.2, bottom right. For each T we set v0 to the
center of its cube Q, v1 to the centroid of one of the faces of Q, and v2 and v3 to the
vertices of Q sharing a common edge.

Trivariate splines s w.r.t. ∆6 are piecewise polynomials in three variables x, y, z of
(total) degree q, which should be at least continuous, i.e. for all T ∈ ∆6, we have

40

R0 R1 R2 R3

q = 2 q = 3

Figure 4.3: Top: the domain points in Q are organized in rings Rν , ν = 0, . . . , q, around vQ. Bottom
left: the 10 domain points of a quadratic polynomial w.r.t to a tetrahedron of Q . Bottom right: the 20
domain points of a cubic polynomial.

p := s|T ∈ Pq := span{xiyjzk : i, j, k ≥ 0, i + j + k ≤ q}, and for any tetrahedra
T, T̃ ∈ ∆6 with F = T ∩ T̃ 6= ∅, we always assume that p|F = p̃|F .

We use the piecewise B-form of s, i.e.

s|T =
∑

i+j+k+`=q
bijk` Bijk`, all T ∈ ∆6, (4.1)

see Section 3.4, whereBijk` ∈ Pq are the Bernstein polynomials w.r.t. T = [v0,v1,v2,v3].
The B-coefficients bijk` are associated with the domain points ξijk` = (iv0 + jv1 + kv2 +
`v3)/q, and we let Dq(∆6) := {ξijk` : T ∈ ∆6} be the union of the sets of domain points
associated with the tetrahedra of ∆6. For each cube Q, the points from Q∩Dq(∆6) are
organized in rings Rν , ν = 0, . . . , q, around vQ as shown in Figure 4.3, top.

Simple characterizing formulae describing smooth joins for neighboring polynomials
exist for the piecewise B-form [Far86], see Section 3.4.4. A basic step in the structural
analysis [HNR∗04, NRSZ05, SZ07b] shows that C1-smoothness for splines on ∆6 requires
simple formulae of the form

b0 = (b1 + b2)/2 and b0 = (b1 + b2)− (b3 + b4)/2 (4.2)

to be satisfied, where bν = bξ are certain B-coefficients associated with domain points ξ
on the common triangular face F = T ∩T̃ and within distance 1 to F (i.e. ξ = ξijk1). The
second formula characterizes the smoothness of the neighboring polynomials if T and T̃

41

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8 fijk

1
24

1
24

5
24

1
24

1
24

5
24

5
24

5
24 fijk

1
96

1
96

1
32

1
32

1
96

1
32

7
48

1
96

1
32

7
48

13
48

13
48 fijk

Figure 4.4: The masks for the coefficients associated with the domain points ξ0003 (left), ξ0021 (middle)
and ξ0011 (right) for the cubic spline s ∈ S1

3 (∆6). Colored dots correspond to Figure 4.3, black dots
illustrate data values.

= 1
2 (+)

= 1
2 (+)

= 1
2 (+)

= 1
2 (+

+ −)

= +

− 1
2 (+)

= 1
32 (

8∑
i=1

) + 1
8 (

24∑
i=1

)

− 3
32 (

24∑
i=1

)

Figure 4.5: The remaining B-coefficients of a spline s ∈ S1
3 (∆6) on the four rings Rv around vQ can be

obtained from repeated averagings of the coefficients in the determining set.

are contained in different pyramids of the same cube, while the first formula holds true
in the remaining cases. Hence, Equation (4.2) shows that the smoothness of splines on
∆6 is easily described when considering only two neighboring polynomials in B-form by
means of averaging the involved B-coefficients. On the other hand, when modeling huge
volume data sets many polynomial pieces on complete tetrahedral partitions ∆6 have to
be computed and the conditions in Equation (4.2) cannot be considered independently
since they have to be satisfied simultaneously across all the interior triangular faces
of ∆6. This is the main reason for the highly complex structure of the spline spaces and
has to be taken into account for any reconstruction method and the related visualization
algorithms built on top of them.

Given volume data, i.e. scalar values fijk ∈ IR associated with the grid positions vijk,
quasi-interpolating splines s on ∆6 are directly determined by simply setting their B-

42

coefficients appropriately. More precisely, we consider the local representation of s, see
Equation (4.1), and set its coefficients bξ, ξ ∈ Dq(∆6), as certain weighted sums of some
local portion of the data,

bξ =
∑

i0,j0,k0

αi0j0k0 fi+i0,j+j0,k+k0 , (4.3)

where αi0j0k0 are fixed fractions weighting the values f(vi+i0,j+j0,k+k0) close to vijk.
This approach leads to real-time reconstructions (for timings, see Section 6.1.3) since
the B-coefficients of s are immediately available from the (typically huge) data without
the need of any intermediate computations such as proper derivative estimation, matrix
inversions, or usage of certain (locally supported) spanning splines.

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8 fijk

1
4

1
4

1
4

1
4 fijk

Figure 4.6: The masks for the coefficients associated with the domain points ξ0002 (left), and ξ0011 (right)
for the quadratic super spline s ∈ S0,1

2 (∆6). Colored dots correspond to Figure 4.3, black dots illustrate
data values.

A main challenge of the above approach is often to find appropriate weights in Equa-
tion (4.3) and choices of i0, j0, k0, such that the quasi-interpolants of low degree auto-
matically satisfy smoothness conditions and some additional important properties (small
data stencils, symmetry, guaranteed approximation order, automatic derivative approx-
imation, stability of the operator). In our GPU implementations, we consider the sym-
metric quasi-interpolation schemes for quadratic [NRSZ05, RZNS04a] and cubic [SZ07b]
splines on ∆6. These methods are connected with certain determining setsM⊆ Dq(∆6)
such that the B-coefficients bξ, ξ ∈ M, determine the spline by using Equations (4.2).
The construction of the cubic quasi-interpolant is illustrated in Figure 4.4, where we
show the masks for the coefficients bξ ∈ M obtained from averaging the data values in
the 27-neighborhood of the centering data value. Here, we use a symmetric determining
set MQ for each Q ∈ �, formed by the coefficients associated with the domain points
ξ00k`

⋃
ξ0111, where k + ` = 3. For a tetrahedron, ξ0030 and ξ0003 are vertices of Q,

ξ0021 and ξ0012 are on the outer edges of Q, and ξ0111 corresponds to the centroid of
the face v1,v2,v3. The remaining B-coefficients follow from the smoothness conditions

43

= 1
2 (+)

= 1
2 (+)

= 1
4 (+ + +) = 1

8 (
12∑
i=1

)− 1
16 (

8∑
i=1

)

= 1
2 (+ + −)

Figure 4.7: The remaining B-coefficients of a spline s ∈ S0,1
2 (∆6) on the three rings Rv around vQ can

be obtained from repeated averagings of the coefficients in the determining set.

and are obtained by applying the rules shown exemplarily for a subset of coefficients in
Figure 4.5. The remaining cases follow from symmetry and rotation. Explicit formulae
for the B-coefficients can be found in [SZ07b].

The quadratic quasi-interpolant s ∈ S0,1
2 (∆6) can be described similarly. The masks

for the coefficients of the determining set M ⊆ D2(∆6) are shown in Figure 4.6. The
remaining coefficients are then obtained by the rules shown in Figure 4.7. The two quasi-
interpolating splines differ in their smoothness properties: quadratic super splines are
smooth on all the faces of the cubes Q in � while certain B-coefficients associated with
domain points in the interior of Q are determined by averaging of smoothness conditions.
As an example consider the black coefficient in Figure 4.7. The construction in [SZ07b]
solves the problem of finding an overall C1-continuous cubic spline s ∈ S1

3 (∆6) approx-
imating data locally without any tetrahedron subdivisions. Another difference is the
number of B-coefficients within one cube which is 65 for quadratics, and 175 for cubics,
respectively. On the other hand, both schemes are based on a small and symmetric data
stencil using the 27-neighborhood of the centering data value, i.e., i0, j0, k0 ∈ {−1, 0, 1},
see Figures 4.4 and 4.6. Tests with smooth functions (see also Section 5.5) confirmed
that the quadratic and cubic quasi-interpolating splines as well as their first derivatives
yield approximation order two, where, somewhat surprisingly, we observe that the con-
stants are slightly better for cubics. The operator norm is an upper limit of the local
change of the spline if one data value is varied. Since the weights for both operators
are non-negative and sum to one, operator norms are also one for uniformly spaced
data, which means that the spline does not change more than the data value. In case of
non-uniformly spaced data, the operator norms are close to one.

44

Chapter 5

Quadratic C1-Splines on Truncated
Octahedral Partitions

In this chapter we describe a new approximating scheme for the smooth reconstruction
of discrete data on volumetric grids. A local quasi-interpolation method for quadratic
C1-splines based on uniform tetrahedral partitions is used to achieve a globally smooth
function. The Bernstein-Bézier coefficients of the piecewise polynomials are thereby
directly determined by appropriate combinations of nearby data values, see also Sec-
tion 4.3.1. We explicitly give a construction scheme for a family of quasi-interpolation
operators and prove that the splines and their derivatives can provide an approximation
order two for smooth functions. The optimal approximation of the derivatives and the
simple averaging rules for the coefficients recommend this method for high quality vi-
sualization of volume data. Numerical tests confirm the approximation properties and
show the efficient computation of the splines.

Trivariate C1-splines on tetrahedral partitions, where the piecewise polynomials are
given in their Bernstein-Bézier form are well suited for the purpose of volume approx-
imation and visualization, since the Bernstein-Bézier techniques can be fully employed
for the efficient computation and evaluation of the splines, see [Far86, dB87]. How-
ever, these are very complex spaces and only a few results are known up to date, see
[LS07] and the references therein. Furthermore, C1-splines with good approximation
properties that solve Hermite- and Lagrange-Interpolation problems must have a rela-
tively high degree (at least 5), see [Ž70, LM04, SS04], or make use of macro-elements,
see [WF87, WP88, SW08], and [SSW09], where the tetrahedra of the partition are fur-
ther subdivided, which results in complex partitions with a huge number of tetrahedra.
Compared to that, quasi-interpolation (see [dBF73]) is a good approach which allows
the usage of low degree splines on uniform partitions, while still some approximation
properties can be guaranteed. The recent work of Sorokina and Zeilfelder [SZ07b] is
most comparable to our approach. They avoid most of the above mentioned problems
by constructing a C1-smooth, cubic spline model based on a type-6 tetrahedral partition
of the domain, see Section 4.4. The splines are built from appropriate averaging formu-
las in a symmetric and local neighborhood of the data values in a way such that the
resulting splines approximate the values and the first derivatives of a sufficiently smooth
function simultaneously with order two. Previous works (see [HNR∗04, NRSZ05]) have
shown that these results cannot be significantly improved. Particularly, the degree of
the splines cannot be further decreased without the loss of either the approximation

45

properties or the C1-smoothness of the resulting splines.
We describe the first C1-smooth quadratic spline model on volumetric grids. Thereby,

we employ a different uniform tetrahedral partition, which is obtained by subdividing
each truncated octahedron of a truncated octahedral partition into 144 disjoint tetrahe-
dra. This split is more complex than the 24-split of the cubes in the type-6 partition. On
the other hand, the C1-splines on truncated octahedral partitions possess significantly
more degrees of freedom than C1-splines on cubic partitions. For the approximation
of the same volume data set, our spline method requires only approximately 50% more
tetrahedra, while allowing for the lowest possible spline degree. The low degree of the
polynomials results in a more efficient evaluation of the spline pieces, e.g., for intersect-
ing rays with spline patches and the calculation of derivatives. We are able to describe
an entire family of quasi-interpolating C1-splines on truncated octahedral partitions and
prove that for a specific spline the same approximation properties are achieved as for
the cubic splines proposed in [SZ07b]. This means that our quasi-interpolating splines
are able to approximate the derivatives of sufficiently smooth functions with optimal
approximation order.

The remainder of this chapter is organized as follows. In Section 5.1, we recall impor-
tant facts on trivariate splines. Then, in Section 5.2, we introduce truncated octahedral
partitions and analyze the structure of C1-splines on these partitions. In Section 5.3,
we describe our quasi-interpolation scheme for the construction of a family of C1-splines
and prove some important results for certain quasi-interpolation operators. Section 5.4
contains the approximation properties of our method and in Section 5.5 we confirm these
theoretical results with numerical tests. Finally, Section 5.6 concludes with comments
on our future research and additional remarks.

5.1 Preliminaries
Let ∆ be a tetrahedral partition of a set Ω in IR3. In the following, we consider the
space of quadratic C1-splines on ∆, defined by

S1
2 (∆) := {s ∈ C1(Ω) : s|T ∈ P2, for all T ∈ ∆},

where C1(Ω) is the set of continuously differentiable functions on Ω. We use the well
known Bernstein-Bézier form (B-form) of the polynomial pieces, see Section 3.4. Given
a tetrahedron T := [v0,v1,v2,v3] ∈ ∆ with vertices v0,v1,v2, and v3, each p ∈ P2 has
a unique representation

p|T ≡
∑

i+j+k+`=2
bijk` Bijk`. (5.1)

As usual, we associate the Bernstein-Bézier coefficients (B-coefficients) bijk` of p in the
form (5.1) with the domain points

ξijk` := (iv0 + jv1 + kv2 + `v3)/2, i+ j + k + ` = 2,

in T , and we call the points (ξ, bξ) ∈ IR4 control points of p. Let D∆ := D2(∆) = ∪T∈∆DT
be the union of the sets of domain points associated with the tetrahedra of ∆. It is

46

easy to see that a continuous spline s ∈ S0
2 (∆) is uniquely defined by the coefficients

{bξ : ξ ∈ D∆} and the dimension of S0
2 (∆) is equal to the cardinality of D∆. Therefore,

it follows that
dimS0

2 (∆) = #D∆ = V + E,

where V and E denote the vertices and edges of ∆. If s ∈ C1(Ω), then these coefficients
cannot be chosen arbitrarily, but have to satisfy certain smoothness conditions, see
Section 3.4.4. Let T = [v0,v1,v2,v3] and T̃ = [v0,v1,v2, ṽ3] be two adjacent tetrahedra
sharing a common triangular face F := T ∩ T̃ = [v0,v1,v2] and let s be a quadratic
continuous spline on T ∪ T̃ in its piecewise B-form, see Equation (5.1): s|T = p and
s|
T̃

= p̃. Then s is C1-smooth across F if and only if

b̃ijk1 = bi+1,j,k,0 φ0(ṽ3) + bi,j+1,k,0 φ1(ṽ3) + bi,j,k+1,0 φ2(ṽ3) + bi,j,k,1 φ3(ṽ3), (5.2)

where i + j + k = 1. These trivariate smoothness conditions can degenerate to lower
dimensional conditions if one or two of the barycentric coordinates vanish at the point ṽ3,
see Section 3.4.4. The appearance of these degenerated conditions is typical for splines on
uniform partitions (see [HNR∗04, HNZ06]). Especially spline spaces with low polynomial
degree are highly complex, due to the fact that the smoothness conditions (5.2) have
to be simultaneously satisfied for all interior faces of ∆. We conclude this section with
two further definitions. Let v ∈ V be a vertex of ∆. We define by D1(v) the ball with
radius 1 around v. Note that D1(v) corresponds to the set of midpoints emanating
from v and v itself. An easy geometric interpretation of Equation (5.2) shows that a
spline s ∈ S0

2 (∆) is C1-smooth in a vertex v iff all control points (ξ, bξ), ξ ∈ D1(v)
lie in the same hyper plane in IR4. Let M ⊆ D∆ and bξ, ξ ∈ M, be the associated
B-coefficients of a spline s ∈ S1

2 (∆). Then, we call M a determining set for the space
S1

2 (∆) if bξ = 0, ξ ∈ M, implies s ≡ 0. In the next section we will use these results to
analyze quadratic C1-splines on a special type of uniform tetrahedral partitions, namely
quadratic C1-splines on truncated octahedral partitions.

5.2 Smoothness of Quadratic Splines on Truncated Octahedral
Partitions

Let VD be the Voronoi diagram of the Body Centered Cubic lattice (BCC lattice). The
BCC lattice is obtained from a regular cubic grid by inserting additional grid points at
the center of each of the grid cells. The Voronoi cells of VD are truncated octahedra
and we note that it is possible to tessellate the IR3 by a uniform partition of truncated
octahedra centered at the vertices of the BCC lattice. A truncated octahedron is an
Archimedean solid with 14 faces consisting of 6 squares and 8 regular hexagons, see
Figure 5.1. The 24 vertices of a truncated octahedron T with radius h ∈ IN centered at
the origin can be described by all permutations of (0,±h/2,±h)T.

Let ♦ be a truncated octahedral partition and Ω ⊂ IR3 the covered region in IR3. We
get a tetrahedral partition ∆ of Ω by subdividing all T ∈ ♦ in the following way. We
insert a vertex at the center of all faces and edges of T , as well as at the center of T

47

Figure 5.1: A truncated octahedron T embedded in the cubic grid. The data points (black dots) are
located on the center of each hexagonal face.

itself. Then we triangulate the faces of T by connecting all vertices on the boundary of
the faces with the vertex in the center of the face. Finally we connect all vertices on the
boundary of T with the vertex in the center of T and achieve a tetrahedral partition ∆,
where every truncated octahedron T ∈ ♦ is split into 144 tetrahedra. Each tetrahedron
T = [v0,v1,v2,v3] ∈ ∆ has one vertex, say v0 at the center of a truncated octahedron
T ∈ ♦, one vertex, say v1 at the center of a face of T , another vertex, say v2 at the
midpoint of one of the edges of T and the remaining vertex v3 is a vertex of T . Thereby,
the triangular face [v1,v2,v3] lies on a face of T . Since the faces of T are either squares
or hexagons this split results in two differently shaped tetrahedra, according to the face
they are associated with. We say T ∈ TS if [v1,v2,v3] lies on a square face of T and
T ∈ TH if [v1,v2,v3] lies on a hexagonal face of T . In the following we want to describe
the C1-smoothness conditions of a spline s ∈ S1

2 (∆) across the interior triangular faces
of ∆. We use the notation Fν = [vµ1 ,vµ2 ,vµ3], ν = 0, . . . , 3, µ1, µ2, µ3 ∈ {0, . . . , 3}\{ν},
µ1 < µ2 < µ3. Here, Fν , ν = 0, . . . , 3, is the triangular face of T opposing the vertex vν .

48

Further, we denote the triangular faces of a tetrahedron T ∈ ∆ by FSν , ν = 0, . . . , 3, if
T ∈ TS and by FHν , ν = 0, . . . , 3, otherwise. Note that the triangular face FS1 is the
intersection between two adjacent tetrahedra of TS and TH , while the triangular face
FH1 is the intersection between two adjacent tetrahedra of TH only. Let T and T̃ be two
tetrahedra sharing a triangular face and bijk` and b̃ijk` the corresponding coefficients of
the piecewise polynomials s|T = p and s|

T̃
= p̃, respectively. In the case T ∩ T̃ = FS1 we

identify the tetrahedra by T ∈ TS and T̃ ∈ TH , while in all other cases the conditions
are completely symmetric. By using Equation (5.2) and some elementary computations,
we obtain that s ∈ S1

2 (∆) iff the following conditions for its coefficients are satisfied:

• Smoothness across FS0 and FH0

b1100 = 2b0200 − b̃1100, (5.3a)
b1010 = 2b0110 − b̃1010, (5.3b)
b1001 = 2b0101 − b̃1001. (5.3c)

• Smoothness across FS3 and FH3

b1001 = 2b1010 − b̃1001, (5.4a)
b0101 = 2b0110 − b̃0101, (5.4b)
b0011 = 2b0020 − b̃0011. (5.4c)

• Smoothness across FS2

b1010 = b1100 − b̃1010 + b1001, (5.5a)
b0110 = b0200 − b̃0110 + b0101, (5.5b)
b0011 = b0101 − b̃0011 + b0002. (5.5c)

• Smoothness across FH2

b1010 = 1
2b1100 − b̃1010 + 3

2b1001, (5.6a)

b0110 = 1
2b0200 − b̃0110 + 3

2b0101, (5.6b)

b0011 = 1
2b0101 − b̃0011 + 3

2b0002. (5.6c)

• Smoothness across FS1

b1100 = 1
3b2000 −

2
3 b̃1100 + 4

3b1010, (5.7a)

b0110 = 1
3b1010 −

2
3 b̃0110 + 4

3b0020, (5.7b)

b0101 = 1
3b1001 −

2
3 b̃0101 + 4

3b0011. (5.7c)

49

Figure 5.2: Left: coefficients on the outer layer of the half of an unfolded truncated octahedron T . Right:
inner layer of T . ‘Red’ squares denote the determining set M on T . The other coefficients involved in
the smoothness conditions (5.3-5.8) are shown as ‘blue’ dots, ‘green’ diamonds and ‘magenta’ stars.

• Smoothness across FH1

b1100 = 2
3b2000 − b̃1100 + 4

3b1010, (5.8a)

b0110 = 2
3b1010 − b̃0110 + 4

3b0020, (5.8b)

b0101 = 2
3b1001 − b̃0101 + 4

3b0011. (5.8c)

Note that Equation (5.3) describes the smoothness conditions across the triangular
faces between neighboring truncated octahedra and (5.4-5.8) characterize the smooth-
ness across triangular faces inside a single truncated octahedron. Since the smoothness
conditions across the faces F0 and F3 degenerate to univariate conditions, we can describe
these conditions simultaneously for the cases FS0 and FH0 , and FS3 and FH3 , respectively.
The following Lemma gives a determining set for the space S1

2 (∆). Here, TB denotes
tetrahedra in ∆ with the vertex v3 lying on the boundary of Ω.

Lemma 1. The set M := {ξT0011, ξ
TB
0002 : T, TB ∈ ∆} is a determining set of the

space S1
2 (∆).

Proof. We have to show that for any spline s ∈ S1
2 (∆), with bξ = 0, ξ ∈ M, it follows

that s ≡ 0. Let T ∈ ∆, v3 ∈ T and D1(v3) be the ball with radius 1 around v3. The
spline s ∈ S0

2 (∆) is C1-continuous in v3 iff all control points (ξ, bξ), ξ ∈ D1(v3), lie

50

in the same hyper plane in IR4. Since M∩ D1(v3) contains exactly four points which
do not lie on a plane in IR3, the four control points (ξ, bξ), ξ ∈ M ∩ D1(v3) uniquely
determine a hyper plane in IR4 and it follows that bξ = 0, for all ξ ∈ D1(v3). This also
follows by combining the smoothness conditions (5.3c), (5.5c), (5.6c), (5.7c) and (5.8c),
and some elementary computations. Therefore, bξ = 0, for all ξ = ξTi,j,k,` ∈ D∆, ` ≥ 1.
Now the smoothness conditions (5.4a-c) imply that bξ = 0, for all ξ = ξTi,j,k,` ∈ D∆,
k ≥ 1. Furthermore, the conditions (5.5a-b) and (5.6a-b) then imply bξ = 0, for all
ξ = ξTi,j,k,` ∈ D∆, j ≥ 1. Finally, conditions (5.7a) and (5.8a) imply bξ = 0, for all
ξ = ξTi,j,k,` ∈ D∆, (i, j, k, `) = (2, 0, 0, 0). Therefore it follows that bξ = 0, for all ξ ∈ D∆
and s ≡ 0.

Figure 5.2 shows the order in which the coefficients in the proof of Lemma 1 are
determined. Due to symmetry, only one half of an unfolded truncated octahedron is
shown. On the left side are the points on the boundary of the truncated octahedron and
on the right side the points at distance one to the center vertex v0. We assume, that the
truncated octahedron does not have any boundary vertices v3 ∈ TB. The points of the
determining set M are shown as ‘red’ squares (), while the points associated with the
coefficients directly determined through the hyper plane conditions and the coefficients
bξ, ξ ∈M, are shown as ‘blue’ dots (). Finally, ‘green’ diamonds () and ‘magenta’ stars
() show the points which associated coefficients are determined through the univariate
conditions (5.4a-c) and bivariate conditions (5.5a-b) and (5.6a-b), respectively.

5.3 The Quasi-Interpolating Scheme
In this section we describe the construction of a family of quasi-interpolation operators on
truncated octahedral partitions. We give a detailed description of the quasi-interpolation
scheme and prove our main result, as well as some useful properties of certain operators.
For n ∈ IN, n ≥ 3, let

V := {vijk = (ih, jh, kh)T : i, j, k = −1, . . . , (n+ 1)}

be the cubic grid of (n+ 3)3 points with grid size h ∈ IR and ♦ the truncated octahedral
partition of truncated octahedra with radius h centered at the vertices of the BCC grid

Ṽ := {vijk + (h2 ,
h
2 ,

h
2)T : i, j, k = 1, . . . , (n− 2), i, j, k all odd or i, j, k all even}.

We assume that the values of a function f ∈ C(Ω∗), Ω∗ = [−h, (n + 1)h]3 ⊆ IR3 are
known at the grid points of V. In each truncated octahedron T ∈ ♦ lie exactly 8 points
zT1 , . . . , zT8 of the set V located on the hexagonal faces of T , see Figure 5.1, which we
denote by VT := {zT1 , . . . , zT8 }. Although, V contains data points that do not lie in ♦,
we assume in the following that these data points are also associated with truncated
octahedra. Let ∆ be the tetrahedral partition of ♦ described in the previous section and
Ω ⊂ Ω∗ the covered region in IR3. In the following we describe our method to determine
an approximating quadratic spline sf on ∆ by setting all B-coefficients bξ, ξ ∈ D∆, to

51

zT1

zT3

zT4

zT2

zT8

zT5

zT7 zT6

Figure 5.3: The typical order of the data points zT1 , . . . , zT8 for the coefficients bξ, ξ = ξ0200 and ξ = ξ0110
(‘blue’ squares) on the outer layer of an unfolded truncated octahedron T .

appropriate averages of the data. Thereby, for the calculation of each coefficient bξ we
use only local data portions in the following sense.

If the domain point ξ lies in the interior of a truncated octahedron A ∈ ♦ then
the associated coefficient bξ is determined by weighted averages of the 8 data values
Ai := f(zAi), zAi ∈ VA:

bξ =
∑

i=1,...,8
wAi Ai, wAi ∈ IR.

Here, as well as in the following, the data points zTi , i = 1, . . . , 8, of a truncated octa-
hedron T are ordered by increasing (Euclidean) distances to the point ξ. This means
zT1 = minz∈VT ||ξ − z||2 and zT8 = maxz∈VT ||ξ − z||2, respectively. In the case of equal
distance the order of the points can be chosen arbitrarily. Figures 5.3 and 5.4 show a
typical order of the data points for a selection of domain points on the outer layer of an
unfolded truncated octahedron T .

If the domain point ξ lies in the interior of a face of a truncated octahedron then the
associated coefficient bξ is determined by weighted averages of the data values regarding
the two truncated octahedra sharing this face. Let A,B ∈ ♦ be two truncated octahedra
sharing a face, then bξ, ξ ∈ int(A ∩ B), is determined by

bξ =
∑

i=1,...,8
wAi Ai +

∑
i=1,...,8

wBi Bi, wAi , w
B
i ∈ IR,

where Bi := f(zBi), zBi ∈ VB. Here, A denotes the truncated octahedron with ||ξ−zA2 ||2 ≤
||ξ − zB2 ||2. If A and B share a square face we have equal distances and the notation
can be chosen arbitrarily. In the case that A and B share a hexagonal face, they have
the common data point zA1 = zB1 and therefore the data value A1 = B1 is weighted by
wA1 + wB1 .

If the domain point ξ lies in the interior of an edge of a truncated octahedron then the
associated coefficient bξ is determined by weighted averages of the data values regarding

52

the three truncated octahedra sharing this edge. Let A,B, C ∈ ♦ be three truncated
octahedra sharing an edge, then bξ, ξ ∈ int(A ∩ B ∩ C), is determined by

bξ =
∑

i=1,...,8
wAi Ai +

∑
i=1,...,8

wBi Bi +
∑

i=1,...,8
wCi Ci,

where wAi , wBi , wCi ∈ IR, and Ci := f(zCi), zCi ∈ VC . Here, A denotes again the truncated
octahedron with ||ξ − zA2 ||2 = minT ∈♦ ||ξ − zT2 ||2. Since A and B, as well as A and
C, share a hexagonal face, they have the common data points zA1 = zB1 and zA2 = zC1 .
The data values A1 = B1 and A2 = C1 are then weighted by wA1 + wB1 and wA2 + wC1 ,
respectively.

Finally, if the domain point ξ lies on a vertex of a truncated octahedron then the asso-
ciated coefficient bξ is determined by weighted averages of the data values regarding the
four truncated octahedra sharing this vertex. Let A,B, C,D ∈ ♦ be the four truncated
octahedra sharing the vertex v, then bξ, ξ = v, is determined by

bξ =
∑

i=1,...,8
wAi Ai +

∑
i=1,...,8

wBi Bi +
∑

i=1,...,8
wCi Ci +

∑
i=1,...,8

wDi Di,

where wAi , wBi , wCi , wDi ∈ IR, and Di := f(zDi), zDi ∈ VD. Due to symmetry the notation
can be chosen arbitrarily here. Since exactly four hexagonal faces share this vertex, we
also have common data points in this case. Without loss of generality we say zA1 = zB1 ,
zA2 = zC1 , zD1 = zB2 and zD2 = zC2 .

In the following we describe a family of quasi-interpolation operators Qk : C(Ω∗) →
S0

2(∆), k ≥ 1 by giving the calculation rules for the B-coefficients of sf := Qk(f) in its
piecewise representation (5.1) explicitly. Here, we assume that the data values come from
a continuous function f ∈ C(Ω∗). In some cases we have to distinguish which type of
tetrahedra the coefficients are associated with. We denote by bSξ B-coefficients associated
with domain-points ξ ∈ T , where T is in TS and by bHξ all other B-coefficients. Since
often the same weights appear we use the compact notation AB1,2 := A1 +B1 +A2 +B2
(analogous for A1,2, ABCD1,2, etc.). The determination of the B-coefficients is as follows:

b0011 := 1
k

2−6 (2 ((k + 3)A1,2 + (k + 1)A3,4 + (k − 1)A5,6 + (k − 3)A7,8)

+ 3 ((k + 3)BC1,2 + (k + 1)BC3,4

+ (k − 1)BC5,6 + (k − 3)BC7,8))

b0020 := 1
k

2−6 (2 ((k + 3)A1,2 + kA3,4,5,6 + (k − 3)A7,8)

+ 3 ((k + 3)BC1 + (k + 2)BC2,3 + (k + 1)BC4

+ (k − 1)BC5 + (k − 2)BC6,7 + (k − 3)BC8))

b0002 := 1
k

2−5 ((k + 3)ABCD1,2 + (k + 1)ABCD3,4

+ (k − 1)ABCD5,6 + (k − 3)ABCD7,8)

bS,H0101 := 1
k

2−4 ((k + 3)AB1,2 + (k + 1)AB3,4 + (k − 1)AB5,6 + (k − 3)AB7,8)

53

zT1

zT3

zT5

zT2

zT8

zT4

zT7 zT6

Figure 5.4: The typical order of the data points zT1 , . . . , zT8 for the remaining coefficients bξ (‘blue’
squares) on the outer layer of an unfolded truncated octahedron T .

bS0110 := 1
k

2−4 ((k + 3)AB1 + (k + 2)AB2,3 + (k + 1)AB4

+ (k − 1)AB5 + (k − 2)AB6,7 + (k − 3)AB8)

bH0110 := 1
k

2−4 ((k + 3)A1,2 + kA3,4,5,6 + (k − 3)A7,8

+ (k + 3)B1 + (k + 2)B2,3 + (k + 1)B4 (5.9)
+ (k − 1)B5 + (k − 2)B6,7 + (k − 3)B8)

bS0200 := 1
k

2−4 ((k + 2)AB1,2,3,4 + (k − 2)AB5,6,7,8)

bH0200 := 1
k

2−4 ((k + 3)AB1 + (k + 1)AB2,3,4 + (k − 1)AB5,6,7 + (k − 3)AB8)

b1001 := 1
k

2−3 ((k + 3)A1,2 + (k + 1)A3,4 + (k − 1)A5,6 + (k − 3)A7,8)

bS1010 := 1
k

2−3 ((k + 3)A1 + (k + 2)A2,3 + (k + 1)A4

+ (k − 1)A5 + (k − 2)A6,7 + (k − 3)A8)

bH1010 := 1
k

2−3 ((k + 3)A1,2 + kA3,4,5,6 + (k − 3)A7,8)

bS1100 := 1
k

2−3 ((k + 2)A1,2,3,4 + (k − 2)A5,6,7,8)

bH1100 := 1
k

2−3 ((k + 3)A1 + (k + 1)A2,3,4 + (k − 1)A5,6,7 + (k − 3)A8)

b2000 := 2−3 A1,2,3,4,5,6,7,8

We note that all coefficients bξ, ξ ∈ D∆, are uniquely determined and therefore the
spline sf is in S0

2 (∆). The next result will show that the weights are chosen carefully, so
that sf is indeed globally C1 on Ω.

Theorem 2. The quasi-interpolation operator Qk : C(Ω∗) → S0
2 (∆), k ≥ 1 is a linear

54

mapping into the space S1
2 (∆).

Proof. We have to show that all conditions (5.3-5.8) are simultaneously satisfied. Since
the complete proof is large and involves only elementary computations, we show the
procedure exemplary on two typical conditions. At first we consider condition (5.3a)
of univariate type in the case that FS0 lies on a common square face of two adjacent
truncated octahedra:

bS1100 + b̃S1100 = 2bS0200.

Now we apply Equation (5.9) for the involved coefficients and obtain on the left-hand
side of the equation

1
k

2−3 ((k + 2)AÃ1,2,3,4 + (k − 2)AÃ5,6,7,8).

Since Ã = B this is exactly two times the coefficient bS0200 and the condition is satisfied.
Next, we consider condition (5.6a) of bivariate type in the case that FH2 is the common
triangular face of two adjacent tetrahedra T ∈ TH and T̃ ∈ TH inside a truncated
octahedron:

bS1010 + b̃H1010 = 1
2b

H
1100 + 3

2b1001.

We note that one of the coefficients on the left-hand side is of type bSξ and the other one
of type bHξ . Without loss of generality we say b1010 = bS1010 and b̃1010 = b̃H1010. Now we
apply condition (5.9) for the involved coefficients on the left-hand side of the equation
and considering that Ã = A we obtain

1
k

2−3 ((2k + 6)A1 + (2k + 5)A2 + (2k + 2)A3 + (2k + 1)A4

+ (2k − 1)A5 + (2k − 2)A6 + (2k − 5)A7 + (2k − 6)A8).

If we apply (5.9) to the coefficients on the right-hand side of the equation, we have to pay
attention that only b1001 has the same ordering of the data points as the coefficients bS1010
and b̃H1010. Therefore, for now we denote the data values regarding bH1100 by Â1, . . . , Â8
and obtain

1
k

2−4 ((k + 3)Â1 + (k + 1)Â2,3,4 + (k − 1)Â5,6,7 + (k − 3)Â8

+ 3((k + 3)A1,2 + (k + 1)A3,4 + (k − 1)A5,6 + (k − 3)A7,8)).

Considering the order of the data points we achieve the following correlations between
the data values:

Â1 = A1, Â2 = A2, Â3 = A3, Â4 = A5, Â5 = A4, Â6 = A6, Â7 = A7, Â8 = A8.

Applying this to the above term, we obtain
1
k

2−4 ((4k + 12)A1 + (4k + 10)A2 + (4k + 4)A3 + (4k + 2)A4

+ (4k − 2)A5 + (4k − 4)A6 + (4k − 10)A7 + (4k − 12)A8)

55

and condition (5.6a) is satisfied. All other conditions (5.3-5.8) can be shown similarly.
Only the order of the data points has to be taken into account for each coefficient
individually.

We conclude this section with some important properties of the quasi-interpolation
operators.

Corollary 3. The quasi-interpolation operator Qk : C(Ω∗) → S1
2 (∆) is positive for

k ≥ 3.

Proof. For k ≥ 3 only positive weights of the data values appear in the calculation of the
B-coefficients in (5.9). Therefore, assuming that the data values come from a positive
function f ∈ C(Ω∗), the quasi-interpolating spline sf := Qk(f) is also positive. This fol-
lows directly from the piecewise polynomial representation (5.1) and the non-negativity
of the Bernstein polynomials. Finally, it is easy to see that f ≡ 0 implies sf ≡ 0.

The next Lemma shows that the quasi-interpolation operators Qk, k ≥ 1, reproduce
certain polynomials which is essential for their approximation properties, see Section 5.4.
In particular, the operator Q2 reproduces quadratic polynomials up to a constant.

Lemma 4. The following statements hold.

(i) Qk(1) ≡ 1, ∀k ≥ 1
(ii) Q2(p) ≡ p, ∀p ∈ P1

(iii) Q2(p) ≡ p, p ∈ {xy, xz, yz}

(iv) Q2(p) ≡ p+ h2

4 , p ∈ {x
2, y2, z2}

(v) if p ∈ P2, then there exists a constant C independent of h,
such that Q2(p) ≡ p+ Ch2

Proof. (i) If all data values in the Equation (5.9) are equal to 1 it is easy to see that
also all coefficients bξ are equal to 1. Therefore, it follows directly from the partition of
unity of the B-polynomials, see Equation (3.10), that Qk(1) ≡ 1, for all k ≥ 1.
For (ii), we have to show that the quasi-interpolation operator Q2 additionally to (i)
reproduces the monomials {x, y, z}. Since Lemma 1 gives a determining set M for the
space S1

2 (∆) it is sufficient to prove the reproduction for the coefficients bξ, ξ ∈ M,
only. Moreover, with (i) and the linearity of Q2, the reproduction is independent from
the choice of the origin. Therefore we consider the tetrahedron T = [v0,v1,v2,v3] ∈ ∆,
where v0 = (0, 0, 0)T, v1 = (h, 0, 0)T, v2 = (h, h/4, h/4)T and v3 = (h, h/2, 0)T. Here, T
lies in a truncated octahedron with radius h centered at the origin. The coefficient bξ,
ξ = ξ0002, is only in M if ξ lies on the boundary of ∆ and therefore we only need to
consider the coefficient bξ ∈ M, where ξ = ξ0011. Let p1(x, y, z) := x, p2(x, y, z) := y
and p3(x, y, z) := z. Then these functions are univariate polynomials restricted to the
edge [v2,v3] and the coefficients b{i}0011, i = 1, 2, 3, in their representation (5.1) regarding T
can be computed by

b
{i}
0011 = 2pi(ξ0011)− 1

2(pi(v2) + pi(v3)), i = 1, 2, 3.

56

We obtain the following values for the coefficients b{i}0011, i = 1, 2, 3:

b
{1}
0011 = h, b

{2}
0011 = 3

8h and b
[{3}]
0011 = 1

8h.

Now, we apply the order of increasing distances to the data points regarding the three
truncated octahedra A,B and C with the common edge [v2,v3] and obtain

zA1 = (h2 ,
h
2 ,

h
2)T, zA2 = (3h

2 ,
h
2 ,

h
2)T, zA3 = (h2 ,

3h
2 ,

h
2)T, zA4 = (3h

2 ,
3h
2 ,

h
2)T,

zA5 = (h2 ,
h
2 ,

3h
2)T, zA6 = (3h

2 ,
h
2 ,

3h
2)T, zA7 = (h2 ,

3h
2 ,

3h
2)T, zA8 = (3h

2 ,
3h
2 ,

3h
2)T,

zB1 = (h2 ,
h
2 ,

h
2)T, zB2 = (h2 ,

h
2 , -

h
2)T, zB3 = (h2 , -

h
2 ,

h
2)T, zB4 = (h2 , -

h
2 , -

h
2)T,

zB5 = (-h2 ,
h
2 ,

h
2)T, zB6 = (-h2 ,

h
2 , -

h
2)T, zB7 = (-h2 , -

h
2 ,

h
2)T, zB8 = (-h2 , -

h
2 , -

h
2)T,

zC1 = (3h
2 ,

h
2 ,

h
2)T, zC2 = (3h

2 ,
h
2 , -

h
2)T, zC3 = (3h

2 , -
h
2 ,

h
2)T, zC4 = (3h

2 , -
h
2 , -

h
2)T,

zC5 = (5h
2 ,

h
2 ,

h
2)T, zC6 = (5h

2 ,
h
2 , -

h
2)T, zC7 = (5h

2 , -
h
2 ,

h
2)T, zC8 = (5h

2 , -
h
2 , -

h
2)T.

Here, A is the truncated octahedron with radius h centered at (h, h, h)T, while B and C,
are the truncated octahedra with radius h centered at (0, 0, 0)T and (2h, 0, 0)T, respec-
tively. Some elementary computations show that the calculation rule in Equation (5.9)
for the coefficient b0011 indeed reproduces the coefficient b{i}0011 of pi, for i = 1, 2, 3.
To prove (iii) and (iv) the procedure is similar. With (i), (ii) and the linearity of Q2,
the reproduction is again independent from the choice of the origin. Now, a comparison
of the calculated coefficient b0011 in (5.9) for Q2(p), p ∈ {xy, xz, yz, x2, y2, z2} and the
coefficient b{p}0011 of the polynomial p in its representation (5.1) regarding T shows that
b0011 = b

{p}
0011 for p ∈ {xy, xz, yz} and b0011 = b

{p}
0011 + h2

4 for p ∈ {x2, y2, z2}. This proves
(iii) and (iv), since Q2 is linear and reproduces constants.
Finally (v) follows directly by (i)-(iv) and the proof is complete.

The next corollary shows that the derivatives of certain polynomials are also repro-
duced by the quasi-interpolation operator Q2. In particular, the exact reproduction of
the derivatives of quadratic polynomials is the reason that this operator possesses the
optimal approximation order for the derivatives of smooth functions. Here, we denote
by Dα

xD
β
yD

γ
z (f), where α, β, γ ≥ 0, the higher order partial derivatives of a sufficiently

smooth function f .

Corollary 5. If p ∈ P2, then Dα
xD

β
yD

γ
z (Q2(p)) ≡ Dα

xD
β
yD

γ
z (p), for α+ β + γ ∈ {1, 2}.

Proof. Let p ∈ P2, then it follows from Lemma 4 (v), that

Dα
xD

β
yD

γ
z (Q2(p)) ≡ Dα

xD
β
yD

γ
z (p+ Ch2) ≡ Dα

xD
β
yD

γ
z (p),

where α+ β + γ ∈ {1, 2} and C is a constant independent of h.

Although the quasi-interpolation operators Qk do not reproduce linear polynomials
for k 6= 2, it can be shown that all operators Qk, k ≥ 1, reproduce the values of linear
polynomials at the data points:

57

Lemma 6. Let p ∈ P1 and k ≥ 1, then Qk(p(v)) = p(v), all v ∈ V ∩ Ω.

For a complete proof see [RK09]. The next result shows that the operators Qk,
k ≥ 1, are uniformly bounded. This is an important result, since it guarantees that the
computation of the splines is a stable process. Here as well as in the following sections
we use the ∞-norm defined by

‖f‖Γ := max
u∈Γ
|f(u)|,

where Γ is a domain in IR3 and f is a continuous function on Γ.

Lemma 7. Let f ∈ C(Ω∗) and T = [v0,v1,v2,v3] ∈ ∆. Then we have

||Qk(f)||T ≤
k + 1
k
||f ||ΩT , k ≥ 1,

where ΩT is the cube with side length 3
2h centered in v3.

Proof. Since ΩT contains all data points needed for the calculation of the B-coefficients
bξ, ξ ∈ DT , in (5.9) and k ≥ 1, we have

|bξ| ≤ max{1, 2k + 1
2k ,

k + 1
k
}||f ||ΩT .

Then it follows from the non-negativity of the Bernstein polynomials and Equation (3.10)
that

||Qk(f)||T ≤ max{|bξ| : ξ ∈ DT }, k ≥ 1

and the proof is complete.

5.4 Approximation Properties

In this section, we analyze the approximation properties of the quasi-interpolating splines
Qk(f), k ≥ 1. We use the same notations as in the previous section. Theorem 8
gives general error bounds for the approximation of the values of smooth functions for
k ≥ 1, and Theorem 9 gives special error bounds for the approximation of the values
and derivatives of smooth functions for the case k = 2. In particular, we show that
Q2(f) approximates the values of a sufficiently smooth function with order two, while
simultaneously the first and second derivatives are optimally approximated with order
two and one, respectively. In the following we let

‖Dr(f)‖Γ := max{‖Dα
xD

β
yD

γ
z (f)‖Γ : α+ β + γ = r},

where Γ is a domain in IR3 and f ∈ Cr(Γ).

58

Theorem 8. Let f ∈ C(Ω∗) and Qk(f), k ≥ 1, the quasi-interpolating spline defined in
the previous section. Then the following statements hold.

(i) If f ∈ C1(Ω∗), then

||f −Qk(f)||Ω ≤ Ck||D1(f)||Ω∗h,

where Ck > 0 is an absolute constant independent of f and h.

(ii) If f ∈ C2(Ω∗), then

|(f −Qk(f))(v)| ≤ C̃k||D2(f)||Ω∗h2, all v ∈ V ∩ Ω,

where C̃k > 0 is an absolute constant independent of f and h.
Proof. Let f ∈ C1(Ω∗), T = [v0,v1,v2,v3] ∈ ∆ an arbitrary tetrahedron with vertices
as in Section 5.2, ΩT as in Lemma 7 and pf ∈ P0 the constant Taylor polynomial of f
at v3. Then there exists an absolute constant CT > 0 independent of f and h such that

‖f − pf‖ΩT ≤ CT ‖D
1(f)‖ΩT h.

Furthermore, from the triangle inequality follows

‖f −Qk(f)‖T ≤ ‖f − pf‖ΩT + ‖Qk(f)− pf‖T .

With Lemma 4(i), the linearity of Qk and Lemma 7 we obtain

‖Qk(f)− pf‖T = ‖Qk(f − pf)‖T ≤
k + 1
k
‖f − pf‖ΩT .

Combining these inequalities leads to

‖f −Qk(f)‖T ≤ Ck‖D1(f)‖ΩT h,

where Ck = (1 + k+1
k)CT is an absolute constant independent of f and h. This proves

statement (i).
Now, let f ∈ C2(Ω∗), v ∈ V ∩Ω, T = [v0,v1,v2,v3] ∈ ∆ a tetrahedron with v1 = v, ΩT

as in Lemma 7 and pf ∈ P1 the linear Taylor polynomial of f at v3. Then there exists
an absolute constant C̃T > 0 independent of f and h such that

|(f − pf)(v)| ≤ C̃T ‖D2(f)‖ΩT h
2.

Using the triangle inequality, we have

|(f −Qk(f))(v)| ≤ |(f − pf)(v)|+ |(Qk(f)− pf)(v)|

and with Lemma 6, the linearity of Qk and Corollary 7 we obtain for the last term

|(Qk(f)− pf)(v)| = |Qk(f − pf)(v)| ≤ k + 1
k
‖f − pf‖ΩT .

A combination of these inequalities leads to

|(f −Qk(f))(v)| ≤ C̃k‖D2(f)‖ΩT h
2,

where C̃k = (1 + k+1
k)C̃T is an absolute constant independent of f and h.

59

Theorem 9. Let f ∈ C(Ω∗) and Q2(f) the quasi-interpolating spline for k = 2 defined
in the previous section. Then the following statements hold.

(i) If f ∈ C2(Ω∗), then

||f −Q2(f)||Ω ≤ C||D2(f)||Ω∗h2,

where C > 0 is an absolute constant independent of f and h.

(ii) If f ∈ C3(Ω∗), then

||Dr(f −Q2(f))||Ω ≤ C̃||D3(f)||Ω∗h3−r, r = 1, 2,

where C̃ > 0 is an absolute constant independent of f and h.

The complete proof follows closely the proof of Theorem 8 and can be found in [RK09].

5.5 Numerical Results
In this section, the approximation properties of our splines are demonstrated with nu-
merical examples based on smooth test functions f . To do this, we use synthetic data
sampled at the grid points v ∈ V (see Section 5.3) to calculate the splines sf = Qk(f)
for k = {2, 3} on the partition ♦ of Ω. In our tests we consider three functions. The
blobby function

blob(x, y, z) = e−5((x−1/2)2+y2+z2) + e−5(x2+(y−1/2)2+z2)

is a smooth blending of two metaballs [WMW86]. As a second representative for an
exponential, we have the more complex function of Franke type [Fra79],

fr(x, y, z) =1/2e−10((x−1/4)2+(y−1/4)2) + 3/4e−16((x−1/4)2+(y−1/4)2+(z−1/4)2)

+1/2e−10((x−3/4)2+(y−1/8)2+(z−1/2)2) − 1/4e−20((x−3/4)2+(y−3/4)2).

Finally, we provide the results for the well-known Marschner Lobb [ML94] function

ml(x, y, z) = 1− sin(πz/2) + α(1 + cos(2πfM cos(π
√
x2 + y2/2)))

2(1 + α) , α = 1
4 , fM = 6,

which is highly oscillating and therefore a challenging test for any approximation method.
For each function we proceed with a series of tests on the cubic domain Ω∗ = [−h, 1 +

h]3 ⊆ IR3 translated by (−1/2,−1/2,−1/2)T with decreasing grid size h, which corresponds
to a sampling on a finer partition. The first column in Tables 5.1 to 5.12 shows the in-
creasing values of 1/h while the remaining columns show different errors for the function
values (Tables 5.1 to 5.6) and the first and second derivatives in x-direction (Tables 5.7
to 5.12), respectively. The maximal error of the function values and the derivatives at
the grid points is denoted as

errdata = max{|Dr
x(f(v)− sf (v))| : v ∈ V}, r = 0, 1, 2,

60

1/h errblob
data errblob

max errblob
mean errblob

rms

8 0.072325 0.080944 0.011721 0.018593
16 0.018859 0.023713 0.003983 0.005837
32 0.004765 0.008360 0.001503 0.002074
64 0.001194 0.003504 0.000658 0.000892
128 0.000299 0.001614 0.000314 0.000426

Table 5.1: Approximation of blob by sblob for k = 3.

1/h errfr
data errfr

max errfr
mean errfr

rms

8 0.200420 0.200536 0.010000 0.0220219
16 0.056525 0.065843 0.003392 0.0072288
32 0.014583 0.019627 0.001189 0.0023808
64 0.003685 0.007333 0.000481 0.0009176
128 0.000926 0.003185 0.000221 0.0004145

Table 5.2: Approximation of fr by sfr for k = 3.

1/h errml
data errml

max errml
mean errml

rms

8 0.093599 0.165222 0.060747 0.071258
16 0.091361 0.102068 0.037767 0.045003
32 0.045369 0.048335 0.012682 0.015818
64 0.013786 0.015158 0.003474 0.004388
128 0.003309 0.004879 0.001003 0.001267

Table 5.3: Approximation of ml by sml for k = 3.

for a function f and errmax is the (approximate) maximal error of sf in the uniform
norm on Ω. The latter error is computed on a fine discretization X of the domain by
choosing a fixed number of 220 evenly distributed sample points in each tetrahedron:

errmax = max{|Dr
x(f(v)− sf (v))| : v ∈ X}, r = 0, 1, 2.

For the sake of completeness, we also provide the mean error errmean

errmean = 1
|X |

∑
v∈X
|Dr

x(f(v)− sf (v))|, r = 0, 1, 2,

as well as the root mean square error

errrms =
√√√√ 1
|X |

∑
v∈X
|Dr

x(f(v)− sf (v))|2, r = 0, 1, 2,

61

1/h errblob
data errblob

max errblob
mean errblob

rms

8 0.053447 0.053719 0.007873 0.013093
16 0.013724 0.013783 0.002221 0.003573
32 0.003454 0.003466 0.000585 0.000922
64 0.000865 0.000867 0.000149 0.000233
128 0.000216 0.000216 0.000037 0.000058

Table 5.4: Approximation of blob by sblob for k = 2.

1/h errfr
data errfr

max errfr
mean errfr

rms

8 0.157341 0.157385 0.007047 0.016126
16 0.042986 0.043009 0.002138 0.004814
32 0.010986 0.010992 0.000595 0.001312
64 0.002761 0.002763 0.000157 0.000342
128 0.000691 0.000691 0.000040 0.000087

Table 5.5: Approximation of fr by sfr for k = 2.

1/h errml
data errml

max errml
mean errml

rms

8 0.088397 0.165560 0.060171 0.071867
16 0.081199 0.099245 0.033299 0.040339
32 0.031214 0.034153 0.009694 0.012068
64 0.008584 0.008928 0.002415 0.003028
128 0.002004 0.002132 0.000595 0.000748

Table 5.6: Approximation of ml by sml for k = 2.

on the same fine discretization X .
As can be seen from Tables 5.1, 5.2 and 5.3, the approximation errors errmax, errmean

and errrms for sf = Q3(f) decrease by about a factor of two for each function as the grid
size goes down from h to h/2, while the error at the data points decreases by a factor of
four. This confirms the results from Theorem 8, Section 5.4. Tables 5.4 to 5.6 show the
approximation errors for sf = Q2(f), while Tables 5.7 to 5.12 show the approximation
errors of the first and second derivatives in x-direction Dx(f) and Dxx(f), respectively.
Here, the results from Theorem 9 are confirmed, since the error of the function values
and the first derivatives decreases by a factor of four as the grid size goes down from h
to h/2 and the error of the second derivatives decreases by a factor of two. This confirms
our result that the operator Q2 approximates the derivatives of a sufficiently smooth
function with optimal approximation order. For visual comprehension we provide the
graphs for the errors of the function values (see Table 5.6) and first derivatives (Table 5.9)
of the Marschner-Lobb function on a double logarithmic scale in Figure 5.5. In addition,

62

1/h errDx(blob)
data errDx(blob)

max errDx(blob)
mean errDx(blob)

rms

8 0.158589 0.241703 0.024732 0.038537
16 0.041100 0.071218 0.007084 0.010642
32 0.010475 0.018889 0.001888 0.002780
64 0.002647 0.004782 0.000487 0.000709
128 0.000759 0.001271 0.000124 0.000180

Table 5.7: Approximation of Dx(blob) by Dx(sblob) for k = 2.

1/h errDx(fr)
data errDx(fr)

max errDx(fr)
mean errDx(fr)

rms

8 0.738493 0.916685 0.042349 0.094669
16 0.210754 0.300654 0.013332 0.029001
32 0.057464 0.082984 0.003703 0.007914
64 0.014565 0.021206 0.000971 0.002056
128 0.003674 0.005374 0.000248 0.000523

Table 5.8: Approximation of Dx(fr) by Dx(sfr) for k = 2.

1/h errDx(ml)
data errDx(ml)

max errDx(ml)
mean errDx(ml)

rms

8 5.03099 5.33248 1.575060 2.042270
16 4.21588 4.58655 0.887093 1.254340
32 1.52074 2.78363 0.254649 0.382565
64 0.42781 0.80967 0.063386 0.097711
128 0.10828 0.21132 0.015481 0.024102

Table 5.9: Approximation of Dx(ml) by Dx(sml) for k = 2.

Figure 5.6 visualizes the reconstruction error for the Marschner-Lobb function sampled
from a sparse grid (643 data points) using the type-6 splines (quadratic super splines
and S1

3 splines, respectively), as well as our new operator Q2. It can be seen from the
figure that our Q2 spline reconstructs the Marschner-Lobb function with a lower error.

In all cases, the computation of the splines sf , even on the finest partition of Ω
involving more than two million data samples, were computed in less than one minute
on a standard PC, depending on the complexity of f . In the numerical tests, several
techniques for fast evaluation of sf can be employed, e.g. de Casteljau’s algorithm, which
provides the functional value and the derivatives simultaneously, see Section 3.4.1.

63

1/h errDxx(blob)
data errDxx(blob)

max errDxx(blob)
mean errDxx(blob)

rms

8 2.78180 7.36277 0.647459 0.944675
16 1.51370 4.48919 0.366841 0.525985
32 0.78379 2.34272 0.192558 0.273797
64 0.39897 1.18080 0.098316 0.139153
128 0.22540 0.61108 0.049920 0.070501

Table 5.10: Approximation of Dxx(blob) by Dxx(sblob) for k = 2.

1/h errDxx(fr)
data errDxx(fr)

max errDxx(fr)
mean errDxx(fr)

rms

8 9.48307 34.2698 1.41213 2.72682
16 6.56458 24.2788 0.87606 1.68534
32 3.35031 13.2468 0.48023 0.91651
64 1.63083 6.82766 0.24989 0.47418
128 0.81025 3.45017 0.12726 0.24070

Table 5.11: Approximation of Dxx(fr) by Dxx(sfr) for k = 2.

1/h errDxx(ml)
data errDxx(ml)

max errDxx(ml)
mean errDxx(ml)

rms

8 223.618 258.992 55.6158 77.3912
16 147.363 314.767 43.9654 66.5142
32 63.4782 306.433 25.2862 42.1393
64 29.2791 209.945 12.7598 22.2219
128 13.8998 118.557 6.2608 11.0415

Table 5.12: Approximation of Dxx(ml) by Dxx(sml) for k = 2.

5.6 Conclusion and Remarks

The BCC lattice has gained increased popularity in numerous applications, e.g. volume
rendering [Cse05], skeletonization [BB08], and topology preserving reconstruction [SS06].
It is well known that the BCC lattice is a superior sampling grid compared to the cubic
lattice and therefore equal approximation quality can be achieved with fewer data sam-
ples. The nature of C1-splines on truncated octahedral partitions motivates the direct
usage of data on the BCC lattice. It is possible to adapt the presented approxima-
tion scheme to such data sets. In this context, we are confident to achieve even better
approximation properties, in particular an optimal order of approximation.

In a next step, the structure of C2-splines on truncated octahedral partitions should
be analyzed. First investigations on this topic have shown that local quasi-interpolation
operators with an expected degree of four could be constructed. To our knowledge, this

64

would be the first C2-smooth spline approximation scheme with a lower degree than five.

Remark 1. The quasi-interpolation scheme for C1-splines on truncated octahedral par-
titions described in Section 5.3 can be easily extended to a cubic domain by the usage
of half, quarter and eighth truncated octahedra. Thereby, no additional data points are
needed. However, to guarantee the approximation order of the splines at the boundary
we have to use data points outside of the domain (see Section 5.3). But these additional
data points needed can also be constructed by local extrapolation at the boundary of the
given data such that the approximating spline covers the whole initial data volume.

Remark 2. It is possible to modify our construction of an approximating spline to an
interpolating spline with a simple trick. We assume that the data lie on a cubic grid with
grid-size h. Then we construct a truncated octahedral partition with size h, where half
of the truncated octahedra are centered at the data points. In these truncated octahedra
we apply the data value in the center to the eight data points on the hexagonal faces,
needed for our quasi-interpolation scheme. Therefore, we have constructed all data points
needed for the calculation of the spline on the whole partition and the resulting spline
interpolates the initial data values. However, we lose the approximation properties by
this approach.

Remark 3. We have also applied our scheme for k = 2 to the simple test functions

f1(x, y, z) = xy + xz + yz + x+ y + z + 1 and f2(x, y, z) = x2

in order to verify the results of Lemma 4 and Corollary 5. To be more precise, the
errors of sf1 = Q2(f1) are (numerical) zero for the functional values and the derivatives,
confirming Lemma 4 (i), (ii) and (iii). The error of sf2 = Q2(f2) is constantly h2/4,
in accordance with Lemma 4, (iv) (and (v)), while the errors for the corresponding
derivatives are zero, which confirms Corollary 5. For the trilinear function

f3(x, y, z) = axyz

our tests show that the errors of sf3 = Q2(f3) and Dx(sf3) decrease by a factor of 8 for
h→ h/2, meaning that in this case, we have the optimal approximation order three.

We conclude this chapter with a first visualization of our spline Q2 in Figure 5.7.
Here, we apply ray casting to reconstruct Barth’s sextic function 4(τ2x2 − y2)(τ2y2 −
z2)(τ2z2− x2)− (1 + 2τ)(x2 + y2 + z2−w2)2w2), τ = 1

2(1 +
√

(5)), sampled from a 1283

grid. Further results can be found in [MKRG11] and Chapter 6.

65

10-4

10-3

10-2

10-1

22 23 24 25 26 27

1/h

er
ro
r

b b

b

b

b

r

r

r

r

r

u

u

u

u

u

b

b

b

b

b

r errmax(ml)
b errdata(ml)
b errrms(ml)

errmean(ml)u

10-2

10-1

100

101

22 23 24 25 26 27

1/h

er
ro
r

b
b

b

b

b

r
r

r

r

r

u

u

u

u

u

b

b

b

b

b

r errmax(Dx(ml))
b errdata(Dx(ml))
b errrms(Dx(ml))

errmean(Dx(ml))u

Figure 5.5: Top: graphs of the approximation errors of the Marschner-Lobb function ml by sml for k = 2.
on a double logarithmic scale. Bottom: graphs of the approximation errors of the derivatives Dx(ml) by
Dx(sml) for k = 2.

66

Figure 5.6: Error visualization of the Marschner-Lobb function sampled from a 643 grid. Red indicates
high error, blue means low error. Left: quadratic super splines. Middle: S1

3 spline. Right: quasi-
interpolating operator Q2.

Figure 5.7: Visualization of the Barth sextic function sampled from a 1283 grid. Top left we can see
the tetrahedra and some truncated octahedra on the surface. In the middle we see quadratic boundary
curves along constant cutting planes. The smooth surface with Phong shading applied can be seen on
the bottom right.

67

68

Chapter 6

GPU Kernels for Piecewise Quadratic and
Cubic Approximation

In this chapter, we give the details of our GPU kernels for hardware-accelerated visualiza-
tion of surfaces from volume data based on trivariate splines. As our main contribution,
these are the first GPU implementations for trivariate splines taking their structure into
account such that bus traffic, memory consumption, and data access on the GPU is
optimized. In comparison to former pure CPU implementations [RZNS03] and GPU
implementations [SGS06] based on quadratic super splines we achieve a speedup of two
to three orders of magnitude. We further address the more complex cases of cubic C1-
splines, see Section 4.4, and quadratic C1-splines on truncated octahedral partitions,
see Chapter 5. In addition, our schemes for efficient geometry encoding and on-the-fly
computation of spline coefficients allow us for the first time to apply trivariate splines for
real-time high-quality visualizations of surfaces from very large volume data sets arising
in practical applications (i.e., medical or scientific visualization).

The approximative nature of the spline algorithms and the fact that we choose splines
in B-form of low and lowest possible degree provide several advantages for our GPU im-
plementations. Using blossoming (see Section 3.4.3), the restrictions of the splines along
viewing rays are easily determined in the fragment shader by applying a few de Casteljau
steps (see Section 3.4.1). This is connected with an efficient clipping procedure which
does not require explicit knowledge on the vertices of the current tetrahedron and avoids
clipping with its four triangular planes. The low polynomial degrees support analytic
and fast iterative root finding algorithms to solve the quadratic and cubic equations,
respectively, which we can perform in parallel on the GPU with a low number of fixed
iterations in the latter case. Moreover, the computation of the gradients necessary for
Phong illumination is done by applying Bernstein-Bézier techniques to the polynomial
pieces and a separate model for the approximative derivatives is not needed. The convex
hull property of the B-form allows us to quickly determine if a given polynomial on a
tetrahedron T does not contribute to the visible surface (i.e., all spline coefficients on T
are either below or above the isolevel). In this case, these non-relevant tetrahedra can
be excluded from further costly processings.

We first describe a hybrid cell projection / ray casting approach in Section 6.1 which
has been proven to be well suited for rendering of surfaces from small to medium sized
data sets (say, up to 2563 voxels) and GPUs with lower performance, e.g., mobile laptop
GPUs. This has led to an entire image based volume ray casting approach which is better

69

eye

×
×

×
×
×

×
×

viewing
rays

screen

Figure 6.1: A 2D illustration of the cell projection / ray casting principle for isosurface visualization.
On each triangle satisfying the convex hull property (blue), the corresponding Bézier curve is intersected
with the rays emerging from the viewer’s position.

suited for very large volume data sets, see Section 6.2. The results involving techniques
from Computer Graphics illustrate that our real-time reconstruction and visualization
based on trivariate quasi-interpolating splines satisfies the various requirements of high-
quality visualization. We show visual results and give a comparative analysis of our
kernels in Section 6.3.

6.1 Hybrid Cell Projection / Ray Casting
Our algorithm can be divided into two main parts: first, we do a preprocessing for surface
reconstruction where we determine the relevant or active tetrahedra which do contribute
to the final surface. In addition, the data structures for the bounding tetrahedra are
prepared. Our first implementations [KZ08] relied on a CPU preprocessing which along
with the data transfer to the GPU takes a couple of seconds and has to be repeated for
each change of isolevel or data set. However, in many applications it is crucial to vary the
isosurface interactively in order to gain deeper understanding of the data to be visualized.
In addition, the data set itself may vary, for instance in numerical simulations. Therefore,
in [KKG09] we accelerate this preprocess significantly using a flexible programming
model on modern GPUs for high performance data parallel computing. We describe our
preprocessing in Section 6.1.1.

The second part uses vertex and fragment programs for the visualization of the surface
in a combined rasterization / ray casting approach, see Section 6.1.2. A 2D illustration
of the visualization principle is shown in Figure 6.1. For each active tetrahedron the
bounding geometry is processed in the graphics pipeline. The vertex programs initialize
various parameters, such as the viewing rays, and appropriate barycentric coordinates.

70

cube classification

cube compaction

tetrahedron classification

tetrahedron compaction

CUDA

geometry instancing

vertex shader

fragment shader

OpenGL

render loop

change of isosurface

Figure 6.2: Our GPU algorithm is organized as a combined CUDA (shaded green) and OpenGL (shaded
blue) approach. The CUDA part is responsible for specifying the relevant cubes and tetrahedra, re-
spectively, when the isovalue or data set is modified. The visualization is performed in the OpenGL
rendering pipeline.

The fragment programs then test for ray-patch intersections. A schematic overview of
our GPU reconstruction / visualization pipeline is shown in Figure 6.2.

Compared with standard models for volume visualization, such as trilinear interpo-
lation based on a simple cube partition, trivariate splines have a much more complex
structure. In order to keep bus traffic, memory consumption, and data access on the
GPU as low as possible, data streams have to be organized appropriately. We therefore
develop an implicit scheme for the encoding of the bounding geometry of the relevant
tetrahedra. Our implicit scheme exploits the uniform structure of the underlying tetra-
hedral partitions to prevent explicit usage and storage of the geometry. This is of major
importance for efficient visualizations based on trivariate splines, since otherwise, the
storage required for the bounding geometry of real-world data sets exceeds the available
GPU memory. In order to encode the necessary bounding geometries, i.e., the active
tetrahedra, we construct a triangle strip for each of the 24 generic tetrahedra within
the unit cube for the splines based on the type-6 partition ∆6 and accordingly, we con-
struct a triangle strip for each of the 144 tetrahedra in one truncated octahedron for the

71

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 0 1 1 0 0 1 0

0 1 1 2 3 3 3 4

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q0 Q2 Q3 Q6

Qclass

Qscan

Qactive

Figure 6.3: Illustration of parallel stream compaction using prefix scans. For each entry with a 1 in
Qclass, Qscan contains a unique address into the compressed array Qactive. The sum of the last entries
of Qclass and Qscan gives the size of Qactive.

quadratic C1-spline. These generic triangle strips are stored as separate vertex buffer
objects (VBOs) on the GPU. Each VBO is then used to draw all the active tetrahedra
of its type by using instancing.

6.1.1 Preprocessing for Efficient Visualization

The main purpose of our preprocessing is to determine the tetrahedra which are relevant
for visualization. We therefore develop suitable GPU kernels based on CUDA to allow for
an interactive change of isosurface. We first start a kernel thread for each cube Q in the
type-6 partition ∆6 that computes the coefficients of the determining set M ⊆ Dq(∆6)
from which the remaining coefficients can be found quickly using simple averaging. The
cube classification tests if all coefficients ofM are either below or above the isolevel. In
this case, it follows from the convex hull property of the B-form that the polynomials
in Q cannot contribute to the surface and we can exclude Q from further examination.
Otherwise, Q contains at least one tetrahedron with a visible surface patch. The result
of the classification is written in the corresponding entry of a linear integer array Qclass
of size (n+1)3: we write a 1 in Qclass if Q passes the classification test and a 0 otherwise.
From this unsorted array Qclass we construct a second array Qscan of the same size using
the parallel prefix scan from the CUDA data parallel primitives (CUDPP) library. For
each active cube, i.e., cubes with a 1 in Qclass, Qscan then contains a unique index
corresponding to the memory position in a compacted array Qactive. Since we use an
exclusive prefix scan, the sum of the last entries of Qclass and Qscan corresponds to the
number of active cubes a for the surface. In the compaction step, we reserve memory for
the array Qactive of size a. For each active Qijk, we write the index i+j ·(n+1)+k·(n+1)2

in Qactive at the position given by the corresponding entry of Qscan. An illustration of

72

. . .

. . .

. . .

...
...

...

...
...

0 1 2 3 4 5 6 7 4i . . . 4i+ 3 . . . 4095

σ − 1

j

0

←− Q0 −→ ←− Q1 −→ ←− Qi −→ ←− Q1023 −→

←− Qj·210 −→ ← Qj·210+i → ← Qj·210+1023 →
.

← Q(σ−1)·210 → ← Q(σ−1)·210+i →
.

R G

B A

R G

B A

R G

B A

R G

B A

0 1 2 i 1023

Q0 Q1 Q2 Qi Q1023

Qj·210 . . . Qj·210+i

Q(σ−1)·210 . . . Q(σ−1)·210+i

σ − 1

j

0

.

.

. . .

...
...

...
...

...

R G

B A

Figure 6.4: The layout of the textures used for the storage of the determining sets MQ for quadratic
super splines on the type-6 partition. Colors indicate the correspondence with Figure 4.3.

the parallel prefix scan is shown in Figure 6.3.
Similarly, we compact the active tetrahedra. Since we use instancing for later ren-

dering of the tetrahedra, we reserve 24 arrays Tclass,i, where each Tclass,i has size a
and corresponds to one of the 24 different orientations of the generic tetrahedra in the
type-6 partition. For each active cube Q, a kernel thread performs the classification for
T0, T1, . . . , T23 ∈ Q, now using the convex hull property of the B-form on the tetrahedra.
Note that the B-coefficients for Q have to be calculated only once and are then assigned
to the corresponding domain points on the tetrahedra using a constant lookup table.
The following stream compaction works exactly as described above, except that here we
use 24 distinct arrays Tscan,i, and the compaction is done by a set of 24 kernels (one for
each type of tetrahedron) which write their results into the arrays Tactive,i. These arrays
are interpreted as pixel buffer objects, which can be directly used to render the bounding
geometry of the piecewise polynomials. The same procedure applies for quadratic splines
on truncated octahedral partitions except that on each truncated octahedron we have
144 generic tetrahedra.

The memory requirements for the GPU preprocessing are determined by the size of the
data set as well as the number of active cubes, respectively tetrahedra, for a particular
isovalue. In the first classification step we thus need to store the data set plus two
(temporary) integer arrays of the same size for Qclass and Qscan, and the compacted array

73

Figure 6.5: A spline isosurface and its min-max octree of the quadratic super spline approximating
aneurism data. Colors indicate different node levels.

Qactive. In the tetrahedron classifications we need space for Qactive and the (temporary)
arrays Tclass,i, Tscan,i of the same size as well as the arrays Tactive,i. In our tests, we
were able to reconstruct isosurfaces consisting of several million relevant tetrahedra and
reconstruction times are in the range of 200 ms for quadratic splines, and 300 ms for
cubic splines, respectively, see also Section 6.1.3.

Optionally, we can also store the precomputed coefficients of the determining setMQ

for each active Q on the GPU. The remaining coefficients can then be quickly computed
by repeated averaging during visualization. This leads to increasing frame rates at
the cost of higher memory usage, see Section 6.1.3. Figure 6.4 exemplarily shows the
encoding scheme for quadratic splines on the type-6 partition. Since 20 B-coefficients
have to be stored for each cube we use two textures in this case. We choose the first
texture to consist of the 12 ”blue” and 4 ”red” coefficients associated with the domain
points from the determining set in four successive RGBA quadruplets. The second
texture contains the 4 remaining ”red” coefficients. In the case of cubic splines 56
coefficients have to be encoded for each cube where we use four textures. Our tests
have shown that for each active cube on average about twelve tetrahedra are relevant.
Therefore, compared to direct approaches where the B-coefficients of all polynomial
pieces are sent to the GPU our encoding decreases memory requirements by about a
factor of 4 to 6. We emphasize that each row of the textures consists of 1024 entries
corresponding with current hardware architectures where 4096 is the usual upper bound
for the maximum width and height of 2D textures. Although we use only two and four

74

Tactive,0

Tactive,1

Tactive,2

Tactive,23

pixel buffer
objects

t0×

t1×

t2×

t23×

instancing

......

T0

T1

T2

T23

Figure 6.6: The geometry of each generic tetrahedron within the type-6 partition is stored only once.
For rendering we use the instance id as an index into the arrays Tactive,i to obtain the world coordinates
of the tetrahedra.

textures, respectively, this allows to store huge spline models consisting of up to 50
million polynomials.

On machines with limited GPU resources we can do the preprocessing on the CPU.
In this case, we do not need to use prefix scans to compress the results obtained from
classification but we use spatial data structures such as min-max octrees in order to
increase efficiency. Every node in the octree is characterized by its minimal and maximal
data values fmin, fmax of its successors. Fixing an arbitrary isovalue ρ, only branches
of the octree with ρ ∈ [fmin, fmax] have to be considered. An isosurface within its
associated min-max octree is shown in Figure 6.5. For the remaining data we proceed
by exploiting the convex hull property of the B-form to indicate all tetrahedra which
possibly contribute to the final surface. In practice, we observe that these preprocessing
steps essentially reduce the amount of data (i.e. B-coefficients, bounding geometry) to
be sent to or processed by the GPU. For large isosurfaces consisting of several million
tetrahedra timings of the CPU preprocessing plus the data transfer to the GPU are in
the range of 10 seconds.

6.1.2 GPU Visualization Details

The preprocessing from the previous section provides us with the arrays Tactive,i (and op-
tionally the textures with precomputed coefficients from the determining sets) which can
be directly used as an efficient description of the bounding tetrahedra. The processing
of each of these arrays in the graphics pipeline is initiated with a single API call where
the number of tetrahedra is given by the size of Tactive,i, see Figure 6.6. In the following

75

v

vQ

−(e − vQ)

v̄

v−(e−vQ)

||v−(e−vQ)||

(0, 0, 0)

Figure 6.7: Companion point v̄ for tetrahedron vertex v and center point vQ.

we describe the details of our vertex and fragment programs where we use 24 different
shader sets for the splines on the type-6 partition, and 144 different sets for the spline on
the truncated octahedral partition. Since each tetrahedron has its dedicated vertex and
fragment programs we can almost completely avoid conditional branches in the shaders.
This is in compliance with current GPU architectures which are most efficient if shader
computations do not diverge.

Vertex Shader Computations

For every vertex vµ, µ = 0, 1, 2, 3, of a tetrahedron T , the vertex program first deter-
mines T ’s displacement vQ from a texture reference into Tactive,i using the provided
instance id. For later computation of the ray-patch intersection in the fragment shader
we find the barycentric coordinates φµ,ν , ν = 0, 1, 2, 3 as φµ,ν(vµ) = δµ,ν . In addi-
tion, we determine the companion point v̄ on the viewing ray corresponding to the
unit length extension of the vector defined by vµ + vQ and the eye point e, see Fig-
ure 6.7. The companion point is used for efficient clipping of intersections with the
tetrahedron T during fragment processing. The barycentric coordinates of the compan-
ion point, φ̄µ,ν(v̄) = φ̄µ,ν(vµ+(vµ−(e−vQ))/||vµ−(e−vQ)||), are computed according
to Section 3.3.1 where the matrices M−1

T are precomputed once for each generic tetrahe-
dron. The barycentric coordinates φµ,ν , φ̄µ,ν are then interpolated across T ’s triangular
faces during rasterization.

76

φ

φ̄

φ

φ̄

φ

φ̄

φ̄

φ̄

φ

φ̄

b30,b20

b21,b11

b12,b02

b03

Figure 6.8: Trivariate blossoming in Pq, q = 2, 3, provides us with the B-coefficients of a functional
Bézier curve.

Fragment Shader Computations

For every fragment of the front-facing triangles of the bounding tetrahedra the fragment
program test for intersections of the viewing ray with the associated polynomial p = s|T .
To do this, we first have to determine the 10 B-coefficients on p for quadratic splines,
and 20 coefficients in the cubic case, respectively. We read the data values f(vQ) and
its neighbors from the volume texture for on-the-fly computation of the polynomial
coefficients. For the cubic C1-spline 23 neighboring values need to be fetched. In the case
of quadratic super splines we need the complete 27 neighborhood since some smoothness
conditions are averaged. For splines on the truncated octahedral partition 28 neighbors
are needed. We can then obtain the bijk` according to Section 4.4 or 5.3. Alternatively, we
can use the precomputed determining sets for each Q stored as textures, see Section 6.1.1,
corresponding to five texture fetches for quadratic super splines, and fourteen fetches for
cubics, respectively. Then, only the remaining coefficients of p need to be computed by
simple repeated averaging. This method is less memory efficient but leads to a slightly
improved rendering performance. For a comparison see Section 6.1.3.

In the actual ray-surface intersection tests we need a univariate representation of p
restricted along the viewing ray. Using trivariate blossoming, we obtain a functional
Bézier curve for a simplified root finding. In addition, we can re-use intermediate results
from the blossoms for quick gradient calculation and do not need to explicitly determine
the exit point of the ray w.r.t. T for clipping of intersections against the bounding
geometry. Using the interpolated barycentric coordinates φ = (φ0, φ1, φ2, φ3) and φ̄ =
(φ̄0, φ̄1, φ̄2, φ̄3) obtained from rasterization, we can read off the B-coefficients of the
functional curve directly from the blossoms. For instance, in the cubic case we set

b30 = p[φ,φ,φ], b21 = p[φ,φ, φ̄], b12 = p[φ̄, φ̄,φ], and b03 = p[φ̄, φ̄, φ̄],

see Figure 6.8. Since intermediate results can be re-used the first step of de Casteljau’s
algorithm, which accounts for ten inner products each, has to be performed for φ and φ̄

only once. We proceed in the same way for the second de Casteljau step with b
[1]
ijk`(φ)

(resulting from the first step with φ) and φ, as well as b[1]
ijk`(φ̄) and φ̄, where i+j+k+` =

77

Figure 6.9: The effect of an insufficient number of iterations for root finding of cubic polynomials. Left:
three iterations lead to artifacts in particular near silhouettes. Right: five iterations are sufficient to
obtain precise intersections.

2, using in total eight inner products. Finally, the blossoms are completed with four
additional inner products using b[2]

ijk`(φ) and b[2]
ijk`(φ̄), i+ j+k+ ` = 1, which correspond

to the remaining de Casteljau steps on the last level. For quadratic splines this scheme
simplifies to

b20 = p[φ,φ], b11 = p[φ, φ̄], b02 = p[φ̄, φ̄].

Next, the monomial form of the Bézier curve,
∑q
i=0 xi · ti, is solved for the ray pa-

rameter t. In case of quadratic splines we can use any numerical stable scheme to find
the roots t(0), t(1) of a quadratic polynomial, see also [Sch90]. There are several ways
to obtain the roots of a cubic equation [Sch90, HE95], for example using Cardano’s for-
mula, or applying a recursive Bézier hull subdivision algorithm [SD07]. Since the first
method involves trigonometric functions and the second does not converge very quickly,
similarly to the bivariate setting in [RZHB∗08] we opt for an iterative Newton approach.
As starting values we choose t(0)

1 = −x0/x1, t
(1)
1 = (1/4(x3 + x2)− x0)/(3/4 · x3 + x2 + x1)

and t
(2)
1 = (2 · x3 + x2 − x0)/(3 · x3 + 2 · x2 + x1). Note that this corresponds to the

first Newton iteration starting with 0, 1/2, and 1, respectively. Four additional iterations
with

t
(µ)
j+1 =

(t(µ)
j)2(2 · t(µ)

j x3 + x2)− x0

t
(µ)
j (3 · t(µ)

j x3 + 2 · x2) + x1
, µ = 0, 1, 2,

suffice to find precise intersections without notable artifacts. The effect of insufficient
iterations for root finding in the cubic case is shown in Figure 6.9.

For each valid solution t ∈ t(µ), µ = 0, 1, in the quadratic case, and t(µ)
5 , µ = 0, 1, 2, in

the cubic case, respectively, the associated barycentrics φ(x(t)) are found by a simple
linear interpolation with φ and φ̄. We take the first zero t where all the components of
φ(x(t)) are positive, i.e., the intersection point lies inside T . If no such t exists we discard

78

the fragment. From the multi-affine property of the blossom (see Section 3.4.3) it follows
that the directional derivatives Dup(x(t)), see Equation (3.17), are obtained by a linear
interpolation of b[1]

ijk`(φ) and b[1]
ijk`(φ̄), with the ray parameter t, which is in the cubic case

followed by a de Casteljau step on the second level using φ(x(t)). Finally, we calculate
the gradient ∇p = (Dxp,Dyp,Dzp)T for later illumination according to Equation (3.16)
with three additional scalar products. Here, the ∂φµ/∂x, ∂φµ/∂y, ∂φµ/∂z, µ = 0, 1, 2, 3,
are precomputed once for each of the generic tetrahedra.

For clarification, we show the simplified pseudo-code of our fragment program for
cubic splines in Listing 6.1.
/∗ i n t e r p o l a t e d b a r y c e n t r i c coo rd ina t e s ∗/
in vec4 bcIn ; /∗ φ(v) ∗/
in vec4 bcOut ; /∗ φ(v̄) ∗/

f l a t in vec3 p o s i t i o n ; /∗ index in to volume tex ture ∗/
uniform sampler3D volumeTexture ; /∗ volume data s e t ∗/
uniform float i s o v a l u e ;
/∗ d e r i v a t i v e s o f the b a r y c e n t r i c coo rd ina t e s ∗/
const vec4 dphidx ; /∗ ∂φµ/∂x , µ = 0, 1, 2, 3 ∗/
const vec4 dphidy ; /∗ ∂φµ/∂y , µ = 0, 1, 2, 3 ∗/
const vec4 dphidz ; /∗ ∂φµ/∂z , µ = 0, 1, 2, 3 ∗/
. . .
void main ()
{

/∗ f e t c h 23 ne ighbor ing va lue s f o r cub i c s ∗/
getStencilFromVolumeTexture (volumeTexture , p o s i t i o n) ;
c a l cSp l i n eCoe f f s F rom Stenc i l () ;

/∗ blossoming ∗/
mat4 b l In1 = deCaste l j auLeve l1 (bcIn) ; /∗ b

[1]
ijk`

(φ) ∗/

mat4 blOut1 = deCaste l j auLeve l1 (bcOut) ; /∗ b
[1]
ijk`

(φ̄) ∗/

vec4 b l In2 = deCaste l j auLeve l2 (blIn1 , bcIn) ; /∗ b
[2]
ijk`

(φ) ∗/

vec4 blOut2 = deCaste l j auLeve l2 (blOut1 , bcOut) ; /∗ b
[2]
ijk`

(φ̄) ∗/

f loat b30 = dot (blIn2 , bcIn) ;
f loat b21 = dot (blIn2 , bcOut) ;
f loat b12 = dot (blOut2 , bcIn) ;
f loat b03 = dot (blOut2 , bcOut) ;

/∗ Newton root f i n d i n g ∗/
vec3 r oo t s = f indRoots (b30 , b21 , b12 , b03 , i s o v a l u e) ;
vec4 bcHit ; /∗ b a r y c e n t r i c s o f i n t e r s e c t i o n po int ∗/

f loat tHit=−1;
for each t in r oo t s
{

/∗ b a r y c e n t r i c s φ(x(t)) are found by l i n e a r i n t e r p o l a t i o n ∗/
bcHit = mix(bcIn , bcOut , t) ;
i f (ins ideTetrahedron (bcHit))
{

tHit = t ;
break ;

}

}
i f (tHit<0) return ; /∗ no h i t found ; d i s ca rd fragment ∗/

79

/∗ d e r i v a t i v e at i n t e r s e c t i o n po int ∗/
mat4 blHit1 = mix(blIn1 , blOut1 , tHit) ; /∗ b

[1]
ijk`

(φ(x(t))) ∗/

vec4 blHit2 = deCaste l j auLeve l2 (blHit1 , bcHit) ; /∗ b
[2]
ijk`

(φ(x(t))) ∗/

/∗ grad i en t computation ∗/
f loat nx = 3∗dot (blHit2 , dphidx) ;
f loat ny = 3∗dot (blHit2 , dphidy) ;
f loat nz = 3∗dot (blHit2 , dphidz) ;
vec3 N = normalize (vec3 (nx , ny , nz)) ;

. . . /∗ shading o f fragment , e t c . ∗/
}

Listing 6.1: Fragment shader for cell projection with cubic splines and on-the fly computation of B-
coefficients.

6.1.3 Performance Analysis

In Figure 6.10 we plot millions of tetrahedra against frames per second for our variants
of cell projection / ray casting algorithms based on trivariate splines. The numbers
correspond to a worst case scenario where the surface is filling the entire screen and
all tetrahedra are within the view port. Frame rates significantly increase for smaller
view ports as well as for close inspection of the surface, since in the latter case, not
all tetrahedra need to be processed. The largest isosurface in these tests consists of
approximately 7.5 million tetrahedra within 650 000 relevant cubes. Since we use a
4 byte index to encode the position for each T in Tactive,i we need about 29 MByte of
GPU memory for the geometry encoding in this case. For the variants using precomputed
determining sets we further need to store 20 float values per relevant cube for quadratic
super splines, which corresponds to circa 50 MByte in the above example, and for the
cubic C1-spline we need 56 float values per relevant cube, i.e., circa 139 MByte. If the
spline coefficients are computed on-the-fly then the data set itself needs to be stored on
the GPU.

As a rough estimate of shader performance we report that NVidia’s tool ShaderPerf
gives us a throughput of 143 million fragments per second for the most complex shader
(cubic splines with on-the-fly coefficients) and 778 million fragments per second for the
simplest shader (quadratic splines and precomputed determining sets). In our tests we
achieve a peak performance of about 30 million Bézier tetrahedra per second for the
variants using precomputed determining sets. In comparison, in [SWBG06] the authors
achieve a rendering performance of about 11 million quadratic surfaces on similar hard-
ware, but restrict themselves to only spheres, ellipsoids, and cylinders. In our own
tests based on the approach in [LB06] we were able to render about 500 000 quadratic
Bézier tetrahedra per second, where the main problem is that the screen space pro-
jections of the tetrahedra are done on the CPU. In addition, both approaches do not
consider splines, but the much simpler case of unconnected polynomials. The GPU
approach based on trivariate splines given in [SGS06] has a peak performance of only
850 000 quadratic Bézier tetrahedra. Further, since the authors ignore the spline struc-

80

0

10

20

30

40

50

60

0 · 106 1 · 106 2 · 106 3 · 106 4 · 106 5 · 106 6 · 106 7 · 106
Tetrahedra

F
P
S

r

r

r

r

r r r

u

u

u
u u u u

b

b

b

b

b b b

b

b
b

b
b b b b

b quadratic splines &
precomp. DS

r cubic splines & pre-
comp. DS
quadratic splines &
on-the-fly coeff.

b

cubic splines & on-
the-fly coeff.

u

Figure 6.10: A plot of millions of tetrahedra against frames per second for four variants of trivariate
splines rendering methods (quadratic splines and cubic C1-splines with precomputed determining sets
and with on-the-fly computation of coefficients). All timings were done on a NVIDIA GTX285 GPU
and a 1000× 1000 view port.

ture and encode the geometry in a naive way, this approach suffers from severe memory
limitations.

The peak rate of 30 million tetrahedra corresponds to about 60 million triangles (the
back facing triangles are culled in the triangle setup stage). This can be compared with
the peak rate of modern GPUs which are capable of processing up to 300 million triangles
in optimal conditions. Here, optimal refers to the size of the screen space projections of
triangles as well as the overdraw, i.e., the number of fragments that fall onto one single
pixel. In the rasterizer, the GPU processes batches usually consisting of 2 × 2 pixels
in parallel. If the screen-space projection of a triangle is below this value then threads
on the GPU diverge with the effect of a dropping performance. High overdraw affects
performance since many computations are done for fragments which later get overwritten
by fragments closer to the viewer. The raster operations unit (ROP) is the GPU stage
that finally writes a pixel to the frame buffer. High overdraw is also a problem in the
ROP since the number of units is limited (32 for a GTX 280 GPU) and frame buffer
writes need to be serialized. The frame rates about linearly depend on the number of
tetrahedra contributing to the surface indicating that vertex processing is one of the main
performance bottlenecks. Consider an isosurface with five million tetrahedra, where for
each tetrahedron six vertices need to be processed. On a 1000 × 1000 view port, this
corresponds to 30 vertices per pixel. The performance of our shaders using precomputed
determining sets is limited by these factors: a huge amount of small triangles and high
overdraw. This is also reflected in Figure 6.10 since the red and blue curves almost
coincide even though cubic splines have a shader complexity which is about twice as
high as for quadratics.

We have lower performance using on-the-fly computation of spline coefficients, since
in this case, more arithmetic is needed to obtain the coefficients from the data stencil.

81

0ms 100ms 200ms 300ms 400ms

Chmutov ρ = 0.21

2.3 · 105 tetrahedra

M 8.3MB, Tactive 0.9MB

57ms
64ms

40ms
28ms

Tooth ρ = 0.45

7.3 · 105 tetrahedra

M 13.5MB, Tactive 2.8MB

93ms
108ms

70ms
52ms

Vismale ρ = 0.19

3.2 · 106 tetrahedra

M 56.1MB, Tactive 12.5MB

120ms
177ms

312ms
196ms

Asian Dragon ρ = 0.5

3.5 · 106 tetrahedra

M 59.3MB, Tactive 13.4MB

143ms
201ms

323ms
208ms

MRI Head ρ = 0.36

4.8 · 106 tetrahedra

M 85.7MB, Tactive 18.3MB

141ms
211ms

466ms
357ms

Reconstruction
on-the-fly

Reconstruction
determining sets

Frame time
on-the-fly

Frame time
determining sets

Figure 6.11: Reconstruction and frame times of cubic C1-splines for a selection of data sets (see Fig-
ures 6.20, 1.1, 6.16). For each data set, the isovalue ρ, the number of active tetrahedra, the size of the
determining set M, and the size of Tactive, are given.

We furthermore need more texture fetches, which is 27 (instead of 5 for precomputed
determining sets) in the case of quadratic super splines, 28 for quadratic C1-splines
on truncated octahedral partitions, and 23 texture fetches for cubic C1-splines (14 for
precomputed determining sets). Again, the frame rates of quadratic and cubic splines
are very similar (the black and green curves in Figure 6.10), indicating that the higher
arithmetic complexity of cubics is almost compensated for by fewer texture fetches.

By using instancing we need |Tactive| 4-byte words to implicitly encode the geometry
of the tetrahedra on the surface. The memory requirements for the precomputed deter-
mining sets are determined by the number of active cubes |Qactive|. Since on average
12 tetrahedra are relevant on each Q ∈ Qactive the memory requirements are then given
by |Tactive| · |MQ|/12, where |MQ| is 20 for quadratic super splines, and 56 for cubic C1-
splines, respectively. Storing the precomputed determining set needs less memory than
the complete data set of n3 values if |Tactive| < n3 · 12/|MQ|. For example, for a data set
of size 2563 and quadratic super splines this corresponds to about 10 million tetrahedra,
and for cubic C1-splines we have 3.59 million tetrahedra. Above these values it is more
memory efficient to compute the spline coefficients on-the-fly from the volume data.

The table in Figure 6.11 exemplarily summarizes the performance of cubic C1-splines
for a selection of data sets and lists the isovalues ρ, the number of active tetrahedra, as
well as the size of the determining set M and the geometry encoding Tactive. Timings
were recorded on a GeForce GTX 285 (240 unified shader units) and CUDA 2.2. For each
data set, the first two bars show the timings of our GPU kernels (see Section 6.1.1), which
are invoked when the surface needs to be reconstructed. The on-the-fly computation

82

of coefficients is slightly faster than preparing the determining sets, since less data is
written. The most expensive part in the reconstruction is the classification, i.e., the
determination of the array Qclass. This could be improved by using appropriate spatial
data structures, e.g., min-max octrees, but the recursive nature of these data structures
makes an efficient GPU implementation challenging. In addition, the data structures
have to be rebuilt if the data itself changes over time, which is not necessary in our
simpler approach. Still, for our largest data sets the reconstruction times are in a range
of a few hundred ms and in most cases even below the rendering times of a single frame.
Compared to optimized CPU reconstruction based on octrees we achieve significant
speed-ups of up to two orders of magnitude. The per-frame rendering times are also
given for a 1000× 1000 view port with the surface filling the entire screen.

6.2 An Image Based Volume Ray Casting Approach

The performance analysis of our hybrid cell projection / raycasting algorithm and the
recent development allowing for GPU programs with an unlimited number of instructions
as well as bit logical and shift operations introduced with Shader Model 4.0 has led to
a pure geometry free volume ray casting approach for trivariate splines. For simplicity,
we only consider splines on the type-6 partition. Similar to standard GPU volume ray
casting, e.g., [KW03], we rasterize the screen-space projection of the volume’s bounding
box. For each pixel we use the fragment shader to traverse a ray throughout the volume in
a large loop. Since our trivariate splines are based on more complex tetrahedral partitions
instead of simple cubic partitions in the case of tensor-products special care has to be
taken in order to make optimal use of the GPU resources and to achieve interactive or
real-time frame rates. An efficient empty space leaping technique is of major importance
to avoid costly calculations for empty cells, see Section 6.2.1. Further, we need to quickly
traverse a ray through a relevant cube Q, i.e., we have to quickly determine the ray entry
and exit points of a ray w.r.t. the tetrahedra within Q, see Section 6.2.2. Moreover,
it is of crucial importance to keep the local register usage low and to avoid dynamic
array indexing. Otherwise, current GPUs fall back on using slow and non-cached global
memory which has an immediate negative impact on the performance.

6.2.1 Empty Space Leaping

Fast ray traversal for cubic grids using a 3D extension of the DDA algorithm for line
rasterization has been given by Amanatides and Woo [AW87]. In order to significantly
reduce the overhead for non-contributing cells we use an empty space leaping technique
based on octrees, where the rays are subdivided into non-uniform sections with each
section starting at a voxel face. Traversal schemes of this kind have been discussed by
Cohen and Sheffer [CS94]. This basic principle has been improved in the anisotropic
chessboard distance voxel traversal by Šrámek and Kaufman [vK00], but at the cost of a
more complex preprocessing. GPU implementations of these algorithms where dynamic
branching is minimized are discussed in [EI07].

83

3

2

2

2

2 2

1

1 1

1

1

1

1

1

eye

Figure 6.12: 2D illustration of fast empty space leaping based on octrees. For each empty macro region
we store the corresponding skip index (colored numbers). The lines characterized by the Heaviside
functions are shown in black. Ray sections are shown as colored arrows. Only the non-empty cells on
the finest level are tested for intersections with the isosurface (orange).

For each change of isovalue ρ we have to rebuild a skip volume data structure which
encodes the sizes of the empty octree cells (macro regions) as well as the relevant tetra-
hedra for non-empty cells. To do this, we traverse a min-max octree starting from the
root and for each node we test if ρ /∈ [fmin, fmax]. In this case, we found an empty
(macro) cube and store a 0 on the finest level, a 1 on the next level, etc. Using this
skip index ı the side length of a (macro) cube Q relative to the size of the cells at the
leaves is given by |Q| = 2ı, see Figure 6.12. Otherwise, we recursively traverse the next
level of the node. Note that each macro cube Q := Qijk covers the |Q|3 leave nodes with
indices varying from i, . . . , i+ |Q| − 1, j, . . . , j + |Q| − 1, and k, . . . , k + |Q| − 1. On the
finest level we further determine the relevant tetrahedra within each active cube Q. For
splines on the type-6 partition we can encode the relevant tetrahedra with a 24 bit tet
code where the rth bit is set if tetrahedron Tr ∈ Q, r in 0, . . . , 23, is active. We use the
finest level of the octree, i.e., we store the skip indices as 8 bit numbers at the leaves of
a full octree with the same dimension as the volume data set and combine them with
the 24 bit tet codes in one texture.

For the traversal of the macro voxels we first notice that we can reduce the number of
candidate planes which have to be tested for intersections from six to three. In each of
the three principal directions the ray segment leaves the voxel at the plane characterized
by the Heaviside function

H(x) =
{

0, x < 0,
1, x ≥ 0.

84

Let d = (dx, dy, dz)T be the ray direction, then we have to consider the left plane of the
voxel if H(dx) = 0, and the right plane for H(dx) = 1, analogously for dy and dz, see
Figure 6.12. For each (macro) cube Q := Qijk with side length |Q| = 2ı we thus obtain
the ray parameters of the intersections with the axis parallel planes of Q by

tx = i+ |Q| ·H(dx)− ox
dx

, ty = j + |Q| ·H(dy)− oy
dy

, tz = k + |Q| ·H(dz)− oz
dz

,

where o = (ox, oy, oz)T is the ray origin. We take the smallest t ∈ {tx, ty, tz} and proceed
to the next grid cell Q̃ where the cell indices on the finest octree level are found by

i = box + t · dx + ε · sign(dx)c,

analogously for j and k, with a small offset ε > 0 added for numerical reasons, see [EI07].
If the tet index equals zero we have to continue the traversal of empty (macro) cubes and
the corresponding macro cube index is given by the next decimal multiples bi/|Q̃|c · |Q̃|,
analogously for j and k. Otherwise, we have found a relevant cube and proceed by
traversing the tetrahedra of Q̃.

6.2.2 Tetrahedra Traversal
We can quickly determine the exit point ṽ of the viewing ray w.r.t. a generic tetrahe-
dron T using the four plane equations of T . Let v = (vx, vy, vz, 1)T ∈ R4 be the entry
point of the ray. Note that the coefficients of the plane equations correspond to the rows
of the precomputed matrix M−1

T , see Section 3.3.1. We can thus consider the compo-
nents of φ(v) as the results of plugging v into the four plane equations of T and compute
the barycentric coordinates as φ(v) = M−1

T v. Analogously, we compute the directional
coordinates of the ray direction d = (dx, dy, dz, 0)T ∈ R4 as a(d) = M−1

T d which corre-
sponds to plugging the direction vector into the four plane equations. The intersection
of a point on the ray with the µth plane of T , µ = 0, 1, 2, 3, is now characterized by

φ(v) + αµ · aµ(d) = 0, αµ ∈ R.

Solving for αµ,

αµ = − φ(v)
aµ(d) .

We now seek for the smallest α := min(αµ, αµ > 0) and compute the barycentric coor-
dinates of the exit point ṽ as

φ(ṽ) = φ(v) + α · a(d).

If T is not relevant, i.e., the respective bit in the tet code is not set, we proceed
with the next tetrahedron. The neighboring tetrahedron of T is found from a constant
table addressed with T ’s index and the plane index µ. Otherwise, we have to determine
the B-coefficients of p = s|T . This can be done by either repeated averaging of the
appropriate coefficients from the determining set, or we directly compute the coefficients

85

from the stencil. For intersection with the polynomial p we proceed using blossoming as
described in Section 6.1.2 with the exception that clipping of intersection points with T
is simplified: by using the exit point instead of an arbitrary point on the ray we just
have to check if 0 ≤ t ≤ 1.

The pseudo-code of our fragment program is shown in Listing 6.2.
uniform usampler3D skipVolume ;
uniform sampler3D volumeTexture ;

in vec3 rayOr ig in ; /∗ point on the bounding box o f the data s e t ∗/
in vec3 rayDir ;

void main ()
{

rayDir = normalize (rayDir) ;
ivec3 cubeIndex = ivec3 (f loor (rayOr ig in)) ;

/∗ i n i t i a l i z e o c t r e e t r a v e r s a l ∗/
vec3 rayDirInv = 1 .0 / rayDir ;
vec3 signR = sign (rayDir) ;
vec3 H = clamp(signR , 0 , 1) ; /∗ Heavi s ide ∗/

while (i n s i d e volume)
{

unsigned int skipCode = texelFetch (skipVolume , cubeIndex) ;
unsigned int tetCode = skipCode >> 8 ;

i f (tetCode) /∗ we have r e l e v a n t t e t rahedra in Q ∗/
{

getStencilFromVolumeTexture (volumeTexture , cubeIndex) ;
ca lcDetermin ingSetFromStenc i l () ;
/∗ t r a n s l a t e Q to the o r i g i n ∗/
vec4 vIn = vec4 (rayOr ig in − (cubeIndex + vec3 (0 . 5)) , 1) ;
/∗ get index o f f i r s t T along the ray ∗/
int t e t Index = getTetIndexFromPoint (vIn) ;

while (i n s i d e Q)
{

mat4 Mi = getInverseTetrahedronMatr ix (te t Index) ;
vec4 bcIn = Mi∗vIn ;

/∗ f i n d e x i t po int ∗/
vec4 a = Mi∗ rayDir ;
vec4 alpha = −bcIn /a ;
f loat alphaMin = findMinimumPositiveAlpha (alpha) ;

i f (tetCode & (1 << t e t Index))) /∗ T i s r e l e v a n t ∗/
{

calcRemainingCoeffsFromDeterminingSet (te t Index) ;
vec4 bcOut = bcIn + alphaMin∗a ;
i f (in te r s ec t i onFound (te t Index))
{

shadeFragment () ;
return ;

}
}
/∗ f i n d next te t rahedron ∗/
int planeIndex = f indPlaneIndex (alphaMin) ;
t e t Index = getNeighbor ingTetrahedron (tetIndex , planeIndex) ;

86

i f (t e t Index == −1)
break ; /∗ we have l e f t Q ∗/

vIn = vIn + alphaMin∗ rayDir ; /∗ advance t e t entry po int ∗/

} /∗ end whi l e (i n s i d e Q) ∗/
} /∗ end i f (tetCode) ∗/

/∗ empty space l e ap ing ∗/
/∗ d i r e c t l y go to ne ighbor ing ”macro” cube ∗/
int sk ipIndex = skipCode & 0xFFFF;
int cubeSize = 1 << sk ipIndex ; /∗ |Q| ∗/
ivec3 macroCubeIndex = (cubeIndex >> sk ipIndex . xxx) << sk ipIndex . xxx ;
vec3 t = (macroCubeIndex + H ∗ cubeSize − p o s i t i o n) ∗ rayDirInv ;
f loat tMin = min(t . x ,min(t . y , t . z)) ;
/∗ advance ray ∗/
cubeIndex = ivec3 (f loor (rayOr ig in + tMin ∗ rayDir + eps ∗ signR)) ;

} /∗ end whi l e (i n s i d e volume) ∗/
}

Listing 6.2: Fragment shader for ray traversal and quadratic super splines

One problem of this approach are diverging GPU threads, e.g., a ray in a batch hits
relevant cubes while the others traverse empty space. In this case, the threads have to
wait for the slowest ray to finish and GPU utilization is far below the optimum. We
thus further improved the performance of our volume ray casting for trivariate splines
about more than 50% by using two rendering passes. In the first pass we determine the
ray parameter tstart of the intersection with the first relevant cube, and we analogously
determine tend, which corresponds to the exit point of the last relevant cube along the ray.
In the second pass, ray traversal for each fragment directly starts with the first relevant
cube using tstart, and fragments with no relevant cubes along the ray do not need to be
further processed. This way, the number of diverging threads in a batch is significantly
reduced and GPU utilization is improved.

The two rendering passes do not completely eliminate diverging threads. Still, rays
exists that take more complex paths than others, in particular rays that hit a relevant
cube Q along their way but do not have an intersection with the isosurface within Q,
see Figure 6.13. To alleviate this problem we ported our kernel to CUDA where we can
make use of a persistent thread pool, see also the recent paper by Aila and Laine [AL09].
Here, each kernel thread just runs in an infinite loop. If ray traversal for one pixel is
finished the thread does not wait for the others but immediately continues by restarting
ray traversal with a new ray obtained from the thread pool. This way, GPU utilization
is further improved resulting in a significant performance gain, see Section 6.2.3.

6.2.3 Performance Analysis
In Figure 6.14 we plot the frames per second against millions of tetrahedra on a 1000×
1000 view port. The blue curve is replotted from Figure 6.10 and extended for compari-
son with the hybrid cell projection / ray casting approach. The red dashed curve shows
the performance of our image based algorithm using shader programs in the OpenGL
graphics pipeline. While the blue curve declines with increasing number of tetrahedra
the frame rates of our image based approach are much less dependent on the size of the

87

Figure 6.13: Illustration of ray path complexity. Green denotes regions where rays do not hit any relevant
cubes. These rays are already eliminated in the first rendering pass. Red denotes regions where rays
traverse relevant cubes but miss the isosurface. A more saturated red tone indicates more relevant cubes
along the ray path. The right picture is a close-up into the eye of the skull.

isosurface and are roughly three to four times higher for large surfaces consisting of sev-
eral millions of tetrahedra. For very large isosurfaces (more than 12 million tetrahedra)
performance of the hybrid approach drops below one frame per second while the frame
rates in the pure image based ray casting stay almost constant.

The performance gain of our CUDA kernels using persistent threads (green curve in
Figure 6.14) is even more impressive. Here, we achieve real-time frame rates (more
than 25 FPS) even for the largest isosurfaces under consideration with more than 20
million tetrahedra and performance is roughly three times higher than using OpenGL
even though the kernels run on the same hardware.

The complex CUDA architecture is organized as a number of multiprocessors (MP)
each consisting of eight scalar processor cores. In order to hide memory access latencies
each MP is capable of running hundreds of concurrent lightweight threads with thread
scheduling being done by the hardware with no overhead. This concept is labeled SIMT
(single instruction, multiple threads) in analogy to SIMD architectures. On each MP the
cores further share a certain amount of registers and on-chip shared memory. The DRAM
on the graphics board is structured into non-cached local and global memory, and cached
constant and texture memory. Local memory is only accessible by the multiprocessors
and its use is determined by the CUDA compiler if the register space is insufficient for
the code to run or when dynamic array indexing is used. For maximum performance the
use of this off-chip and non-cached local memory should be avoided. Further aspects that
affect performance on a CUDA device are related to memory access patterns and latencies
arising from register read-after-write dependencies. For a more in-depth discussion of
the CUDA architecture and performance guidelines see [NVI09a, NVI09b].

We use texture memory for storing the volume data set and the acceleration data
structure. Constant tables such as the plane equations of the generic tetrahedra are

88

0

10

20

30

40

50

60

0 · 106 2 · 106 4 · 106 6 · 106 8 · 106 10 · 106 12 · 106 14 · 106 16 · 106 18 · 106 20 · 106 22 · 106
Tetrahedra

F
P
S r

r

r

r
r r r r r

u

u

u

u

u u

u u u

b

b

b

b

b b b b b

b

b

b

b

b b
b b b

quadratic splines (image based),
CUDA & persistent threads

u

cubic splines (image based),
CUDA & persistent threads

b

b quadratic splines & precomputed
DS (cell projection)

r quadratic splines (image based),
OpenGL

Figure 6.14: A plot of millions of tetrahedra against frames per second for several isosurface visualization
methods based on trivariate splines. Green curve: image based ray casting for quadratic super splines
using CUDA and persistent threads. Black curve: image based ray casting for cubic C1-splines using
CUDA and persistent threads. Red curve: image based ray casting for quadratic super splines using
OpenGL. Blue curve: hybrid cell projection / ray casting for quadratic splines using precomputed
determining sets (replotted from Figure 6.10). All timings were done on a NVIDIA GTX285 GPU and
a 1000× 1000 view port.

stored in constant memory. The limited number of registers is one of the main factors
which affect the performance of our CUDA kernels. To reduce the number of registers
for each thread we use on-chip shared memory to store the coefficients of the determining
set. Then, our kernels for quadratic super splines use 70 registers. The thread scheduler
can optimize register memory bank conflicts when the number of threads running on one
MP is a multiple of 64. On the NVidia GTX 280 with 16384 registers per multiprocessor
the optimal number of threads that should be started on each MP is thus 192. For cubics
our kernels need 108 registers corresponding to 128 concurrent threads on each MP. We
further expect our kernels to scale well with increasing hardware resources. The next
generation GPUs by NVidia double the number of scalar processor cores from 240 (GTX
200 series) to 480 (GTX 400) which should be reflected in a significant performance gain.

For the sake of simplicity of the preprocessing and to achieve a constant number of
texture accesses in the traversal of macro-cubes we store the skip codes at the leaves of a
full octree. The memory requirements of our acceleration structure are thus equal to the
size of the volume data set. On GPUs with 1 GByte texture memory we can therefore
handle data sets with up to 5123 voxels.

6.3 Results

We develop the first GPU-based algorithms for high quality rendering from volume
data using trivariate splines, where we exploit the spline structure and uniformity of
the underlying tetrahedral partitions in order to achieve high frame rates for real-world

89

Figure 6.15: MRI scan (1922 × 126 voxels, approximately 4.8 million tetrahedra) volume clipped with
the plane x = 0.

data sets. In particular, we give the first visualizations of quadratic and cubic quasi-
interpolating C1-splines. We have shown that interactive and high-quality visualizations
of volume data with varying isosurfaces based on trivariate splines can be efficiently
performed on modern GPUs. Our approaches benefit strongly from the mathematical
properties of the splines such as small data stencils and stable evaluation of the low-
degree B-form polynomials. We have given an efficient algorithm based on a hybrid cell
projection / ray casting as well as a pure image based ray casting. Our methods scale
well with the fast developing performance of modern graphics processors and will directly
benefit from increased numbers of multiprocessors and texture units. The proposed
algorithms can be used for an interactive variation of isolevels as well as for applications
where the data itself varies over time, e.g., simulations and animations. The visual
quality and performance of our approaches are more than competitive with existing
techniques for isosurface visualization from volume data.

We demonstrate our results with a series of data sets. VisMale, Tooth, and Foot (see
Figure 1.1), and Aneurismn (see Figure 2.2, top) are medical data sets publicly avail-
able from the US Library of Medicine, and the Universities of Tübingen and Erlangen,
respectively. The Bonsai (see Figure 2.2, bottom) and Neghip (Figure 6.18) data sets
are also available from the University of Tübingen. Figure 6.15 shows a MRI scan of a
head clipped with the plane x = 0. The Asian Dragon in Figure 6.16 is generated from a
signed distance function on the original triangle mesh. Figures 6.17, 6.19, 6.20, and 6.21
are examples of synthetic data obtained from sparsely sampled smooth functions. In
Figure 6.22 we give some examples of surfaces reconstructed from Cryo-EM data. All
results demonstrate the high visual quality and smooth shading of our method.

Standard techniques from Computer Graphics are straightforward to apply to our
spline renderings, see for example Figures 1.1, 6.16, and 6.19, where we illustrate trans-

90

Figure 6.16: Ray casted isosurface of the Asian Dragon head (2563 voxels, approximately 3.5 million
tetrahedra) with noise-based procedural texturing. Right : close-up into the Dragons’ mouth where the
C1-continuous boundary curves on the outside of each cube Q in � are shown in black

Figure 6.17: Visual comparison of isosurfaces demonstrated with a close-up on one of the spikes of
Barth’s sextic function (see Figure 5.7). From left to right: Marching Cubes, trilinear ray casting, cubic
C1-splines on type-6 partitions, quadratic C1-splines on truncated octahedral partitions.

parency, texturing, and reflection mapping, respectively. For the cell projection approach
we can obtain transparency at the cost of additional rendering passes, a technique which
is known as depth peeling [Eve01, LHLW09]. With the pure ray casting rendering of
transparent surfaces is very simple. Moreover, our splines have an inherent level of
detail, i.e., we can zoom far in without the need to refine the spline model, and visual-
izations remain smooth (see Figures 2.2, 6.16, right, and 6.17). The low total degree of
the piecewise polynomials allows us to obtain precise intersections even for the objects’
silhouettes without resorting to interval refinements or similar approaches. Precise inter-
sections are also needed for procedural texturing (see Figures 6.16, 6.19, 6.20, and 6.21),
and for volume clipping with arbitrary planes and surfaces (see Figures 6.15 and 6.23).
Furthermore, the obtained intersections are exact w.r.t. z-buffer resolution which allows
us to combine ray casted isosurfaces with standard object representations, e.g., triangle
meshes.

We proceed with a visual comparison of our results with standard approaches. The
surfaces in Figure 2.2, left, are reconstructed with trilinear ray casting. The same isolevel
obtained from cubic C1-splines is shown on the right. Figure 6.17 shows reconstructions

91

Figure 6.18: Visual comparisons of quadratic super splines (left) and cubic C1-splines (right). Top:
close-up into the aneurism data set (2563 voxels). Bottom: the reflection lines on the neghip data set
(643 voxels) in a highly oscillating region.

obtained from Marching Cubes, trilinear ray casting, quadratic C1-splines on truncated
octahedral partitions, and cubic C1-splines, respectively with a close-up into one of
the spikes of the Barth sextic function. As can be seen from the figures trivariate
splines appear smoother and much more natural having an overall higher visual quality
with almost no tessellation artifacts. For instance, using our approach the leaves of
the Bonsai in Figure 2.2 possess improved boundaries with almost perfect silhouettes
while the trilinear ray casting fails to reproduce the fine structures. Because of their
approximating nature our methods are quite insensitive to noise and automatically avoid
undesired oscillation and stair casing. In Figure 6.18 we visually compare quadratic super
splines with cubic C1-splines on the type-6 partition. The close-up at the top shows that
C1-splines reduce the undesired visibility of the underlying tetrahedral partition in areas
with high curvature. Moreover, Figure 6.18, bottom, illustrates that the reflection lines
of cubic C1-splines have an improved appearance.

Our cell projection outperforms previous GPU approaches for quadratic super splines,
e.g., [SGS06], by almost two orders of magnitude and has significantly less memory
requirements for spline and geometry encoding. In contrast to the cubic C0-splines ob-
tained from MLS approximation [KOR08], our quasi-interpolants allow for on-the-fly
computation of the polynomial coefficients directly on the GPU. Therefore, we do not
need to inflate the data prior to the visualization and can thus handle significantly larger

92

Figure 6.19: Examples of a reflection mapping applied to isosurfaces reconstructed using quadratic super
splines. The pictures show different isolevels of an exponential function sampled on a 643 grid.

Figure 6.20: Varying isosurfaces of a synthetic function of Chmutov type, f(x, y, z) = x16 + y16 + z16 −
cos(7x) − cos(7y) − cos(7z), sampled on a sparse grid (643 data points) with real-time reconstruction
and rendering times.

data sets with current hardware. Since we use B-form polynomials and blossoming for
fast intersection and derivative calculation our kernels are at least on par with current
approaches, e.g., [SWBG06, LB06], for visualizations of unconnected quadratic and cu-
bic surfaces which is a much simpler setting than trivariate splines. Further, to allow for
an interactive change of isosurface for large data sets we use CUDA in the reconstruction
step, i.e., the determination of the relevant tetrahedra. Both, memory requirements and
processing speed are hereby comparable to GPU marching cubes for triangle mesh re-
construction, e.g., [TSD07]. We have also shown the principal limitations of a hybrid cell
projection / ray casting approach which lies in the nature of current GPUs to process
batches of 2 × 2 fragments. This becomes a problem if the screen space projections of
triangles are below this value and GPU threads diverge. Since this is also a problem
for the widespread refinement and subdivision methods such as PN triangles [VPBM01]
or Loop subdivision [Loo87] it is very likely that this issue will be considered in next
generation GPUs. Another problem is high overdraw, where many calculations are done
for fragments that get overwritten and the ROP stage becomes an additional bottle-
neck. As an option we could sort the tetrahedra in each frame front-to-back to improve
hardware-based early z-culling for invisible fragments [NVI08b]. Gradients at the inter-

93

Figure 6.21: Examples of smooth renderings from synthetic data sets with different texturings.

sections can be stored in an intermediate buffer for a second deferred shading [Koo07]
rendering pass to improve performance for, e.g., complex light/surface interaction, or
ambient occlusion.

Our direct ray casting approach is better suited for very large isosurface consisting
of several ten million tetrahedra. We make extensive use of an efficient empty space
skipping structure, the uniformity of the tetrahedral partition, and new GPU hard-
ware features such as bit logical and shift operations available since Shader Model 4.0.
Direct ray casting does not suffer from the overdraw problem. Diverging threads are
significantly reduced by a first rendering pass determining the first and the last relevant
tetrahedron along the ray. We can further improve GPU usage by using a pool of per-
sistent CUDA threads with each thread proceeding with a new ray once traversal of the
current ray is finished. This results in roughly three times higher frame rates compared
to the ray casting in the OpenGL graphics pipeline and 30 times higher frame rates
than cell projection for very large surfaces. We achieve real-time frame rates for the
largest isosurfaces under consideration on current graphics hardware. The performance
and memory requirements are comparable to GPU ray casting using trilinear and higher
order, e.g., tricubic, tensor products [HSS∗05]. Frame rates are significantly better than
reported on box splines [FEVM10] or volume ray casting based on MLS reconstruc-
tion [LGM∗08]. Since our acceleration structure stores the skip codes at the leaves of a
full octree we need twice as much GPU memory as for the data set itself. With limited
GPU memory streaming techniques such as bricking [PSL∗98] can be used. Memory

94

Figure 6.22: Examples of isosurfaces extracted from Cryo-EM data. Left: Bacteriophage Φ29 virus
(1713 voxels, 2 million tetrahedra). Middle: Bacterial 30S Ribosome subunit (1283 voxels, 1 million
tetrahedra). Right: Viral portal channel protein (1003 voxels, 1.2 million tetrahedra). The virus and
ribosome were reconstructed with quadratic super splines, and the channel protein with the quadratic
C1-spline on truncated octahedral partitions.

Figure 6.23: Intersecting isosurfaces reconstructed with the quadratic C1-splines on truncated octahedral
partitions. Middle: without depth adjustment. Right: intersections are exact if the correct depth values
are used.

usage can be further improved by employing a sparse octree at the cost of non-constant
memory accesses for macro cube traversal and higher overhead for stream compaction
in the preprocessing. Note that simple trilinear ray casting needs more GPU memory
than our approach if derivatives are precomputed to avoid central differencing.

Overall, cubic splines on the type-6 partition have roughly three times higher overhead
than the quadratic super splines. Cell projection is straightforward to apply to splines on
truncated octahedral partitions where approximately 50% more tetrahedra are relevant
compared to splines on the type-6 partition. The complexity of the truncated octahedral
partition makes a pure image based ray casting more challenging to implement for this
type of splines.

We conclude this chapter with some further remarks on the implementation issues.

Remark 4. The coefficients of the determining sets of the quasi-interpolating splines
can be directly obtained from the volume data by texture fetches with hardware-accelerated

95

linear interpolation. In the case of quadratic super splines this corresponds to only 20
texture accesses compared to the 27 texture fetches needed to obtain the values of the
data stencil by nearest neighbor interpolation. Nevertheless, our experience with current
GPUs shows that it is approximately 30% faster to fetch the 27 nearest neighbors instead
of obtaining the determining set by linear interpolation.

Remark 5. Geometry shaders have been introduced in Shader Model 3.0 as a new
pipeline stage in between the vertex and the fragment shaders. At first glance, geom-
etry shaders would help to remove some of the redundancies in the vertex processing of
our cell projection based algorithm, for instance the calculation of barycentric coordi-
nates. One of the problems of geometry shaders is that performance is affected by the
number of variables which are passed to the fragment stage. According to [NVI08b] geom-
etry shader performance drops by 50% if this number is higher than 20. With nine float
values per vertex (coordinates and barycentrics) and three visible triangles encoded as a
strip of five vertices we have 45 float values per tetrahedron. Hence, usage of geometry
shaders does not improve performance of our rendering approach.

Remark 6. Note that the depth of a fragment needs to be adjusted only if clipping with
arbitrary surfaces such as planes, curves or triangle meshes is required. See Figure 6.23
for an example. In this case, a fragment’s depth d is given by

d = zfar/(zfar − znear) + zfar · znear/(znear − zfar)/||x̃||,

where ||x̃|| is the length of the vector defined by the intersection point x transformed into
eye space.

96

Chapter 7

Surface Reconstruction from Unstructured
Points

In the previous chapters, we considered the reconstruction and visualization of smooth
surfaces from discrete data on regular grids. In this chapter, we address the problem of
finding a surface approximation from a different data source, namely unstructured 3D
point sets. Typically, unstructured point sets or point clouds are generated by a dense
sampling of real-world object contours by using 3D laser range scanners. Point clouds
have various applications, e.g., quality control and reverse engineering of prefabricated
parts in production processes, the digitalization of artifacts in archaeology and forensics,
or archival storage of objects of high cultural relevance such as buildings and statues.

Besides direct visualization by splatting [ZPvBG02] or ray casting [AA03, SGS06]
various approaches that reconstruct a continuous surface from its discrete representation
as point sets are known. A common and versatile continuous surface representation are
polygonal meshes. They are efficient in memory consumption and can be processed
with high performance on current graphics hardware. Therefore, the construction of
polygonal meshes has received a lot of attention and a substantial amount of literature,
algorithms and techniques on this topic has been published. The generation of a mesh
aims at finding a partition of the surface domain from an unstructured point set P. The
elements of the partition are typically triangles or quads. The notion of quality of the
resulting mesh has several meanings and can refer to the sampling rate (i.e., triangle
sizes adapt to local surface characteristics like curvature), regularity (i.e., most vertices
have degree 6), or shape (i.e., the relation between inscribed and circumscribed circles)
of the elements, see Figure 7.1. Many post-processing algorithms such as subdivision
or mesh compression, and numerical simulations profit from nicely shaped triangles and
regularity of the meshes.

To obtain a triangulation from some surface representation one can choose between
several approaches. We give a brief overview of this related work in Section 7.1. A cer-
tain type of method depends on a projection which maps newly created vertices onto
the surface. These projective methods are especially well suited for advancing front al-
gorithms which allow for generation of high-quality meshes that adapt to local surface
curvature. A very popular projective method is the Moving Least Squares (MLS) ap-
proach for surface reconstruction. The power of MLS surfaces is the ability to naturally
cope with input noise in the data.

However, we show in this chapter that the MLS approach has some deficiencies and

97

Figure 7.1: The Bunny model. Left: A typical mesh reconstructed from measured points (35k vertices).
Right: The same model in a high-quality triangulation (about 10k vertices).

can lead to problems in the computation of both the tangent plane and the polyno-
mial approximation of the surface. Additionally, points that are beyond the vicinity of
the surface are not guaranteed to be correctly projected with MLS. We propose a new
projection method that does not involve a non-linear optimization or similar problem.
The approximated points are iteratively collected compromising connectivity informa-
tion. We enhance the orientation of the local coordinate system to further improve the
method. Furthermore, in our method we can project points which have arbitrary dis-
tance to the surface. In a first step we find a local parameter domain; this is closely
related to the Cocone [ACDL00] algorithm. In a second step we approximate the surface
by a polynomial. Unlike MLS, we do not use a fixed polynomial degree but adapt the de-
gree depending on the location of the points to be approximated. Some scanning device
estimate a normal for each point, but often the normals are unreliable due to the lighting
conditions (i.e., shadows, reflections) in the scanning process. Our method works very
well in these cases, since we do not rely on precomputed normals of the points. The
results confirm that our method is more robust and also accelerates triangulation due
to a preprocessing step that needs to be done only once per data set. An example of the
triangulations obtained by our method is shown in Figure 7.2.

98

Figure 7.2: Triangulation of the Lucy model using our new projection method.

7.1 Related Work

In surface reconstruction methods from measured data we distinguish between ap-
proaches that consider the structure of the acquired data, such as range images, and
methods based on unstructured points. Popular representatives of the first class are
Turk and Levoy’s zippered range images [TL94a], and volumetric range image process-
ing (VRIP) by Curless and Levoy [CL96b]. Here, we concentrate on reconstruction
methods from unstructured point sets.

Some authors proposed to construct an implicit function from an unstructured point
set P that partitions the space into interior and exterior [HDD∗92, Kol05, KBH06]. The
surface is then defined by the function’s kernel [BW97]. As a result these functions nicely
close unintended gaps in the point cloud but are not able to reconstruct surfaces with
borders. The final surface is often extracted as a triangular mesh by applying marching
cubes. However, this usually leads to aliasing or oversampling and badly shaped trian-
gles. A remeshing algorithm can be applied to the mesh obtained from marching cubes
to improve the quality in a post process [AdVDI03, SG03, FZ09, FAKG10]. One prob-
lem here is that most remeshing algorithms are based on a reparameterization which is
expensive to compute and can be non-trivial for very large models [SFS05].

Computational geometry approaches such as Alpha Shapes [EM92, BB97], (Power)
Crust [ABK98, ACK01, ACK00] and Cocone [ACDL00, DG01, DGH01] usually apply a
Delaunay triangulation as a basic step. Although these methods often provide theoretical
reconstruction guarantees, the number of generated vertices and triangles cannot be
directly controlled but is related to the cardinality of P, and triangulations are not free
from overlaps. Another problem is the direct reflection of measurement noise: In its

99

Figure 7.3: Left: 2D illustration of the general principle of projective methods for triangle mesh gener-
ation. The current front (red) is extended by predicting a new point (blue) which gets projected onto
the surface (green). Right: Riemannian vs. Euclidean distance: the blue points have a small Euclidean
(red), but large Riemannian distance (green) on the surface and should not be considered as neighboring
points in the weighting.

basic form, the Cocone is only suitable for noise-free surfaces. An extensions of the
Cocone for noisy point sets has been given by Dey and Goswami [DG04].

Projective methods like advancing front successively construct a triangulation from
the border of the triangulated domain (the front), starting with an initial triangle. The
general principle has been proposed by Hartmann [Har98] to obtain high-quality triangu-
lations of smooth implicit functions. New points are predicted by some heuristic, e.g, by
mirroring the vertex opposite to the current front edge, and then projected onto a locally
reconstructed surface, see Figure 7.3, left, for a 2D illustration. Hartmann proposed the
topological operations merge and split to handle the special cases of two meeting fronts
or a front crossing itself. This method has been later extended such that edge lengths
adapt to local curvature and has been applied to real-world data [KS01, SFS05, SSS06a].
The projection step onto the locally reconstructed surface can be done with, e.g., the
MLS method [Lev98, ABCO∗01, ABCO∗03]. In a first step the MLS method calculates
the tangent plane of the surface near the point that is to be projected. Next, the surface
is locally approximated with a polynomial in the parameter domain defined by the tan-
gent plane. Unfortunately, finding this plane involves a non-linear optimization problem
that can only be solved numerically, e.g., by using conjugate gradients. Scheidegger et
al. [SFS05] propose a heuristic to find an appropriate initial value for the gradient de-
scend solver. To be able to robustly solve the involved optimization problem the point to
be projected must be within the vicinity of P. Furthermore, as pointed out by [AK04],
the solution of the optimization problem does not always lead to a tangent plane of the
surface but can significantly differ from the correct plane. Calculating the polynomial
can lead to similar problems if different regions of the surface approach each other. As a
result, points whose Euclidean distance is small are taken into consideration even though
their Riemannian distance is large.

100

Figure 7.4: 2D illustration of the Cocone algorithm for surface reconstruction. First, the poles (orange)
are determined for each Voronoi cell (blue). The co-cones are shown in green. Two neighboring points
are connected if their co-cones meet at a common edge of their corresponding Voronoi cells.

We aim at curing the situation described above with an improved projection method
that does not involve solving a non-linear optimization problem. The method makes use
of connectivity information and uses a variable degree for the polynomials to improve
robustness of the polynomial approximations.

7.2 A New Projection Method for Point Set Surfaces
Many problems of finding the local parameter planes and polynomial approximations
are caused by missing connectivity information of the points in P. Points having a small
Euclidean, but large Riemannian distance might be wrongly considered as neighboring
points, see Figure 7.3, right. With the connectivity information it is easier to create
the tangent plane and an improved polynomial free of points with high Riemannian dis-
tances. Our projection is based on a precalculation step where we establish connectivity
information to approximate the Riemannian distances of the points. This precalculation
is independent of the triangulation parameters and needs to be done only once per data
set. This results in an efficient projection method that makes use of the precalculated
data.

First, in our precalculation step, we reconstruct the surface locally at each point
pi ∈ P with bivariate polynomials of variable degree. We do so by applying weighted
least squares in a local coordinate system (LCS). To find a good approximation of the
normal and to correctly weight the points by approximate Riemannian distance, we
establish inter-point connectivity using the Cocone algorithm. Roughly speaking, this
algorithm creates a triangulation from double cones (the co-cones) centered at the pi
and which are aligned orthogonally with the poles of each Voronoi cell, i.e., the Voronoi
vertex with the farthest distance to pi. See Figure 7.4 for an illustration of the basic

101

n n

Figure 7.5: Left: the angle θ between the z-axis of the local coordinate system (LCS) and the surface
normal n of p(x) is too large. Right: a new LCS is obtained iteratively by the bisection of the z-axis
and n.

principle. To actually project a point r onto the surface, we find the closest point pi ∈ P
and project r onto the polynomial surface of pi. In order to compensate for single outliers
in the projections, we consider the polynomial surfaces of neighbors of pi and use the
component-wise median of the projections.

The Cocone algorithm guarantees that points are connected topologically correct if P
is an ε-sample with ε ≤ 0.08, which means that for each point s on the surface, there
exists a point p ∈ P which is closer to s than ε times the distance from the medial axis
to s. This guarantee is also valid for surface reconstructions based on our projection
method. MLS guarantees correct reconstruction for ε ≤ 0.01 which is only valid if point
normals are associated with P. In practice the Cocone performs well with ε up to 0.5
[ABK98]. Point normals are approximated as a byproduct and can be used to initially
align the LCS of the polynomial in the next step.

Once inter-point connectivity is calculated we transform the points of P into the LCS
centered at pi and the z-axis is aligned with the normal approximated by the Cocone
algorithm. We approximate the surface locally at each point pi ∈ P with a bivariate
polynomial p(x) ∈ Pq of variable degree q which also provides a surface normal by
∂p
∂x ×

∂p
∂y and curvature information. We use the normal of the polynomial to improve the

orientation of the LCS: if the angle between the z-axis and the surface normal exceeds a
specified threshold, we obtain a new z-axis by bisection, see Figure 7.5, and repeat the
polynomial approximation based on the new LCS. We refer to the transformation into
the LCS of a point pj ∈ P as (xj , fj) with xj = (xj , yj)T ∈ R2 and fj ∈ R. To find the
local surface approximating polynomial we minimize the sum of weighted error squares

e =
N∑
j=1

(p(xj)− fj)2 · ω
(
R̃(pi,pj)

)
, (7.1)

with the approximate Riemannian distance R̃ and the weighting function ω(d). As in

102

similar applications we set ω(d) to

ω(d) = e−
d2
h2 (7.2)

whereas h can be interpreted as smoothing factor. By default h should be set to the local
sample spacing at pi but can be increased to smooth out measurement noise [ABCO∗03].

We refer to the polynomial basis of p(x) depending on the degree q as b(x) =
(1, x, y, x2, xy, y2, . . .) and to the polynomial coefficients as c = (c1, c2, c3, c4, c5, c6, . . .).
Therefore p(x) = c · b(x)T and we can rewrite Equation (7.1) as

e =
N∑
j=1

(
c · b(x)T − fj

)2
· ω
(
R̃(pi,pj)

)
. (7.3)

To find the coefficients minimizing the error square sum we set the partial derivatives(
∂e
∂c1
, ∂e∂c2

, . . .
)

to zero which leads to the linear system of equations

Ac = d (7.4)

with

A =
N∑
j=1

b(xj)Tb(xj) · ω
(
R̃(pi,pj)

)
,

d =
N∑
j=1

b(xj)Tfj · ω
(
R̃(pi,pj)

)
.

Theoretically, every point is taken into account in order to find the minimum error
sum. However, since Equation (7.2) decays fast, in practice it is sufficient to only consider
points in a certain distance to pi. The error in a distance of 4h is almost negligible and
for 6h it is around double precision.

We approximate the Riemannian distance with the Euclidean distance but only con-
sider candidate points pj if there exists a path (given through inter-point connectivity)
from pi to pj and there is no point pk on the path with ‖pk − pi‖ > rc, where rc
is the maximum point distance. To ensure a good polynomial approximation and to
prevent the triangulation from overlapping, points are iterated in a breadth-first search,
projected onto the xy-plane and only collected if the projection does not lie within the
convex hull of already collected points, see Figure 7.6 for a 2D example.

Solely solving Equation (7.4) does not automatically lead to a good local surface
approximation. As pointed out in [HZDS01, DZ04], a surface approximation can fail if
all xj in the local coordinate system are near an algebraic surface of same or lower degree
than q. In these cases, a small variation of the points can lead to completely different
polynomials. An example is given in Figure 7.7. We can use the matrix condition κ(A)
as criterion to detect if the collected points are near an algebraic surface. However, high
matrix conditions are not only caused by points in the vicinity of an algebraic curve
but also from an inappropriate scaling. To avoid high κ we scale the points of P when

103

pi pi

Figure 7.6: Left: overlapping points in the coordinate system prevent a good approximation. Right:
(green) points not leading to overlaps are collected; (red) points whose projections intersect the convex
hull (orange) are rejected.

Figure 7.7: Points are near an algebraic surface. They might lie on a plane (left) as well as on a paraboloid
(right).

transforming them to the LCS. We observed that κ is lowest if the average point spacing
is approximately 1. The matrix condition is then a reliable criterion to check if the
points lie near an algebraic surface.

We build matrix A according to Equation (7.4) starting with an initial degree qmax
and check if κ(A) exceeds a threshold (which is independent of P). In this case, we
reduce the polynomial degree by one and rebuild A. We repeat this step until the
condition is below the threshold or we reach a degree of 1. We note that reasonable
matrix conditions lie between 200 and 400 and we can set qmax to around 5. The above
strategy allows us to use polynomials of high degree that nicely adapt to local points
without the side-effects various methods not considering matrix conditions suffer from.

7.3 Results

We have given a new projection method which is based on stable and efficient algorithms
and does not rely on non-linear or similar optimization problems. By using the Cocone

104

Figure 7.8: The Bunny ear. Left: MLS reconstruction. Right: our method.

algorithm in a preprocessing step we can estimate normals and Riemannian distance of
the points on the surface. The reconstruction guarantees of the Cocone are significantly
better than for MLS which is also valid for our projection method. Numerical problems
in calculating the local surface approximations have been reduced by considering matrix
condition and adapting the degree of the bivariate polynomials.

We implemented a mesh generation tool CloudMesh [Uhr08] with an advancing front
algorithm based on our projection method. Triangulations using MLS were performed
with Afront [SSFS07]. We provide results of our experiments with a collection of stan-
dard data sets, namely the Stanford models Lucy, Bunny and Dragon (see Figures 7.2,
7.8 and 7.9).

Data Set Bunny Lucy Dragon
Points 34 834 262 909 435 545

Connectivity 0:32 4:15 7:26
Reconstruction 7:08 50:14 84:52
Triangulation 1:55 29:55 18:00

Vertices 24 802 442 422 198 157
Triangles 49 421 881 725 389 709

Table 7.1: Timings and results for various data sets.

Figure 7.8 shows that our approach is more robust and improves the triangulation
results especially in regions of high curvature. A close-up of the dragon head (see Fig-
ure 7.9) confirms that graduation in triangle size is more plausible due to polynomial
reconstruction with variable degree and the fact that larger edge lengths can be cho-
sen than with MLS. The ratio of the diameters of the incircle and circumcircle for an
equilateral triangle is 0.5. By construction, advancing front algorithms naturally create

105

Figure 7.9: The Dragon head. Left: MLS reconstruction. Right: our method.

nearly equilateral triangles in the majority of cases. The meshes reconstructed in our
application have an average ratio of 0.46 to 0.47, which is comparable to the Afront
implementation. Further, in our tests we have 74 to 76% degree six vertices, which is
slightly better than Afront.

The preprocessing step consists of establishing connectivity and the polynomial surface
reconstruction. Here the computation time linearly depends on the number of points
in P. We note that the preprocessing step is easily parallelizable and has to be done
only once for each data set since it is independent of any triangulation parameters.
Triangulation times depend on the number of points as well as generated triangles.
As a result, objects with many highly curved areas have increased triangulation time,
see Table 7.1. All timings were done on a single core 2.4 GHz AMD CPU. The given
triangulation times are not optimal, since intermediate results are visualized during the
triangulation process.

106

Chapter 8

Summary and Discussion

In this thesis, we have investigated trivariate splines on tetrahedral partitions for data
approximation, where we focused on the practical aspects of visualizing isosurfaces from
real-world data on current GPUs. Furthermore, we presented new theoretical results for
this type of splines, where we solved the problem of finding a local data approximation
method by piecewise quadratic polynomials, which is globally C1. Finally, we presented
a new projection scheme for the reconstruction of 3D surfaces from unstructured data
points. In the following, we summarize our main results and give an outlook on further
research.

Trivariate Splines for Data Approximation
Smooth trivariate splines in B-form have several advantageous features which makes
them a very good choice for data approximation on volumetric grids. Since the poly-
nomial pieces are given in the Bernstein-Bézier form, we can rely on a large set of
well-approved tools for the evaluation of the polynomials as well as for the structural
analysis of associated spline spaces. The convex hull property of the B-form allows for
quick culling tests of tetrahedra which do not contribute to the surface. Evaluation of
the polynomials using de Casteljau’s algorithm is numerical very stable, since it is based
on convex combinations of the polynomial coefficients. This can be compared to, e.g.,
trivariate box splines, which are non-trivial to evaluate in a numerical stable way [dB93].
Blossoming as a generalization of de Casteljau’s algorithm can be used in ray casting
to obtain a univariate representation of a trivariate polynomial along the viewing ray.
Intermediate results can be reused for efficient gradient evaluation. For continuity be-
tween neighboring polynomials, simple relations of the involved coefficients have to be
fulfilled, see Section 4.4 and 5.2. On the other hand, smooth trivariate splines are very
complex spaces, since smoothness has to be established across all faces of the tetrahe-
dral partition, while at the same time, we want to approximate the given data with a
bounded error.

Various approximation and interpolation methods based on splines on tetrahedral
partitions are known, see Chapter 4. We use quasi-interpolating operators which have
significant advantages compared to classical finite element or Lagrange interpolation
methods. Our quasi-interpolation methods do not rely on splits of tetrahedra, keeping
the total number of tetrahedra low. Derivatives do not have to be known or estimated
at the grid points or across edges, and no interpolation points, which might not lie

107

on vertices of the volumetric grid, have to be defined. Further, the computational
complexity of the quasi-interpolating methods is linear in the number of data points,
and the methods are local and stable, since small and local changes of the data have
only small and local influence on the splines.

Today, only a few smooth and local trivariate quasi-interpolating schemes with guar-
anteed approximation properties and low polynomial degree are known. Examples are
the quadratic super splines and cubic C1-splines on type-6 tetrahedral partitions which
we used for high-quality visualizations of isosurfaces from volume data. The practicabil-
ity of these splines derives from the speed and stability of working with polynomials in
B-form, and the efficiency of computing the B-form coefficients, which are linear com-
binations of nearby function values. The basic challenges in these approaches are to
find a reasonable simple tetrahedral partition and an evenly distributed determining set
of the splines. Furthermore, we have to assign the coefficients of the determining set
from the data in a local neighborhood such that the spline is stable and has adequate
approximation properties, which is especially difficult for splines with a low polynomial
degree. In addititon, the tetrahedral partition has to be chosen with care, because the
approximation properties of the splines depend on the smallest angle of the triangles in
the partition.

Splines on Truncated Octahedral Partitions

We introduced a new approximation scheme in Chapter 5 generating piecewise C1

quadratics using a specific triangulation of R3. We further analyzed the convergence
properties of this new scheme and applied it for isosurface visualization from volume
data. Further, the nature of our quadratic C1-splines on truncated octahedral partitions
motivates the direct usage of data on the BCC lattice, which is a superior sampling grid
compared to the cubic lattice because equal approximation quality can be achieved with
fewer data samples. By adapting our approximation scheme to work with data on BCC
lattices, we are confident to achieve an optimal order of approximation. In a next step,
the structure of C2-splines on truncated octahedral partitions should be analyzed. First
investigations on this topic have shown that local quasi-interpolation operators with an
expected degree of four could be constructed. To our knowledge, this would be the first
C2-smooth spline approximation scheme with a lower degree than five.

Real-Time Visualization by Ray Casting

Quasi-interpolating trivariate splines of low polynomial degree are also well-suited for
real-time visualization by ray casting, which is the most flexible method for volume
visualization and which also gives the highest visual quality, see Section 2.2. The low
polynomial degree allows for analytic, or stable and efficient numeric root finding for ray
intersections. In contrast to this, most methods based on tensor-product splines rely on
interval refinement methods, which can be difficult near silhouettes.

Artifacts caused by trilinear interpolation, such as blocky silhouettes, are significantly
reduced, while the total degree of the polynomial pieces does not exceed that of trilinear

108

Figure 8.1: Virus Bacteriophage PRD1 model 1HB5 (1283 voxels). Left: quadratic super splines. Right:
trilinear interpolation.

interpolation. Compared with, e.g., triquadratic or tricubic tensor product splines, which
lead to piecewise polynomials of total degree six, or nine, respectively, our splines have
significantly lower overhead for the evaluation of the polynomials and its derivatives.
Gradients, needed for illumination, are directly available from the evaluation of the
polynomials. In contrast to this, trilinear tensor products often rely on finite differences
for gradient estimation. Besides artifacts caused by the resulting non-smooth normals,
computing finite differences is more expensive than the evaluation of the trilinear model
itself. Small data stencils are always preferable for real-time renderings of the models,
since less data values have to be fetched from memory. Features are also better preserved,
since a smaller number of coefficients has influence in the weightings. Note that the
data stencils in our methods do not exceed the size of 27 neighboring values, which
holds also true for cubics. In contrast to this, tricubic tensor products are based on a 64
neighborhood. The situation is even worse in the case of trivariate box splines [EM06,
FEVM10], where a 5× 5× 5 neighborhood is used.

Hybrid Cell Projection / Ray Casting

At the time when the first rendering method based on trivariate splines was published
in 2005 [NRSZ05], it has been a complete offline rendering method. Since then, the
increasing flexibility and performance of current GPUs has motivated several schemes
for the rendering of B-form polynomials on tetrahedral partitions. We have shown
an improved cell projection scheme for Bézier tetrahedra, which outperforms similar
schemes [LB06, SWBG06, SGS06, KOR08] both in terms of rendering performance, as
well as memory efficiency. Spline structure needs to be taken into account in order to
reduce the memory demands for storing the spline coefficients. We examined several
schemes, varying from precomputed subsets of coefficients, from which the remaining

109

coefficients can be computed on-the-fly by repeated averaging, up to a complete on-the-
fly computation of the splines on the GPU. Further, with the exception of [KOR08],
previous methods do not consider the advantages of uniform tetrahedral partitions for
the storage of the bounding geometries of the piecewise polynomials. In contrast to this,
we use an implicit scheme for geometry encoding in combination with instancing on the
GPU for an efficient rendering approach.

Cell-projection based methods are simple to implement and fit nicely into the general
rendering pipeline. For instance, texturing or clipping with arbitrary surfaces can be
done with high quality. On the other hand, we have shown the limitations of cell pro-
jection for a very large number of tetrahedra. In these cases, high overdraw occurs and
many triangles are smaller than the optimal batch size for fragment processing on the
GPU. Further, the number of vertices soon outperforms the number of visible fragments
and vertex processing becomes a bottleneck. Thus, cell projection is a good choice for
relatively small surfaces consisting of up to several hundreds of thousands of polynomials.
On the other hand, real-world volume data arising from modern scanning devices can
be very large. Today volumes of sizes up to 5123 voxels are common in medical praxis,
resulting in isosurface consisting of several ten million polynomials. This has motivated
the development of a geometry free, image based ray casting for trivariate splines.

Image Based Ray Casting

In our pure image based ray casting for trivariate splines, for each pixel in the image
plane we traverse a ray throughout the volume. Diverging threads are hereby avoided by
a fast empty space skipping scheme, as well as two rendering passes. The first rendering
pass sorts out those rays which are guaranteed to miss the surface. The remaining rays
are adjusted such that the start and end points of the rays coincide with the entry and
exit points of the first and last contributing tetrahedron, respectively, along the ray. In
the second pass we only consider rays with a potential surface intersection. For each
data cube the ray passes through, we calculate the determining set of the cube, where
we profit from the small data stencils. Next, we traverse the tetrahedra within the
cube hit by the ray. The remaining B-coefficients for each tetrahedron are calculated
by simple averages of the coefficients from the determining set. The uniformity of the
tetrahedral partition allows for a quick traversal with only a few number of conditionals.
Empty space skipping is based on octrees, which allows for an efficient traversal of
empty cells. Improved traversal methods, for example anisotropic chessboard distance
traversal [vK00], can be used, but at the cost of a more complex preprocessing when the
isosurface changes.

In the image based ray casting, we relief the GPU from the geometry processing
bottleneck, which is directly reflected by the achieved frame rates for very large numbers
of tetrahedra. Further, spline coefficients are always computed on-the-fly on the GPU
from the volume data. We thus do not have to inflate the data prior to rendering to
encode the spline coefficients. It is straightforward to extend our direct ray casting to
deal with transparent isosurfaces and full volume rendering. The image based approach
was both developed in the OpenGL graphics pipeline, as well as using CUDA, a general

110

purpose programming language and toolkit beyond the graphics pipeline. The OpenGL
approach achieves a speedup of almost an order of magnitude compared to our fastest
cell projection: for isosurfaces with more than ten million tetrahedra we have nearly ten
frames per second for image based ray casting compared to less than one frame with cell
projection. The speedup of using CUDA is even more impressive: here we have about
30 frames per second using the same hardware. The massive speedup of the CUDA
implementation is based on using persistent threads, i.e., a pool of threads, where a
thread with a fast path does not need to wait for slower threads in the same batch,
which results in a significantly better utilization of the hardware.

Conclusion and Outlook

We achieved the main goal of our work, which is to apply trivariate splines on uniform
tetrahedral partitions for real-time reconstruction and visualization of isosurfaces from
real-world volume data. Our kernels for isosurface visualization scale well with increasing
performance of GPUs. First tests with newest generation GPUs, i.e., the NVidia G400
architecture, gave us a performance gain of more than 100%. The speedup is based on
the increasing number of processing units as well as a higher register count, allowing
to process more threads in parallel. Further, our approach benefits from an improved
caching of global and texture memory.

Our rendering schemes can also be applied to alternative splines on tetrahedral par-
titions. Examples are the quintic C1-splines on type-4 tetrahedral partitions [SS04],
and the cubic C0-splines based on MLS approximation [KOR08]. However, our quasi-
interpolating operators have a number of advantages compared to the afore mentioned
methods. The quintic polynomials used in [SS04] have significantly more Bernstein co-
efficients on each tetrahedron than quadratic and cubic polynomials, namely 56 instead
of 10, and 20, respectively. Quintic splines have a higher overhead for the computation
and storage of the splines, as well as for the evaluation of the polynomials. The high
register use on the GPU makes these schemes impractical on current graphics hardware.
Different from MLS splines [KOR08], our quasi-interpolants are directly available from
appropriate weightings in a small local neighborhood. This allows for an on-the-fly com-
putation of the splines directly on the GPU and a significantly lower memory footprint
The main advantage of quintic Lagrange interpolants and cubic MLS splines are simpler
tetrahedral partitions (see Figure 4.2), which directly results in a smaller number of
tetrahedra. The higher number of tetrahedra in the type-6 partition, see Section 4.4,
and our tetrahedral partition of truncated octahedra, see Chapter 5, is a significant bur-
den for rendering schemes based on cell projection. However, we showed that a direct
and geometry free ray casting method for isosurfacing resolves the bottleneck of a high
tetrahedron count. This would also motivate to consider cubic C1 Lagrange interpo-
lation methods that rely on splits of (certain) tetrahedra in up to 24 subtetrahedra,
e.g., [NSZ05, HNSZ08, HNSZ09], for real-time data approximation and visualization.

The fast development of graphics hardware may allow us to consider splines with higher
degree than cubics for interactive reconstruction and visualization in the near future.
Another interesting field is the development of efficient GPU approaches for scattered

111

data interpolation and approximation based on trivariate splines. In this context, we
are confident to achieve better performance than comparable approaches, such as MLS
volume ray casting by Ledergerber et al. [LGM∗08].

A New Projection for Point Set Surfaces

In Chapter 7 we covered the reconstruction of surfaces from unstructured points where we
developed a new projection method for the generation of high-quality triangle meshes
in an advancing front approach. Among the various reconstruction techniques from
unstructured points, this is one of the few methods that directly generates triangle
meshes which meet certain quality criteria, such as triangle shape (almost equilateral
triangles) and vertex degree (most vertices have degree six). Further, the detail level,
i.e., average edge length, can be controlled by a few user defined parameters and the
triangulation adapts to local surface curvature by using a guidance field.

Advancing front algorithms rely on a projection step which is usually based on finding
a local surface frame by MLS approximation. To do this, a non-linear optimization
problem has to be solved which can be done only numerically and the solution depends
on finding suitable starting values for a gradient descent solver. Further, only points in
a close vicinity of the surface are guaranteed to be projected correctly. To circumvent
these problems, we propose an alternative approach to improve the stability of advancing
front algorithms for triangle mesh generation where we do not need to solve non-linear
optimization problems. Points to be projected can be within arbitrary distance to the
surface, which implies that we can generate coarser triangulations than in the MLS
approach.

In a preprocess, we first establish inter-point connectivity by using the Cocone al-
gorithm, which is based on a Delaunay tetrahedralization of the points. The Cocone
has significantly better reconstruction guarantees than MLS. The inter-point connec-
tivity allows us to approximate the Riemannian distance of the points on the surface.
This improves the stability of the polynomial approximations of the surface in a local
neighborhood, since points with small Euclidean distance, but with large distance on
the surface, are not considered in the weightings. Further, the normals obtained from
the Cocone can be used to improve the orientation of the local coordinate frame. This
preprocess is straightforward to parallelize and has to be done only once for each data
set because it is independent of triangulation parameters.

The surface is then locally approximated by bivariate polynomials of varying degree
obtained from a least squares approximation of neighboring points weighted by approx-
imate Riemannian distance. If the points are near an algebraic surface of same or lower
degree, small changes of the points can lead to completely different polynomials. To
improve the stability of the approximations, we thus reduce the polynomial degree if
the matrix condition is low. This allows us to use high degree polynomials that nicely
adapt to local surface structure while the side effects methods not considering matrix
conditions suffer from are avoided. Further, we present an improved strategy to prevent
fronts from overlapping based on constructing the convex hull of the relevant points.

112

Future Challenges of Projection Methods
One of the open problem of advancing front algorithms is the speed of the triangle
mesh generation. Triangles cannot be considered independently from each other, since
we have to account for topological events such as meeting fronts. A general problem
of surface reconstruction methods from unorganized points is a deficient sampling in
complex or occluded regions of the surface, where the scanning process fails to produce
enough points for a topological correct reconstruction. We significantly improved the
stability of advancing front in these cases, but there are still situations where the surface
is not reconstructed correctly. With an automatic detection of these regions, one could
ignore them in a first step in order to prevent the propagation of a wrongly reconstructed
area over the whole surface. Closely related to this problem is the correct recognition
of borders, as it is difficult to distinguish them with a gap in the sampling. Finally,
while advancing front works very well for organic objects, an open problem is to find a
natural way to deal with sharp features as they occur in machinery parts, for instance.
Besides starting separate fronts from sharp edges, no extension of advancing front for
sharp features has been proposed yet.

113

114

Appendix A

Publications

[1] Fuhrmann, S., Ackermann, J., Kalbe, T., and Goesele, M. Direct re-
sampling for isotropic surface remeshing. In Proceedings Vision, Modeling and
Visualization (VMV) (2010).

[2] Kalbe, T., Fuhrmann, S., Uhrig, S., Zeilfelder, F., and Kuijper, A.
A new projection method for point set surfaces. In Eurographics 2009 - Annex:
Tutorials, State of the Art Reports, Short Papers, Medical Prize, Education Papers,
Areas Papers, EG Workshop on Natural Phenomena (2009), pp. 77–80.

[3] Kalbe, T., Koch, T., and Goesele, M. High-quality rendering of interactively
varying isosurfaces with cubic trivariate C1-splines. High Performance Graphics
(HPG), New Orleans, USA, 2009. Poster Presentation.

[4] Kalbe, T., Koch, T., and Goesele, M. High-quality rendering of varying
isosurfaces with cubic trivariate C1-continuous splines. In Proceedings of 5th In-
ternational Symposium on Visual Computing (ISVC), Las Vegas, USA (2009),
pp. 596–607.

[5] Kalbe, T., Tekušová, T., Schreck, T., and Zeilfelder, F. GPU-
accelerated 2D point cloud visualization using smooth splines for visual analytics
applications. In Spring Conference on Computer Graphics (2008), pp. 111–125.

[6] Kalbe, T., and Zeilfelder, F. Hardware-accelerated, high-quality rendering
based on trivariate splines approximating volume data. Computer Graphics Forum,
special issue Proceedings Eurographics 27, 2 (2008), 331–340.

[7] Marinc, A., Kalbe, T., Rhein, M., and Goesele, M. Interactive isosurfaces
with quadratic C1-splines on truncated octahedral partitions. In Conference on
Visualization and Data Analysis (VDA) (2011).

[8] Rhein, M., and Kalbe, T. Quasi-interpolation by quadratic C1-splines on
truncated octahedral partitions. Computer Aided Geometric Design 26, 8 (2009),
825–841.

[9] Schwarzkopf, A., Kalbe, T., Kuijper, A., Goesele, M., and Bajaj, C.
Volumetric nonlinear anisotropic diffusion on GPUs. In Proceedings International
Scale Space and Variational Methods (SSVM) (2011).

115

[10] Weber, D., Kalbe, T., Stork, A., Goesele, M., and Fellner, D. In-
teractive deformable models with quadratic bases in Bernstein-Bézier form. In
Proceedings Computer Graphics International (2011).

116

Bibliography

[AA03] Adamson A., Alexa M.: Ray tracing point set surfaces. In Proceedings
Shape Modeling International (SMI) (2003), IEEE, p. 272.

[ABCO∗01] Alexa M., Behr J., Cohen-Or D., Fleishman S., Levin D., Silva
C.: Point set surfaces. In Proceedings Visualization (VIS) (2001), IEEE,
pp. 21–28.

[ABCO∗03] Alexa M., Behr J., Cohen-Or D., Fleishman S., Levin D., Silva C.:
Computing and rendering point set surfaces. Transactions on Visualization
and Computer Graphics 9, 1 (2003), 3–15.

[ABK98] Amenta N., Bern M., Kamvysselis M.: A new Voronoi-based sur-
face reconstruction algorithm. In Proceedings SIGGRAPH (1998), ACM,
pp. 415–421.

[ACDL00] Amenta N., Choi S., Dey T. K., Leekha N.: A simple algorithm
for homeomorphic surface reconstruction. In Proceedings Symposium on
Computational Geometry (SCG) (2000), ACM, pp. 213–222.

[ACK00] Amenta N., Choi S., Kolluri R.: The power crust, unions of balls, and
the medial axis transform. Computational Geometry: Theory and Applica-
tions 19, 2-3 (2000), 127–153.

[ACK01] Amenta N., Choi S., Kolluri R.: The power crust. In Proceedings Sym-
posium on Solid Modeling and Applications (SMA) (2001), ACM, pp. 249–
266.

[AdVDI03] Alliez P., de Verdière É. C., Devillers O., Isenburg M.: Isotropic
surface remeshing. In Proceedings Shape Modeling International (SMI)
(2003), IEEE, pp. 49–58.

[AK04] Amenta N., Kil Y.: Defining point-set surfaces. In Proceedings SIG-
GRAPH (2004), ACM, pp. 264–270.

[AL04] Awanou G., Lai M.-J.: Trivariate spline approximations of 3D Navier-
Stokes equations. Mathematics of Computation 74, 250 (2004), 585–601.

[AL09] Aila T., Laine S.: Understanding the efficiency of ray traversal on
GPUs. In Proceedings of High-Performance Graphics (HPG) (2009), ACM,
pp. 145–150.

117

[AW87] Amanatides J., Woo A.: A fast voxel traversal algorithm for ray tracing.
In Proceedings Eurographics (1987), pp. 3–10.

[Baj99] Bajaj C.: Data Visualization Techniques. John Wiley & Sons, 1999.

[BB97] Bernardini F., Bajaj C.: Sampling and reconstructing manifolds us-
ing Alpha-Shapes. In Proceedings Canadian Conference on Computational
Geometry (1997), pp. 193–198.

[BB08] Brunner D., Brunnett G.: Fast force field approximation and its appli-
cation to skeletonization of discrete 3D objects. Computer Graphics Forum,
special issue Eurographics Proceedings 27, 2 (2008), 261–270.

[BCX95a] Bajaj C. L., Chen J., Xu G.: Modeling with C2 quintic A-patches. In
4th SIAM Conference on Geometric Design (1995).

[BCX95b] Bajaj C. L., Chen J., Xu G.: Modeling with cubic A-patches. Transac-
tions on Graphics 14, 2 (1995), 103–133.

[BF80] Barnhill R. E., Farin G.: C1 quintic interpolation over triangles: Two
explicit representations. International Journal for Numerical Methods in
Engineering 17, 12 (1980), 1763–1778.

[BF83] Boehm W., Farin G.: Concerning subdivision of Bézier triangles. Com-
puter Aided Design 15, 5 (1983), 260–261.

[Ble90] Blelloch G. E.: Vector models for data-parallel computing. PhD thesis,
1990.

[BMDS02] Barthe L., Mora B., Dodgson N., Sabin M.: Triquadratic recon-
struction for interactive modelling of potential fields. In Proceedings Shape
Modeling International (SMI) (2002), IEEE, pp. 145–153.

[Bru98] Bruijns J.: Quadratic Bézier triangles as drawing primitives. In Proceed-
ings SIGGRAPH/Eurographics Workshop on Graphics Hardware (1998),
ACM, pp. 15–24.

[BS02] Bolz J., Schröder P.: Evaluation of subdivision surfaces on pro-
grammable graphics hardware, 2002.

[BS05] Boubekeur T., Schlick C.: Generic mesh refinement on GPU. In
Graphics Hardware (2005), pp. 99–104.

[BW97] Bloomenthal J., Wyvill B. (Eds.): Introduction to Implicit Surfaces.
Morgan Kaufmann, 1997.

[BW01] Brodlie K., Wood J.: Recent advances in volume visualization. Com-
puter Graphics Forum 20, 2 (2001), 125–148.

118

[CH90] Chui C. K., He T. X.: Bivariate C1 quadratic finite elements and vertex
splines. Mathematics of Computation 54, 189 (1990), 169–187.

[Chu89] Chui C.: Multivariate Splines. CBMS 54, SIAM, 1989.

[CJ05] Chui C. K., Jiang Q. T.: Refinable bivariate quartic C1-splines for multi-
level data representation and surface display. Mathematics of Computation
74, 251 (2005), 1369–1390.

[CKY00] Chen M., Kaufman A., Yagel R.: Volume Graphics. Springer, 2000.

[CL96b] Curless B., Levoy M.: A volumetric method for building complex mod-
els from range images. In Proceedings SIGGRAPH (1996), ACM, pp. 303–
312.

[CRZP04] Chen W., Ren L., Zwicker M., Pfister H.: Hardware-accelerated
adaptive ewa volume splatting. In Proceedings Visualization (VIS) (2004),
IEEE, pp. 67–74.

[CS94] Cohen D., Sheffer Z.: Proximity clouds - an acceleration technique for
3D grid traversal. The Visual Computer 10, 11 (1994), 27–38.

[Cse05] Csebfalvi B.: Prefiltered Gaussian reconstruction for high-quality render-
ing of volumetric data sampled on a body-centered cubic grid. In Proceed-
ings Visualization (VIS) (2005), IEEE, pp. 311–318.

[CT65] Clough R., Tocher J.: Finite element stiffness matrices for the anal-
ysis of plate bending. In Proceedings Conference on Matrix Methods in
Structural Mechanics (1965), pp. 515–545.

[CXZ05] Crawfis R., Xue D., Zhang C.: Volume rendering using splatting. In
The Visualization Handbook (2005), Hansen C. D., Johnson C. R., (Eds.),
Elsevier, pp. 175–188.

[dB87] de Boor C.: B-form basics. In Geometric Modelling (1987), Farin G.,
(Ed.), SIAM, pp. 131–148.

[dB93] de Boor C.: On evaluation of box splines. Numerical Algorithms 5, 1
(1993), 5–23.

[dBF73] de Boor C., Fix G. J.: Spline approximants by quasi-interpolants. Jour-
nal of Approximation Theory 8 (1973), 19–45.

[DG01] Dey T., Giesen J.: Detecting undersampling in surface reconstruction. In
Proceedings Symposium on Computational Geometry (SCG) (2001), ACM,
pp. 257–263.

[DG04] Dey T., Goswami S.: Provable surface reconstruction from noisy sam-
ples. In Proceedings Symposium on Computational Geometry (SCG) (2004),
ACM, pp. 330–339.

119

[DGH01] Dey T., Giesen J., Hudson J.: Delaunay based shape reconstruction
from large data. In Proceedings Symposium on parallel and large-data visu-
alization and graphics (PVG) (2001), IEEE, pp. 19–27.

[DNZ01] Davydov O., Nürnberger G., Zeilfelder F.: Bivariate spline inter-
polation with optimal approximation order. Constructive Approximation
17 (2001), 181 – 208.

[DZ04] Davydov O., Zeilfelder F.: Scattered data fitting by direct exten-
sion of local polynomials to bivariate splines. Advances in Computational
Mathematics 21, 3-4 (2004), 223–271.

[DZTS06] Dyken C., Ziegler G., Theobalt C., Seidel H.-P.: HistoPyramids
in iso-surface extraction. Tech. rep., MPI Saarbrücken, 2006.

[EHKRS06] Engel K., Hadwiger M., Kniss J., Rezk-Salama C.: Real-Time
Volume Graphics. A.K. Peters, 2006.

[EI07] Es A., İşler V.: Accelerated regular grid traversals using extended
anisotropic chessboard distance fields on a parallel stream processor. Jour-
nal of Parallel Distributed Computing 67, 11 (2007), 1201–1217.

[EM92] Edelsbrunner H., Mücke E.: Three-dimensional Alpha Shapes. In
Proceedings Workshop on Volume Visualization (1992), ACM, pp. 75–82.

[EM06] Entezari A., Möller T.: Extensions of the Zwart-Powell box spline for
volumetric data reconstruction on the Cartesian lattice. Transactions on
Visualization and Computer Graphics 12, 5 (2006), 1337–1344.

[Eve01] Everitt C.: Interactive order-independent transparency. Tech. rep.,
NVIDIA Corp., 2001.

[FAKG10] Fuhrmann S., Ackermann J., Kalbe T., Goesele M.: Direct re-
sampling for isotropic surface remeshing. In Proc. Vision, Modeling and
Visualization (VMV) (2010).

[Far86] Farin G.: Triangular Bernstein-Bézier patches. Computer Aided Geomet-
ric Design (CAGD) 3, 2 (1986), 83–127.

[Far02] Farin G.: Curves and Surfaces for CAGD, 5th Edition. Morgan-
Kaufmann, 2002.

[FEVM10] Finkbeiner B., Entezari A., Ville D. V. D., Möller T.: Efficient
volume rendering on the body centered cubic lattice using box splines. Com-
puters and Graphics 16 (2010), –.

[Fra79] Franke R.: A critical comparison of some methods for interpolation
of scattered data. Tech. Rep. NPS-53-79-003, Naval Postgraduate School
Tech.Rep., 1979.

120

[FZ09] Fu Y., Zhou B.: Direct sampling on surfaces for high quality remeshing.
Computer Aided Geometric Design (CAGD) 26, 6 (2009), 711–723.

[Har98] Hartmann E.: A marching method for the triangulation of surfaces. The
Visual Computer 14, 3 (1998), 95–108.

[HBRZ09] Hering-Bertram M., Reis G., Zeilfelder F.: Adaptive quasi-
interpolating quartic splines. Computing 86 (8 2009), 89–100.

[HDD∗92] Hoppe H., DeRose T., Duchamp T., McDonald J., Stuetzle W.:
Surface reconstruction from unorganized points. In Proceedings SIGGRAPH
(1992), ACM, pp. 71–78.

[HE95] Herbison-Evans D.: Solving quartics and cubics for graphics. In Graphics
Gems V, Paeth A. W., (Ed.). Morgan Kaufmann, 1995, pp. 3–15.

[HL93] Hoschek J., Lasser D.: Fundamentals of Computer Aided Geometric
Design. A.K. Peters, 1993.

[HLRSR09] Hadwiger M., Ljung P., Rezk-Salama C., Ropinski T.: GPU-based
volume ray-casting with advanced illumination. In Annex Proceedings Eu-
rographics (2009), pp. 39–212.

[HNR∗04] Hangelbroek T., Nürnberger G., Rössl C., Seidel H.-P., Zeil-
felder F.: Dimension of C1 splines on type-6 tetrahedral partitions.
Journal of Approximation Theory 131 (2004), 157–184.

[HNSZ08] Hecklin G., Nürnberger G., Schumaker L. L., Zeilfelder F.: A
local Lagrange interpolation method based on C1 cubic splines on Freuden-
thal partitions. Mathematics of Computation 77 (2008), 1017 – 1036.

[HNSZ09] Hecklin G., Nürnberger G., Schumaker L. L., Zeilfelder F.: Lo-
cal Lagrange interpolation with cubic C1 splines on tetrahedral partitions.
Journal of Approximation Theory 160, 1-2 (2009), 89 – 102.

[HNZ06] Hecklin G., Nürnberger G., Zeilfelder F.: Structural analysis of C1-
spline spaces on Freudenthal partitions. Journal on Mathematical Analysis
38, 2 (2006), 347 – 367.

[HS05] Hadwiger M., Sigg C.: Fast third-order texture filtering. In GPU Gems
II, Pharr M., (Ed.). Addison-Wesley, 2005, pp. 313–329.

[HSO07] Harris M., Sengupta S., Owens J. D.: Parallel prefix sum (scan)
with CUDA. In GPU Gems 3, Nguyen H., (Ed.). Addison-Wesley, 2007,
pp. 851–876.

[HSS∗05] Hadwiger M., Sigg C., Scharsach H., Bühler K., Gross M.: Real-
time ray-casting and advanced shading of discrete isosurfaces. Computer
Graphics Forum 24, 3 (2005).

121

[HZDS01] Haber J., Zeilfelder F., Davydov O., Seidel H.: Smooth approxima-
tion and rendering of large scattered data sets. In Proceedings Visualization
(VIS) (2001), IEEE, pp. 341–348.

[JBS06] Jones M., Baerentzen A., Sramek M.: 3D distance fields: a survey on
techniques and applications. Transactions on Visualization and Computer
Graphics 12, 4 (2006), 581–599.

[KBH06] Kazhdan M., Bolitho M., Hoppe H.: Poisson surface reconstruction. In
Proceedings Eurographics/SIGGRAPH Symposium on Geometry Processing
(SGP) (2006), ACM, pp. 61–70.

[KBSS01] Kobbelt L. P., Botsch M., Schwanecke U., Seidel H.-P.: Feature
sensitive surface extraction from volume data. In Proceedings SIGGRAPH
(2001), ACM, pp. 57–66.

[KFU∗09] Kalbe T., Fuhrmann S., Uhrig S., Zeilfelder F., Kuijper A.: A
new projection method for point set surfaces. In Annex Proceedings Euro-
graphics (2009), pp. 77–80.

[KKG09] Kalbe T., Koch T., Goesele M.: High-quality rendering of varying
isosurfaces with cubic trivariate C1-continuous splines. In Proceedings In-
ternational Symposium on Visual Computing (ISVC) (2009), pp. 596–607.

[KM05] Kaufman A., Mueller K.: Overview of Volume Rendering. In The
Visualization Handbook (2005), Academic Press.

[Kol05] Kolluri R.: Provably good moving least squares. In SIGGRAPH Course
Notes (2005), ACM, p. 213.

[Koo07] Koonce R.: Deferred shading in tabula rasa. In GPU Gems 3, Nguyen
H., (Ed.). Addison-Wesley, 2007.

[KOR08] Kloetzli J., Olano M., Rheingans P.: Interactive volume isosurface
rendering using bt volumes. In Proceedings Symposium on Interactive 3D
graphics and games (I3D) (2008), ACM, pp. 45–52.

[KS01] Karkanis T., Stewart A. J.: High quality, curvature dependent tri-
angulation of implicit surfaces. Computer Graphics and Applications 21, 2
(2001), 60–69.

[KTSZ08] Kalbe T., Tekušová T., Schreck T., Zeilfelder F.: GPU-
accelerated 2D point cloud visualization using smooth splines for visual ana-
lytics applications. In Proceedings Spring Conference on Computer Graphics
(SCCG) (2008), pp. 111–125.

[KW03] Krüger J., Westermann R.: Acceleration techniques for GPU-based
volume rendering. In Proceedings Visualization (VIS) (2003), IEEE,
pp. 287–292.

122

[KW05] Kipfer P., Westermann R.: GPU construction and transparent ren-
dering of iso-surfaces. In Proceedings Vision, Modeling, and Visualization
(VMV) (2005), Greiner G., Hornegger J., Niemann H., Stamminger M.,
(Eds.), pp. 241–248.

[KZ08] Kalbe T., Zeilfelder F.: Hardware-accelerated, high-quality rendering
based on trivariate splines approximating volume data. Computer Graphics
Forum, special issue Proceedings Eurographics 27, 2 (2008), 331–340.

[LB06] Loop C., Blinn J.: Real-time GPU rendering of piecewise algebraic sur-
faces. Transactions on Graphics 25, 3 (2006), 664–670.

[LC87] Lorensen W. E., Cline H. E.: Marching cubes: A high resolution 3D
surface construction algorithm. In Proceedings SIGGRAPH (1987), ACM,
pp. 163–169.

[Lev88] Levoy M.: Display of surfaces from volume data. Computer Graphics and
Applications 8, 3 (1988), 29–37.

[Lev90] Levoy M.: Efficient ray tracing of volume data. Transactions on Graphics
9, 3 (1990), 245–261.

[Lev98] Levin D.: The approximation power of moving least-squares. Mathematics
of Computation 67, 224 (1998), 1517–1531.

[LGM∗08] Ledergerber C., Guennebaud G., Meyer M., Bacher M., Pfister
H.: Volume MLS ray casting. Transactions on Visualization and Computer
Graphics 14, 6 (2008), 1372 – 1379.

[LHJ99] LaMar E., Hamann B., Joy K.: High-quality rendering of smooth
isosurfaces. Journal of Visualization and Computer Animation 10 (1999),
79–90.

[LHK∗04] Luebke D., Harris M., Krüger J., Purcell T., Govindaraju N.,
Buck I., Woolley C., Lefohn A.: GPGPU: general purpose compu-
tation on graphics hardware. In SIGGRAPH Course Notes (2004), ACM,
p. 33.

[LHLW09] Liu F., Huang M.-C., Liu X.-H., Wu E.-H.: Efficient depth peeling via
bucket sort. In Proceedings of High-Performance Graphics (HPG) (2009),
ACM, pp. 51–57.

[LL94] Lacroute P., Levoy M.: Fast volume rendering using a shear-warp
factorization of the viewing transformation. Computer Graphics 28, Annual
Conference Series (1994), 451–458.

[LM04] Lai M.-J., Méhauté A. L.: A new kind of trivariate C1 spline. Ad-
vances in Computational Mathematics (special issue: multivariate splines)
21 (2004), 273–292.

123

[Loo87] Loop C.: Smooth subdivision surfaces based on triangles. PhD thesis, 1987.

[LPC∗00] Levoy M., Pulli K., Curless B., Rusinkiewicz S., Koller D.,
Pereira L., Ginzton M., Anderson S., Davis J., Ginsberg J.,
Shade J., Fulk D.: The Digital Michelangelo Project: 3D scanning
of large statues. In Proceedings SIGGRAPH (2000), ACM, pp. 131–144.

[LS07] Lai M.-J., Schumaker L.: Spline Functions on Triangulations. Cam-
bridge Universiy Press, 2007.

[LS08] Loop C., Schaeffer S.: Approximating Catmull-Clark subdivision sur-
faces with bicubic patches. Transactions on Graphics 27, 1 (2008).

[LW01] Lai M. J., Wenston P.: Trivariate C1 cubic splines for numerical solu-
tion of biharmonic equations. In Trends in Approximation Theory (2001),
pp. 224–233.

[MJC00] Mora B., Jessel J.-P., Caubet R.: Accelerating volume rendering
with quantized voxels. In Proceedings Symposium on Volume Visualization
(2000), IEEE, pp. 63–70.

[MKRG11] Marinc A., Kalbe T., Rhein M., Goesele M.: Interactive isosurfaces
with quadratic C1-splines on truncated octahedral partitions. In Conference
on Visualization and Data Analysis (VDA) (2011).

[ML94] Marschner S., Lobb R.: An evaluation of reconstruction filters for vol-
ume rendering. In Proceedings Visualization (VIS) (1994), IEEE, pp. 100–
107.

[MMC99] Mueller K., Möller T., Crawfis R.: Splatting without the blur. In
Proceedings Visualization (VIS) (1999), IEEE.

[MRH08] Mensmann J., Ropinski T., Hinrichs K.: Accelerating volume raycast-
ing using occlusion frustum. IEEE/Eurographics International Symposium
on Volume and Point-Based Graphics (2008), 147–154.

[MS07] Manni C., Sablonnière P.: Quadratic spline quasi-interpolants on
Powell-Sabin partitions. Advances in Computational Mathematics 26, 1-
3 (2007), 283–304.

[Nie00] Nielson G.: Volume modelling. In Volume Graphics (2000), Chen M.,
Kaufman A., R.Yagel, (Eds.), Springer, pp. 29–50.

[Nie04] Nielson G.: Dual marching cubes. In Proceedings Visualization (VIS)
(2004), IEEE, pp. 489–496.

[NM05] Neophytou N., Mueller K.: GPU accelerated image aligned splatting.
In Fourth International Workshop on Volume Graphics (2005), pp. 197–242.

124

[NRSZ05] Nürnberger G., Rössl C., Seidel H.-P., Zeilfelder F.: Quasi-
interpolation by quadratic piecewise polynomials in three variables. Com-
puter Aided Geometric Design (CAGD) 22 (2005), 221–249.

[NRSZ06] Nürnberger G., Rayevskaya V., Schumaker L., Zeilfelder F.:
Local Lagrange interpolation with bivariate splines of arbitrary smoothness.
Constructive Approximation 23 (2006), 33 – 59.

[NRZ07] Nürnberger G., Rössl C., Zeilfelder F.: High-quality rendering of
iso-surfaces extracted from quadratic super splines. In Proceedings Curves
and Surfaces, Avignon (2007).

[NSZ05] Nürnberger G., Schumaker L., Zeilfelder F.: Two Lagrange inter-
polation methods based on C1 splines on tetrahedral partitions. In Approx-
imation Theory XI: Gatlinburg (2005), Chui C. K., (Ed.), pp. 101–118.

[NVI08a] NVIDIA: CUDA Compute Unified Device Architecture. Tech. rep., 2008.

[NVI08b] NVIDIA: GPU Programming Guide. GeForce 8 and 9 Series. Tech. rep.,
2008.

[NVI09a] NVIDIA: CUDA C Programming Best Practices Guide. Tech. rep., 2009.

[NVI09b] NVIDIA: CUDA Programming Guide 2.3.1. Tech. rep., 2009.

[NY06] Newman S., Yi H.: A survey of the marching cubes algorithm. Computers
& Graphics 30 (2006), 845–879.

[NZ00] Nürnberger G., Zeilfelder F.: Developments in bivariate spline inter-
polation. Journal of Computational and Applied Mathematics 121 (2000),
125–152.

[PBP02] Prautzsch H., Boehm W., Paluszny M.: Bézier and B-Spline tech-
niques. Springer, 2002.

[PS77] Powell M. J. D., Sabin M. A.: Piecewise quadratic approximations
on triangles. Transactions on Mathematical Software (TOMS) 3, 4 (1977),
316–325.

[PSL∗98] Parker S., Shirley P., Livnat Y., Hansen C., Sloan P.-P.: Interac-
tive ray tracing for isosurface rendering. In Proceedings Visualization (VIS)
(1998), IEEE, pp. 233–238.

[Ram87] Ramshaw L.: Blossoming: A connect-the-dots approach to splines. Tech.
rep., Digital Systems Research Center, 1987.

[Rei05] Reis G.: Hardware based Bézier patch renderer. In Proceedings of IASTED
Visualization, Imaging, and Image Processing (VIIP) (2005), pp. 622–627.

125

[RK09] Rhein M., Kalbe T.: Quasi-interpolation by quadratic C1-splines
on truncated octahedral partitions. Computer Aided Geometric Design
(CAGD) 26, 8 (2009), 825–841.

[RZHB∗08] Reis G., Zeilfelder F., Hering-Bertram M., Farin G., Hagen H.:
High-quality rendering of quartic spline surfaces on the GPU. Transactions
on Visualization and Computer Graphics 14, 5 (2008), 1126–1139.

[RZNS03] Rössl C., Zeilfelder F., Nürnberger G., Seidel H.-P.: Visualiza-
tion of volume data with quadratic super splines. In Proceedings Visualiza-
tion (VIS) (2003), IEEE, pp. 393–400.

[RZNS04a] Rössl C., Zeilfelder F., Nürnberger G., Seidel H.-P.: Recon-
struction of volume data with quadratic super splines. Transactions on
Visualization and Computer Graphics 4, 10 (2004), 397–409.

[RZNS04b] Rössl C., Zeilfelder F., Nürnberger G., Seidel H.-P.: Spline ap-
proximation of general volumetric data. Symposium on Solid and Physical
Modeling (2004), 74–82.

[Sch89] Schumaker L. L.: On super splines and finite elements. Journal on
Numerical Analysis 26, 4 (1989), 997–1005.

[Sch90] Schwarze J.: Cubic and quartic roots. In Graphics Gems, Glassner A.,
(Ed.). Academic Press, 1990, pp. 404–407.

[SD07] Seland J., Dokken T.: Real-time algebraic surface visualization. In
Geometric Modelling, Numerical Simulation, and Optimization (2007),
Springer, pp. 163–183.

[Sei89] Seidel H.-P.: A general subdivision theorem for Bézier triangles. In Math-
ematical Methods in Computer Aided Design (1989), Lyche T., Schumaker
L., (Eds.), Academic Press, pp. 573–582.

[Sei93] Seidel H.-P.: An introduction to polar forms. Computer Graphics and
Applications 13, 1 (1993), 38–46.

[SFS05] Scheidegger C., Fleishman S., Silva C.: Triangulating point-set sur-
faces with bounded error. In Proceedings Eurographics/ACM Symposium on
Geometry Processing (2005), Desbrun M., Pottman H., (Eds.), pp. 63–72.

[SG03] Surazhsky V., Gotsman C.: Explicit surface remeshing. In Proceed-
ings Eurographics/SIGGRAPH Symposium on Geometry Processing (SGP)
(2003), Eurographics Association, pp. 20–30.

[SGS06] Stoll C., Gumhold S., Seidel H.-P.: Incremental raycasting of piece-
wise quadratic surfaces on the GPU. In Proceedings Symposium on Inter-
active Raytracing (2006), IEEE, pp. 141–150.

126

[SJP05] Shiue L.-J., Jones I., Peters J.: A realtime GPU subdivision kernel.
In Proceedings SIGGRAPH (2005), ACM, pp. 1010–1015.

[SOM04] Sud A., Otaduy M., Manocha D.: Difi: fast 3D distance field compu-
tation using graphics hardware. Computer Graphics Forum 23, 3 (2004).

[Sor06] Sorokina T.: On the n-dimensional Clough-Tocher interpolant, 2006.

[SS04] Schumaker L., Sorokina T.: C1 quintic splines on type-4 tetrahedral
partitions. Advances in Computational Mathematics 21 (2004), 412–444.

[SS06] Stelldinger P., Strand R.: Topology preserving digitization with FCC
and BCC grids. In Lecture Notes in Computer Science: Combinational
Image Analysis (2006), Springer Heidelberg, pp. 226–240.

[SSFS07] Schreiner J., Scheidegger C., Fleishman S., Silva C.: Afront.
http://afront.sourceforge.net/, 2007.

[SSS06a] Schreiner J., Scheidegger C., Silva C.: High quality extraction of
isosurfaces from regular and irregular grids. Transactions on Visualization
and Computer Graphics 12, 5 (2006), 1205–1212.

[SSS06b] Schwarz M., Staginski M., Stamminger M.: GPU-based rendering
of PN triangle meshes with adaptive tesselation. In Proceedings Vision,
Modeling, and Visualization (VMV) (2006), pp. 161 – 168.

[SSW09] Schumaker L., Sorokina T., Worsey A.: A C1 quadratic trivariate
macro-element space defined over arbitrary tetrahedral partitions. Journal
of Approximation Theory 158, 1 (2009), 126–142.

[ST90] Shirley P., Tuchman A.: A polygonal approximation to direct scalar
volume rendering. SIGGRAPH Computer Graphics 24, 5 (1990), 63–70.

[SW04] Schaefer S., Warren J.: Dual marching cubes: Primal contouring of
dual grids. In Proceedings Computer Graphics and Applications (2004),
IEEE, pp. 70–76.

[SW08] Sorokina T., Worsey A.: A multivariate Powell-Sabin interpolant. Ad-
vances in Computational Mathematics 29, 1 (2008), 71–89.

[SWBG06] Sigg C., Weyrich T., Botsch M., Gross M.: GPU-based ray-casting
of quadratic surfaces. In Proceedings Eurographics Symposium on Point-
Based Graphics (2006), pp. 59–65.

[SZ05] Sorokina T., Zeilfelder F.: Optimal quasi-interpolation by quadratic
C1 splines on four-directional meshes. In Approximation Theory XI: Gatlin-
burg (2005), Chui C. K., Neamtu M., Schumaker L. L., (Eds.), pp. 423–438.

127

[SZ07b] Sorokina T., Zeilfelder F.: Local quasi-interpolation by cubic C1

splines on type-6 tetrahedral partitions. IMJ Numerical Analysis 27 (2007),
74–101.

[SZH∗05] Schlosser G., Zeilfelder F., Hesser J., Rössl C., Nürnberger G.,
Männer R., Seidel H.-P.: Fast visualization by shear-warp on quadratic
super-spline models using wavelet data decompositions. IEEE, pp. 45–55.

[The02] Theisel H.: Exact isosurfaces for marching cubes. Computer Graphics
Forum 21, 1 (2002), 19–31.

[TL93] Totskua T., Levoy M.: Frequency domain volume rendering. In Pro-
ceedings SIGGRAPH (1993), ACM, pp. 271–278.

[TL94a] Turk G., Levoy M.: Zippered polygon meshes from range images. In
Proceedings SIGGRAPH (1994), ACM, pp. 311–318.

[TMHG01] Theußl T., Möller T., Hlad̊uvka J., Gröller M. E.: Reconstruc-
tion issues in volume visualization. Tech. Rep. TR-186-2-01-14, Institute
of Computer Graphics and Algorithms, Vienna University of Technology,
2001.

[TSD07] Tatarchuk N., Shopf J., DeCoro C.: Real-time isosurface extraction
using the GPU programmable geometry pipeline. In SIGGRAPH Course
Notes (2007), ACM, pp. 122–137.

[TU01] Thévenaz P., Unser M.: High-quality isosurface rendering with exact
gradients. In Proceedings Visualization (VIS) (2001), IEEE, pp. 854–857.

[Uhr08] Uhrig S.: Cloudmesh. http://sourceforge.net/projects/cloudmesh, 2008.

[VdFG98] Velho L., de Figueiredo L. H., Gomes J. A.: Implicit Objects in
Computer Graphics. Springer New York, 1998.

[vK00] Šrámek M., Kaufman A.: Fast ray-tracing of rectilinear volume data
using distance transforms. Transactions on Visualization and Computer
Graphics 6, 3 (2000), 236–252.

[VKG04] Viola I., Kanitsar A., Gröller M.: GPU-based frequency domain
volume rendering. In Proceedings Spring Conference on Computer Graphics
(SCCG) (2004), pp. 49–58.

[VPBM01] Vlachos A., Peters J., Boyd C., Mitchell J. L.: Curved PN trian-
gles. In Proceedings Symposium on Interactive 3D graphics (I3D) (2001),
ACM, pp. 159–166.

[Ž70] Ženǐsek A.: Interpolation polynomials on the triangle. Numerische Math-
ematik 15, 4 (1970), 283–296.

128

[Wes89] Westover L.: Interactive volume rendering. Chapel Hill Volume Visual-
ization Workshop (1989), 9–16.

[Wes90] Westover L.: Footprint evaluation for volume rendering. Proceedings
SIGGRAPH 24 (1990), 367–376.

[WF87] Worsey A. J., Farin G.: An n-dimensional Clough-Tocher interpolant.
Constructive Approximation 3, 1 (1987), 99–110.

[WKG∗11] Weber D., Kalbe T., Goesele M., Stork A., Fellner D.: Interac-
tive deformable models with quadratic bases in Bernstein-Bézier form. In
Proceedings Computer Graphics International (2011).

[WKME03] Weiler M., Kraus M., Merz M., Ertl T.: Hardware-based ray casting
for tetrahedral meshes. In Proceedings Visualization (VIS) (2003), IEEE,
pp. 333–340.

[WMK04] Wood A., McCane B., King S. A.: Ray tracing arbitrary objects on the
GPU. In Proceedings Image and Vision Computing New Zealand (IVCNZ)
(2004), pp. 327–332.

[WMW86] Wyvill G., McPhetters C., Wyvill B.: Data structures for soft
objects. The Visual Computer 2 (1986), 227–234.

[WP88] Worsey A. J., Piper B.: A trivariate Powell-Sabin interpolant. Computer
Aided Geometric Design (CAGD) 5, 3 (1988), 177–186.

[WS01] Wald I., Slusallek P.: State of the art in interactive ray tracing. In
STAR, EUROGRAPHICS. 2001, pp. 21–42.

[XZC05] Xue D., Zhang C., Crawfis R.: iSBVR: Isosurface-aided hardware ac-
celeration techniques for slice-based volume rendering. In Volume Graphics
(2005), Kaufman A. E., Mueller K., Gröller E., Fellner D. W., Müller T.,
Spencer S. N., (Eds.), Eurographics Association, pp. 207–215.

[Zei02] Zeilfelder F.: Scattered data fitting with bivariate splines. In Tutorials
on Multiresolution in Geometric Modeling (2002), Iske A., Quak E., Floater
M. S., (Eds.), Springer, pp. 243–283.

[ZPvBG02] Zwicker M., Pfister H., van Baar J., Gross M.: Ewa splatting.
Transactions on Visualization and Computer Graphics 8, 3 (2002), 223–
238.

[ZXB07] Zhao W., Xu G., Bajaj C.: An algebraic spline model of molecular
surfaces. In Proceedings Symposium on Solid and Physical Modeling (SPM)
(2007), pp. 297–302.

129

