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Abstract
3D morphable models (3DMMs) simultaneously reconstruct facial morphology, expression and pose from 2D images, and thus
could be an invaluable tool for capturing and characterizing the face and facial behavior in early childhood. However, 3DMM
fitting on infants is a largely unexplored problem. All publicly available 3DMMs are developed for adults, and it is unclear if
and to what extent they can be used on videos of infants. In this paper, we compare five state-of-the-art 3DMM fitting methods on
data from naturalistic infant-caregiver interactions. Results suggest that it is possible to produce consistent and subject-specific
reconstructions of 3D shape identity from multiple frames, but not from a single frame. Qualitative evaluation highlights that
facial regions with high texture variation, such as eyes, brows and mouth, are captured with higher accuracy compared to the rest
of the face. Thus, even though a 3DMM developed for adults has significant limitations when reconstructing the morphology of
the entire facial region of infants, applications that involve analysis of facial behavior can be feasible. Our encouraging results,
combined with the unique ability of 3DMMs to disentangle two major sources of noise for expression analysis (i.e., identity bias
and pose variations), motivate future research on using 3DMMs to measure the facial behavior of infants.

CCS Concepts
• Human-centered computing → Empirical studies in HCI; • Computing methodologies → Shape representations;

1. Introduction

Social interactions in early childhood play a critical role in devel-
opment and learning, and studying behavior in the context of these
interactions can provide rich information about a wide range of de-
velopmental skills and help to predict future outcomes [LAVS∗16].
Facial expressions are one behavior employed by children from
early infancy to communicate and bond with others during social
interactions. Automated analysis via computer vision has the po-
tential to significantly improve the accuracy and granularity with
which the facial behavior of infants can be measured, and thus
to become an invaluable tool for developmental and clinical re-
searchers interested in early social-emotional development.

3D morphable model (3DMM) fitting is a topic that has regained
significant momentum in recent years, due partly to the advent of
deep learning, which led to the creation of methods that work ro-
bustly in uncontrolled imaging conditions. This reinvigorated in-
terest is a promising development for studying facial behavior in
infants, because 3DMM fitting has the potential to not only re-
construct the 3D face shape, but also to parametrize facial pose,
identity and expression. However, despite a growing body of re-
search, 3DMM fitting remains almost exclusively studied on the
faces of adults. To our knowledge, there is no publicly available
3DMM constructed from infant data (Section 2.3), and learning-

based 3DMM fitting approaches are trained predominantly by im-
ages of adults (Section 2.1). Faces of infants and adults have
anatomical differences, therefore errors are likely to emerge when
one uses a 3DMM from adults on videos of infants. Moreover, an-
alyzing faces of infants has inherent difficulties, as infants tend to
make large head movements and expressions, especially during nat-
uralistic interactions. As a result, it is unclear if and to what degree
state-of-the-art 3DMM fitting methods can work on infant faces.

This paper takes a critical step towards filling this gap in the
research on 3DMM fitting methods by evaluating their perfor-
mance on faces of infants during naturalistic interactions. Specif-
ically, we conduct a quantitative comparison of five state-of-the-art
approaches in terms of ability to produce consistent and person-
specific estimates of neutral face shapes in infants. Furthermore, we
provide qualitative results on measuring facial pose and expression
in infants with 3DMMs. Our analysis allows us to identify 3DMM
fitting methods and practices that lead to improved 3D reconstruc-
tion; and to discuss the applications for which 3DMM fitting on
infants seem feasible even when a morphable model of non-infants
is used. The unique contributions of this paper are as follows:

• To our knowledge, we conduct the first quantitative comparison
of state-of-the-art 3DMM fitting methods on videos of infants
from naturalistic dyadic interactions (Fig. 1).
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Figure 1: Left: Illustration of the infant-caregiver interaction paradigm used in this study. Face videos of the infants were collected using the
2D camera device in the middle of the frame. Right: Several video frames of the infant during the interaction, along with the output of 3D
face (expression and pose) reconstruction for the corresponding frames.

• We show that producing estimates of (neutral) 3D face shapes
that are consistent and person-specific is possible when estima-
tion is done from multiple frames but not from a single frame.

• We show that the performance of methods that can jointly fit to
multiple frames of a subject can be improved through repeated
estimation on random combinations of frames.

• We provide qualitative evidence showing promise regarding
3DMMs’ ability to quantify facial pose and expressions in in-
fants, despite limitations in reconstructing the entire face.

The rest of this paper is organized as follows: Section 2 discusses
recent progress in 3DMM fitting, further delineating the gaps ad-
dressed by this study. Section 3 provides the background and no-
tation for 3DMM fitting and lists the ways in which multi-frame
fitting can be performed, which turns out to be an impactful choice
in this study. Section 4 presents the experiments, and Section 5 dis-
cusses the implications of this study, highlighting the applications
of 3DMM fitting on infant faces that are feasible and those that
seem less so. Finally, Section 6 concludes the paper.

2. Related work

In this section we first provide a brief summary of the methods for
3DMM fitting with an emphasis to their application on faces of
infants (Section 2.1), then discuss metrics that can be used in our
context (Section 2.2), and finally discuss recent progress in terms
of 3DMM fitting on faces of infants (Section 2.3).

2.1. Methods for 3DMM fitting

3DMM fitting methods can be categorized as optimization-based
and learning-based. Optimization-based methods estimate the
3DMM parameters in a given image by minimizing a cost func-
tion that measures the discrepancy between the given and the
3DMM-generated image. Most methods use unconstrained pseudo
second-order optimization [RV05, SWTC14, BRV∗18], but re-
cently, inequality-constrained optimization [SZST20b] has also
been proposed. Learning-based methods, on the other hand, do not
optimize for every given image from scratch. Instead, they train
a regressor a-priori (i.e., offline) with large amounts of data, and
use this regressor to estimate the 3DMM parameters from new im-
ages [EST∗20]. It must be noted that the training of this regres-
sor involves usage of face images of adults [DYX∗19, GZY∗20,

BCLT21], which may be an extra limitation for 3DMM fitting on
faces of infants, beyond the fact that the 3DMM itself is also from
adults. Our experiments address this open issue, and suggest that
some learning-based methods are significantly better than others
in terms of producing consistent and subject-specific estimates of
(neutral) face shapes (Section 4.3).

Most learning-based methods can only take a single frame
as their input. Recently, multi-frame methods, such as IN-
ORig [BCLT21], have been proposed. The advantage of multi-
frame methods is that, by jointly fitting a 3DMM to multiple frames
of a person, they reduce the ill-posedness of the problem, since
the reconstructed shape (identity) must be consistent across differ-
ent frames. Note that optimization-based methods are readily capa-
ble of multi-frame fitting with rather straightforward modifications
(e.g., updating the Jacobian term [BRV∗18]).

In this paper, we evaluate five state-of-the-art methods (Sec-
tion 4.3), which include single- and multi-frame methods that are
based on optimization or learning. To our knowledge, we present
the first study to apply such a diverse set of techniques to data of
infants within the context of naturalistic interactions. The results of
our comparison and the implications of these results are discussed
respectively in Section 4 and Section 5.

2.2. Evaluation metrics

The standard metric for validating 3DMM fitting methods is ge-
ometric error, which measures the discrepancy between the 3D
ground truth shape and the estimated 3D shape. However, to our
knowledge, there is no public dataset of infants in naturalistic inter-
actions with 3D ground truth. Moreover, the geometric error is diffi-
cult to apply in the presence of strong facial expressions, as the cor-
respondence problem becomes particularly difficult [FBPDB21].

A number of studies have recently used metrics that do not re-
quire 3D ground truth. One of these metrics is face recognition per-
formance based on the 3DMM generated image [BCLT21]. This
metric operates on the 2D image space, and uses the generated tex-
ture as well as the shape of the person. However, some 3DMM fit-
ting methods do not even fit a texture model [GZY∗20, SBFB19],
but only a shape model. Moreover, the predominant interest in our
study is analyzing facial shape (see also Section 3). Thus, we avoid
using metrics that rely on estimated facial texture.
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Recently, another metric that needs no 3D ground truth
has been proposed: Within- and between-subject effect size
(WBES) [SZST22]. This metric measures the ability of a method
to estimate neutral face shapes (i.e., shape identity; see Section 3)
that are consistent (i.e., similar for images of the same person) and
person-specific. Since a 3D ground truth is not required, this metric
can also be applied to infant videos collected only with 2D cam-
eras (as will often be the case for naturalistic interaction data). The
quantitative experiments of this study are based on WBES, which
is defined more precisely in Section 4.2.

2.3. 3DMM fitting for faces of infants

Despite the significant research devoted to 3DMMs, their use on
faces of infants has remained largely unexplored. A recent study
presented a novel method to construct 3DMM from face scans
of infants [MPT∗20] and used it to construct BabyFM—a mor-
phable model for infants. BabyFM was further applied to recon-
struction of faces of infants from 2D data [MPL∗22]. However,
the test dataset of the latter study was from controlled face im-
ages, rendered from 2D scans. On the contrary, our study applies
3DMM fitting to infants in naturalistic social interactions, where
the babies typically move their head freely and display large fa-
cial expressions. Moreover, to our knowledge, neither BabyFM nor
any other infant-based 3DMM is available to third parties for re-
search or industrial/commercial purposes. In contrast, many re-
searchers have access to and use 3DMMs constructed from faces of
non-infants, such as the Basel’09 [PKA∗09], Basel’17 [GMB∗18],
FLAME [LBB∗17] and LSFM [BRP∗18] models. Therefore, it is
an important open question if and to what degree one can use
3DMMs constructed from adults on infant data. While Morales
et al. [MPT∗20] partly answer the latter question by showing that
3DMMs of adults are limited in reconstructing the entire facial re-
gion (see also Section 4.5), 3DMMs are multi-purpose tools, and it
remains to be seen whether adult 3DMMs can be applied to infant
data for other applications, such as facial pose and expression quan-
tification. Thus, our study provides further investigation to shed
light on this question. The quantitative and qualitative experiments
presented in this paper allow researchers to make more informed
decisions about which applications are viable and which are less
likely so when applying a 3DMM constructed from face scans of
adults to images of infants (Section 5).

3. Background on 3DMM fitting

The main strength of 3DMM fitting, compared to alternative 3D
face reconstruction approaches (e.g., direct methods [JBAT17]), is
that it can disentangle and parametrize the three predominant fac-
tors that underlie a facial image, namely, the facial pose, identity,
and expression. Although 3DMM fitting can be done on a single
frame, it may be unrealistic to expect the aforementioned 3-fold
decomposition to be accurate in this case, particularly if the frame
contains a spontaneous and unknown facial expression. For exam-
ple, if the eyebrows of a subject appear to be higher compared to
the average face, this may be either due to the subject’s facial mor-
phology, or due to the facial expression in the frame (i.e., raised
eyebrows). For this reason, it is critical to make the most of the
available data and do multi-frame estimation when we have video

data, particularly in the case of infants. Below we first introduce our
notation for 3DMM fitting, and then describe three ways in which
multi-frame estimation can be performed.

3.1. Notation

Suppose that the 3D shape of the face of a person in a world coordi-
nate system is represented with a dense mesh of N points, denoted
as p ∈ R3N . It is reasonable to assume that p depends on three fac-
tors, namely, person-specific facial morphology, facial expression
and facial pose (i.e., rotation and translation). Fitting a 3DMM to
a given image frame I amounts to estimating the parameters that
govern these factors. That is, if we use a linear 3DMM, p can be
assumed to be the result of the following equation

p = R(p̄+Aααα+Eεεε)+ τ, (1)

where p̄ is the average face of the 3DMM; A and E are matrices
that respectively represent the identity and expression basis of the
3DMM; ααα and εεε are the vectors that respectively represent the iden-
tity and expression of the subject; R is a matrix that applies a (com-
mon) rotation to all points in the mesh, and τττ is a vector represents
the translation from origin.

3.2. Multi-frame fitting

When we have multiple frames per subject (e.g., a video), it is nat-
ural to try and make the most of available data. In this case, our in-
put is a set of T frames of a subject I1, . . .IT , and we can define the
dense mesh at the tth frame as pt , and the expression, rotation and
translation parameters as εεεt , Rt and τττt for t = 1, . . . ,T . Note that the
identity parameter, ααα, does not depend on frame, since the identity-
specific facial characteristics of a person do not change within the
video. Thus, multi-frame fitting can improve the accuracy of the
estimated identity parameter, α̂αα, since we can observe the face of
the same subject from different angles and with various expres-
sions, thus rendering the problem less ill-posed. As explained be-
low, multi-frame fitting can be done in at least three ways.

3.2.1. Naive averaging

One can fit a 3DMM to each of the frames in {It}T
t=1 independently,

thus produce estimates {α̂ααt}T
t=1, and then average them over to pro-

duce the final estimate as

α̂αα =
1
T

T

∑
t=1

α̂ααt . (2)

Most 3DMM fitting methods are single-frame, but naive averaging
allows them to be extended to multi-frame fitting. Despite its sim-
plicity, naive averaging has been used widely [GCM∗18,DYX∗19]
and can improve performance significantly [DYX∗19].

3.2.2. Joint multi-frame estimation

Recently, a number of natively multi-frame 3DMM fitting meth-
ods have been proposed. The advantage of these approaches is that
they can simultaneously fit a 3DMM to M frames by estimating
separate expression and rigid transformation parameters per frame
but keeping the estimated identity α̂αα common across the M frames.
This approach better represents the problem by using the fact that
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identity-related shape details do not change within a video, and typ-
ically outperforms naive averaging [DYX∗19].

3.2.3. Averaging over multi-frame estimations

While multi-frame 3DMM fitting can improve performance over
naive averaging, it may not be feasible if the number of frames is
too large, since computational complexity can become prohibitive
due to the added per-frame expression and pose parameters. In such
cases, it can be more appropriate to split the T frames into K groups
of M frames, I1, . . . ,IK , where Ik is a set that contains the indices
of the frames corresponding to the kth group. Then, the identity α̂αα

can be estimated by performing K multi-frame estimations on the
K groups and averaging them as

α̂αα =
1
K

K

∑
k=1

α̂αα
k (3)

where α̂αα
k is the identity estimated from frames indexed in Ik.

We can also consider the case where the different groups of
frames, Ii and I j with i ̸= j, have some overlap. In other words, we
can take random combinations of M frames from the entire set of
T frames. In this case, we have a particularly large pool of subsets
to select from, because there are

(T
M
)

combinations. Multi-frame
estimation on partially overlapping groups of frames can be useful
when there are not many frames at our disposal, as it allows us to
produce many subsets of frames and hence many estimations to av-
erage over. It is reasonable to expect the accuracy of the average
in Eq. (3) to increase as it is computed from more estimations, and
our experimental results are consistent with this expectation.

4. Experiments

4.1. Dataset

We conducted our experiments on a sample of 47 infants collected
to study facial behavior in the autism spectrum. 23 of the infants
were female and 19 had an older sibling with autism. Infants were
seen between 11 and 15 months of age (M = 12.60, SD = 0.72) and
underwent concurrent developmental assessment. Overall, standard
scores of infants’ development ranged from extremely low to very
high among cognitive (M = 102.93, SD = 8.14), language (M =
94.76, SD = 8.45), and motor (M = 104.15, SD = 9.86) domains.
The videos were collected at The Children’s Hospital of Philadel-
phia (CHOP) as part of a study approved by the IRB at CHOP,
using a 2D camera with 1080p 60FPS resolution.

4.2. Evaluation metric

For quantitative analysis, we use the WBES metric, which allows
us to infer the degree to which the reconstructed 3D face shapes
are consistent and person-specific. As described below, this metric
does not require a 3D ground truth.

Suppose that our dataset is comprised of videos of S subjects,
and that we perform three reconstructions per subject, using three
sets of (non-overlapping) frames per person. Ideally, all three re-
constructions of the same person must be highly similar. More-
over, the reconstructions of faces of different subjects should be

dissimilar. WBES measures to which degree a method succeeds in
achieving these two criteria—the degree to which reconstructions
are consistent (for the same-subject) and person-specific. This is
achieved by constructing the within-subject distribution, which is
comprised of all the pairwise (Euclidean) distances of the identity
reconstructions of the same subjects; and the between-subject dis-
tribution, which is comprised of the pairwise distances of all re-
constructions of different subjects. In accordance with the criteria
described above, these two distributions should be ideally disjoint,
and the within-subject distribution should be as narrow as possi-
ble. WBES measures these aspects via Cohen’s effect size, which
is computed as

µB−µW√
((NW−1)σW+(NB−1)σB)/(NW+NB−2)

, (4)

where µW and µB are respectively the means of the within- and
between-subject distributions; σW and σB are the standard devia-
tions of the two distributions; and NW and NB are the sizes of the
distributions. Since WBES measures how disjoint the within- and
between-subjects distributions are, the higher the WBES the better.

While measuring the WBES, one must compute the (neutral)
face reconstructions of the same subject from frames with diver-
gent poses. Otherwise, reconstructions from very similar poses are
likely to be consistent even though they do not successfully capture
the 3D shape, leading to misleadingly high WBES. For this pur-
pose, we preprocessed all the videos as follows and ensured that
the set of frames we used from each infant contains frames that are
distributed approximately uniformly in terms of head pose. First,
we detected the facial landmarks in each frame of a video using the
2D-FAN method [BT17], and used them to estimate the head pose
per frame. Then, we split the frames into bins based on the angle
of the head. Next, we discarded frames from the bins that were too
populated, until all bins contained a similar number of frames.

4.3. Compared methods and parameters

We compare five 3DMM fitting methods: 3DDFA (v2) [GZY∗20],
3DI [SZST20b], Deep3DFace [DYX∗19], INORig [BCLT21] and
RingNet [SBFB19]. These methods were selected based on the cri-
teria of having an implementation that runs with reasonable speed
(e.g., not more than a few seconds per frame) and user effort on a
CPU or an NVIDIA GPU with 8GB RAM; and having an expres-
sion shape model alongside identity model.

3DI and INORig are natively multi-frame. For these meth-
ods, the number of frames fit jointly, M (Section 3.2.2 and Sec-
tion 3.2.3) was fixed to M = 9. The remaining methods were ex-
tended to multi-frame through naive averaging (Section 3.2.1). We
investigated how performance improves with T , the total num-
ber of frames used per subject, by testing for T = 9,18, . . . ,45.
Unless specified otherwise, we use multi-frame methods as de-
scribed in Section 3.2.2 with non-overlapping groups of frames.
We used 2D-FAN [BT17] to estimate 2D landmarks, which are re-
quired by some methods. All methods are based on the Basel Face
Model’09 [PKA∗09]. For 3DI, which can incorporate the camera
model, we use the (perspective) camera transformation to ensure
that expressions are encoded with maximal accuracy [SZST20a].
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Figure 2: Face reconstruction performance of four methods in
terms of within- and between-subject effect size (WBES) from a sin-
gle frame. Higher effect sizes indicate better performance.
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Figure 3: Distribution of within- and between-subject face recon-
struction distances (i.e., histograms and fit continuous densities),
shown for the four single-frame methods, namely 3DDFA, 3DI,
Deep3DFace and RingNet. Within- and between-subject distances
are largely overlapping for all methods, highlighting the limitations
of 3D (neutral) face reconstruction from a single frame.

4.4. Quantitative results on identity estimation

Fig. 2 compares four single-frame 3DMM fitting methods in
terms of WBES and shows that RingNet stands out as the best
method in the single-frame scenario. However, the within- and
between-subject distributions, which are computed while measur-
ing WBES (Section 4.2), are highly overlapping for all methods
(Fig. 3). In other words, reconstructions of the same infants across
different frames are inconsistent, and no method is capable of re-
liably capturing person-specific shape characteristics from a single
frame. This is not surprising, because 3D shape estimation from
a single image is a highly ill-posed problem, and infants often
show large expression and pose variations throughout the interac-
tion (Section 3), rendering the problem even more difficult.

We next investigate whether performance improves when fa-
cial shape is estimated from multiple frames. Fig. 4 shows WBES
against the number of frames used per reconstruction. Results show
that the performance of all methods improves as they use more
frames per infant while reconstructing the face; however, RingNet
and 3DDFA visibly underperform compared to other methods. We
observed that that the output of these methods is very conserva-
tive –it changes little for different subjects– which can explain why
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Figure 4: Face reconstruction performance of five methods against
the number frames used per reconstruction, measured in terms of
within- and between-subject effect size (WBES). The performance
of all methods improves as they use more frames per reconstruction.

WBES is not increasing further with more frames per reconstruc-
tion. 3DI, Deep3DFace and INORig stand out as the best meth-
ods, and we observed that these methods indeed produce more di-
verse facial shapes from different subjects, which indicates higher
capacity to capture person-specific shape cues. Fig. 5 shows the
within- and between-subject distributions for all five methods for
reconstruction from T = 45 frames, confirming the significant im-
provement achieved by using multiple frames as opposed to a sin-
gle frame. One may think that 45 frames are too many, but our data
suggests that a few minutes of infant social interaction is more than
enough to produce 45 frames with large head pose diversity.

Our multi-frame analysis so far relied on naive-averaging (for
single-frame methods) or averaging over multi-frame estimations
from non-overlapping groups of frames (for multi-frame methods).
As highlighted in Section 3.2.3, multi-frame methods have one
more option to estimate neutral face shape: averaging over estima-
tions from partially overlapping combinations of frames.

Fig. 6 shows WBES w.r.t. number of combinations for the two
inherently multi-frame methods, namely, 3DI and INORig. Perfor-
mance improves for both methods, but more so for 3DI. The latter
reaches a WBES of 3.71 when it uses 30 combinations from the
T = 45 frames, which is a nearly 20% improvement compared to
the WBES of 3.11, which is achieved by 3DI when it uses 5 (non-
overlapping) combinations of the same 45 frames. In sum, multi-
frame reconstruction performance can be improved significantly by
using the same frames but producing more estimations over random
combinations of frames.

4.5. Qualitative results

Fig. 7 and Fig. 8 show qualitative face reconstruction results. Re-
sults in this section are obtained with the method that emerged as
the most successful in quantitative analysis, namely 3DI.

Fig. 7 depicts how 3DI captures subject-specific shape cues. The
face shown at top row of Fig. 7 has asymmetric eyebrows, which
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Figure 5: Distribution of within- and between-subject face reconstruction distances from multiple frames (T = 45) for four methods, namely
3DDFA, 3DI, Deep3DFace, INORig and RingNet. Unlike the single-frame counterparts of these distributions (Fig. 3), distributions of within-
and between-subject distances are highly disjoint overlapping, indicating that all methods yield significantly more consistent and person-
specific results when they reconstruct (neutral) face shape from 45 frames.
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Figure 6: Comparison of the two multi-frame methods, 3DI and
INORig, against the number of combinations, K. All effect sizes
were computed by performing 3D reconstruction using the same
T = 45 frames, but averaging over estimations from an increasing
number of (9-frame) combinations (Section 3.2.3).

is likely due to the infant’s unique facial morphology. The 3D re-
construction for this infant, shown right next to the frames, also
captures this asymmetric relationship between the eyebrows. The
face on the second row, on the other hand, has more symmetric
eyebrows, as the reconstruction also captures. The ability to cap-
ture such subject-specific characteristics is the likely explanation
for high WBES. However, it must be highlighted that not all facial
characteristics of infants are captured adequately. Results in Fig. 8
suggest that the reconstructed cheek regions are, unlike cheeks of
infants, too rugged. Moreover, the nose and chin can be too pointy
(see bottom left and bottom right reconstructions) for an infant. The
lower success in these regions compared to eye regions is likely
due to two reasons. First, the cheeks, nose and jaw of infants are
in general very different from those of adults. Second, the brows,
eyes and mouth are the regions with the highest texture variation
and 3DI works more successfully on these regions, since it fits a
3DMM by maximizing gradient correlation [TZP11]. These results
are consistent with the study of Morales et al. [MPT∗20], which
suggests that applying the Basel Face Model to data of infants is
most problematic for regions such as chin, cheeks and forehead.

The reconstructed facial expressions of all three infants shown
in Fig. 8 seem to be accurately capturing the true expression of
the infants, which also supports the statement that brows, eyes and
mouth are the most accurately captured regions of the face, as these
regions are where the facial expressions are most clearly observed.
Careful inspection of Fig. 8 suggests that using 3DMM fitting is a

left brow is lower

Figure 7: Illustration of how the 3D reconstructions produced by
the 3DI method capture subject-specific facial morphology. Top
row: images of an infant along with the reconstruction of the eye
region. The images show that one of the eyebrows is lower than
the other, and the reconstruction seems to successfully capture this
facial shape detail. Bottom row: Images and 3D reconstruction of
another baby, both showing more symmetric eyebrows.

highly promising approach for facial expression quantification, as
the diverse set of expressions displayed by the infants are generally
well-captured in the 3D reconstruction, often despite pose varia-
tions, which is a significant strength of 3DMM fitting.

5. Discussion

Our experimental results and analysis suggest that fitting a 3DMM
of adults to images of infants is not appropriate for applica-
tions that require the entire head or face to be accurately re-
constructed, such as identifying craniofacial dysmorphology pat-
terns [MPL∗22]. However, regions of high texture variation (eyes,
brows and mouth) are reconstructed with visibly higher accuracy
than the remaining parts of the face, and, as a result, facial expres-
sions and pose appear to be captured successfully. This shows that
3DMM fitting is a promising tool for measuring facial behavior of
infants, even if the 3DMM that is used is constructed from data of
adults. Clearly, one should use a 3DMM constructed from data of
infants if that is possible, but to our knowledge, there is no publicly
available 3DMM of infants, and most researchers are currently con-
fined to using 3DMMs of adults. Given that 3D scans of infants are
sensitive data, a public 3DMM of infants for research and commer-
cial applications may not be available in the foreseeable future.

The promise of using 3DMMs to quantify the facial expressions
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Figure 8: Reconstruction of facial pose plus expression, as well as frontal expression, from frames of 3 babies, obtained using the 3DI method
with the Basel face model. Results indicate that facial expression and pose are generally captured successfully, suggesting that 3DMM fitting
is a promising tool for measuring infant facial behavior. However, the facial features that typically differ significantly between adults and
infants (e.g., cheeks, nose) are generally not captured accurately (e.g., see nose in lower left or lower right reconstructions, or cheeks in the
reconstructions in the second column), as the 3DMM that is used is constructed from face scans from adults.

of infants is a positive outcome of this study, as there are very
few methods for quantifying infant facial expressions [HCC∗17,
OEAB∗22], and, to our knowledge, no method can decouple iden-
tity from facial expressions. On the contrary, our quantitative and
qualitative results showed that 3DMMs are capable of identifying
subject-specific facial morphology in infants, and thus correct for it
while measuring facial expressions. For example, a 3DMM is capa-
ble of identifying that the eyebrow that appears raised in Fig. 7 (top)
is due to facial morphology and not expression. In sum, our study
suggests that 3DMMs merit further research due to their promise to
accurately measure not only facial expression but also pose, which
is of importance on its own [HCM∗13,MHR∗18,HC14,KAH∗20].

Importantly, our study shows that single-frame (neutral) 3D
identity reconstruction is likely not a feasible problem to solve. In
other words, to fully benefit from the ability of 3DMMs to tease
apart facial identity and expression cues, it is likely necessary to
use multiple frames. Our results show not only that reconstructing
3D shape from multiple frames improves results by a large margin,
but also that methods that can jointly fit a 3DMM to multiple frames

have a significant advantage, by virtue of producing and averaging
over a large number of combinations of frames.

6. Conclusions and Future Work

In this study, we compared five state-of-the-art 3D morphable
model (3DMM) fitting methods in terms of their ability to re-
construct faces of infants from videos recorded in dyadic infant-
caregiver interactions. Given the lack of publicly available 3DMMs
of infants, we investigated the degree to which a 3DMM con-
structed from data of adults can be used in this context. Results
suggest that it is possible to extract 3D representations that are
consistent and subject-specific by producing reconstructions from
multiple frames but not a single frame. Consistently with prior
work [MPT∗20], we observed that using infant faces reconstructed
through a 3DMM for adults is likely inadequate for applications
or studies that require an accurate reconstruction of the entire
head or face, such as identifying craniofacial dysmorphology pat-
terns [MPL∗22]. However, results suggest that regions with high
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texture variation, such as the eyes, brows and mouth, are identified
with higher accuracy, making applications that involve studying fa-
cial expression or pose variation within reach. These promising re-
sults motivate immediate future work, namely, quantitatively eval-
uating the ability of publicly available 3DMMs and fitting meth-
ods in terms of their ability to quantify expression. Given the
unique strength of 3DMMs to decouple expressions from two ma-
jor sources of nuisance, i.e., identity and pose, the use of 3DMMs
could have significant implications for developmental and clinical
research in infancy.
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