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Abstract
The generation of 3-dimensional geometric objects in the most efficient way is a thriving research topic with, for example, the
development of geometric deep learning, extending classical machine learning concepts to non euclidean data such as graphs
or meshes. In this short paper, we study the effect of a reparameterization on two popular mesh and point cloud neural networks
in an auto-encoder mode: PointNet [QSMG16] and SpiralNet [BBP∗19]. Finally, we tested a modified version of PointNet that
takes orientation into account (through coordinates of the normals) as a first step towards the construction of a geometric deep
learning model built with a more flexible metric regarding the parameterization. The experimental results on standardized face
datasets show that SpiralNet is more robust to the reparametrization than PointNet in this specific context with the proposed
reparameterization.

CCS Concepts
• Deep learning → 3D generative models; • Performance measure → Reparameterization; Robustness;

1. Introduction

3D surfaces have known for a long time a large interest in the com-
puter vision community. While the information contained in the 3D
surface of a volumetric object is limited (because of the complexity
of capturing and storing such data), the 3D mesh format has be-
come one of the principal approaches. This is the case in human
shape analysis, where data is generally presented as 3D scans of
the human body or face resulting in a detailed representation of
the shape. In particular, the shapes we consider are supposed to be
smooth manifolds. This way, we reduce the complexity inherent to
volumetric data, though we do lose some information. Point clouds
or meshes sampled from the original shape surfaces are natural dis-
cretizations for describing the corresponding continuous objects.

In recent years, the computer vision community has become in-
creasingly interested in deep learning approaches, with the success
of convolutional neural networks on 2D images [KSH12, SLJ∗15,
HZRS16], and models that are now well established, such as auto-
encoders. In the meantime, the quality and quantity of available
3D data has exploded, unveiling the possibility of training and ap-
plying popular neural networks on 3D data, with multiple way of
representing and learning 3D shapes [BLRW16, GMW17, FSG17,
ADMG17, KTEM18, RBSB18].

Moreover, modeling complex 3D object such as human body
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and faces is even more challenging as human data undergoes spe-
cific and complex transformations. For example, human faces are
usually described as the sum of identity and facial expression as
smooth deformations from a neutral template face. Two different
faces can be linked from one to another through the combinations
of smooth deformations. In the general setting, modeling those de-
formations can be done using costly procedures such as diffeomor-
phic registration or linear blending models. The possibility to en-
code such deformations or generate shapes (faces, bodies, ...) re-
sembling the ones from a given database with a neural network in
a auto-encoder architecture sounds like the next pathway. In order
to fullfill this goal, the possibility of applying CNNs directly on the
surface [BBL∗17], instead of voxels, is promising. However from
this problem arises several challenges due in part to natural invari-
ances present in 3D objects.

Among the challenges raised by 3D learning on explicit repre-
sentations, dealing with reparameterization is crucial for real world
applications. In this paper, we will refer to the reparameterization
of a mesh as the re-sampling of its corresponding surface. Com-
pared to images, is not easy to find a canonical correspondence be-
tween two meshes (generally, a scan and a template), and powerful
registration algorithms are often needed to build in correspondence
mesh datasets. While full 3D auto encoding of unregistered meshes
remain an active area of research, several architectures have shown
state-of-the-art results for non lossy encoding of 3D meshes. Re-
cent work [OFD∗22] suggests however that some 3D auto-encoders
struggle when the meshes presented uncanny deformations: hard
poses for 3D human poses, or new identities for 3D faces.
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Interested by the problem of parameterization we propose a
benchmark on the COMA dataset [RBSB18] to compare the ro-
bustness against such changes, in the registered setting, on two
auto-encoders.

2. Related work

2.1. Deformation of 3D meshes

Being able to represent faithfully a 3D shape is a hard task. For a
long time, handcrafting descriptors has been a preferred approach,
with successful approaches in representing global shape properties
such as the Heat Kernel Signature [BK10] or local descriptors such
as the shape index [KVD92,CLZY15]. The way we design an auto
encoder of 3D meshes in a registered setting, is as a deformation of
a template mesh. This area has been active for several years. In par-
ticular, several linear blending models have shown the ability to be
able to represent human shapes while having a good generalisation
ability [ASK∗05, LBB∗17]. However, the retrieval of a parameter
for a single shape is a costly procedure, that often needs human
intervention or additional data (landmarks, texture videos, ...).

2.2. Geometric deep learning

In the meantime, the field of geometric deep learning [BBL∗17]
has become very important. The purpose of this area is to design
new feature extractors from geometrical data such as graphs, and
3D shapes in supposedly all kind of formats (point clouds, meshes).
After the promising results of PointNet [QSMG16], local shape de-
scriptors such as PointNet++ [QYSG17] or KPConv [TQD∗19] has
shown impressive results on point clouds for shape classification or
scene segmentation. While this area remains very active, we re-
fer to [GWH∗20] for a broad review of developments in this area.
Meanwhile, applying the principle of 2D image convolutions on 3D
surface meshes is today a hot topic. Pioneer work such as GCNN or
FeastNet showed impressive results for mesh classification or local
feature extraction. Most of these approaches however rely on k-NN
(for point clouds), n-ring (for meshes) feature aggregators, or care-
ful remeshing in training in order to work properly. Moreover, they
are often too heavy for the training of deep neural auto-encoders.
The recent DiffusionNet approach [SACO22], which relies on effi-
cient approximation of surface intrinsic diffusion using the discrete
cotangent Laplacian, is promising.

2.3. Mesh auto-encoders

The geometric deep feature extractors opens the possibility of
learning representations of shapes directly from the data using, for
example, unsupervised auto encoders [BBP∗19,HHS∗21,CNH∗20,
ZWL∗20, HHF∗19]. Nowadays, Neural3DMM [BBP∗19, CK21]
or SpiralNet, based on the idea of Spiral Convolution, is a pop-
ular approach. However, this approach is limited by its need to
work on registered shapes. On the other side, the well established
PointNet [QSMG16] architecture shows good generalisation abili-
ties over point cloud analysis, and is applied on a wide variety of
problems, including auto-encoders [ADMG18,CNH∗20]. PointNet
stays still limited by the fact that it completely ignores the connec-
tivity of a mesh, and thus the intrinsic properties of the surface it en-

codes. Finally, recent approaches of implicit network for represent-
ing surfaces is an active area, in particular for shape reconstruction
from images [SHN∗19], or partial 3D scan [CAPM20]. However,
the encoding of 3D shapes mostly rely on heavy 3D CNN opera-
tors on voxels [CAPM20], thus they fail to capture information on
detailed shapes such as 3D faces.

2.4. Contribution

The purpose of this work is to test the robustness of two auto-
encoders with respect to a specific reparameterization. To do so,
we will train two popular auto encoders (SpiralNet and PointNet)
on the COMA dataset, Then, we test the trained network on both
COMA and FLAME [LBB∗17] datasets, which is a reparametriza-
tion of the surfaces in COMA. We expected PointNet to be much
worse than SpiralNet on the original dataset, but that SpiralNet
would break down on FLAME, since it is so dependent on mesh
connectivity. However, this was not the case on the proposed repa-
rameterization for the face generation task. Our conclusions are
summarized as follow:

1. As expected, the PointNet architecture is worse at encoding data
compared to the SpiralNet registered approach on the original
parameterization

2. The SpiralNet model breaks when the reparameterization
changes the graph structure on our artificial database.

3. The SpiralNet architecture is surprisingly robust on the pro-
posed reparameterization for face generation.

3. Auto Encoders and their characteristic

Consider a discretized surface M of a 3D face shape (point cloud
or mesh), a latent space Z and the output surface N. The goal of an
auto-encoder is to learn an encoder Φ : M → Z, and a decoder ψ :
Z → N. In addition, to make use of all available data, an ideal auto-
encoder should be invariant with respect to several transformations,
which we highlight below. Those invariances are among the biggest
current challenges in geometric deep learning.

Figure 1: SpiralNet and PointNet Encoders/Decoders
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3.1. Invariance to Euclidean Tranformations

For a geometric model, we often seek invariance to isometries such
as rotations and translations in R3. We denote T the group of trans-
lations and SO(3) the group of rotations. We aim at having, for each
T ∈ T , R ∈ SO(3)

Ψ◦Φ(T.M) = Ψ◦Φ(M) (1)

Ψ◦Φ(R.M) = Ψ◦Φ(M) (2)

The design of neural networks invariant to such transformation
is a very active area of research with a lot of progress in the recent
years. We restrict ourselves to already aligned shapes (centered,
canonically rotated) and left this problem out of the scope of this
paper.

3.2. Invariance to Parametrization

Permutations. When working only with point cloud, the param-
eterization can be seen as a specific ordering of a point cloud.
The invariance is such that the reordering of each sample point
should not impact the performance of the model. More precisely,
if we consider x = {x1, ...,xn} a set of sample points describ-
ing M. Let P be the group of permutations, for σ ∈ P such that
σ(x) = {xσ(1), ...,xσ(n)}

Ψ◦Φ(σ(x)) = Ψ◦Φ(x) (3)

In this setting, the invariance is successfully solved by PointNet as
shown in [QSMG16].

General setting. In the general setting, we rather talk about the
invariance of a function applied to different discretizations. Given
M1 and M2, two different discretizations representing the same 3D
surface, we would like

ψ◦φ(M1) = ψ◦φ(M2)

One should keep in mind that this is an ideal condition and so,
we are interested in a robust model with the following property

|ψ◦φ(M1)−ψ◦φ(M2)| is bounded (4)

where | · | is a given metric between discretized shapes.
Testing this robustness is the goal of this paper. We will however
remain in the simplified setting of same topology between two
meshes. A reparameterization is then seen as a translation of the
mesh over the continuous surface.

4. Neural Networks for Point Cloud and Meshes

4.1. PointNet

PointNet [QSMG16] is an architecture dealing with point clouds
that learns a symmetric function of the point cloud capturing prop-
erties with the constraints mentioned before and summarising the
point cloud to a fixed size vector by using a max pooling operation.
A summary illustration is proposed in Figure 2

PointNet has two advantages: its simplicity (we only apply

Figure 2: Architecture of the PointNet Encoder. θ and λ are the
learned variables of the MLPs

Multi-layer perceptrons), which makes training and inference com-
putationally efficient, and its natural reparameterization-invariance.
[QSMG16]

Our auto-encoder is the simplified architecture proposed
in [ADMG18], which has been applied successfully to 3D faces
in [CNH∗20]. The decoder part is simply a Multi-layer Perceptron
(MLP) that reconstructs the points directly from the latent space
vector.

4.2. Modified PointNet model

We enhanced the PointNet architecture with normals coordinates
as additional dimensions of the input vector, similar to [QYSG17].
We use the normals attached to each vertices. This way, we use the
information contained in the triangulation of the mesh instead of
the vanilla point cloud.

Figure 3: Architecture of our modified version of PointNet with
normals

The decoder architecture is similar to the standard PointNet auto-
encoder described earlier. We illustrate it in Figure 3.

4.3. Spiral convolution and mesh pooling

We define the face mesh as in [BBP∗19] as a graph M = (V,E);
where V = {x1, . . . ,xn} and E respectively denote the set of edges
and vertices.

The model described in [BBP∗19] is a model dealing with geo-
metric data described as graphs. This model propose a convolution
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layer that deals with ordering problems. To do so, the mesh is de-
scribed from a template on which is attached a spiral patch. This
patch impose a local ordering respected by the usual graph convo-
lution operations. The figure 4 shows two examples of spiral patch
around two given vertices (in red).

Figure 4: An example of two spiral neighborhoods around a vertex
on the facial mesh

More formally, from a given point x ∈ V , a spiral patch is an oper-
ator S

S(x) = {x,R1
1(x),R

1
2(x), ...,R

h
|Rh|(x)}

where Ri
j(x) is the j-th element of the i-ring around x. The patch

starts from x, R1
1(x) is the closest point from x on the 1-ring, then the

ring is visited with a fixed travel direction (clockwise or counter-
clockwise), the process is repeated until the h-ring with h an hyper-
parameter of the model.

This operator is then used for the convolution operation which
becomes, for two signals f ,g on the graph M

( f ∗g)x =
L

∑
l=1

gl f (Sl(x))

Following the convolution layer, the mesh pooling operation,
described in [RBSB18] is a downsampling of the mesh obtained
by removing vertices that minimize a quadric error inspired by
[GH97].

In particular, robustness against reparameterization is not guar-
anteed (and expected) for this model.

5. Numerical experiments

With an auto-encoder version of each model, described below and
summarised in Figure 1 we aim at reproducing 3D faces with fixed
number of vertices.

5.1. Datasets

ELLIPSES is an artificial database made of three different param-
eterizations of 1000 randomly generated ellipsoids. We start by tak-
ing a random parameterization of the sphere (we call it the original
parameterization) and we apply a random diagonal matrix to get an

ellipse. We repeat this process 1000 time to build the dataset and we
store each transformation. To create a reparameterization we rotate
the original sphere and apply the stored transformation matrices to
get a "shifted" reparameterization. Finally, to get an "unbalanced"
reparameterization, we unevenly sample on the sphere (for exam-
ple, five times more sample on one side) and we apply the stored
transformations to obtain the unbalanced reparameterization.

Figure 5: A sample from each dataset in the ELLIPSES database

COMA dataset [RBSB18] is a dataset of 3D faces. 12 persons
executed at most 12 different "extreme" expressions (mouth ex-
treme, mouth middle, mouth open, mouth side, mouth up, lips up,
lips back, high smile, eyebrow, cheeks in, bare teeth) displayed
in Figure 6. The videos of each expression are scanned using a
4D scanner and a registration method is applied to get registered
meshes in the FLAME topology (see below). It is composed in to-
tal of 20466 meshes, obtained from 3D scans, of 12 different per-
sons (identities). The sequences are sampled at 144HZ, and each
expression sequence contains between 29 and 150 meshes.

Figure 6: Examples of meshes in the COMA dataset

FLAME [LBB∗17]is a framework to model 3D faces through
3 types of transformations: shape (or identity), pose and expres-
sion. A template mesh (5063 vertices) is deformed along each
transformation direction to reconstruct a face. The FLAME model
is learned over more that 30000 real 3D face scans from the
D3DFACS [CKH11] database. We applied the FLAME pipeline
on the registered meshes from the COMA dataset, resulting in a
slightly different parameterization of the faces (in the FLAME di-
rections), see Figure 7 . The topology is however the same in both
COMA and FLAME datasets.

5.2. Experimental setup

Each of the following auto-encoders is trained for 250 epochs with
a latent space of fixed size 128. The loss used both for training and
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Figure 7: Reparameterization of one COMA registered face (left)
using the FLAME model (right). We observe that the obtain ver-
tex are slightly translated on the surface compared to the original
COMA registrations.

evaluation is d1(x, x̂) = 1
N ∑i |xi − x̂i|. Optimization is performed

with a standard Adam optimizer and a learning rate of 10−3.

For the ellipsoid generation, the model is trained on 90% of the
"original" parameterization and tested on the remaining 10%. Then
the trained model is tested on the whole "shifted" and "unbalanced"
datasets.

For the face generation task, we used 11 out of the 12 identities of
the COMA dataset as training set and the remaining identity is used
for the test phase which gives the numbers in the "COMA" column
in ??. The performance is then compared by applying the trained
model to the corresponding identity of the FLAME dataset, which
gives us the "FLAME" column in ??. We describe the parameters of
the model for the face generation task. For the ellipsoid generation
task, the model has half the number of parameters but keeps the
same structure.

SpiralNet Auto-encoder: Filters size for the encoder are
[64,64,64,128] with a downsampling (DS) of factor 4 after each
spiral convolution (SC). The decoder is a mirror of the encoder
starting with a fully connected layer (FC). The parameters are taken
from the original Neural3DMM [BBP∗19] paper.

• Enc: SC(64) → DS(4) → SC(64) → DS(4) → SC(64) → DS(4)
→ SC(128) → DS(4)

• Dec: FC(128) → US(4) → SC(128) → US(4) → SC(64) →
US(4) → SC(64) → US(4) → SC(64)

PointNet Auto-encoder: The encoder is a combination of a sim-
ple PointNet architecture (PN), a transformer (TF) and a fully con-
nected layer (FC). The decoder is a simple Multi-layer perceptron
(MLP). We use the parameters of [CNH∗20], that were optimized
on the COMA dataset.

• Enc: PN(64,128) → TF(64) → FC(128,64,64)
• Dec: MLP(256)

5.3. Quantitative experiments

We run experiments by training our encoders on both ELLIPSES
(original parameterization) and COMA datasets. We summarise our
results in ?? for tests on the ELLIPSES database and in Table 2 for
tests on COMA and FLAME.

Ellipse generation: We aim at generating ellipsoids with both

auto-encoders after a training phase on the original parameteri-
zation from which is derived the template used for the SpiralNet
model. The performances regarding robustness against the differ-
ent reparameterizations are evaluated in Table 1.

Original Shifted Unbalanced
SpiralNet 0.01 102.02 149.22
PointNet 0.80 1.41 228.48

Table 1: Results regarding robustness over reparameterization
tested on the ELLIPSES database

We observe that SpiralNet breaks as soon as the graph struc-
ture changes compared to the template (on shifted and unbalanced
parameterizations). In comparison, PointNet maintains its ability to
reconstruct an ellipse for a shifted reparameterization but the model
breaks for the unbalanced parameterization (see Figure 8).

Face generation: Similarly, to generate faces, with the setup de-
scribed before, we trained the two models on a given parameteri-
zation (COMA) and we evaluated the performance on both COMA
and FLAME parameterizations. The results are presented in Ta-
ble 2.

COMA FLAME
SpiralNet

1st identity 0.350 0.381
2nd identity 0.293 0.305
3rd identity 0.334 0.365

PointNet
1st identity 0.703 0.659
2nd identity 0.653 0.680
3rd identity 0.819 0.817

Modified PointNet
1st identity 0.644 0.738
2nd identity 0.685 0.772
3rd identity 0.720 0.812

Table 2: Results regarding robustness over reparameterization
tested on 1 over 12 identity

We observe in this table that the both PointNet et SpiralNet auto-
encoders are not affected by FLAME reparameterization.

For the modified PointNet model, although we add more infor-
mation into the input of the network, this experiment shows that
the model using normals has better performance with data from the
same parameterization but fails to improve its performance on repa-
rameterized data. This is probably due to the fact that the normals
coordinates can be seen as information linked to the differential of
the surface which is more sensible to small deformations.

5.4. Qualitative results

Finally, we display some reconstructions of the meshes in the test
set in Figure 9.

Regarding performances in the ellipsoid reconstruction task, we
highlight in Figure 8 an example summarising how the model per-
forms under each type of transformation. For face reconstruction,
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Figure 8: Examples of different parameterizations of an ellipse

Figure 9: Examples of reconstruction for each model

we observe that SpiralNet is the only one keeping the original en-
coded identity in both settings. Moreover, in the COMA setting,
the PointNet model is able to keep a part of the expression, while
loosing the identity, while the augmented model seems to behave
differently (the expression is totally different while the identity is
a bit similar). In the FLAME setting, both models fails completely,
in expression and identity.

6. Conclusion and future work

In the present work, we discuss the problem of reparameterization
for auto-encoders. We experimented the effect of a specific repa-
rameterization for two different models. First, experiments con-
ducted on a simple artificial database show that, in general, Spi-
ralNet should not be expected to be robust against reparameteri-
zation. The experimental results on COMA (used for training and
test) and FLAME (only used for test) datasets show that, regard-
less of our expectations, SpiralNet is robust against the aforemen-
tioned reparametrization which has the specificity to maintain a
similar graph structure. In addition, PointNet which is suppos-
edly reparameterization-invariant for classification and segmenta-
tion tasks, is robust but not completely invariant when used as en-
coder in the context of our experiments. This paper is a first step for
the larger goal consisting in the generation of 3D faces using a deep
learning architecture that is robust against a reparameterization of
the mesh.

In future work, we seek to extend this benchmark to a broader
class of mesh auto encoders, and to build a benchmark for the fully
unparameterized meshes setting. In this perspective, the exploration
of tools such as geometric measure theory [Gla05,KCC17] in order
to define parameterization robust metrics is a promising path.
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