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Abstract
Devices supporting depth-sensing technologies become more and more available, making it easier to access geometry-data
driven services like 3D model or scene reconstruction. Utilizing these depth sensors, very large datasets have been created to
enable deep learning for object detection and depth upsampling.
We want to tackle the task of instance level recognition (ILR), where 3D scans of objects can be searched against a database
of CAD models based on embeddings of their geometry. The distinctive property of this retrieval task is the existence of only a
single corresponding database shape for each query.
To the best of our knowledge all the existing datasets either lack in providing the exact CAD model correspondences or lack in
scale and a variety of object categories.
Therefore, we introduce synScan, a large-scale dataset synthetically generated via physically plausible domain randomization
(PPDR) of 3D scenes and object-centric scan trajectories with the goal to mimic real-world object scan scenarios with a variety
of incomplete views and occlusions. We provide approximately 39,000 randomly sampled scenes, made from 9,400 different
shapes with semantic per-point annotation. We train and test different ILR algorithms (e.g. PointNetVLAD, MinkLoc3Dv2)
designed for place-recognition in self-driving cars on the dataset and validate our results on a smaller real-world dataset.
Utilizing a rather simple data generation pipeline, we can show that deep learning methods trained on our synthetic dataset
can successfully adapt to real-world scan data. In this manner, synScan helps to overcome the lack of labeled training data.

CCS Concepts
• Computing methodologies → Instance-based learning;

1. Introduction

Services for reverse image search are adopted by millions of users
nowadays. Likewise we want to establish similar search abilities
based on 3D scans of scenes and components with depth-sensing
devices. For such search services a high adoption potential can be
foreseen in various industrial scenarios:

• Identification of highly complex warehouse goods in the context
of logistics processes: Such use cases aim at the precise recog-
nition of an unknown component within a stock of tens of thou-
sands of components.

• Search for spare parts on site by service technicians: Such sce-
narios occur when repairing e.g., production systems, escalators
or elevators where the article number of an urgently needed spare
part on site has to be determined. Here, a 3D scan may speed up
the search within an online database

• Identification of visual art work such as sculptures, reliefs, etc.
within a catalog of stolen art objects

The aforementioned scenarios all have in common that the scan
data supplied by the depth-sensor for any component is incomplete
because they are either installed and not completely visible, heavily

worn or partially destroyed. Consequently, the search algorithm
has to recognize components based on fragments of their geometry.
Using geometric data may also be more appropriate if textures are
altered or information about them is missing.

To train neural networks for such tasks, a suitable dataset is
needed which holds at least two different representations for each
shape inside the dataset as illustrated in Fig. 1. The first represen-
tation is designated to be used in a query database and should rep-
resent the complete outer shell of a particular shape. The second
is an arbitrary incomplete scan of that shape serving as search in-
put. Given the huge number of real-world objects and their different
labeled representations needed for this kind of dataset, only a syn-
thetically generated dataset is really feasible.

In this paper, we make the following contributions:

• We introduce synScan1, a synthetically generated large-scale
dataset for 3D scan data, which mimics real-world scenarios
with partial (incomplete) views resulting from scans with depth-
sensing devices. It is especially designed for ILR. We provide ap-
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Figure 1: For instance level recognition on 3D data, the original instance of an object in a database is searched using a 3D scan of an object.
A metric determines the distance d to all the shapes held in the database.

proximately 39,000 randomly sampled scenes, made from 9,400
different shapes with semantic per-point annotation.

• Based on synScan we train different ILR algorithms (e.g.
PointNetVLAD [UL18], SOE-Net [XXL∗21], MinkLoc3Dv2
[Kom22]) designed for place-recognition in self-driving cars on
the dataset and evaluate their performance on real-world data.

• We show, that methods trained on our synthetic dataset, can suc-
cessfully be used with real-world scan-data.
1https://github.com/mbookhahn/synScan

Our study also identified two interesting related topics that could
provide valuable insights if further investigated.

• We can show that the PointOE module used within SOE-Net is
not invariant against rotation.

• We demonstrate that pointcloud-based ILR can benefit from data
augmentation, and we encourage further research into augmen-
tation techniques based on these results.

2. Related Work

2.1. 3D Scan Datasets

In the context of scene understanding, the release of several indoor
and outdoor RGB-D datasets over the past few years has started a
series of research activities in the area of semantic segmentation,
object detection, shape retrieval, depth upsampling and more.

Indoor datasets A very early contribution is the NYU Depth
Dataset V2 [NSF12], which provides 1,449 semantically labeled
frames of 464 real-world indoor scenes. The dataset RGB-D
Object-to-CAD Retrieval [PTL∗18] utilizes 2,101 scans of objects
from SceneNN [HPN∗16] and ScanNet [DCS∗17] and creates a
shape retrieval challenge. The shape matching for retrieval was
performed manually with 3,308 CAD models of 20 categories
from ShapeNetSem [SCH15]. Recently, ARKitScenes [BCD∗21]
establishes the largest real-world indoor dataset for object detec-
tion and depth upsampling with 5,047 scans from 1,661 scenes
captured with Apple’s LiDAR sensor. None of the aforementioned
real-world datasets provides the original structural similar ground
truth shapes needed for ILR. Among other synthetic datasets,

ARKitScenes
SceneNet
RGB-D

synScan

No. of unique shapes unknown 23,354 9,400
No. of obj. categor. 17 43 263
No. of scene config. 1,661 16,895 39,000
No. of depth frames > 1M > 5M > 1.9M
Sample rate ∼ 20 Hz 1 Hz 5 Hz
Model files provided no yes yes
Object scanning
trajectory

no no yes

RGB Texturing Real
Photo-
realistic

no

Table 1: A comparison table of 3D scanning datasets. ARK-
itScenes [BCD∗21] is a large real-world RGB-D indoor dataset
captured with the iPad LiDAR sensor. It does not provide any 3D
model files. SceneNet RGB-D [MHLD17] is a very large synthetic
indoor RGB-D dataset, however the provided trajectories and low
sample rates are not well suited for detailed object reconstruction
and thus neither for ILR.

SceneNet RGB-D [MHLD17] is the closest to ours. SceneNet
RGB-D randomly creates 16,895 scene configurations with se-
quential video trajectories and photo-realistic scene renderings.
However, with 263 object categories our dataset provides a lot
more diversity compared to its 42 categories. Unlike ours, it does
not provide a dedicated object scanning trajectory. Thus, most of
the generated depth frames contain only a small amount of object
information compared to ours.

Outdoor datasets The Oxford RobotCar Dataset [MPLN17]
collects more than 20 TB of image, LiDAR and GPS data from over
1,000 km of driving. In various works researchers aimed at making
place recognition more robust against environmental changes (e.g.
snow, fog, rain, ...), by using pointcloud data from the LiDAR sen-
sor.
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2.2. Algorithms for Instance Level Recognition

The main challenge for instance level recognition is to develop a
distance function with a low value for a pair of similar shapes and
high for a pair of distinct shapes.

Image based algorithms The bag-of-word approach of
VLAD was successfully applied to various tasks in ILR.
NetVLAD [AGT∗16] adopted this idea and proposed a metric
learning deep network to predict a global VLAD descriptor
end-to-end. It was trained for place recognition on the Google
Street View Time Machine database, which collects user images
taken at the same places at different times.

Pointcloud based algorithms

With the introduction of PointNet [QSMG17] and its succes-
sor PointNet++ [QYSG17], performing deep learning directly on
pointclouds has gained traction in recent years. Consequently,
PointNetVLAD uses a combination of PointNet and NetVLAD to
predict a VLAD descriptor for pointclouds end-to-end. PCAN de-
velops this approach and adapts PointNet++ to generate an atten-
tion map. In contrast, LPD-Net [LZS∗19] relies on handcrafted
local features and graph neural networks to extract local contex-
tual information and aggregate it via NetVLAD. Based on Point-
NetVLAD, SOE-Net uses self-attention to learn long range context
dependencies and combines local descriptor extraction and aggre-
gation to enable one-stage training to generate a global descriptor.
By first quantizing the input pointcloud to a sparse voxelized rep-
resentation, MinkLoc3Dv2 [Kom22] adapts Feature Pyramid Net-
work to extract local features and then uses a Generalized-Mean
pooling layer to aggregate local features into a global descriptor.
This method achieves state-of-the-art performance on the place
recognition task.

3. synScan and Real-World Validation Dataset

With our synScan dataset we want to promote the use of partial
3D scan data for object recognition in deep learning. Specifically,
we aim at using consumer-grade sensors like Apple’s LiDAR for
instance level recognition, when no other data than a synthetic 3D
shape collection is available.

The fundamental idea behind our approach is to automatically
retrieve real-world-like incomplete object scans by creating ar-
bitrary complex occlusions with synthetically generated cluttered
scenes and virtual camera trajectories, which are physically plausi-
ble.

3.1. Acquiring Shapes with Metric Scaling

As already addressed by SceneNet RGB-D, many publicly avail-
able 3D models are provided with normalized or arbitrary mesh
sizes and have no further information about their dimension
in the real-world. Consequently, we use a special subset of
ShapeNet [CFG∗15], ShapeNetSem [SCH15], which provides
scaling factors for 12,000 shapes from 270 classes, to retrieve
reasonable metric dimensions. Taking into account that very

different object sizes require an adaptive scanning strategy, we
limit and filter ShapeNetSem and set the maximum extend for all
shapes along all axes to 3 m.

3.2. Scene Generation

For a diverse dataset not only many different shapes are desirable,
but a broad range of different scene configurations is required. This
is because a wide variety of occlusions and views are essential.
Similar to [MHLD17] we randomly initialize a physics simulation,
where arbitrary shapes are dropped into a scene. Considering the
close proximity needed for object scanning to gather densely dis-
tributed points, we neglect any kind of room layout. Instead, we
rely on random scene configurations to create the foreground and
background.

Especially cluttered scenes with complex occlusions are chal-
lenging for ILR. Thus, scene-defining parameters like the number
of objects and space for initial positions are set to generate these
cluttered scenes more likely and still guarantee short simulation
times.

Each scene is initialized with 9 random objects and their initial
position is uniformly sampled from a cube of size 3 by 3 m length
and width and 10 m height. We choose each initial orientation to be
completely random around all 3 axes. The objects positions are ini-
tialized sequentially. For each new position, an axes aligned bound-
ing box is calculated, to efficiently check for intersections between
meshes during initialization. If an overlapping bounding box is de-
tected, a new random position is sampled. A scene generation has
a maximum of 200 initialization attempts and will terminate if this
number is exceeded.

Regarding the rather simple requirements of the described
system-dynamics, our decision to use bullet respectively pybul-
let [CB21] for the simulation environment is based on its competi-
tive speed, its built-in ray tracing and its popularity.

3.3. Virtual Camera Trajectory Generation

For ILR it is beneficial to collect as much structural information
of the searched object as possible. This means gathering densely
distributed points of the target from many different views. Thus,
the target or parts of the target should be kept in the center of the
sensor’s field of view during object scanning. Nevertheless, with
manually performed object scanning, varying levels of complete-
ness are expected even with accurate instructions. Taking this into
account, we extend the approach of [MHLD17] and use two ran-
domly accelerated free-floating bodies to generate trajectories for
the camera center and the point in space the camera is focusing on.
Furthermore, we generate physical bounds to limit the movement
of the two bodies as follows.

By limiting the movement of the focusing point to the inner of
the aligned bounding box of the target, the target is likely to be
inside the camera’s field of view. At the same time different parts
of the target are being focused during scanning. For a more dense
sampling of the target, we limit the movement of the camera body
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to be outside the aforementioned bounding box but inside another
box. This bounding box is defined by an offset on all sides of the
first bounding box. Additionally, both bodies cannot move through
the floor plane, but only the camera body can collide with the rest
of the static scene. We expect the influence of camera tilt to be
rather low and keep the camera up axis always aligned with the
gravity vector. From each trajectory we sample discrete views with
a rate of 5 Hz.

Fig. 2 illustrates a few resulting examples of our dataset. Some
complex occlusions can be seen for example in the table in the top
row.

Figure 2: Very left column: database shapes; Other columns: syn-
thetic scans

3.4. Preprocessing

Removal of inner structures
Scans cannot capture the inner structures of their associated
CAD meshes. Therefore, they do not serve as useful information
for object recognition. To avoid wasting descriptor capacity
on these inner structures, we provide all database files from
ShapeNetSem with removed inner structures. To remove inner
structures, all meshes are split into their individual components
(e.g. wheels of a car) by voxelizing the mesh into voxels of size
0.03 m with the help of trimesh [Daw] and cluster all connected
voxels with scipy’s [VGO∗20] multidimensional image label
function. Now each vertex can be associated with the label of its
belonging voxel. With these labels all components are separated
accordingly. After having meshes split into their individual com-
ponents, ManifoldPlus [HZG20] is used to remove inner structures.

Duplicates Filtering
Even though ShapeNetSem is composed of unique objects, many
objects only differ in texture or only by a few vertices (cf. Fig. 4).

Figure 3: Left: Original mesh with inner structures; Right: Mesh
with removed inner structures

Considering labels for positive and negative samples in training
and evaluation, these duplicates have to be identified to create a
clean dataset.

Figure 4: Examples of duplicates found in ShapeNetSem

Thanks to the model alignment of ShapeNetSem, we simply vox-
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elize each shape and calculate its pairwise distance by applying a
logical XOR operator on the occupancy grids. We then sum up all
the differences. In total, for 266 shapes we found exact duplicates
and for 444 we found very similar shapes.

3.5. Provided Data

It can be challenging to recognize an object from an incomplete
scan representation, if only a small fraction of the structural in-
formation is gathered. This raises the question of what fraction of
structural information is needed for recognition to succeed and how
to define that fraction in this particular case? We want to provide
two measures α and θ to help understand what to expect from our
dataset.

Considering the legs of a table as an example for convex
features, the legs are only a small part in terms of the size of the
table. However, they provide essential structural information for it.
An intuitive way to take this into account would be the ratio θ of
the volume of the convex hull of the partial shape to the original
complete shape.

Figure 5: Scan of a bookshelf. α = 0.15 | θ = 0.79

Figure 6: Scan of a can. α = 0.43 | θ = 0.79

θ =
Vpartial_chull

Vcomplete_chull
(1)

Likewise the inner structures of a bookshelf (cf. Fig. 5) can be
regarded as concave features, which hold essential structural infor-
mation. If such a shape has only been seen from the back, θ could
be close to 1.0 even if essential structural information from the in-
side is missing. For these concave features, the ratio α of the area
of the partial shape to the area of the original complete shape could
be an appropriate measure.

α =
Apartial_sur f ace

Acomplete_sur f ace
(2)

In Fig. 7 the distribution of both values in our dataset is shown.
While for most of the samples θ is likely to be close to 1, only very
few have a α value above 0.5. Considering Fig. 5 it becomes clear
that capturing the surface area completely needs many more views
compared to just capturing the outer shell.
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Figure 7: Distribution of ratio between surface area (α) and vol-
ume (θ) of the partial scan with the original part

3.6. Real-World Validation Dataset

For the purpose of validation of our synScan dataset, we manually
gathered 81 scans from 34 pieces of furniture, using an iPad Pro
2020 LiDAR sensor. A truncated signed distance function with a
cell size of 0.005m was used for fusing the captured depth images
in order to sample pointclouds from the object surfaces.

4. Experiments and Discussion

4.1. Baseline Results

Following our intention to establish a dataset well suited for
ILR, we evaluate state-of-the-art methods for 3D pointcloud place
recognition. This formulates a problem very similar to our intended
task of instance shape recognition.

Data preprocessing All of the methods originally consume
normalized pointclouds downsampled to 4,096 points. There-
fore, we uniformly sample pointclouds from the database and

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

13



M. Bookhahn & F. Neumann / synScan

the reconstructed scan meshes after centering and normalizing
them accordingly. To make sure all scan data contains enough
information to be recognizable, we choose to filter our dataset for
θ ≥ 0.5, generating a subset of 23,180 scans from 6,499 objects.
These samples are then split into 80% for training 10% for testing
and 10% for validation.

Method implementation details Building the foundation for
a lot of methods recently developed, we chose to evaluate the
performance of PointNetVlad. Following the authors, we create the
training tuples from an anchor pointcloud, two positives and 18
negative samples. To make sure a partial scan is always queried
against its original shape, containing the entirety of features, we
only use the database shapes as anchors and the partial scans as
positive samples. We add the arbitrary rotated original shape to
the positive sample list to avoid overfitting for queries where only
a few positive samples exist. In the same manner, SOE-Net was
evaluated, but the negative samples are reduced to 8 pointclouds
with respect to the network size. The number of epochs is increased
to 50, which is 2.5 times the original setting. All other model
parameters are kept in their original settings. Considering the
more efficient batch-hard negative mining used by MinkLoc3Dv2,
we choose to use the partial scans as anchors and the database
shapes as positive samples for this model. Unlike the original
implementation, we do not use the positive-negative distance
instead of the anchor-negative distance, if it violates the margin
more. For all methods we apply random jitter with a value drawn
from N (0;0.001).

Baseline Results Tab. 2 summarizes the evaluation results for
the instance level recognition task on the synScan test split. Over-
all, PointNetVLAD and MinkLoc3Dv2 are able to perform metric
learning using the synScan dataset.

AR@1% AR@1

PNVLAD 63.2 34.2
PNVLAD + Attention 48.1 17.0

MinkLoc3Dv2 91.0 67.9

PNVLAD + PointOE did not converge did not converge
SOE-Net did not converge did not converge

Table 2: Benchmark results (average recall at 1% and average re-
call at 1) for instance level recognition on incomplete scan data.

MinkLoc3Dv2 achieves the highest results for average top
1% recall and average top N recall. Despite that, we found that
[SOE-Net] did not converge. Presuming it to be not robust against
the additional rotation around all 3 axes, we trained it on The
Oxford RobotCar Dataset again with rotation around 3 axes. It did
not reach convergence either. To further investigate that behaviour,
we added the attention unit from SOE-Net to PointNetVLAD which
decreased its performance but succeeded in training. Considering
just adding the PointOE module from SOE-Net to PointNetVLAD
did not converge as well, we conclude the PointOE module to be

not equivariant at rotation around 3 axes.

4.2. Real-World Validation Dataset

For validation we create a query database by mixing the 34 CAD
shapes of these objects with the synScan test split. After training
both methods on our dataset, the average recall of all 81 real-world
scans is calculated. Tab. 3 shows that they can successfully adapt
to real-world scans after training on our dataset.

AR@1% AR@1

PNVLAD 60.5 34.6
MinkLoc3Dv2 69.1 43.2

Table 3: Recall for PointNetVlad and MinkLoc3Dv2 on our real-
world Validation dataset, trained on synScan.

Fig. 8 illustrates top 5 query results for a given partial scan.
When big parts of an object are captured, the network is able to
find structurally similar shapes. However, it fails to retrieve the
right shape if the scanned part is too small. An example can be
seen in the last row, where only the table top was scanned, but not
the legs. Nevertheless, the discrepancy in recognition performance,
compared to our synthetic validation split data, indicates room for
improvement.

Figure 8: Examples of Minkloc3Dv2 top 5 retrieval results on our
real-world validation dataset.

4.3. Evaluation of effectiveness

To evaluate the effectiveness of our dataset compared with
much less computation-intensive augmentation methods, we train
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MinkLoc3Dv2 on the same subset of ShapeNetSem shapes but
substitute the synthetic scans with samples with up to 95% ran-
domly removed points and random jitter with a value drawn from
N (0;0.001). Again, the method is tested on our real-world scan
dataset (RW Scans).

our RW Scans
AR@1% AR@1

Minkloc3Dv2 w. Random Removal 9.8 1.2
Minkloc3Dv2 w. our synScan 69.1 43.2

Table 4: Recall for training MinkLoc3Dv2 on synScan and Ran-
dom Removal.(average recall at 1% and average recall at top 1)

Compared to random removal training data, the results of Tab. 4
indicate that ILR methods trained with our synScan perform much
better on partial scan data.

4.4. Zero-Shot Capability

To evaluate if methods trained with our synScan dataset have better
zero-shot capabilities, we test PointNetVlad and MinkLoc3Dv2
with The Oxford RobotCar Dataset. For better comparison, we
also do the exact opposite and test MinkLoc3Dv2 trained on The
Oxford RobotCar Dataset with our real-world dataset (RW Scans).

Oxford ours RW Scans
AR@1% AR@1 AR@1% AR@1

PointNetVlad
synScan weights

35.6 21.8 60.5 34.6

MinkLoc3Dv2
synScan weights

46.2 27.7 69.1 43.2

MinkLoc3Dv2
Oxford weights

96.3 98.9 4.9 2.5

Table 5: Average recall for testing MinkLoc3Dv2 on The Oxford
RobotCar Dataset trained on synScan and for comparison testing
MinkLoc3Dv2 trained on The Oxford RobotCar Dataset on our
real-world scan-data.

As can be seen in Tab. 5, methods trained with our dataset
achieve acceptable results on a completely different domain like
The Oxford RobotCar Dataset, which illustrates the long-tail class
distribution of synScan.

4.5. Ablation Study

Removal of inner structures
Scans cannot capture the inner structures of CAD meshes.
Therefore, they are useless information for object recognition. To
avoid wasting descriptor capacity on these inner structures, we
provide all database files from ShapeNetSem with removed inner

structures. When we retrain MinkLoc3Dv2 on these data, Tab. 6
shows that we can increase the average recall at 1% by 6.18%
whereas the top 1 average recall stays the same.

AR@1% AR@1

MinkLoc3Dv2 w/ inner structures 64.2 37.0
MinkLoc3Dv2 w/o inner structures 69.1 43.2

Table 6: Recall for training MinkLoc3Dv2 on synScan with and
without inner structures (average recall at 1% and average recall
at top 1)

5. Conclusions and Future Work

In this paper we show how to successfully create synthetic training
data for 3D instance level recognition from partial object scan data.
Our new synScan dataset offers significant advantages compared
to existing datasets regarding the number of object categories
included, the number of unique scene configurations as well as the
provision of proper object scanning trajectories.

With our synScan dataset we want to promote the use of partial
3D scan data for object recognition in deep learning. Utilizing
a rather simple data generation pipeline, we can show that deep
learning methods trained on our synthetic dataset can successfully
be used with real-world scan data. In this manner, synScan helps to
overcome the lack of corresponding labeled training data.

The tested methods are able to produce good results for the task
of ILR on incomplete scan data, apart from SOE-Net that is not
robust against rotation in 3 axes.

We propose a simple pipeline to remove the inner structures of
CAD meshes. Our results show that removing the inner structures
of the database shapes can improve overall ILR performance.

By training PointNetVlad and MinkLoc3Dv2 on our dataset and
testing them on The Oxford RobotCar Dataset we show that the
proposed dataset can enable few-shot or even zero-shot learning
for ILR methods.

There are various perspectives for synScan’s application in
future research: The dataset may be used for competitions in the
area of algorithms for ILR based on partial scan data comparable
to the current application of ModelNet [WSK∗15] in the area
of 3D object classification and retrieval. For this purpose, the
dataset and associated scripts will be made available soon at
https://github.com/mbookhahn/synScan.
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