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Abstract
Three-dimensional descriptors are a common tool nowadays, used in a wide range of tasks. Most of the descriptors that have
been proposed in the literature focus on tasks such as object recognition and identification. This paper proposes a novel
three-dimensional local descriptor, structured as a set of histograms of the curvature observed on the surface of the object in
different directions. This descriptor is designed with a focus on the resolution of the robotic grasping problem, especially on
the determination of the orientation required to grasp an object. We validate our proposal following a data-driven approach
using grasping information and examples generated using the Gazebo simulator and a simulated PR2 robot. Experimental
results show that the proposed descriptor is well suited for the grasping problem, exceeding the performance observed with
recent descriptors.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations I.2.9 [Artificial Intelligence]: Robotics—Manipulators I.4.7 [Image
Processing and Computer Vision]: Feature Measurement—Size and shapes

1. Introduction

The use of three-dimensional (3D) sensory data has become very
popular and almost ubiquitous in recent years. This tendency can
be partially explained by the availability of low-cost 3D sensors
like Microsoft Kinect [Zha12], released in 2012, which made 3D
information accessible and easy to generate. Also, the introduction
of Point Cloud Library (PCL) [RC11], and similar libraries for 3D
data manipulation and analysis have boosted the use of 3D data.

This tendency is reflected in the research world, where the devel-
opment of 3D descriptors is now an active field. Also, in Robotics
and Computer Vision many new algorithms and applications have
been developed using 3D data. Many problems in these areas may
find simpler or easier solutions using 3D sensory information, in-
stead of plain 2D sensors such as cameras.

Robotic grasping is a discipline in the field of Robotics, which
aims to develop algorithms for the generation of strategies for a
robot to grasp an object. These strategies will depend on the fea-
tures of the robot and the form of the object, and usually are
strongly influenced by the visual features from which they are
based on.

We believe that the local curvature of an object is one of the most
significant features which allows us to determine feasible gras-
ping strategies. This belief stems from the observation that humans
usually grasp an object following its smaller dimension [FBD14],
which can be also viewed as aligning the hand according to the di-
rection of higher curvature in the surface of the object. This can be

explained because such grasping strategy allows a person to close
the hand as much as possible, which yields a strong and reliable
grasp.

In this work, we propose a 3D local descriptor, designed to be
used in robotic grasping tasks. The proposed descriptor is focused
on encoding how the curvature changes around the target point, by
analyzing the surface of the object in different directions.

We evaluate our proposal using the Gazebo simulator [Zha12]
and a simulated PR2 robot, to test the applicability to the grasping
problem, using a data-driven resolution approach. We show that our
proposal is robust in relation to the orientation of the robot grip,
allowing to define zones of feasible orientations for it.

This work is structured as follows: Section 2 defines the robotic
grasping problem and makes a brief review of the current approa-
ches to it. Section 3 reviews the related works, focusing on 3D local
descriptors. Section 4 presents the details of the proposed descrip-
tor. Section 5, discusses the the applicability of the proposed de-
scriptor to real-life clouds and presents a method to deal with noisy
sensory data. Section 6 describes the experimental setup used for
evaluation. Section 7 presents and discusses the experimental re-
sults obtained. Section 8 presents the conclusions of this work.

2. The Robotic Grasping Problem

Robotic grasping refers to the problem commonly described as
determining the grasp required to carry out certain manipulation
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tasks on an object [LMSB14]. The grasp is typically performed us-
ing a robotic arm along with a robotic hand or gripper, addressed as
end-effector or, simply, effector. In general, the main goal here is to
find a parameterization of the effector trajectory or final 3D pose,
satisfying the criteria defined for the current task, which together
with a suitable point or zone located on the surface of the object,
would allow for successfully grasp it.

2.1. Current Approaches

In the literature, there are different approaches to the grasping prob-
lem. Sahbani et al. [SEKB12] divided these methodologies into two
groups: i) analytic methods; and ii) empirical methods.

Analytic methods are characterized by the use of multi-fingered
effectors (robotic hands) and focus on modeling the physics and
dynamics of the effector-object interaction. According to Shi-
moga [Shi96], this type of methods generate force-closure grasps,
which are stable in equilibrium and exhibit a certain dynamic be-
havior. In a review, Bohg et al. [BMAK13] point out that analytic
methods are commonly formulated as an optimization problem,
constrained to the criteria of the grasping task and the dynamics
of the effector. This was the most popular approach until the past
decade.

In contrast to analytic methods, which construct a grasp accor-
ding to the physics of the problem, empirical or data-driven me-
thods rely in the use of sensory information for sampling grasp
candidates from the solution space and ranking them according to
a particular metric. This process is usually based on previous gras-
ping experience, grasping prototypes or examples provided by hu-
man experience. For this reason, it has also been dubbed knowledge
based [Shi96]. This approach typically uses simpler effectors, for
example two-fingered grippers, and has been the most popular stra-
tegy in recent years.

Bogh et al. [BMAK13] divided data-driven methods into 3
groups according to the assumptions they make about the target
object: i) grasp of a known object; ii) grasp of a familiar object;
and iii) grasp of an unknown object.

Grasp-of-known-objects methods assume that the target ob-
ject has been seen before, and in consequence grasps are already
generated for the object. These methods focus on recognition and
identification of the object and estimation of its pose, so the pre-
viously generated grasp can be reused. Grasp-of-familiar-objects
methods assume that the target object share some similarities with
some of the already seen objects. This approach assumes that simi-
lar objects (or zones) can be grasped in similar ways, taking advan-
tage of previous grasping experience. Grasp-of-unknown-objects
methods do not assume any kind of grasping experience. They ana-
lyze the geometry of the object to identify suitable zones to perform
a grasp.

3. Related Work

3D sensors and sensory data are increasingly present nowadays,
making the development of descriptors for 3D data an active re-
search field. 3D descriptors can be classified in two types: i) global;

and ii) local. Global descriptors [BKS∗05] aim to encode the in-
formation present in the whole set of sensory data, which makes
them better suited for tasks like object recognition. Local descrip-
tors [BBGO11], on the other hand, encode the information present
in contiguous portions of the sensory data, making them better for
detection of relevant elements or recognition of zones of interest in
the set of sensory data. 3D local descriptors are of particular inter-
est for the grasping task, since they provide information to identify
suitable grasping points or zones.

One of the older approaches is Spin Images, proposed by John-
son [Joh97]. This method first represents the data using cylindri-
cal coordinates (ρ,θ,h) centered at the target point, which are then
projected of the plane ρ−h to generate a 2D version. The projected
data is binned and transformed into a grayscale image, where the
darker areas mark higher concentrations of points.

A common strategy for description is to use the spatial distribu-
tion of data, represented through different histograms. Using this
methodology, Frome et al. [FHK∗04] proposed 3D Shape Context
(3DSC), which defines a sphere around the target point, orienting
its north pole according to the surface normal at the target point.
The sphere is then divided along azimuth, elevation and radius,
generating multiple spatial bins. Since the rotation of the sphere
(along the azimuth) is not fixed, the spatial binning is performed
using different rotations to provide some rotation invariance. Then,
a vector with a weighted count of the points in each bin is generated
for each rotation. Finally, the descriptor is formed by concatenating
the weighted count vector of each rotation.

Following a similar strategy, Tombari et al. [TSDS10] proposed
Signature of Histograms of Orientations (SHOT). This descriptor
defines a sphere around the target point, and then a local reference
frame which is used to fix the sphere rotation and provides it with
rotation invariance. The sphere is split in 8 parts along the azimuth,
2 along the elevation and 2 along the radius, generating 32 regions.
For each region, a histogram of the angle between the target point
and each point in the region is calculated. The descriptor is formed
by the concatenation of the histograms of each region.

A different approach was followed by Rusu et al. [RMBB08]
when proposed Point Feature Histograms (PFH) in an attempt to
encode information which describes the geometry in the vicinity
of the target point. This descriptor computes a fixed frame for
each pair of points in the vicinity. Then, the difference between
the surface normal at each point is described using 3 angles plus
the distance between the points, producing 4 description variables
per pair of points. Finally, a histogram is generated for each vari-
able and then concatenated to form a single vector. Since PFH is
computationally expensive, Rusu et al. [RBB09] also proposed Fast
Point Feature Histograms (FPFH), a lighter version of PFH which
performs a reduced number of comparisons between points in the
vicinity.

Guo et al. [GSB∗13] proposed a different strategy in Rotational
Projection Statistics (RoPS). This descriptor first generates a mesh
from the 3D sensory data and extracts the surface in a neighborhood
of the target point, over which a local reference frame is defined.
The extracted surface is rotated around the x axis and then projected
over the planes xy, xz and yz, computing different statistics for each
projection. These statistics are concatenated to form the descriptor.

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.

114



Rodrigo Schulz & Pablo Guerrero & Benjamin Bustos / Directed Curvature Histograms for Robotic Grasping

All the descriptors mentioned capture different features from the
observed object. However, they all fail to properly retrieve enough
information useful for the grasping problem in particular. Spin Im-
ages provides a rough representation of how an object changes
around the target point, but the nature of this descriptor makes it
difficult to identify and compare different zones according to their
curvature.

The approach expressed by 3DSC and SHOT proves useful for
object recognition, shape retrieval and 3D feature matching. De-
spite not having been developed for the grasping problem, spatial
description of data is usually well suited for the identification of
features related to the shape of the object. This approach typically
allows for the identification of different curvature zones, based in
the spatial distribution of the points in the surface of the object. An
important drawback of 3DSC is the high dimensionality of the final
descriptor, which strongly affects the performance of algorithms
and tasks.

PFH and FPFH are specially designed to take into account the
curvature of the object, and both descriptors attempt to encode as
much information as possible about the surface. The main disad-
vantage of this descriptor is that the computation is complex and
time expensive, which is especially problematic in the context of
robotics.

Finally, the main drawback in RoPS is the inevitable construc-
tion of a mesh, which considerably affects the computation time
of the descriptor and might be prohibitive in the context of robotic
grasping.

4. Directed Curvature Histograms

Our hypothesis is that the local curvature of an object is a highly
significative feature for the grasping task, and consequently it can
be used for the generation of grasping strategies. We propose a
novel 3D local descriptor, that focuses on encoding the curvature
of the surface of the underlying object in different directions.

4.1. Proposed Approach

Our proposed descriptor aims to encode the local curvature, based
on the evolution of the normal vector along N radial bands of data,
arranged symmetrically around the target point (Figure 1).

For this work, we will assume that sensory data is stored as a
cloud of 3D points or point-cloud. Nevertheless, all the definitions
can be applied to different representations, such as meshes. Addi-
tionally, we will represent curvature change between two points as
the angle formed by the surface normal on both points. When the
descriptor is computed, this change will be the angle between the
target point and the points in each band, and in consequence this
will describe the curvature changes around the target point in diffe-
rent directions. This representation has three advantages over the
direct use of the curvature of the surface:

i) The angle between two vectors is usually easier and more stable
to calculate than the curvature of the surface.

ii) Angles are limited in range (α ∈ [−π,π]).
iii) Special cases, such as a flat surface, are easy to represent and

identify using angles.

Figure 1: 3D data representing an object with a set of 8 bands
highlighted on its surface. Each band provides information about
the curvature along a different direction.

4.2. Calculation Process

The calculation process is divided into two consecutive steps:
i) bands extraction; and ii) descriptor calculation.

4.2.1. Bands Extraction

The goal of this step is to extract the set of 3D points that belong to
each of the bands going along arbitrary directions around the target
point ~p∗ (Figure 1). For this purpose, we define a sphere of radius
r centered at the target point, which generates the neighborhood set
Φ. The radius of the sphere will determine the extent of the encoded
curvature information.

To determine which points are part of each band, a plane, f (~x),
tangent to the surface at the target point is defined using the Equa-
tion 1, where ~p∗ is the target point and ~n∗ its surface normal.

f (~x) : ~n∗ · (~x− ~p∗) = 0 (1)

A local 2D coordinate system Õ is defined inside the plane, with
its origin at ~p∗ and an arbitrary orientation (this will be later use-
ful for the grasping task). Every point ~pi ∈ Φ is then projected on
f (~x) and translated to the local coordinate system Õ. This yields an
image set of points ~qi ∈ΦIMG, completely contained in f (~x).

To define the orientation of each band, a set D of N unitary vec-
tors is generated. Each ~dk ∈ D is defined inside f (~x), starting at Õ.
The set of N vectors is arranged symmetrically around Õ, sorted
counter clockwise, starting with the first vector, ~d1, parallel to the
axis Õx̃. Consequently, every ~dk will be separated from the follow-
ing vector ~dk+1 by an angle γ = 2π/N (Figure 2).

The orientation of each band is defined by the Equation 2.

lk(t) = ~p∗+ t · ~dk (2)

The perpendicular distance between each point ~qi ∈ ΦIMG to each
line lk(t), k ∈ {1, . . . ,N} is measured. The points with a distance
smaller than a threshold w are associated to the respective band. It
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Figure 2: The set of vectors ~dk ∈ D are arranged symmetrically
around Õ. Each ~dk acts as the director vector for a band.

is important to notice that this definition allows for the presence of
a point in more than one band. This is usually the case of points
that are close to the target point.

Finally, each band is defined as a subset of points Bk ⊆ Φ such
that the image point ~qi of each ~pi is at a distance equal or less than
w.

Bk = {~pi ∈Φ | ~qi ∈ΦIMG ∧ dist(~qi, lk(t)) ≤ w} (3)

Since the set of bands {B1,B2, . . . ,BN} was extracted from Φ, then
the length of each band will be at most r and its width 2 ·w.

4.2.2. Descriptor Calculation

The goal of this step is to encode how the surface normal changes
along each band. For this purpose, we propose the generation of a
histogram for each band to describe the change in orientation of the
surface normal along it.

In detail, for each band Bk the angle between the surface normal
at the target point, ~n∗, and the surface normal at each point present
in the band, ~ni | ~pi ∈ Bk, is computed as shown in Equation 4.

αi = arctan
(
‖~n∗×~ni‖
~n∗ ·~ni

)−1

(4)

After evaluating Equation 4 for each point, a histogram Hk is gene-
rated for each band Bk.

A histogram is used as a means to encode the evolution of the
orientation in the normal vector, while avoiding the effect of noise
and errors in the estimation of the normals. Using one histogram
per band allows the descriptor to encode information individualiz-
ing the evolution of the surface normal in different directions. At
the same time, the use of several bands, symmetrically arranged,
provides an overview of the surrounding surface. For this reason,
we called this approach Directed Curvature Histograms (DCH).

Finally, the descriptor is formed by the concatenation of the his-

tograms associated to each band.

DCH =



hk1
hk2

...

...
hN1
hN2

...


=



v11
v12

...

...
vN1
vN2

...



band 1

...band N

(5)

Note that the resolution used for the histograms (size of the bins)
will affect the size of the final descriptor. Smaller bins are more de-
scriptive and provide a more fine-grained representation of the cur-
vature of the object, but it also generates longer histograms, which
will translate into a final descriptor of higher dimensionality.

4.3. Coordinate System Orientation

As mentioned in Section 4.2.1, the coordinate system defined for
the computation of DCH is arbitrarily oriented. Such feature is an
advantage that can be exploited according to the specific problem
being approached. The formulation of the proposed descriptor al-
lows users to define the most convenient reference frame for the ap-
plication they are working on, ranging from an ad-hoc orientation
to a general reference frame, thus making it applicable to diverse
problems.

The only requirement for a general formulation, which can be
used across different instances of the descriptor and different ex-
periments, is that the reference frame has to be repeatable and con-
sistent across instances of the descriptor. Such formulation can be
achieved by simply using a fixed orientation, defined in a global
coordinate system. Different approaches can be used to select ori-
entation of the proposed descriptor. For example, this can also be
done by using the definition of a repeatable local reference frame,
like the one proposed by Tombari et al. [TSDS10]. In this work a
repeatable local reference frame proposes is proposed, defined by
the principal directions computed through a Eigen Value Decom-
position (EVD) or a Singular Value Decomposition (SVD) of the
covariance matrix of the point coordinates, plus an heuristic pro-
cedure for the disambiguation of the sign of the reference frame
vectors.

4.3.1. Coordinate System for Robotic Grasping

In the particular case of the robotic grasping problem, DCH can
used to solve it by following the approach of data-driven methods
(Section 2).

Since the orientation of the bands in the descriptor is defined ar-
bitrarily, we can select it to match the orientation of the coordinate
system of the effector, defined as shown in Figure 3a. According to
this diagram, for matching the orientations of the effector and the
descriptor, the angle of the axis x̃ has to be aligned with the vertical
axis of the coordinate system of the effector, i.e., axis Ze f f . When
the orientation of the coordinate systems is matched, the orientation
of the band B0 will be the same as the orientation of the effector.

This formulation allows the descriptor to encode changes in the
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(a) Coordinate system placed on the effector.

(b) Coordinate system of the descriptor, used for the definition of the orien-
tation of the bands.

Figure 3: Coordinate system with origin at the effector and coor-
dinate system used for the generation of the bands. The proposed
descriptor can be used to solve the grasping problem by aligning
axes Ze f f and x̃.

curvature of the surface, as observed from the coordinate system of
the effector, i.e., the local shape of the object from the perspective
of the effector. Then, DCH can be used to perform a supervised
learning process, that focuses on extracting a characterization of
the local shape observed when a successful/unsuccessful grasp is
performed. This process attempts to mock the way humans decide
a grasp zone for an object, and how grasping experience of similar
objects is applied to new objects. According to the classification
presented in Section 2.1, this approach can be identified as grasping
of familiar objects.

5. Dealing With Real Sensors

In this work, we used the simulated environment provided by
Gazebo to perform the evaluation of the ability of the proposed
descriptor to predict the outcome of a grasping candidate. Despite
Gazebo is a realistic simulator, which runs the actual software of
the simulated robots, necessarily the sensory data has to be syn-
thetically produced to complete the simulation process. This might
hide sensitivity problems of the proposed descriptor to noise or per-
turbations. This issue is specially delicate for the surface normals,

whose computation is particularly sensitive to noise, and this could
affect the computation of DCH when using data from real sensors.

In general, methods for the estimation of the normals of a sur-
face involve fitting a plane tangent to the surface of the object, and
then disambiguating the orientation using an adequate algorithm or
criterion. For the development of this descriptor, we use the method
proposed by Rusu [Rus10], based on fitting a tangent plane through
a least-squares (LS) estimation and then disambiguating the orien-
tation using Principal Component Analysis (PCA). To provide ro-
bustness against noise, we added a filtering step where a Gaussian
smoothing was performed, to reduce the effect of noise in the posi-
tion of the points from the point-cloud.

Figure 4 shows the effect of the Gaussian filtering step on the
estimation of the normals in a point-cloud that was obtained using
a real sensor. Figures 4a, 4c and 4e show the point-clouds, while
Figures 4b, 4d and 4f show the computed normals for each point-
cloud. These images show that the effect produced by the Gaussian
filtering step has a positive effect on the computation of the nor-
mals, when dealing with real sensory data, and make the normals
behave more similar to the normals computed on a synthetic point-
cloud (Figure 4f).

6. Experimental Evaluation

To evaluate the applicability of DCH to the grasping problem, we
used the Gazebo simulator [KH04] and a simulated instance of a
PR2 robot. Both were used in order to generate experimental data
which could be used to perform the supervised learning process, as
well as to evaluate the capabilities of the descriptor.

6.1. Experimental Data Generation

Using a simulated experimental environment, we performed sev-
eral grasps attempts on three different objects, each one arranged
in different positions (shown in Figure 5):

• A can, in 2 different positions.
• A cordless drill, in 3 different positions.
• A hammer, in 2 different positions.

To determine the points where a grasp will be attempted, dubbed
grasping points, we sampled the surface of each object, using a
method based on unsupervised learning, assuring that each mean-
ingful surface is represented by the set of produced samples. Such
points, plus an orientation for the effector, produced a grasping can-
didate, which was used to perform a grasping attempt. Each exper-
iment was performed using 4 and 5 different angles for the orienta-
tion of the effector (Figure 6a and Figure 6b). Finally, we recorded
the result of each grasping attempt, identifying 3 outcomes: i) grasp
successful, the object was grasped; ii) grasp failed, the object was
not grasped; and iii) grasp unfeasible, the grasp could not be per-
formed. Notice that the later outcome is produced because data-
driven methods do not take into consideration physical of mechan-
ical limitations of the robots. Therefore, it is possible to gener-
ate grasp candidates which are not feasible. It is also important
to notice that this step is equivalent to sample the space of grasp
candidates, to the goal of identifying which are good candidates
and which are not. Therefore, since the space of possible grasps
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(a) Raw point-cloud. (b) Normals computed with the raw
cloud.

(c) Filtered point-cloud (d) Normals computed with the fil-
tered cloud.

(e) Synthetic point-cloud (f) Normals computed with the syn-
thetic point-cloud.

Figure 4: Comparison of the computed normal vectors.

mostly contains configurations which are not capable of grasping
the object, then many of the grasp attempts would produce failed
attempts.

The results of the production of experimental data are presented
in Table 1 and Table 2.

6.2. The Experiment

To evaluate the suitability of DCH for the grasping task, we per-
formed a supervised learning process. For this process, we used
only the results from the successful and failed grasping attempts.

Figure 5: Set of objects used to produce the experimental gras-
ping data. The information collected (grasp performed and its re-
sult) was used to evaluate the applicability of DCH to the grasping
problem.

(a) Set of 4 orientations used for the generation of the data for the experiments
(0°, 45°, 90°and 135°).

(b) Set of 5 orientations used for the generation of the data for the experiments
(0°, 36°, 72°, 108°and 144°).

Figure 6: Orientations for the effector which were used to gener-
ate experimental data. Each one is represented using the reference
frame of the effector, as shown in Figure 3a.
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Table 1: Summary of the generated data.

Angles Success Failed Unfeasible Total

4 33 29 34 96
5 31 45 59 135

Total 64 74 93 231

Table 2: Details of the generated data.

Angles Success Failed Unfeasible Total

Can
4 5 14 1 20
5 4 15 6 25

Drill
4 8 5 31 44
5 9 13 48 70

Hammer
4 20 10 2 40
5 18 17 5 35

Total - 64 74 93 40

The results coming from unfeasible grasps attempts were dis-
carded.

We trained a Support Vector Machines (SVM) [SC08] classifier
using the descriptor as predictor variable and the result of the gras-
ping attempt (successful or failed) as the predicted variable. The
training was done using the data generated for two of the three ob-
jects available (a can and a cordless drill), and following a 10-fold
approach for cross validation. Then, the performance of the clas-
sifier was evaluated using the data grasping data generated for the
remaining third object (a hammer).

Note that since the descriptor was computed with an orientation
matching the orientation of the effector, then the value of the de-
scriptor itself will encode the difference between grasp attempts of
the same point, but with different orientations for the effector.

Finally, since grasping data was generated using 4 and 5 diffe-
rent angles for the orientation of the effector, we performed 4 ex-
periments combining this information:

1. Classifier trained and evaluated using data with 4 orientations.
2. Classifier trained and evaluated using data with 5 orientations.
3. Classifier trained using data with 4 orientations and evaluated

using data with 5 orientations.
4. Classifier trained using data with 5 orientations and evaluated

using data with 4 orientations.

The experiments were performed using DCH and three other de-
scriptors, all of which have been tested and validated in tasks such
as object recognition and/or shape retrieval: i) SHOT, ii) Spin Im-
ages, and iii) FPFH.

This evaluation allowed us to compare the performance of DCH
against a set of existing descriptors, and also to evaluate its capa-
bility to characterize a surface suitable for grasping.

7. Results

The results of the performance evaluation done on the trained clas-
sifiers are presented in the Figure 7. These results show that the
proposed descriptor is well suited to solve the grasping problem,
using a data-driven resolution approach. In particular, for all the ex-
periments carried out, the ROC curves presented in Figure 7 show
that the classifiers trained using DCH exhibit a significantly bet-
ter performance than those trained using the remaining descriptors.
Since the training and evaluations procedures were carried out us-
ing a completely different set of objects, these the experiments re-
veal that the descriptor successfully extracts information which can
be used to train a relation between the curvature observed from the
reference frame of the effector, for successful grasping attempts.

The classifiers evaluated using datasets with the same number
of orientations for the effector than the dataset used for training
(experiments 1 and 2), performed better than the ones evaluated
with a dataset with a different number of orientations (experiments
3 and 4). This was the expected result. However, the later exper-
iments still displayed a good performance. This result shows that
the trained classifier is capable of correctly predicting the outcome
of a grasp candidate, even when a new angle for the effector is used.

The results obtained with the classifiers trained using SHOT,
Spin Images and FPFH were notoriously worse than the ones ob-
tained using DCH. This can be explained by the fact that all these
descriptors are rotational invariant, thus they are unable to actually
encode the differences between each orientation of the effector.

From our results, Spin Images is the descriptor with the worst
performance, while SHOT showed the best results, leaving FPFH
in an intermediate position. The particularly bad results obtained
with Spin Images can be explained by taking into account the fact
that this descriptor projects the neighborhood of the target point
using a local coordinate system. However, if the sensory data do
not cover a spatial region with enough extension, such projection
might generate an image with too few features to provide a use-
ful descriptor. One could tackle this problem by increasing the size
of vicinity of the target point, but in turn this would increase the
amount of data used to compute the descriptor. Similarly, for DCH
if the vicinity is too small to provide enough information to en-
code the features of the underlying surface, or if it do not contains
any useful information, the method may not be able to identify any
re. This issue also explains most of the failed attempts during the
evaluation with DCH.

8. Conclusions

The current work proposed a novel 3D local descriptor, designed
for use in the problem of robotic grasping. This descriptor aims to
encode information about how the curvature of an object changes
around a point.

The experiments showed that the proposed descriptor, dubbed
Directed Curvature Histogram, is well suited for solving the gras-
ping problem following a data-driven approach. These tests showed
that DCH resulted particularly helpful in the identification of the
required orientation of the effector to successfully grasp an object.

Additionally, the results showed that the proposed descriptor is
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(a) Classification performance observed on the experiments 1 and 2. (b) Classification performance observed on the experiments 3 and 4.

Figure 7: Performance of the classifiers trained using DCH versus the classifiers trained using other descriptors.

better suited for the grasping task than one recent and widely used
descriptor. This highlights the advantage of using a task oriented
descriptor to solve this problem.

As a future work, we plan to investigate the applicability of the
presented descriptor to other tasks.
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