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Abstract

This paper presents the methods that participated in the SHREC 2023 track focused on detecting symmetries on 3D point clouds
representing simple shapes. By simple shapes, we mean surfaces generated by different types of closed plane curves used as
the directrix of a cylinder or a cone. This track aims to determine the reflective planes for each point cloud. The methods are
evaluated in their capability of detecting the right number of symmetries and correctly identifying the reflective planes. To this
end, we generated a dataset that contains point clouds representing simple shapes perturbed with different kinds of artefacts
(such as noise and undersampling) to provide a thorough evaluation of the robustness of the algorithms.

CCS Concepts

e Computing methodologies — Shape analysis; Point-based models;

1. Introduction

Symmetry aids in reducing complexity by representing an entity
with less information. As a consequence, the analysis of symme-
tries is appealing in the search for more compact representations
of objects in computer systems. However, computational models
do not inherently possess information about their potential symme-
tries. Therefore, it is necessary to analyse these representations and
detect symmetries starting from the available data. From a com-
putational perspective, this symmetry detection task is challenging
and has recently garnered attention from research communities in
various areas, such as computer vision and geometry processing.

Figure 1: Some shapes in our dataset and their symmetry planes.

Although the study of symmetries has attracted significant in-
terest from various research communities, particularly in the field

© 2023 The Authors.

Proceedings published by Eurographics - The European Association for Computer Graphics.

This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/3dor.20231148

of geometry processing, there remains a lack of consensus regard-
ing the evaluation and comparison of symmetry detection algo-
rithms. Each algorithm (such as those proposed in [SGS14; NR20;
SHZ*20a; GZM*21; HKLM?22]) employs a unique set of objects
and metrics for evaluation, making it nearly impossible to compare
the advantages and limitations of the methods. The present paper
aims to address this issue by introducing a large-scale dataset for
the assessment of symmetry detection algorithms in 3D data. Our
approach involves the synthetic generation of 3D shapes, whose
reflective symmetries are derived analytically. As a result, the pro-
posed dataset offers high-quality ground truth (see Fig. 1), which
can be leveraged by recent methods, including those based on ma-
chine learning.

There are few datasets concerning symmetries. For instance,
for images, we mention Tsogkas et al. [TK12] and Seo et al.
[SKKC22]. The latter proposed a dataset for reflection and rotation
symmetry detection in real-world images, called DENse and DI-
verse symmetry (DENDI), with accurate and clean annotations for
reflection and rotation symmetries. Regarding symmetries in three-
dimensional shapes, [SWZ*18] introduces a large-scale dataset of
diverse image-shape pairs called Pix3D that associates a rich set
of images to each 3D shape, equipped with an accurate 3D pose
annotation to ensure precise 2D-3D alignment. Finally, ShapeNet
[CFG*15] contains 3D CAD models annotated with geometric at-
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tributes such as rigid alignments, parts and key points, symmetries
(reflection plane, other rotational symmetries), and physical sizes.

None of the datasets developed for symmetry detection focused
specifically on point clouds. Recently, the SHREC’22 dataset of
3D segments [RRB*22] introduced parts of primitives represented
as point clouds. Different from our goal, that benchmark was de-
voted to primitive and parameter identification, rather than symme-
try detection. In contrast, recent machine learning-based methods
(such as those proposed in [SHZ*20a; GZM*21]) typically em-
ploy well-known 3D datasets like ShapeNet [CFG*15] or Mod-
elNet [WSK*15] and derive ground truth from prior knowledge
within the dataset or using semi-automatic annotation tools.

This SHREC track aims to assess the effectiveness of automatic
algorithms in detecting symmetries in 3D point clouds that rep-
resent simple shapes. The objective is to determine the reflective
planes for each point cloud. By simple shapes, we refer to sur-
faces generated by various types of closed, plane curves that are
projected in multiple ways. Specifically, we generate cylinders or
cones having different plane curves as directrix. We also apply dif-
ferent kinds of perturbations (such as noise and undersampling) to
the point clouds to evaluate the robustness of methods to detect
symmetries under these transformations.

For each point cloud of the test set, the participants had to pro-
vide the number of the detected symmetries, the normal vectors of
the detected planes, and a point belonging to each reflective plane.
We also asked participants to provide a confidence value for each
detected plane, which is used in the evaluation metrics. The per-
formance of the algorithms is evaluated based on the quality of
the recognised planes and the number of planes correctly identi-
fied. This analysis is specified according to the type of point cloud
artefacts to provide a thorough evaluation of the robustness of the
algorithms.

The rest of the paper is organised as follows. Section 2 is fo-
cused on the description of the proposed benchmark, specifically
the dataset, the ground truth, and the evaluation measures neces-
sary to quantify the methods’ performances. Section 3 describes
the three automatic algorithms that participate in this SHREC track.
Section 4 lists the setups and conducted experiments. Finally, Sec-
tion 5 provides the comparative analysis of the results obtained by
the methods.

2. The benchmark

In this section, we describe the curves used to generate our dataset,
and the resulting dataset (Section 2.1), the ground truth files asso-
ciated with the point clouds of the training set (Section 2.2) and the
evaluation metrics we adopted (Section 2.3).

2.1. Dataset

We have selected some families of closed plane curves used as di-
rectrix of the cylinders or cones in our dataset. Specifically, we have
chosen them within an atlas of curves [Shi95] since they are char-
acterised by distinctive shapes. Table 1 depicts the family of 2D
curves used to create our dataset and their parametric representa-
tion. Once a curve of a chosen family is selected, it is possible to

generate a cylinder or a cone with this curve as a directrix. Our pro-
cedure extrudes the curve lying in the XY plane along the Z axis.

The dataset is composed of 69,000 three-dimensional simple
shapes represented as point clouds; it is divided into a training set
and a test set that contain, respectively, 60,000 and 9,000 point
clouds.

The point clouds considered in this benchmark were built by
means of the following procedure. First, we randomly choose one
of the closed plane curves described in Table 1 and randomly select
the parameters for the generation. Specifically, we set the parame-
ters of each curve as follows:

e Citrus: a = 1 and b randomly chosen in the interval [1,13], b € N.

o m-Convexities: a randomly chosen in the interval [0.5,1.1], a €
R, b randomly chosen in the interval [0.2,0.9], b € R, and m
randomly chosen in the interval [3,9], m € N.

e Geometric petal: a randomly chosen in the interval [1.0,2.0],a €

R, b randomly chosen in the interval [1,6], b € N, and m ran-

domly chosen in the interval [1,6], m € N.

Lemniscate of Bernoulli: a = 1.

Egg of Keplero: a = 1.

Mouth curve: a = 1.

Astroid: a = 1.

Then, we generate the point cloud through the extrusion proce-
dure, selecting between a cylindrical or conical extrusion. Since
both kinds of shapes have the rotational axis coincident with the
z-axis, we randomly apply translations and/or rotations to the point
cloud to make its position and orientation more generic. Finally,
each point cloud is transformed with the following perturbations:

e PO-Clean. The point cloud is not perturbed.

e P[-Uniform noise of different intensities. A random percentage,
between 30% and 80%, of the point cloud, is perturbed, by ap-
plying a uniform noise, obtained by sampling uniform distri-
butions of the form U/ (—%7 %), being n a random value among
15,17, 19, 20.

o P2-Gaussian noise of different intensities. A random percentage,
between 30% and 80%, of the point cloud, is perturbed by ap-
plying a Gaussian noise, obtained by sampling Gaussian distri-
butions of the form A/(0, niz), being n a random value among
20,23, 27, 30.

o P3-Undersampling. A random percentage, between 30% and
80%, of the point cloud is removed.

o P4-Combination of uniform noise of different intensities and un-
dersampling.

o P5-Combination of Gaussian noise of different intensities and
undersampling.

For the noise transformations, we first decide how many points
will be perturbed with a probability between 30% and 80%. For
each point to perturb, we generate a random shift in the distribution
(uniform or Gaussian) with the value of n also chosen randomly.

2.2. Ground truth

For each point cloud of the training set, we provide the ground-truth
information for the symmetric planes. Each plane is represented by
a normal vector and a point belonging to the symmetric plane. In

© 2023 The Authors.
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Table 1: Families of plane curves used as directrix of the cylinder or cone in our dataset.
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Figure 2: A visual illustration of point clouds in our training set
with their planes of symmetry.

Figure 2 we show some point clouds of the training set together
with their planes of symmetry. For each point cloud of the test set,
the track participants were required to return a file with the pre-
dicted planes. In addition, for each detected symmetry plane, we
ask the participants to provide a confidence of the detected symme-
try in the range [0, 1]. The confidence is used to rank the detections
and compute the evaluation metrics. If a method does not compute
it, a value of 1.0 is entered.

© 2023 The Authors.
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2.3. Evaluation measures

To assess the effectiveness of automatic algorithms in detecting
symmetries on point clouds in varying conditions, we focus on the
quality of the recognised planes and the accuracy of the identified
planes. To comprehensively evaluate the robustness of these meth-
ods, this analysis is specific according to the type of artifact con-
sidered.

To compare the algorithms, two metrics are employed: mean av-
erage precision (mAP) and precision at highest confidence (PHC).
These metrics share similarities with the evaluation of object de-
tection methods in computer vision [LOW*20]. Both metrics are
calculated based on a confidence value for the detections, which
facilitates the identification of reliable plane detections.

e The mean Average Precision (mAP) is a metric used to evaluate
the performance of a complete set of symmetries. Given a point
cloud P and a set of ground-truth symmetry planes SP . as well
as a set of symmetry planes DP detected by an algorithm, the set
DP is sorted according to the confidences, and a correspondence
is established between S* and D” based on the proximity of
their respective planes in terms of angle and position.

More specifically, a plane s € SP is deemed to match a plane
d e D" if

angle(Ny,Ny;) < 0 and distPlane(point(d),s) < &
where angle(ﬁg,ﬁd) represents the angle between the normal
vector to the plane s and the normal vector to the plane d, and

distPlane(point(d),s) represents the point to plane distance be-
tween the predicted point and the ground truth plane.
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In this context, a match is considered a true positive, while de-
tected planes without matches are false positives. This informa-
tion is then used to calculate the average precision, and subse-
quently, the mean average precision is computed as the mean
value across the entire test set.

The Precision at Highest Confidence (PHC) metric is defined as
the average number of test shapes where the detection algorithm
identifies a valid symmetry with the highest confidence. To illus-
trate the idea of this metric, let’s suppose we have a test shape
T with its detected symmetry planes S7. We take the detected
symmetry plane with the highest confidence and check if this
symmetry matches with any symmetry in the ground-truth. If a
match occurs, assign a value of one for the test shape and a value
of zero otherwise. The final result for the metric is the average of
assigned values for the entire test set. Therefore, this metric eval-
uates the effectiveness of an algorithm in detecting symmetries
with the utmost level of confidence.

3. Description of the methods

3.1. M1: Learning to Predict Reflectional Symmetries with
Point Cloud Transformer

Method M1 follows the dense prediction scheme of Symme-
tryNet [SHZ*20b]. It considers Point Cloud Transformer (PCT)
[GCL*21] as its backbone and keeps three heads for predicting M
reflectional symmetry normal vectors, one object centre, and M re-
flectional symmetry confidences. Figure 3 shows the pipeline of
this method. It consists of three main steps:

1. Farthest point sampling. The input point cloud is preprocessed
using the farthest point sampling method (see [QYSG17]) to
obtain a uniform sampling of it. The point cloud is normalised
by centring it to the origin and scaling it into a unit sphere.

2. Dense symmetry parameter prediction. Similarly to Symme-
tryNet, the proposed approach extracts point-wise geometric
features from an input point cloud using PCT. Then the point-
wise geometric features are fed to a spatially weighted pooling
layer to extract a global feature that is then concatenated with
the point-wise features for point-wise prediction tasks. Finally,
after making predictions for each individual point of the point
cloud, all the predictions are aggregated to form the final one.
The total loss for an input point cloud is £ = %Zf/ L;, where

Li= L 4 L+ i (1)

is the prediction loss for the i—th point and N. is the number
of points of the point cloud. For all the M predicted reflectional
symmetry normal vectors, the approach first matches them to K,
with K < M, ground-truth reflectional symmetry normal vec-
tors. Following SymmetryNet, the positions of the K matched
predicted normal vectors are recorded to form a K-hot ground
truth label vector 7; for the predicted confidence vector C; with
length M. Then the confidence loss is computed as:

,Cf(mf _ l:cls (Cia Tt) )

where £ is the binary cross entropy loss. For the K matched
predicted normal vectors nf-‘, withk=1,..., K, this method mea-
sures the differences between them and the ground-truth normal

vectors 71; in a max-margin manner:
1§ kA2
L ==Y max(0,1— |nf - A7) 3)
K&

where n¥ - 7% = {1,—1} guarantees that the predicted normal

vectors will be co-linear with the matched ground truths. Same
to SymmetryNet, the method explicitly predicts the centre ¢; of
the point cloud as the point lying on the reflection symmetry
plane, measuring the distance between this prediction and the
ground-truth centre ¢:

£ = 4% (c;,¢) )

where d is the Euclidean distance.

3. Post-processing. All the NM predicted normal vectors are clus-
tered into M vectors using the density-based spatial clustering
(DBSCAN) [EKSX96]. The clustering is performed among N
points. After filtering out predicted normal vectors with low
confidence, non-maximum suppression (NMS) is implemented
to eliminate predictions that are close to the more confident
ones. The centring and scaling of pre-processing are inversely
applied to the resulting prediction to form the final prediction.

The original training set is split into 5 folds to perform cross-
validation. The maximum number of symmetry planes is searched
over the original training set and set as M. Fig. 3 provides a graph-
ical abstract of method M1.

3.1.1. Computational aspects

The method is trained and tested on a 64-bit Ubuntu OS system
with an Intel(R) Xeon(R) Silver 4208 processor (at 2.1 GHz), 126
GB of RAM, and an NVIDIA GeForce RTX 2080 Ti GPU with 11
GB of memory. The training is performed over about 77 epochs,
with a training time of approximately 157 hours in total (2 hours
per epoch). When inferring, the neural network inference time
per cloud is 8.742 ms, and the post-processing time per cloud is
110.123 ms.

3.2. M2: Multi-Head Symmetry Transformer (MHST)

Method M2 uses a deep neural network to encode the input point
cloud and then create several smaller heads, each tasked to map
the feature vector to a symmetry plane. Since the number of sym-
metry planes is not a priori known, a sufficiently large number of
heads is chosen to cover the edge cases. For simpler shapes that
exhibit fewer symmetries, most heads converge to the same plane
parameters, and some produce invalid planes. A cleaning algorithm
discards duplicates as well as planes with high symmetry errors and
identifies the correct number of planes for each specific shape. Fig-
ure 4 shows the pipeline of this method.

This method considers the plain vision Transformer as a back-
bone network and pretrains it on the ShapeNet [CFG*15] dataset
for reconstruction, following the Masked Autoencoding pipeline,
as described in [PWT*22]. Specifically, 64 centroid points are sam-
pled, and a neighbourhood of 32 points is built for each one. A
PointNet-like network is applied per neighbourhood to extract fea-
ture embeddings. To extract positional embeddings, the xyz coor-
dinates of the centroids are passed through an MLP. By adding the

© 2023 The Authors.
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Figure 3: A visual scheme of the strategy adopted in M1.

positional and feature embeddings, the final patch embeddings are
extracted and fed into the transformer. The Transformer is 12 trans-
former blocks deep, with 6 attention heads in each block, and the
feature dimension equals to 384.

The global feature vector generated by the backbone is then se-
quentially fed into the network heads, which map the feature vector
to a 4—dimensional vector of plane parameters. In the experiments,
the best number of heads was 27. As a result, the network can gen-
erate up to 27 planes, assuming that no point cloud contains more
symmetries. Each head consists of 3 linear layers with ReLU acti-
vations, batch normalisation, and dropout.

Since the number of output planes varies from shape to shape,
this method follows an unsupervised approach inspired by Gao et
al. [GZM*20]. The loss function is computed as

L=Ls+w;Ly

where Ly is the symmetry term, L, is the regularisation loss L, that
discourages the heads from converging to the same plane, and w,
is a weight fixed to 17. More in detail:

e the symmetry term Ly is computed as

Ly :ZD('P{P{)

T

where P is the input point cloud, Pi’ is a mirrored version of
‘P whit respect to each predicted plane 7; and D is the Chamfer
distance;

o the regularisation term is defined as:

Ly =||MM" 1|}

T .
where M = (n; ny7)", n; are the (normalised) nor-
mal vectors of each predicted symmetry plane 7, / is the identity
matrix (of size 27), and || - || is the Frobenius norm.

Finally, a cleaning algorithm discards duplicates to avoid triv-
ial solutions. Specifically, all planes whose normal’s angles were
within 1% radians were considered to be the same plane and only
the one with the smallest symmetry loss was kept. Additionally, all
planes whose symmetry loss was both (i) not within 1.35 times the
average loss of the remaining planes, and (ii) larger than a thresh-
old value (7 worked well for this particular configuration) were also
removed. Fig. 4 provides a graphical abstract of method M2.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

3.2.1. Computational aspects

The model was trained on a single RTX2060-6GB GPU. The CPU
is an 8-core intel i7-9700k with a clock frequency of 3.6 GHz.
The training time required was 3 hours. For inference, 60ms are
required for processing a batch containing a single sample.

3.3. M3:Diffusion-based symmetry detection

This method is adapted from the approximated symmetry detection
approach proposed in [SGS14]. Figure 5 shows the pipeline of this
method. The method consists of three steps:

1. Point cloud pre-processing.

To begin, the method rescales the point cloud such that the diag-
onal of the object measures one. Next, it calculates the Laplacian
of the point cloud using the robust Laplacian method developed
by [SC20]. This technique produces a highly non-manifold tri-
angulation from the input point cloud, which may result in a
geometry with numerous degenerate triangles. To address this
issue, the method introduces a small distortion in every triangle
of the triangulation. This distortion is referred to as the mollifi-
cation factor and can be set to higher values for greater robust-
ness. In this case, the mollification factor is fixed at 1e — 3.
Finally, the algorithm performs the eigen-decomposition of the
Laplacian to obtain ten eigenvalues along with their correspond-
ing eigenvectors. As a result, the input point cloud is represented
in the spectral domain by this set of eigenvalues A; and eigen-
vectors ¢;.

2. Computation of symmetry planes. Sipiran et al.[SGS14] propose
a diffusion-based function on a surface that retains both local
and global information while also revealing symmetric struc-
tures. The function is defined as follows

t x (1_ e—ht )
Swn = [ hxn=Y (5 |aw’  ©
0 i=0 i

where h(-,-) is the heat kernel restricted to the temporal domain.
The points with high chances of having symmetric correspon-
dences tend to be located in the local maxima of the function
S(x,t). Therefore, points in local maxima are excellent candi-
dates for searching for symmetric planes. In the case of point
clouds, a point v is considered a local maximum with respect
to S if S(v,¢) is greater than S(w,) for every point w in the
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K-nearest neighbourhood. The set of selected points with local
maximum values of S forms a potential candidate set.

Since it is not known which points are symmetric with oth-
ers, the method generates a candidate symmetric plane between
every pair of candidate points. Let v and m be two candidate
points, the candidate symmetric plane is defined as (7, p) where
A= (v—m)/|lv—m|and p=(v+m)/2.

3. Refinement. To eliminate false positives and overlapping sym-

metric planes, the method implements a two-step filtering strat-
egy. Firstly, the algorithm applies the symmetric transforma-
tion of each candidate plane to the input point cloud and com-
putes the bidirectional Chamfer distance [ADMG17] between
the original point cloud and the transformed point cloud. Only
those candidate planes with a bidirectional Chamfer distance of
less than 100 are selected. This filtering step helps to ensure that
the candidate planes are real symmetric planes.
Secondly, the procedure filters out overlapping symmetric
planes by sorting them according to their bidirectional Cham-
fer distance and performing a greedy selection. The symmet-
ric plane with the lowest Chamfer distance is directly added to
the final set. If the normal of a new symmetric plane deviates
by more than five degrees from any of the symmetric planes in
the final set, it is included in the final set; otherwise, it is dis-
carded. The confidence value of a symmetric plane is computed
as 1 —¢d /100, where cd is the bidirectional Chamfer distance.
By assigning higher confidence values to the symmetric planes
with lower Chamfer distances, we can prioritise the more accu-
rate symmetric planes in the final result.

3.3.1. Computational aspects

The method was executed in a computer with a processor AMD
EPYC 7282 16-Core, with 128GB RAM, under a Linux Ubuntu
operating system. The processing of an input point cloud takes be-
tween 20 seconds and 1 minute; most of the time is spent in the
eigendecomposition of the Laplacian matrix.

Method | mAP | PHC
MI (RI) | 0.0229 | 0.0225
M1 (R2) | 0.3933 | 0.3448
M1 (R3) | 0.9052 | 0.8950
ML (R4) | 0.9707 | 0.9685

M2 0.5403 | 0.2315
M3 (R1) | 0.5251 | 0.5168
M3 (R2) | 0.5160 | 0.5081

Table 2: Overall performance of methods when the tolerance for
angle deviation is © = 1 and distance-to-plane deviation is € = 1%
of the point cloud diagonal.

4. Experimental Setup

We present the experiments performed with the three methods de-
scribed in Section 3. In total, seven runs were executed. Here we
describe the details of these experiments:

e M1 (R1). SymmetryNet [SHZ*20b] with reflectional symmetry
loss and PointNet as backbone, trained for ten epochs with 5-fold
cross validation.

e M1 (R2). SymmetryNet using the reflectional symmetry loss and
an additional vector loss defined in Eq. 3 to directly fit the ground
truth normal. The backbone is a Point Cloud Transformer (PCT),
trained by one epoch with 5-fold cross validation.

e M1 (R3). SymmetryNet with loss defined in Eq. 1, PCT as back-
bone and trained by three epochs with 5-fold cross validation.

o M1 (R4). The same as M1 (Run 3), but trained by 77 epochs with
5-fold cross validation.

e M2. As described in Section 3.

e M3 (R1). The number of neighbors to detect local maxima is set
to K = 200.

e M3 (R2). The number of neighbors to detect local maxima is set
to K = 250.

Learning-based methods (M1 and M2) were trained on the train-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
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Method PO P1 P2 P3 P4 pPs

M1 (R1) | 0.022 | 0.021 | 0.024 | 0.024 | 0.019 | 0.025
MI(R2) | 0392 | 0416 | 0392 | 0.388 | 0.402 | 0.367
M1 (R3) | 0.901 | 0.905 | 0.912 | 0.899 | 0.911 | 0.901

: MI(R4) | 0971 | 0971 | 0977 | 0.967 | 0.962 | 0.973
8 M2 0.548 | 0.536 | 0.535 | 0.551 | 0.529 | 0.541
M3 (R1) | 0.704 | 0.444 | 0.541 | 0.603 | 0.364 | 0.493
M3 (R2) | 0.696 | 0.432 | 0.537 | 0.590 | 0.354 | 0.485
M1 (R1) | 0.022 | 0.021 | 0.024 | 0.024 | 0.018 | 0.025
M1 (R2) | 0.348 | 0.360 | 0.348 | 0.343 | 0.347 | 0.322
o M1 (R3) | 0.893 | 0.892 | 0.905 | 0.890 | 0.901 | 0.887
E M1 (R4) | 0972 | 0.968 | 0.977 | 0.964 | 0.956 | 0.972

M2 0.236 | 0.228 | 0.222 | 0.238 | 0.229 | 0.234
M3 (R1) | 0.704 | 0.435 | 0.534 | 0.599 | 0.347 | 0.480
M3 (R2) | 0.695 | 0424 | 0.532 | 0.586 | 0.338 | 0.472

Table 3: Performance of methods against transformations when the
tolerance for angle deviation is © = 1 and distance-to-plane devi-
ation is € = 1% of the diagonal of the point cloud. PO, P1, P2, P3
and P5 denote the type of perturbation following the notation in-
troduced in Section 2.1

ing dataset and provided the detections on the test set for evalua-
tion. As method M3 does not require a learning step, it was directly
executed on the test set for the experiments.

5. Comparative analysis

This study presents the performance evaluation of the methods for
identifying true positive detections using different thresholds and,
possibly, multiple configurations. Our initial analysis considered a
threshold of angular deviation at © = 1 and a threshold of distance-
to-plane deviation at € = 1% of the diagonal of the point cloud.
The overall performance of the participant methods is displayed in
Table 2. Furthermore, we evaluated the performance of the meth-
ods for the transformation applied to the point clouds, which can
be seen in Table 3, and the kind of shape, which is illustrated in
Table 4.

In this experiment, method M1 (run 3 and run 4) displays the
highest mean average precision (mAP) and precision at highest
confidence (PHC) metrics. This learning-based approach seems to
exploit the scale of the dataset, the choice of architecture, and loss
functions to learn the symmetric structure of the objects. In con-
trast, method M2 exhibits a decrease in precision, particularly a
drop in the PHC metric, indicating that it is not accurate enough to
assign the highest confidence to a correct plane. Method M3 shows
the lowest mAP values among the competition, although close to
the results of method M2.

Regarding transformations, learning-based methods (M1 and
M2) have a uniform behaviour, indicating no significant differ-
ences across different transformations. This could be attributed to
the high capacity of the trained models to learn some invariance of
the symmetric structure of the point clouds concerning the trans-
formations. Moreover, we observe that the dataset is built with the
care of balancing the transformations. On the other hand, method
M3 consistently performs worse in detecting planes under uniform
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and undersampling+uniform transformations. Since it is a geomet-
ric algorithm based on the heat diffusion process on the surface of
the underlying object, the experiments show that the noise from
the uniform distribution affects the computation of the symmetry
planes.

The scenario is different when analysing the performance for the
kind of shape. For example, method M1 struggles to detect sym-
metric planes in m-convexities shapes. We hypothesise that this
behaviour can be attributed to the high variability in the number
of symmetric planes in m-convexities shapes. This phenomenon
is also slightly evident in the geometric petal shape, although the
number of symmetries is not as variable as in m-convexities. Con-
sistent with our findings, method M2 displays low mAP values
in the geometric petal shape, unlike in the other types of shapes.
Method M3 has a good mAP for the astroid shape but lower values
for the rest of the shapes. Notably, it exhibits low precision in de-
tecting planes in the egg of Keplero shape. The difference between
these two different behaviours can be attributed to the nature of
the algorithm. Method M3 detects symmetric key points that guide
the entire process of detecting symmetric planes. The astroid shape
contains well-defined key features that can be detected by the lo-
cal maxima of diffusion functions. In contrast, the egg of Keplero
shape does not have outstanding features, and method M3 struggles
to find good symmetric candidates.

6. Concluding Remarks

This paper introduces a novel dataset and methodology for assess-
ing the performance of symmetry-detection algorithms. The dataset
consists of synthetic shapes represented as point clouds, giving the
benefit of generating many shapes and creating a suitable scenario
for learning-based methods. Moreover, the synthetic dataset facil-
itates the computation of a high-quality ground truth consisting of
precisely computed symmetric planes.

This study evaluates three methods, with seven runs in total, two
of which (M1 and M2) are based on neural networks for learn-
ing the symmetry planes, and one is a purely geometric method
(M3). Our experimental results indicate a clear predominance of
learning-based methods in identifying the orientation and location
of symmetry planes, even in the presence of transformations that
perturbed the input shape. We attribute this success to the combina-
tion of powerful learning architectures, such as Transformers, and
a rigorous training protocol that takes advantage of a large number
of shapes and their variability.

We identify several potential avenues for future research. First,
the benchmark and the evaluation would benefit from including
more challenging transformations, such as stronger noise and shape
partiality. Second, since the dataset is generated synthetically, cre-
ating a larger dataset is possible. A large-scale dataset, one or two
orders of magnitude larger than the current one, could push the lim-
its of how algorithms operate and learn from 3D data. We anticipate
that powerful neural networks are capable of handling such a mag-
nitude of data, and a larger dataset may lead to the establishment of
new challenges, not just for symmetry detection.
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Method S1 S2 S3 S4 S5 S6 S7
MI1 (R1) | 0.0387 | 0.0161 | 0.0229 | 0.0097 | 0.0039 | 0.0698 | 0.0000
M1 (R2) | 0.4637 | 0.3290 | 0.2170 | 0.4037 | 0.7546 | 0.1431 | 0.4268
M1 (R3) | 0.9554 | 0.9778 | 0.6857 | 0.9254 | 0.9864 | 0.8031 | 0.9860
mAP | MI (R4) | 0.9766 | 0.9968 | 0.8542 | 0.9669 | 0.9996 | 0.9961 | 0.9976
M2 0.5129 | 0.5208 | 0.5139 | 0.4720 | 0.5396 | 0.7310 | 0.4954
M3 (R1) | 09009 | 0.3729 | 0.5104 | 0.4037 | 0.6354 | 0.2420 | 0.6061
M3 (R2) | 0.9009 | 0.3656 | 0.4858 | 0.3821 | 0.6354 | 0.2373 | 0.6002
MI1 (R1) | 0.0387 | 0.0146 | 0.0224 | 0.0089 | 0.0039 | 0.0698 | 0.0000
M1 (R2) | 0.3783 | 0.2919 | 0.1588 | 0.3222 | 0.7355 | 0.1325 | 0.3817
M1 (R3) | 0.9477 | 0.9877 | 0.6534 | 0.9308 | 0.9977 | 0.7286 | 0.9992
PHC | MI (R4) | 0.9803 | 1.0000 | 0.8462 | 0.9531 | 1.0000 | 0.9929 | 1.0000
M2 0.1137 | 0.2127 | 0.1804 | 0.1935 | 0.2087 | 0.5812 | 0.1341
M3 (R1) | 0.8908 | 0.3656 | 0.5029 | 0.3988 | 0.6168 | 0.2416 | 0.5970
M3 (R2) | 0.8908 | 0.3587 | 0.4788 | 0.3780 | 0.6168 | 0.2369 | 0.5915

Table 4: Performance of methods with respect to the type of shape when the tolerance for angle deviation is 8 = 1 and distance-to-plane
deviation is € = 1% of the diagonal of the point cloud. S1=Astroid, S2=Citrus, S3=M convexities, S4=Geometric petal, S5=Lemniscate

Bernoulli, S6=Egg Keplero, ans S7=Mouth curve.
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