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Abstract
This track aimed at retrieving protein evolutionary classification based on their surfaces meshes only. Given that proteins are
dynamic, non-rigid objects and that evolution tends to conserve patterns related to their activity and function, this track offers
a challenging issue using biologically relevant molecules. We evaluated the performance of 5 different algorithms and analyzed
their ability, over a dataset of 5,298 objects, to retrieve various conformations of identical proteins and various conformations
of ortholog proteins (proteins from different organisms and showing the same activity). All methods were able to retrieve a
member of the same class as the query in at least 94% of the cases when considering the first match, but show more divergent
when more matches were considered. Last, similarity metrics trained on databases dedicated to proteins improved the results.

1 Introduction

Proteins are complex macro-molecular molecules constituted of
hundreds to millions of atoms, and are usually classified according
to their function in the cellular environment. They display various
motions reflecting their ability to undergo conformational changes
in order to achieve surficial modifications and allow specific func-
tions. Proteins are typically represented as a set of 3D coordinates
indicating the position of the atoms, considered individually as
rigid spheres, and current algorithms analyses this cloud of points
to extract biologically relevant data. Another useful way to repre-
sent proteins is to compute their surfaces, typically representing
their surface. Detecting similarities and/or dissimilarities between
protein surfaces is of main importance in drug discovery pipelines,
adverse drug event prediction and in the characterization of molec-
ular processes and diseases. However, it remains very challenging
to detect and characterize such variations as the surface may fluctu-
ate for a given protein displaying many conformations, or may be
very similar among different species as proteins may have the same
role.

Compared to the SHREC18 track on protein shape retrieval, this
year’s track is focused on the evolutionary relationships between
proteins shapes. We report the results of 5 methods performances

from 5 different groups 1) at the species level (the ability to retrieve
conformations of a protein of a given species) and 2) at the proteins
level (the ability to retrieve conformations of ortholog proteins, i.e.
regardless of the species).

2 Dataset

The SCOPe database [FBC14; CFB17; FCB18] classifies protein
domains using structural and evolutionary relationships: the 2 top
levels are structure-based (Class and Fold) while the 4 bottom
levels are evolutionary-based (Superfamily, Family, Protein and
Species, from top to bottom). It therefore represents a useful repre-
sentation of the protein domains relationships and surfaces.

We only kept SCOPe entries 1) from NMR structures whose
conformers display the same number of atoms, 2) from 3 SCOPe
Classes: All alpha proteins, Alpha and beta proteins (a+b) and
Alpha and beta proteins (a/b), 3) with at least 4 ortholog pro-
teins.Finally, we randomly selected domains to decrease the dataset
to 5,298 domains. The solvent-excluded surfaces [Con83] were
computed using EDTSurf [XZ09]. The dataset is composed of 54
and 17 classes and at the proteins and species level, respectively.
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3 Evaluation

The evaluation were computed using a loosely adaption of the eval-
uation code from the SHREC15’ track Scalability of Non-Rigid 3D
Shape Retrieval [SBS*15].

Nearest Neighbor, First-tier and Second-tier. These parameters
check the ratio of models that belong to the same class as the query.
For Nearest Neighbor, the first match only is considered (excluding
the identity), while the |C|− 1 and 2∗ (|C|− 1) are considered for
First-tier and Second-tier parameters.

Precision-Recall plot. Precision P represents the ratio of models
from class C retrieved within all objects attributed to class C, while
Recall R represents the ratio of models from class C retrieved com-
pared to |C|.

Mean Average Precision. Given a query, its average precision is
the average of all precision values computed when each relevant
object is found. Given several queries, the mean average precision
is the mean of average precision of each query. It then gives in a
single value the overall retrieval performance of an algorithm.

4 Participants & Methods

4.1 Combined CNN-LDS framework (ConvLDSNet) for 3D
shape retrieval - Stelios Mylonas, Apostolos
Axenopoulos, Petros Daras

4.1.1 Problem definition

Following the recent tendency to address many scientific tasks by
exploiting the existing vast amount of data, we propose a data-
driven approach for the problem of 3D protein shape retrieval. A
3D neural network (NN) has been trained on relevant datasets to
learn appropriate features (descriptors) for the representation of 3D
molecular shapes. The input 3D model is the SES of a protein,
which has been created from the protein tertiary structure using the
EDTSurf software. This software produces a high resolution water-
tight triangulated mesh, which is then transformed to a 32×32×32
voxel model to be used as input in our method.

4.1.2 Input representation

Based on the approach of WU, SONG, KHOSLA, et al. [WSK*15],
we rasterize the protein 3D model to a binary voxel grid. The
3D models of the proteins are watertight, thus the parity count
method is applied for binary voxelization. A voxel v is classified
by counting the number of times that a line crossing the center of
the voxel intersects polygons of the 3D model surface. Ray-casting
the 3D model with parallel rays, all of the voxels along the ray
are classified. For an odd number of intersections, voxel v is con-
sidered interior to the model, while for an even number, outside.
For a N × N × N voxel grid resolution, where N = 32, we cast
N ×N = 1024 rays, with each ray passing through N-voxel cen-
ters.

4.1.3 Proposed method

The proposed architecture is depicted in Fig. 1. This network is an
extension of our last year’s proposal [LAC*18], which was based

on the VoxNet CNN [MS15]. The new scheme consists of two
branches, where two different operations are applied to the input
voxels. The first convolutional branch is identical to VoxNet CNN
and consists of 2 volumetric convolutional layers, 1 max-pooling
layer and 1 fully connected (FC) layer. The second branch consists
of two 3D-LDS modules and a FC layer. The 3D-LDS module is
a novel operation which aims to simulate the behavior of Linear
Dynamical Systems (LDS) and incorporate it as a NN layer. This
operation was first introduced in [DAD*18] and is extended here
to the 3D domain. The features obtained by the two branches after
their fully connected layers are, then, concatenated and fed to a last
FC layer, which provides the output feature vector.

4.1.4 Training procedure

Two datasets have been used for training the proposed scheme; the
dataset from last year’s competition [LAC*18] and the MolMovDB
[EMG03] dataset. Among the three runs submitted, the first one
(ConvLDSNet1) resulted from training the network on SHREC18,
the second one (ConvLDSNet2) from training on MolMovDB and
the third one (ConvLDSNet3) from training first on MolMovDB
and then fine-tuning on SHREC18. Since both datasets contain
classes of proteins, we added at the end of the network a Softmax
layer and trained the network on a classification task.

In all cases, a three-stage training scheme has been employed:
at the first stage, the convolutional part of the network is trained,
by removing the LDS-branch, while, at the second step, the LDS
branch is trained by removing the convolutional one. Finally, the
two branches are combined, freezing their weights and training
separately the last part of the network. Subsequently, the Softmax
layer is dropped and the architecture is used for feature extraction.
For each previously unseen input, a feature vector is extracted. Af-
ter the completion of the feature extraction, the Euclidean distance
metric is used to measure the dissimilarity between two input mod-
els. Small distance values indicate that the corresponding feature
vectors represent members of the same protein class.

The calculation of descriptors took on average 2.5 milliseconds
per model on a GeForce GTX1070 GPU, while the average com-
parison time between two descriptors is 0.002 milliseconds on an
Intel Core i7-6700K CPU.

Figure 1: The proposed architecture consisting of a convolutional
branch (top) and an LDS branch (bottom).
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4.2 Protein Shape Retrieval using 3D Zernike moments
(3DZM) - Yufan Wang, Haiguang Liu

3D Zernike moments are used as the shape descriptors. The protein
shapes were represented using the 3D Zernike moments by pro-
jecting each shape to the corresponding Zernike polynomials with
order (n,l,m)[Can99; NK03]. To speed up the calculations, a binary
file was used to store the computed Zernike moments for all 5,298
proteins. Pearson Correlation Coefficient (cc) between the query
model and each protein aligned in the best orientation is used to
evaluate the similarity of two shapes; the similarities are calculated
between each pair, resulting in 5297× 5298/2 pairs. Fast Fourier
Transformation (FFT) method is used to speed up the model ro-
tation calculation to find the best orientations that maximize the
overlap of the two proteins [LHZ12; SCC*17]. The correlation co-
efficient cc is then computed as the similarity of the two shapes.
The dissimilarity between each pair is defined as (1− cc).

Data pre-processing (transforming off files into PDB files)
costed nearly 1.5 hours on a computer with Intel i7 CPU 2.7GHz.
Another 0.5 hour was required to convert the PDB format files to
3DZM data file. To align and compute similarities between two
shapes, about 0.5 second is required; therefore, the comparison cal-
culations lasts 4 hours using 480 Intel Xeon E5 CPUs (2.5GHz).

4.3 3D Zernike Descriptors (3DZD) - Xusi Han, Tuan M. Lai,
Genki Terashi, Daisuke Kihara

Our group has submitted three runs, all of which were based on
3D Zernike Descriptors (3DZD). We represented the protein global
surface information with 3D Zernike Descriptors (3DZD) and
quantified the similarity between 3DZDs by either the Euclidean
distance or a similarity score from neural network. 3DZD is mathe-
matical moment-based invariants of 3D functions [SLL*08], which
has been demonstrated efficient for various biomolecular structure
comparisons [KSCE11]. To calculate 3DZD for each protein, the
surface triangulation of solvent excluded surface was mapped onto
a 3D cubic grid, where each voxel (a cube defined by the grid)
was assigned either 1 or 0: 1 for a surface voxel that locates closer
than 1.7 grid interval to any triangle defining the protein surface,
and 0 otherwise. This 3D grid with 1s and 0s was considered as a
3D function f (x), from which 3DZD was computed. On average,
3DZD calculation takes 3.48 seconds per protein.

For the first submission (3DZD1), the global surface similarity
between two proteins was quantified by the Euclidean distance of
their 3DZDs. A small distance value indicates that two proteins
share similar global surface. In this calculation, we took the trian-
gulated surface (.off file) for each of the 5,298 proteins as the input
to 3DZD computation and generated the 121-dimensional vector
for each protein. The Euclidean distances between one query pro-
tein against all other 5297 proteins were calculated and put into
each row in our first distance matrix.

For the second run (3DZD2), we built a deep learning based
model to quantify the similarity between protein structures. The
model was trained on all proteins in the SCOPe 2.07 database. We
downloaded about 274,230 protein structures from the database for
training. Solvent excluded surface of each protein was generated
using the EDTSurf software [XZ09]. The triangulated surface was

then taken as the input to 3DZD computation, which produced 121-
dimensional vector for each protein. On a high level, given a pair of
protein structures, the deep learning model outputs a score between
0 and 1 indicating their similarity (the higher the score, the more
similar the structures). The model consisted of an encoder whose
role was to compute key features from a 3DZD vector. The encoder
was a feed forward neural network consisting of three hidden lay-
ers. Each layer used ReLU as the activation function. Intuitively,
each hidden layer of the encoder computes a new level of repre-
sentation of the original 3DZD vector. Given two protein structures
as input, the model used the encoder to compute new features for
each protein’s 3DZD vector. The computed features and the origi-
nal 3DZD vectors of the two structures were then compared using
various operations such as the Euclidean distance, the Cosine sim-
ilarity, the element-wise absolute difference, and the element-wise
product. The comparison results as well as additional features such
as the difference in number of vertices and the difference in number
of faces were together fed into a final feed forward neural network
that outputs a score between 0 and 1. We used techniques such as
batch normalization and dropout to improve the training process.
In the training data, if two protein structures had the same protein
level, they were considered as being similar. When using a Titan
X GPU, the neural network took about 0.1774 seconds on average
to compare two proteins (given that 3DZD vectors have been pre-
computed).

For the third run (3DZD3), we have used the same approach as in
the second submission, except that in this case we trained the model
to consider two protein structures to be similar only when the two
structures have the same species level. In the second submission,
if two protein structures have the same proteins level but different
species level, we still considered them as being similar.

4.4 Histogram of Area Projection Transform (HAPT)-
Andrea Giachetti

The method characterizes protein shapes with the Histograms of
Area Projection Transform (HAPT) [GL12]. This descriptor, well
suited for nonrigid shape retrieval and well behaving in SHREC18
contest on protein shape retrieval [LAC*18] is based on a spatial
map (Multiscale Area Projection Transform) [GL12] that encodes
the likelihood of the 3D points inside the shape of being centers of
spherical symmetry. This map is obtained by computing, for each
radius of interest, the value:

APT(~x,S,R,σ) = Area(T−1
R (kσ(~x)⊂ TR(S,~n)))

where S is the surface of the object, TR(S,~n), is the parallel sur-
face of S shifted along the normal vector ~n (only in the inner di-
rection) and kσ(~x) is a sphere of radius σ centered in the generic
3D point~x where the map is computed. Values at different radii are
normalized in order to have a scale-invariant behavior, creating the
Multiscale APT (MAPT):

MAPT(x,y,z,R,S) = α(R)APT(x,y,z,S,R,σ(R))

where α(R) = 1/4πR2 and σ(R) = c ·R, 0 < c < 1.

A discrete MAPT is easily computed, for selected values of R, on
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a voxelized grid including the surface mesh, with the procedure de-
scribed in GIACHETTI and LOVATO [GL12]. The map is computed
in a grid of voxels with side s on a set of corresponding sampled
radius values. For the proposed task, discrete MAPT maps were
quantized in 12 bins and histograms computed at the selected scales
(radii) were concatenated creating an unique descriptor. Voxel side
and sampled radii were fixed set for each run and chosen to rep-
resent the approximate radii of the spherical symmetries visible in
the models.

We tested three different options for the algorithm’s parameters.
In the first (HAPT1), we put s = 0.5 and we computed the MAPT
histograms for 8 increasing radii starting from R1 = 0.5 iteratively
adding a fixed step of 0.5 for the remaining values and setting σ =
0.25. In the second (HAPT2), we put s = 0.4 and we computed
the MAPT histograms for 10 increasing radii starting from R1 =
0.4 iteratively adding a fixed step of 0.4 for the remaining values
and setting σ = 0.2. In the third (HAPT3), we put s = 0.3 and we
computed the MAPT histograms for 8 increasing radii starting from
R1 = 0.3 iteratively adding a fixed step of 0.3 for the remaining
values and setting σ = 0.15.

The procedure for model comparison then simply consists in
concatenating the MAPT histograms computed at the different
scales and measuring distances between shapes by evaluating the
Jeffrey divergence of the corresponding concatenated vectors. The
estimation of the descriptors took 4.98 seconds on average for the
first run, 11.1 seconds on average for the second run, 13.02 seconds
on average for the third run on a laptop with an i7-4720HQ CPU
running Ubuntu Linux 18.04. The descriptor comparison time was
negligible.

4.5 A Framework towards Protein Shape Singularity
Characterization (Ft-PSSC) - Halim Benhabiles, Karim
Hammoudi, Feryal Windal, Mahmoud Melkemi

Our proposed retrieval method aims at exploring three different fea-
ture extraction techniques in order to reach the best performance.
More specifically, the first technique is based on GASD descriptor,
the second on FPFH descriptor and the last one on the combina-
tion of both descriptors. For the similarity measure, we use a L2
distance.

4.5.1 Processing pipeline

• Data pre-processing: sub-sampling and normalization of the pro-
tein point cloud. The sub-sampling reduced the number of points
to approximately 20% using the simplification method BEN-
HABILES, AUBRETON, BARKI, and TABIA [BABT13], preserv-
ing the global shape of the protein and its swiftness. The mini-
mum bounding sphere [Wel91] of the protein was computed to
rescale it into a unit sphere S(c,r) where c is the center set to 0
and r is the radius set to 1. This makes each protein of the dataset
invariant to geometric transformations including scale and trans-
lation.
• GASD descriptor calculation [dMT16]: the descriptor consists

of firstly estimating a reference frame of the point cloud using
PCA (Principal Component Analysis) approach, then exploiting
the reference frame to transform the point cloud into a canonical

coordinate system making it pose invariant. The final global de-
scriptor is then fitting points of the cloud with respect to a regular
grid of 3D voxels.
• FPFH global representation (VLAD-FPFH): this stage goes

through significant intermediate steps since the usual FPFH de-
scriptor is only calculated for each point of the cloud and does
not directly provide a global representation of the protein.

– Local FPFH calculation [RBB09]: calculation of an FPFH
descriptor for each point of the cloud (protein). The surface
normals of all the points are calculated. Each point is consid-
ered with its nearest neighbors to calculate the angular vari-
ations between the normals of all possible pairs within the
neighborhood. The angular variation is based on a Darboux
frame construction. This result out into a 33 dimensions’ fea-
ture vector for each point of the cloud.

– FPFH based relevant feature selection [RBB09]: select for
each protein the most relevant FPFH feature vectors. Many of
the calculated FPFH vectors are redundant in all the dataset
and thus do not reveal prominent characteristics that allow to
distinguish between protein classes. An average FPFH vector
is calculated over all the dataset and a distance distribution
to this average vector is calculated for each protein. The ob-
tained distribution for each protein which is close to a Gaus-
sian is exploited to select the outlier vectors (vectors of inter-
est). These vectors are those out of the range [d− δ,d + δ],
where d is the mean distance within a protein and δ is set to
a large value in such way to collect 0.5% of the total number
of FPFH vectors.

– Vector of Locally Aggregated Descriptors (VLAD)
[JPD*12]: allows to obtain a compact global vector for
each protein. We first calculate an FPFH vector-based k-
means over all the dataset. Then we apply the accumulation
process of local descriptors from the previous step for each
protein to generate a global vector.

• Hybrid global descriptor (GASD + VLAD-FPFH): before to
combine the global FPFH vector (VLAD-FPFH) with the GASD
one, we apply a PCA (Principal Component Analysis) technique
on each VLAD-FPFH descriptor to balance the weights of both
descriptors (GASD and VLAD-FPFH) in the final hybrid de-
scriptor (GASD-VLAD).

4.5.2 Running time

The different steps described in the processing pipeline have been
coded in C/C++ using PCL [PCL] on an i7-6700HQ CPU@2.60
GHz with 32 GB of memory (running times are reported in table
1). It is worth mentioning that the written code for each step has
not been optimized to run in a parallel fashion.

5 Results

5.1 Precision-Recall curves

Methods based on 3D Zernike Descriptors and the HAPT method
display good precision (> 0.6, figure 2) even for high recall values
(0.7). Furthermore, these methods produced very similar perfor-
mances when using different descriptors comparison methods (for
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Table 1: Running times in seconds of each step of the Ft-PSSC processing pipeline obtained respectively from the smallest and biggest
protein of the dataset.
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Figure 2: Precision-Recall curves for the proteins (left) and species (right) level. For each row, the precision-recall curves of all submitted
results are shown.

3DZD) or different parameters (for HAPT). ConvLDSNet and Ft-
PSSC displayed lower performances as evaluated by the precision-
recall curves, with a precision decreasing more sharply as the recall
increases. Using a training dataset of protein surfaces, the 3DZD
approaches significantly improved the precision at medium and
high recall values. Conversely, The ConvLDSNet method seems
insensitive to the training set. Regarding the Ft-PSSC method, the
use of the VLAD (Vector of Locally Aggregated Descriptors) tech-
nique [JPD*12] alone or in combination with the GASD method
decreased the retrieval performances.

5.2 Retrieval statistics

3DZD, 3ZDM and HAPT showed really good performance at
retrieving proteins at the species level, and were able, from a given
protein shape, to retrieve a member of the same class at the pro-
teins level in more than 96% of the cases. These methods also
showed high first-tier (> 0.5) and second-tier (> 0.64) values.
The Ft-PSSC method using the GASD descriptor displayed high
Nearest-Neighbor statistics (> 95%) at both species and proteins
levels, but lower performances for the other statistics. The VLAD
technique, when used, degraded the Ft-PSSC performances in all
statistics. The training used in the 3DZD2 and 3DZD3 approaches

Table 2: Nearest-neighbor (NN), First Tier (1st tier), Second Tier
(2d tier), Mean Average Precision (MAP) average values computed
at the species level.

Method NN 1st tier 2d tier MAP

3DZD1 0.961 0.528 0.641 0.556
3DZD2 0.964 0.589 0.706 0.610
3DZD3 0.951 0.577 0.716 0.605

3DZM 0.989 0.577 0.675 0.604

ConvLDSNet1 0.975 0.332 0.422 0.355
ConvLDSNet2 0.975 0.330 0.423 0.353
ConvLDSNet3 0.952 0.333 0.423 0.355

GASD-VLAD 0.688 0.266 0.385 0.245
GASD 0.955 0.382 0.467 0.405
VLAD 0.266 0.144 0.244 0.122

HAPT1 0.947 0.555 0.705 0.578
HAPT2 0.946 0.561 0.709 0.584
HAPT3 0.944 0.563 0.709 0.588

allowed the associated results to outperform the 3DZD1 and 3DZM
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Table 3: Nearest-neighbor (NN), First Tier (1st tier), Second Tier
(2d tier), Mean Average Precision (MAP) average values computed
at the proteins level.

Method NN 1st tier 2d tier MAP

3DZD1 0.988 0.579 0.729 0.638
3DZD2 0.993 0.658 0.789 0.712
3DZD3 0.989 0.665 0.802 0.720

3DZM 0.994 0.583 0.706 0.649

ConvLDSNet1 0.984 0.303 0.458 0.329
ConvLDSNet2 0.984 0.296 0.457 0.324
ConvLDSNet3 0.961 0.301 0.458 0.328

GASD-VLAD 0.797 0.315 0.481 0.315
GASD 0.977 0.372 0.506 0.417
VLAD 0.390 0.226 0.380 0.206

HAPT1 0.988 0.616 0.734 0.659
HAPT2 0.988 0.624 0.738 0.666
HAPT3 0.991 0.613 0.732 0.658

approach for the first-tier, second-tier and MAP statistics at the pro-
teins level, while the 3DZM approach display slightly better results
for the nearest-neighbor metrics at the species level only. The Con-
vLDSNet method is little sensitive to the training set.

6 Discussion & Conclusion

In this track, we investigate the ability of the participants’ meth-
ods to use biological shapes to classify proteins sharing evolu-
tionary relationships as evaluated by the SCOPe database[FBC14;
CFB17; FCB18]. The surfaces encompass only globular proteins
from NMR structures, which capture conformational changes oc-
curring at the nanosecond timescale while large conformational
changes can occur at the microsecond or millisecond timescale. As
a result, this dataset presents only a narrow spectrum of the protein
surface diversity.

All methods except the VLAD-FPFH approach analyze global
descriptors and resulted in overall good performances. These re-
sults indicate that the classification problem of a set of proteins
sharing evolutionary relationships may be comprehended using a
global description of protein surfaces. The only local descriptor
(combining the VLAD and FPFH techniques) used in this track
resulted in lesser performances. Taken together, these results sug-
gest that proteins displaying multiple conformations (such as NMR
models) share an overall common shape that is detected by global
descriptors, while a local analysis identify local patterns that cannot
discriminate between different proteins.
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