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Abstract

Different imaging techniques allow us to study the organization of life at different scales. Cryo-electron tomography (cryo-ET)
has the ability to three-dimensionally visualize the cellular architecture as well as the structural details of macro-molecular
assemblies under near-native conditions. Due to beam sensitivity of biological samples, an inidividual tomogram has a maximal
resolution of 5 nanometers. By averaging volumes, each depicting copies of the same type of a molecule, resolutions beyond 4
A have been achieved. Key in this process is the ability to localize and classify the components of interest, which is challenging
due to the low signal-to-noise ratio. Innovation in computational methods remains key to mine biological information from the
tomograms.

To promote such innovation, we organize this SHREC track and provide a simulated dataset with the goal of establishing a
benchmark in localization and classification of biological particles in cryo-electron tomograms. The publicly available dataset
contains ten reconstructed tomograms obtained from a simulated cell-like volume. Each volume contains twelve different types
of proteins, varying in size and structure. Participants had access to 9 out of 10 of the cell-like ground-truth volumes for
learning-based methods, and had to predict protein class and location in the test tomogram.

Five groups submitted eight sets of results, using seven different methods. While our sample size gives only an anecdotal
overview of current approaches in cryo-ET classification, we believe it shows trends and highlights interesting future work
areas. The results show that learning-based approaches is the current trend in cryo-ET classification research and specifically

end-to-end 3D learning-based approaches achieve the best performance.

CCS Concepts

elnformation systems — Evaluation of retrieval results; Specialized information retrieval; Multimedia and multimodal

retrieval; Retrieval models and ranking;

1. Introduction

There is a resolution gap in knowledge of cellular life between the
molecular level (obtained by techniques such as X-ray crystallogra-
phy and cryo-electron microscopy single particle analysis) and the
cellular level (typically obtained by light microscopy techniques).

T Track organizers. For any questions related to the track, please contact
Ilja Gubins. E-mail: i.gubins@uu.nl
 Track participants.
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With the advent of the direct detectors and the associated resolu-
tion revolution, cryo-electron tomography (cryo-ET) has the po-
tential to bridge this gap by simultaneously visualizing the cellular
architecture, as well as the structural details of macromolecular as-
semblies thee-dimensionally. The technique may offer insights into
key cellular process and improve our understanding of essential life
processes.

The biological samples imaged by cryo-ET are sensitive to
beam-induced radiation, which limits the maximal resolution of in-
dividual tomograms to 5 nm. One common approach to increase
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resolution is to average volumes of particle, bringing a challenge
of correctly localizing and identifying specific particles in the first
place.

Due to the low signal-to-noise ratio of the tomograms and the
large amount of data, manual localization of the particles by experts
is rarely feasible. Instead, automated approaches utilize the struc-
tural signatures within a tomogram. One such common approach
is based on applying Difference of Gaussian (DoG) [VYR*09]:
a band-pass filter that removes noisy high frequency components
and homogeneous low frequency areas, obtaining edges of particle.
Based on the edges, a subtomogram can be extracted and classi-
fication can be done on a volume that, theoretically, has only one
bio-particle. Other methods are based on reference information. For
example, known particles can be found in the tomogram by tem-
plate matching [FBF*02]: using particle as a template for cross-
correlation over tomogram to find peak locations, voxels where the
template matches best.

Machine learning approaches have been successfully applied to
cryo-ET. Support vector machines have been used for both de-
tection and classification [CHP* 12]. With ever increasing amount
of data captured by cryo-EM and -ET methods [BTE*18], deep
learning methods are gaining popularity. Models were proposed for
localization [WGL™16], classification [CLZ* 18], end-to-end seg-
mentation [CDS*17] and structural pattern mining [XST*19], pro-
viding potentially faster, reference-free, and often more accurate
results than template matching.

2. Benchmark

We propose a task of localization (e.g. particle picking) and clas-
sification (e.g. template matching) of particles in the cryo-electron
tomogram volume. A benchmark is conducted on a simulated cryo-
electron tomogram populated with 2540 proteins of 12 different
classes. To facilitate application of learning-based methods, we
also provided nine tomograms simulated in the same fashion as the
benchmark, but with ground truth data that was used for simulation.

2.1. Dataset

Our dataset generation starts with creating the original density
maps (grandmodels). First, to evaluate localization and classifi-
cation for various size and shape proteins we chose 12 different
biomolecular complexes of known structure with the following
PDB entry identifiers:

e 1bxn e 2cg9 e 3h84
e Iqvr e 3cf3 e 3gqml
e [s3x e 3d2f o 4b4t
o lubg o 3gll e 4d8q

The protein volumes were placed in the grandmodel at random
locations, in random orientations, without overlapping each other.
For each protein volume we saved its class, its center coordinates
and the Euler angles of its orientation (in ZXZ notation). The space
in-between proteins is filled with vitreous water (molecular den-
sity 0.94g/ em®), which was subjected to structural noise (stdev =

0.05). Consecutively we created a series of projection images of
the grandmodel with a signal-to-noise ratio of 0.02, applied a con-
trast transfer function correction to each projection image, added
shot-noise, and did a weighted back-projection reconstruction. The
resulting reconstructions have a resolution of 1nm/voxel and have a
size of 512x512x512 voxels. Each reconstructed tomogram is filled
with on average 2500 proteins.

2.2. Evaluation

The main goal of the track is to localize and classify biological
particles in the tomogram. The performance of the methods will
be evaluated solely on the test tomogram, the only tomogram for
which ground truth is not provided.

First, based on ground truth information an automatic script
builds a "hitbox" volume. This volume consists of bounding boxes
that can be traced back to corresponding ground truth particle.
Next, we parse the submitted results and for each predicted par-
ticle we try to see if it lies within any bounding box, and record
statistical information, such as whether the predicted class is cor-
rect, how far from the real center predicted particle center is, and
many others.

To have a comprehensive evaluation of the methods, we employ
some commonly adopted performance metrics and compute them
separately for classification and localization. This separation allows
us to compare separate steps of different methods, even if they are
not done in end-to-end fashion. The metrics that we are going to
evaluate are precision (percentage of results which are relevant),
recall (percentage of total relevant results correctly classified), F1
score (harmonic average of the precision and recall) and false nega-
tive rate (percentage of results which yield negative test outcomes).

3. Participants

There were eleven groups registered for the track: seven from USA,
one from Switzerland, one from Germany, one from France and
one from China. The participants had two and a half weeks to send
in their results and a one-page description of the method used to
obtain the results. Out of eleven, five groups submitted eight result
sets. We have assigned short names to each of the result set for
easier referencing in the text, and if no title for the method was
provided, we also took liberty of giving them a relevant full name.

1. DoG-CB3D submitted by Xuefeng Du, Xiangrui Zeng, Zhenxi
Zhu, Lufan Chang, Min Xu (section 4.1),

2. DeepFinder submitted by Emmanuel Moebel, Antonio
Martinez-Sanchez, Charles Kervrann (Section 4.2),

3. 2.5D-Resnet submitted by Tuan M. Lai, Xusi Han, Genki
Terashi, Daisuke Kihara (Section 4.3),

4. 3D-TM submitted by Benjamin A. Himes (Section 4.4),

5. 3D-HN-localization submitted by Shan Gao, Zhidong Yang, Jin-
grong Zhang, Xuefeng Cui, Fa Zhang (Section 4.5),

6., 7. 3D-Unet-CNN-8/12 submitted by Zijun Ding, Shan Gao, Zhi-

dong Yang, Fa Zhang, Xuefeng Cui (Section 4.6),
8. 2.5D-SSD-3D-CNN submitted by Yu Hao, Zhilong Lv, Xiaohua
Wan, Zhidong Yang, Xuefeng Cui, Fa Zhang (Section 4.7).
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4. Methods

4.1. DoG-CB3D: Convolution-Based 3D neural network
model

By Xuefeng Du, Xiangrui Zeng, Zhenxi Zhu, Lufan Chang, Min
Xu

This method separates localization and classification [CLZ*18].
For particle picking, reference-free Difference of Gaussian im-
age transform is used. By subtracting two versions of Gaussian
(s1 =3.0,k = 1.2) filtered image they obtain DoG map which peaks
correspond to potential particles. Peaks closer than 10 voxels from
each other are filtered to contain only one maximum. The volume
of 28% voxels around the candidates is then extracted, representing
a subtomogram with just one particle.

Next, using provided annotated tomograms, a convolutional neu-
ral network (CNN) is trained to classify subtomograms into 13
classes (12 structural classes and 1 none-of-the-above class). The
model consists of eight 3D convolutional layers each activated by
ReLU, and five max-pooling layers mixed between (Figure 1). The
last max-pooling layer is then connected to two fully connected
layers with 50% dropout and a softmax final activation.

Subtomogram

512x3x3x3-1
o FC Layer(4096)
512x3x3x3-1 RELU
Conv4/RELU !
Conv3/RELU l
Conv3/RELU

64x3x3x3-1 1
Convl/RELU

" 256x3x3x3-1 J
Conv3/RELU

256x3x3x3-1
Conv3/RELU

Figure 1: DoG-CB3D’s subtomogram classification model.
“64x3x3x3-1 Conv* represents a 3D convolutional layer with
64x3x3x3 filters and stride of 1. “ReLU* and “Softmax* are acti-
vation layers. “Max-Pooling (2)* means that max operation is im-
plemented over 2x2x2 regions with stride of 2. “FC Layer (4096)“
represents fully connected layers with 1024 neurons.

The model is trained using stochastic gradient descent with a
Nesterov momentum of 0.9 on the categorical cross-entropy loss.
To prevent overfitting, an [, weight decay regularizer of 0.0005 is
added. In addition, the initial learning rate is set at 0.001 with a
decay factor of le™7. The training was done in batches of 128 for
100 epochs.

4.2. DeepFinder: Semantic segmentation using 3D U-Net CNN

By Emmanuel Moebel, Antonio Martinez-Sanchez, Charles
Kervrann

This method is based on semantic segmentation of tomogram by
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deep learning and applying clustering on segmentation map to re-
trieve center coordinates of individual macromolecules [MML*18].
Based on provided ground truth, training segmentation targets are
first obtained. A 3D U-Net [RFB15] CNN (Fig. 2) is trained from
segmentation maps and used to classify each tomogram’s voxel into
13 classes (12 structural and 1 none). DeepFinder estimates each
particle center by clustering neighboring voxels into 3D connected
components and computing object’s centroid.
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Figure 2: DeepFinder semantic segmentation model. Green rect-
angles represent convolutional layers labeled with (#filter x (filter
size)). In the last layer, “Ncl* stands for the number of classes.

The 3D CNN architecture is trained with Adam optimizer, us-
ing 0.0001 as learning rate, 0.9 as exponential decay rate for the
first moment estimate and 0.999 for the second moment estimate.
A Dice loss is used to estimate the network parameters. The train-
ing took ~12 hours on an Nvidia K80 GPU, and segmentation and
clustering of a 5123 tomogram takes ~25 minutes.

4.3. 2.5D-Resnet: 2.5D semantic segmentation using 2.5D
ResNet

By Tuan M. Lai, Xusi Han, Genki Terashi, Daisuke Kihara

The method is based on 2.5D semantic segmentation of the to-
mogram. Given a voxel of a tomogram, the proposed deep learn-
ing model takes three 2D slices along XY, XZ and YZ-planes
around the voxel and outputs 13 probability scores for 12 proteins
in dataset and one for whether the voxel is not the center of any
particle. The size of each 2D input slice was selected to be 32x32.
Each input slice is encoded into a vector consisting of 128 num-
bers using a CNN with resembling ResNet [HZRS16] architecture.
After this step, all three encoded vectors are concatenated into one
vector of 384. This new vector is then fed into a feed forward neural
network consisting of two hidden layers, producing 13 probability
scores.

In order to train the proposed deep learning model, the dataset
tomograms were split into training examples. Each example con-
sists of three 2D slices whose centers are located at the same point
and the correct protein label for the point. In order to generate neg-
ative examples, they randomly sampled points in the tomogram
that are not too close to any protein. In the end, they generated
about 20000 positive examples and about 20000 negative exam-
ples. Since neighbouring voxels can produce multiple center esti-
mates, the neighbourhoods are locally filtered by majority voting to
choose one class and one center.



52 1. Gubins et al. / SHREC’19 Track: Classification in Cryo-Electron Tomograms

4.4. 3D-TM: 3D template matching
By Benjamin A. Himes

This method is based on using template matching program “tem-
plateSearch* that is part of emClarity [HZ18] software package
with an estimated particle number of 300 per reference and 2.5%
false positive rate based on the estimated number of particles. The
threshold is applied to the detection of SNR, similar to [RGD17]
with the exception that the normalization of the cross-correlation
map is done per-rotation, prior to maximum intensity projection.

The SNR-based threshold is only accurate when the template
matching uses a well-matched filter. Due to the bug in projection
images of the first version of the dataset, the full process of cor-
rectly whitening the input images was not possible, leading to a
sub-optimally matched filter. To compensate for this, the estimated
threshold was compared to the SNR with the best precision/recall
from the training set, and the estimated for each reference in the
test data set.

The references themselves were converted to MRC density from
the PDB coordinates using a developmental program to create scat-
tering potentials in the software cisTEM (unpublished results). In
case references had biological assemblies associated with them,
the first one of any multiples was picked. The author admits that
it was for convenience and predicts that it may not have been the
best choice. The tomograms were padded by 10 pixels (100 A) in
each dimension to at least not strictly rule out the edge cases. Nor-
mally in emClarity, the border of the tomogram, one full particle
radius is excluded from the search. Since the tomograms are nor-
malized with a sliding window based on the particle radius, even
zero-padded “half* particles should be weighted appropriately such
that the energy they contribute to the cross-correlation is equal to a
full particle.

The angular sampling rate was chosen based on the resolution
limit, which was 20 A. Using an average particle radius of 100
A, this gives an angular step of ~6 degrees ((20/2) / 100 radians).
Searches were run on Nvidia v100 GPUs on the Janelia shared re-
source cluster.

4.5. 3D-HN-localization: 3D-HybridNet localization
By Shan Gao, Jingrong Zhang, Xiaohua Wan, Fa Zhang

The proposed method delegates localization and classification to
two neural networks. First, using a 3D segmentation network the
tomogram is segmented. By shift-based clustering, segmentations
are reduced to particle centers, and subtomograms of 323 voxels
are extracted. Next, the extracted subtomograms are fed to a hy-
brid classification network that would determine the final class of
particle with an ensemble of two networks.

Only localization part of the method was evaluated in this bench-
mark.

4.6. 3D-Unet-CNN-8/12: U-Net segmentation and CNN
subtomogram classification

By Shan Gao, Jingrong Zhang, Xiaohua Wan, Fa Zhang

The method uses two neural networks for segmentation and clas-
sification. Using provided ground truth data, the additional ground
truth segmentation labels are generated. Two neural networks were
pre-trained separately, a U-Net model for segmentation, and a CNN
for classification. Then the two models are combined and trained
together using the alternating direction method of multipliers al-
gorithm (ADMM), allowing classification model to supervise the
segmentation model. After, the approximate locations of particles
are estimated by center shifting clustering of 8 pixels or 12 pixels
(which corresponds to two different submissions).

4.7. 2.5D-SSD-3D-CNN: 2.5D particle picking and 3D
classifying scheme using deep learning

By Yu Hao, Zhilong Lv, Xiaohua Wan, Zhidong Yang, Xuefeng
Cui, Fa Zhang
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Figure 3: The particle picking stage (blue) consists of SSD network
and a center determination algorithm. The classification stage
(green) consists of extracting particles and classifying with 3D hy-
brid classification network.

This network considers the tomogram as serial XY sections
along z direction. Single shot multi box detector (SSD) [LAE*16]
uses VGG [SZ14] model as a feature extractor, followed by six
convolutional layers to get multi-scale convolutional feature maps
(Fig. 3). The input layer has a fixed size of 512x512, and all 512
slices are processed by the detector.

First, the SSD network is trained on their original simulated data
to reach 90 mAP and then fine tune the network with augmented
provided data, using tomogram 4 for validation and everything else
for training. Then, using graph clustering, they compute particle
centers. Such approach takes

Later, a hybrid classification network (HCN) is used to classify
the extracted subtomograms around computer center coordinates.
The HCN is first trained on 13 (12 structural and 1 none) classes
for coarse classification, then an additional small scale fine classi-
fication network is trained for fine classification of false negative
samples. The final result is then determined by thresholding the
most credible score between coarse and fine classifications.

5. Results

In this section, we perform a comparative evaluation of eight result
sets submitted by five groups. We measure localization and classi-
fication performance based on the metric mentioned in Section 2.2.

© 2019 The Author(s)
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Size Proteins

Tiny 1s3x, 3gm1, 3gl1
Small 3d2f, 1ubg, 2cg9, 3h84
Medium | 1qvr, 1bxn, 3cf3

Large 4b4t, 4d8q

Table 3: Grouping proteins included in the dataset by their size.

Submission Tiny | Small | Medium | Large
DoG-CB3D 0.144 | 0.300 | 0.714 0.566
DeepFinder 0.222 | 0.400 | 0.830 0.929
2.5D-Resnet 0.065 | 0.200 | 0.352 0.424
3D-TM 0.014 | 0.000 | 0.299 0.550
3D-Unet-CNN-8 0.009 | 0.200 | 0.587 0.697

3D-Unet-CNN-12 0.012 | 0.200 | 0.572 0.699
2.5D-SSD-3D-CNN | 0.003 | 0.000 | 0.274 0.306

Table 4: F1 scores of each submission for size classes defined in
Table 3. The best results in each column are highlighted.

5.1. Localization

Table 1 shows detailed localization performance evaluation on the
test tomogram. DeepFinder produced the best localization results,
achieving F1 score of 0.7971 with precision of 0.7492 at 0.8515
recall. The second best method, DoG-CB3D follows closely with
F1 score of 0.7764 with precision of 0.9321 at 0.6653 recall.

5.2. Classification

Table 2 shows classification performance evaluation. DeepFinder
method produced the best classification results, achieving highest
F1 scores for almost all classes.

For a more in-depth analysis, we group proteins by their size
(Table 3), and average the resulting F1 score, which can be extrap-
olated to estimate classification for other particles of similar size
(Table 4).

6. Discussion

This track allows us to identify and compare state-of-the-art meth-
ods, as well as highlight current challenges and recognize future
research directions.

First of all, we want to note that learning-based methods are in-
creasingly more popular with cryo-ET researchers. Not without a
reason: the learning-based methods show better performance.

If we compare just learning-based methods, it is noticeable that
3D methods achieve better performance, suggesting that a neural
network can benefit from using all input information, agreeing with
conclusions of [DXH*18], that for 3D data one architecture with
3D convolutions performs better than same architecture with 2D
convolutions. Results also seem to agree with the popular idea of
making networks end-to-end, as in feeding them all existing in-
formation instead of separating the work into multiple steps (e.g.
end-to-end segmentation vs. localization and classification).

(© 2019 The Author(s)
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Predictably, methods performance directly correlates with pro-
tein sizes, with only one exception of DoG-CB3D approach, for
which F1 of “medium® particles outperform F1 of “large” parti-
cles. This shows that some additional methods must be developed
to overcome limited resolution and increase signal-to-noise ratio,
for example with a non-linear denoising or microscope hardware
improvements.

We also noted multiple improvement points for our simulation
process, which we hope to improve in the future:

1. In the future, the dataset generation method needs to be tested
even more thoroughly, preferably automatically. Due to a mis-
take in our projection process that was found and fixed after
dataset publishing, participant 5, 3D-TM, unknowingly used a
faulty early version of dataset, and the results of their methods
could have been better.

2. Current dataset generation process uses a constant CTF, which
is not realistic.

3. De-focusing gradient must be added.

4. The tomograms could have been more packed, and should be,
as in real biological samples.

The timeframe for the SHREC contest adds additional pressure
on the participants, and it would be better if such a benchmark
could have been done continuously. The training dataset could be
published first, and the evaluation on a test data could be done on-
line. Then, once a year, for each SHREC contest, newly submitted
results could be highlighted and described in a paper like this one.
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Submission RR TP FP FN MH | RO | AD Recall | Precision | Miss rate | F1 Score
DoG-CB3D 1813 | 1690 | 110 850 13 1 2.4519 | 0.6653 | 0.9321 0.3346 0.7764
DeepFinder 2887 | 2163 | 709 377 15 24 3.5063 | 0.8515 | 0.7492 0.1484 0.7971
2.5D-Resnet 4524 | 1507 | 1185 | 1033 | 876 | 1 3.9866 | 0.5933 | 0.3331 0.4066 0.4266
3D-TM 2429 | 814 356 1726 | 425 | 313 | 2.5608 | 0.3204 | 0.3351 0.6795 0.3276
3D-HN-localization | 2127 | 455 867 2085 | 311 | 48 5.9316 | 0.1791 | 0.2139 0.8208 0.1949
3D-Unet-CNN-8 2500 | 1367 | 372 1173 | 480 13 4.1660 | 0.5381 | 0.5468 0.4618 0.5424
3D-Unet-CNN-12 2500 | 1438 | 555 1102 | 352 12 4.4083 | 0.5661 | 0.5752 0.4338 0.5706
2.5D-SSD-3D-CNN | 1977 | 710 196 1830 | 485 | 7 4.6453 | 0.2795 | 0.3591 0.7204 0.3143

Table 1: Results of localization evaluation. RR: results reported; TP: true positive, unique particles found; FP: false positive, reported non-
existant particles; FN: false negative, unique particles not found; MH: multiple hits: unique particles that had more than one result; RO:
results otside of volume; AD: average euclidean distance from predicted particle center; Recall: uniquely selected true locations divided
by 2540, number of particles in the test tomogram; Precision: uniquely selected true locations divided by RR; Miss rate: percentage of
results which yield negative results (1 —recall); F1 Score: harmonic average of the precision and recall. The best results in each column are

highlighted.
Submission 1bxn | 1qvr | 1s3x lu6g | 2cg9 | 3cf3 3d2f | 3gl1 3h84 | 3qml | 4b4t | 4d8q
DoG-CB3D 0.866 | 0.619 | 0.047 | 0.446 | 0.343 | 0.657 | 0.358 | 0.225 | 0.25 0.160 | 0.222 | 0911
DeepFinder 0.904 | 0.800 | 0.154 | 0.522 | 0.330 | 0.784 | 0.584 | 0.318 | 0.332 | 0.193 | 0.907 | 0.951
2.5D-Resnet 0.087 | 0.405 | 0.119 | 0.263 | 0.018 | 0.566 | 0.366 | 0.039 | 0.293 | 0.037 | 0.489 | 0.359
3D-TM 0.684 | 0.020 | 0.005 | 0.024 | 0.008 | 0.194 | 0.008 | 0.019 | 0.032 | 0.018 | 0.211 | 0.890
3D-Unet-CNN-8 0.702 | 0.559 | O 0.234 | 0.268 | 0.501 | 0.209 | 0.029 | 0.008 | O 0.684 | 0.711
3D-Unet-CNN-12 0.663 | 0.577 | 0 0.243 | 0.273 | 0.477 | 0.209 | 0.038 | 0.008 | O 0.671 | 0.728
2.5D-SSD-3D-CNN | 0.312 | 0.343 | O 0.054 | O 0.166 | 0.040 | 0.010 | O 0 0.379 | 0.234

Table 2: Results of classification evaluation for all classes. The values correspond to F1 score achieved by participants on specific classes.

The best results in each column are highlighted.
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