
Eurographics Workshop on 3D Object Retrieval (2023) Short Paper
S. Biasotti, M. Daoudi, U. Fugacci, G. Lavoué and R. C. Veltkamp (Editors)

VariGrad: A Novel Feature Vector Architecture for Geometric Deep
Learning on Unregistered Data

Emmanuel Hartman1 (elh18e@fsu.edu) Emery Pierson2 ( emery.pierson@univ-lille.fr) †

Department of Mathematics, Florida State University, Tallahassee, USA1

Institute of Mathematics, University of Vienna, Vienna, Austria 2

Abstract
We present a novel geometric deep learning layer that leverages the varifold gradient (VariGrad) to compute feature vector
representations of 3D geometric data. These feature vectors can be used in a variety of downstream learning tasks such as
classification, registration, and shape reconstruction. Our model’s use of parameterization independent varifold representations
of geometric data allows our model to be both trained and tested on data independent of the given sampling or parameterization.
We demonstrate the efficiency, generalizability, and robustness to resampling demonstrated by the proposed VariGrad layer.

CCS Concepts
• Computing methodologies → Parametric curve and surface models; Shape analysis;

1. Introduction

Geometric deep learning is an exciting field that has been rapidly
evolving in recent years. It involves applying deep learning tech-
niques to problems that involve geometric data such as point
clouds, meshes, graphs, and curves. The ability to effectively learn
from geometric data has numerous applications in fields such as
computer graphics, computer vision, and robotics. In this project,
we aim to contribute to the development of geometric deep learn-
ing by proposing a novel layer for deep neural networks. Our layer
leverages the gradient of the varifold norm to define a vector field
on a template shape which is then seen as a feature vector defined
by the input. This method has the potential to improve the accuracy
of deep learning models on geometric data, which could have a
significant impact on a wide range of applications. In the following
article, we will describe our method in detail and present experi-
mental results that demonstrate its effectiveness for 3D curves and
shape graphs.

1.1. Background & Related Work

The ability to compute similarity metrics between geometric ob-
jects is crucial in many applications. However, traditional meth-
ods that rely on aligning parameterizations can be computationally
expensive and may not be suitable for large or complex datasets.

† E. Hartman was supported by NSF grant DMS-1953244. E. Pierson
has been partially supported by by the Austrian Science Fund (grant no
P 35813-N).

Figure 1: Illustration of the proposed methodology. The input ge-
ometric data and template shape are transformed into varifold rep-
resentations and the gradient of the varifold norm is taken with re-
spect to the vertices of the template. This gradient is passed through
graph convolutional and edge pooling layers with respect to the
template edges. Resulting feature vectors can be fed into tradi-
tional deep learning frameworks for reconstruction and classifica-
tion tasks.

Varifold representations have emerged as a powerful tool for com-
puting parameterization invariant similarity terms for geometric ob-
jects. Unlike traditional approaches, varifold representations are in-
dependent of the parameterization of the data, making them well-
suited for cases where objects do not share a point-to-point cor-
respondence. The space of varifolds has been equipped with a re-
producing kernel Hilbert space (RKHS) norm. The benefits of us-
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ing this norm are that it is robust to noisy data and can be effi-
ciently computed. The RKHS norm is also differentiable, making
it suitable as a loss function for optimization-based shape match-
ing [SBC19, HSK∗23], or deep learning models for shape recon-
struction [BPAD23].

Most of the pioneering works use well-defined shape descrip-
tors to obtain a suitable representation of curves or shape graphs.
Indeed, it is theoretically possible to retrieve a curve from its ge-
ometric moments, or its affine integral signature [FKK10], that
have been applied in the context of curve classification. How-
ever, retrieving curves from such features implies solving costly
optimization problems [KS21]. The Square Root Velocity Field
framework has been used in elastic matching [SKJJ10] on 3D
curves. It has been used on face-extracted curves for face identi-
fication [VvJD∗11] and on extremal human curves [SWD14] for
human pose retrieval. However, this elastic matching approach re-
quires solving the problem of parameterization for each pair of
curves. Moreover, their extension to shape graphs remains an ac-
tive area of research [GSS21, GBNS22, SBC22].

In the recent years, a few works have shown the superiority of
deep learning-based methods over the previous approaches. How-
ever, some approaches require strong hypotheses on the data, such
as a common parameterization [HSC∗21], or an ordering of the
curve or shape graph [HE18,XJB21]. Meanwhile, a few approaches
using convolutional neural networks on binary images have been
proposed for sketch representation [QYC∗22,MKDM22]. Not only
those approaches don’t take profit from the geometric information
of curves, but they also do not extend to 3D data. Moreover, most
of those approaches require training on large datasets [SBHH16,
HE18] to be efficient.

Geometric deep learning [BBL∗17] tries to circumvent those
problems compared to the previous approaches. In particular, a few
methods address the problem of dealing with data that lacks point-
to-point correspondences or fixed shapes. Those methods interpret
point clouds with an arbitrary number of inputs as a feature vec-
tor of a single-shaped object. PointNet [CSKG17] is a notable ex-
ample of such methods, designed specifically for processing and
classifying point clouds. PointNet employs a shared multi-layer
perceptron (MLP) network to transform individual points into a
high-dimensional feature space. The feature vectors are then ag-
gregated using a symmetric function, such as max pooling, to gen-
erate a fixed-length representation of the entire point cloud. This
representation can be fed into a fully connected neural network for
classification or other downstream tasks. To overcome the limita-
tion of solely relying on point cloud information without consid-
ering connectivity and local relationships between points, the Dy-
namic Graph Convolutional Neural Network (DGCNN) [WSL∗19]
method was introduced. DGCNN utilizes k-nearest neighbors
(kNN) to establish edges between points, enabling the construc-
tion of a graph representation. By employing graph convolutional
and edge pooling layers, DGCNN generates high-dimensional fea-
ture vectors for each point and aggregates them using a sym-
metric function. This results in a fixed-length representation of
the entire point cloud that depends on the local relationships be-
tween points, which can be fed into a fully connected neural net-
work for classification or other tasks. While some other architec-

tures [MKK21,SACO22,WNEH22] have shown more expressivity
on 3D point clouds and surfaces, they rely on surface-specific op-
erators such as the Laplace-Beltrami operator [SACO22], which
cannot be used for 3D curves or shape graphs.

1.2. Contributions

In contrast, our proposed method directly operates on curves and
shape graphs rather than their vertices as point clouds. We intro-
duce a novel approach that leverages varifold representations to
construct consistent-sized feature vectors, enabling the represen-
tation of geometric data irrespective of its sampling or registration.
By utilizing varifold representations, our method captures the in-
trinsic properties of curves and shape graphs, leading to enhanced
representations for geometric data. We propose a novel solution to
this problem that leverages the differentiability of the varifold sim-
ilarity metric. We compute the gradient of the distance between a
template shape and the input shapes with respect to the points of
the template shape. The resulting gradient is a vector field on the
template shape that describes the optimal direction of deformation
of the vertices of the template to minimize the distance between
the shapes. This vector field can be interpreted as a feature vec-
tor for each input shape whose dimension is fixed regardless of the
discretization or parameterization of the input shape. Traditional
deep learning layers can process this feature vector, which is rep-
resented as a vector field lying on our template shape. Addition-
ally, the vector field can be convolved with respect to the geom-
etry of our template shape. For open curves, this is a 1D convo-
lution, and for closed curves, this convolution is performed with
cyclic padding. For surfaces and shape graphs, a graph convolu-
tion can be performed with respect to the underlying connectivity
of the template shape. This approach provides a robust and flexible
method for converting unregistered geometric objects into a fixed-
dimensional feature vector that can be utilized in traditional and
geometric deep-learning models.

2. Feature Vectors for 3D Curves and Shape Graphs

We focus on discrete 3D curves and shape graphs which are com-
posed of vertices V ⊆ R3 and linear edges E connecting these ver-
tices. However, a major challenge in working with such geometric
data is the reliance on specific parameterizations, which can make
downstream learning tasks and analysis difficult. To address this
challenge, we adopt varifold representations as a powerful tool for
characterizing and studying geometric objects without being de-
pendent on their parameterizations.

2.1. Varifold Representations of 3D Curves and Shape Graphs

In recent years, varifold representations of geometric data have
seen many applications in the field of shape analysis [SBC19,
KCC17, CT13, CCG∗20]. The space of varifolds is given by Borel
measures on the Cartesian product of R3 and the unit sphere S2

denoted by M(R3 × S2). Each discrete shape graph, C = (V,E),
is mapped to a finitely supported measure µ ∈M(R3 × S2) where
each support corresponds to each edge and is given by the cen-
troid and normalized tangent vector of the edge. The mass of the
support associated with an edge in the varifold representation is
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Figure 2: Network Architectures for Downstream Tasks: A diagram of the classifier and auto-encoder networks used for numerical experi-
ments. Unparameterized 3D curves or shape graphs are given as inputs and feature vectors are extracted via a feature vector architecture.
These feature vector architectures are then combined with the downstream architectures described in this figure and the combined networks
are trained for their respective tasks.

determined by its length. This mapping ensures that regardless of
the specific parameterization or ordering of points and edges in a
shape graph, it will be identified with the same varifold representa-
tion. The space of varifolds is equipped with a Reproducing Kernel
Hilbert Space (RKHS) norm, we define a suitable kernel function
that measures the similarity between varifolds. The kernel function
captures the inner product structure in the space of varifolds, allow-
ing us to compute distances and perform various operations. This
kernel function can be defined coordinate-wise by taking the prod-
uct of a Gaussian kernel on R3 and a Binet kernel on S2. The inner
product defined by this kernel is given by

⟨µ,ν⟩Var =
∫
R3×S2

∫
R3×S2

e−a∥x1−x2∥2
⟨u1,u2⟩2dµdν

where a is a balancing parameter. From this inner product, a dis-
tance on the space of varifolds is given by

∥µ−ν∥2 = ⟨µ,µ⟩Var + ⟨ν,ν⟩Var −2⟨µ,ν⟩Var.

We define the dissimilarity between two discrete shape graphs
C1 = (V1,E1) and C2 = (V2,E2) as the varifold distance between
the associated finitely supported varifolds µ1,µ2 respectively. In
particular, we write the dissimilarity between two shape graphs as
dVar(C1,C2) = ∥µ1 −µ2∥. As these varifolds are finitely supported
the inner product can be approximated by a sum over E1 and E2
given by

⟨µ1,µ2⟩Var = ∑
ei∈E1

∑
e j∈E2

e−a∥ci−c j∥2
⟨ui,u j⟩2lil j.

Here ci,c j denote the centroids of ei,e j, ui,u j denote the normal-
ized tangent vectors of ei,e j, and li, l j denote the lengths of ei,e j.

By utilizing varifold representations equipped with a RKHS
norm, we can effectively and efficiently capture the essential
geometric information of 3D curves and shape graphs in a
parameterization-independent manner. This allows for meaningful
and efficient comparisons, analysis, and processing of geometric
data, as well as facilitating tasks such as shape matching, recogni-
tion, and reconstruction. Moreover, the invariance of varifold rep-

resentations to parameterization changes provides robustness and
consistency in geometric deep learning tasks.

2.2. VariGrad Feature Vector Architecture

Our architecture is designed for data-driven applications where the
geometric data used for training or applying the model can be
matched to a template shape T . Leveraging this template shape,
we compute the gradient of the varifold distance between each in-
put shape and the template shape, specifically with respect to the
vertices of the template shape. This computation results in a vec-
tor field on the template that can be viewed as a representation of
the input. This data is fed into a sequence of convolutional layers
where the convolution is performed with respect to the template
shape [KW17]. The resulting vector field is concatenated into a
fixed-dimension representation of the input data regardless of the
sampling of the input data. A visual representation of the VariGrad
architecture is given in Figure 1. Moreover, we have made a Pytorch
implementation of this framework as well as the trained VariGrad
models available on Github†.

Our framework sees improved results compared to methods
that combine pointwise Multi-Layer Perceptron (MLP) and feature
point aggregation. This is mainly due to the utilization of the geo-
metric prior given by the template shape on the input data. More-
over, rather than treating the points individually our method is able
to efficiently process whole curves and shape graphs even in the
unregistered setting, thanks to their varifold representations. More-
over, as they use MLP to embed each point in the point cloud in a
high dimensional space, PointNet and DGCNN require more train-
able parameters than the graph edge convolutions [KW17] used by
VariGrad.

3. Experimental Results

The following experiments aim to compare the performance of
the proposed VariGrad layer to the commonly used PointNet and

† https://github.com/emmanuel-hartman/Pytorch_
VariGrad
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DGCNN architectures in geometric deep learning applications
where point-to-point correspondences are unknown. Each exper-
iment constructs models that utilize the PointNet, DGCNN, and
VariGrad architectures respectively to learn a consistent size fea-
ture vector. The feature vectors from these architecturesare used
in further learning tasks such as classification or shape reconstruc-
tion. Other than the differences in resources required by the differ-
ent feature vector architectures these models use the same trainable
parameters, loss functions, optimization parameters, and number of
training epochs.

3.1. Datasets

To evaluate the performance of the methods, similar networks will
be trained using these layers on two different datasets. We con-
sider one dataset of 3D curves and one dataset of 3D shape graphs
that are extracted from 3D surface data. We first extract landmarks
from the shapes available in those datasets and compute the surface
geodesics on the given shapes, giving curves that represent the pose
of the 3D shapes. An illustration of the process is visualized in Fig-
ure 3. We use this geometric data as input of the different models. In
both datasets, the extraction process produces unregistered curves
and shape graphs, meaning that there is no prior point correspon-
dence present in the data. For both of the datasets we consider, we
perform a random split between training and testing set, ensuring
that the classes (face or body identities) are well-balanced between
the two splits. Moreover, we take the template shape to be a ran-
dom shape from the corresponding dataset. The first dataset com-
prises boundary curves of human faces extracted from the COMA
dataset of human face motions [RBSB18]. The extraction process
is performed on all 20465 elements of the COMA dataset, result-
ing in 20465 closed curves in three dimensions. These curves are
unparameterized and have a variety of samplings due to the extrac-
tion process with numbers of vertices ranging from 64 to 96. This
dataset is then separated into a training set of 18506 curves and a
validation set of 1959 curves. Along with each curve, a label indi-
cating which of the eight identities present in the COMA dataset
from which the curve was extracted. The second dataset consists of
41220 shape graphs representing human pose, extracted from the
Dynamic FAUST dataset of 4D human motion scans [BRPMB17].
Again these shape graphs are unparameterized where the numbers
of vertices in the shape graphs range from 111 to 356. Similar to
the dataset of curves, the data is split into 35000 training samples
and 6220 testing samples and an identity label is included for each
shape graph in the dataset, corresponding to one of the twelve iden-
tities. By training and comparing the performance of the networks
on these datasets, insights can be gained regarding the suitability
and effectiveness of the VariGrad layer when compared to the state-
of-the-art PointNet and DGCNN methods.

3.2. Classification

We evaluate the classification models based on their classifica-
tion accuracy on the testing data. The results show that the model
utilizing the VariGrad architecture outperforms the PointNet and
DGCNN architectures. This difference in performance is likely due
to the sparser set of points provided by the vertices of the three-
dimensional curves considered in this experiment. The lower num-

Figure 3: Examples of curve and shape graph extraction used for
the creation of the example datasets. Surface meshes are given
as inputs, landmarks are identified, geodesics along the surface
are found between the landmark points, and finally these geodesic
curves are concatenated to create the curves and shape graphs.

ber of points may not be sufficient for the PointNet and DGCNN ar-
chitectures to learn representative feature vectors. The downstream
network is an MLP, for which the architecture is outlined in Fig-
ure 2. Here N denotes the dimension of the feature vector recov-
ered by the respective architectures and C denotes the number of
classes in the data set. The input and hidden fully connected layers
are followed by a ReLU activation function and a batch normaliza-
tion layer. We train models using each feature vector architecture

Face Curve Data Shape Graph Data
Classification Train Time Classification Train Time

Accuracy (s / batch) Accuracy (s / batch)
PointNet 29.36 0.157 78.08 0.148
DGCNN 62.71 0.099 83.29 0.113
VariGrad 84.37 0.045 83.31 0.046

Table 1: Classifications Results: We present the results of the clas-
sification network utilizing three different feature vector architec-
tures. We present the percentage of correct identity classifications
by our model on an unseen testing set. Further, we present the mean
training time per batch (10 samples) of each network to underscore
the efficiency of the VariGrad approach.

on both the COMA curve training set and DFAUST shape graph
training set. We report the results of these experiments in Table 1
along with the average training time of each model. In both the
cases of curves and shape graphs, the models using the VariGrad
feature vector architecture produce higher classification accuracies
than the models utilizing the PointNet or DGCNN architectures.
Moreover, the reliance on less trainable parameters means that the
average training time of the VariGrad architecture is significantly
lower than that of PointNet and DGCNN.

© 2023 The Authors.
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Figure 4: Qualitative comparison of shape reconstruction results for three examples from the testing set of the human pose shape graph
dataset. We display the target shape graph (orange), with the reconstructions of PointNet (purple), DGCNN (green), and VariGrad (blue).

3.3. Shape Reconstruction

For the task of shape reconstruction, three fully connected autoen-
coder models are trained to learn a latent code representation of
the shapes based on the feature vectors produced by PointNet,
DGCNN, and VariGrad, respectively. The auto-encoder architec-
ture is outlined in Figure 2 where N denotes the dimension of the
feature vector recovered by the respective architectures and |V | de-
notes the number of desired vertices for the shape reconstruction.
Again, we train models using each feature vector architecture on

Face Curve Data Shape Graph Data
Mean Train Time Mean Train Time
Error (s / batch) Error (s / batch)

PointNet 0.0053 0.149 0.0039 0.174
DGCNN 0.0010 0.113 0.0015 0.133
VariGrad 0.0004 0.073 0.0005 0.072

Table 2: Shape Reconstruction Results: We present the results of
the shape auto-encoder network utilizing three different feature
vector architectures. We present the mean varifold error for an un-
seen testing set as well a the mean training time per batch (10 sam-
ples).

both the COMA curve training set and DFAUST shape graph train-
ing set. To evaluate each network we compute the mean of the
squared varifold norm between unseen testing sets of shapes and
the reconstructions produced by each network. We report the results
of these experiments in Table 2 with the average training times of
each model. Again, the VariGrad architecture requires less training
time than PointNet or DGCNN. Meanwhile, the VariGrad archi-
tecture produces a lower mean error than PointNet or DGCNN for
both curves and shape graphs. For the testing set of shape graphs,
we show a qualitative comparison of the reconstructions produced
by each of the feature vector architectures in Figure 4. This com-
parison confirms that VariGrad not only produces numerically su-
perior results but also visually more accurate reconstructions of 3D
geometric data.

3.4. Generalizability and Reparameterization Invariance

The final set of experiments we present demonstrates the gener-
alizability of our model and the invariance of our model to repa-
rameterizations of the input data. To do this, we consider two ad-
ditional testing sets of shape graphs. First, we consider resampled
versions of the DFAUST shape graph testing set. For this dataset,

we apply random reparameterizations to each curve in the shape
graph. This includes identity labels so that we can evaluate both
the reconstruction and classification networks on the data. Second,
we extract 90 shape graphs from the FAUST dataset of 3D scans
of human poses. This dataset includes less extreme poses than the
DFAUST shape graph dataset but does include some variability in
the rigid alignment of the shape graphs not seen in the training data.
In Table 3, we report the evaluation metrics for the trained classi-

Reparameterized DFAUST FAUST
Classification Reconstruction Reconstruction

Accuracy Mean Error Mean Error
PointNet 49.98 0.0040 0.0061
DGCNN 50.63 0.0049 0.0064
VariGrad 80.91 0.0005 0.0040

Table 3: Generalizability Results: Here we test our pre-trained
shape graph reconstruction and classification models on two ad-
ditional datasets which include variability unseen in the training.

Figure 5: Qualitative comparison of each model’s invariance to
reparameterization. We display 100 resampled versions of a sin-
gle shape graph (orange) and the 100 reconstructions produced by
PointNet (purple), DGCNN (grean), and VariGrad (blue).

fication and reconstruction models applied to the reparameterized
DFAUST shape graphs and for the trained reconstruction model
applied to the FAUST shape graphs. In these results, we show that
the VariGrad architecture produces superior results for both classi-
fication and reconstruction tasks. In particular, for the reparameter-
ized DFAUST data, we report similar results to the original testing
set in both classification and reconstruction tasks. Meanwhile, the
DGCNN architecture sees a significant decrease in classification
and reconstruction accuracy for the reparameterized data.

© 2023 The Authors.
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Finally, we propose an experiment to evaluate qualitatively the
parameterization invariance of the different models. We created 100
reparameterizations of a single randomly selected shape graph from
the DFAUST shape graph data set and applied them as input for the
trained autoencoders. We collected the 100 outputs for each method
and display them in Figure 5. We observe that our model keeps a
very low variation of output shapes, as opposed to both PointNet
and DGCNN. This visually confirms the invariance of our model to
resampling and reparameterization.

4. Conclusion

In this paper, we presented VariGrad, a new feature vector architec-
ture for learning tasks on geometric data such as curves and shape
graphs. As we demonstrated in the experiments, by leveraging the
varifold representation, this architecture produces superior results
in downstream learning tasks. Moreover, varifold representations
are not dependent on the given parameterization of the data and
thus the VariGrad layer is robust to reparameterization and resam-
pling of geometric data. We plan in the short future to extend this
work to new applications, such as hand sketches. However, as the
topology of hand sketches often vary in a same class of drawnings,
the choice of Varigrad’s template shape would have to be done more
carefully. Moreover, as the varifold representation of curves has a
natural extension to surfaces and point clouds, we plan to focus on
extending VariGrad to such objects in the future.
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