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Abstract

In this paper, we present and experiment a novel approach for retrieving 3D geometric texture patterns on 2D
mesh-manifolds (i.e., surfaces in the 3D space) using local binary patterns (LBP) constructed on the mesh. The
method is based on the recently proposed mesh-LBP framework [WBD15]. Compared to its depth-image counter-
part, the mesh-LBP is distinguished by the following features: a) inherits the intrinsic advantages of mesh surface
(e.g., preservation of the full geometry); b) does not require normalization; c) can accommodate partial matching.
Experiments conducted with public 3D models with geometric texture showcase the superiority of the mesh-LBP

descriptors in comparison with competitive methods.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

The geometric information captured by 3D acquisition de-
vices is typically in the form of a cloud of points, which
represents the 3D-coordinates of a set of samples of the ob-
ject surface. The direct processing of these point clouds is
not convenient or even possible, so that other representation
formats have been established. Depth images are one of the
most commonly used imaging modality, since they permit a
direct extension to the depth dimension of many computer
vision and pattern recognition solutions developed for ana-
lyzing the photometric information in 2D images. Though
the possibility of a straightforward extension of 2D tech-
niques is attractive, this modality loses the full 3D geome-
try, by reducing it to a 2.5D projection. The full 3D shape
information is instead preserved and encoded in a simple,
compact and flexible format by the triangular mesh manifold
modality. The recent advances in shape scanning and mod-
eling have also allowed the integration of both photometric
and geometric information into a single support defined over
a 2D mesh-manifold embedded in 3D. However, despite the
abundance and the richness of the mesh manifold modality,
the number of solutions for representing the geometry of 3D
objects is still limited, and not comparable with the large
variety of methods available in 2D. An evidence of this is
given by the lack of efficient descriptors to represent the tex-
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ture component associated to 3D objects. This motivated us
to focus on this aspect that can reveal new possibilities in
3D objects retrieval and recognition. In particular, we con-
sider the 3D geometric texture as a property of the surface,
distinct from the shape, which is characterized by the pres-
ence of repeatable geometric patterns (see Figure 1). These
patterns can be seen as geometric corrugations of the surface
that do not alter the overall 3D shape, but rather change the
local smoothness and appearance of the surface. This can re-
sult in 3D objects that show similar or equal shape, but very
different 3D geometric texture. For capturing this aspect of
the 3D object appearance on a mesh support, consolidated
approaches do not exist.
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Figure 1: Example 3D objects characterized by repeatable
patterns of the mesh surface (i.e., geometric texture).

In the literature, the problem of representing the 3D geo-
metric texture has been not addressed directly; rather, it has
been managed as a component of the surface shape either
recurring to 3D shape descriptors [JH99, OFCDO02], that in
the large part are not adequate to capture 3D geometric tex-
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ture, or resorting to the 2D case by applying 2D descriptors
to planar projections of the 3D surface, in the form of depth
images. In this paper, we address the above shortcomings
building on the framework of Local Binary Pattern (LBP).
Since its first formal definition [OPH96], the LBP has es-
tablished itself as one of the most effective local shape de-
scriptors for image representations. It has been originally in-
troduced for representing 2D textures in still images, but its
computational simplicity and discriminative power attracted
the attention of the image processing and pattern recogni-
tion community for other tasks. Rapidly, LBP has found
applications in visual inspection [CLLHO9], remote sens-
ing [LSFO05], face recognition [AHPO6], facial expression
recognition [SGM09], and motion analysis [WM10]. How-
ever, the LBP-based methods developed so far operate either
on photometric information provided by 2D color images
or on geometric information in 2D depth images. The few
solutions that extract surface features directly in 3D (typi-
cally in the form of surface normals), resort to the 2D case
by converting the 3D extracted features to depth values, and
then use ordinary LBP processing on 2D images [SZP12].
Recently, LBP construction on triangular mesh manifolds
has been introduced in [WBD15]. The mesh-LBP frame-
work keeps the simplicity and the elegance of the original
LBP, while relieving the recognition process from the need
for normalization, and preserving the full 3D geometry of
the shape.

In this paper, we target the problem of representing the 3D
texture properties of 2D mesh-manifolds for retrieval appli-
cations. In particular, we propose to use the recently pro-
posed mesh-LBP concept [WBD15] to address the above
challenges. To the best of our knowledge, this paper is the
first one to present and apply a framework, which enables
an elegant and effective representation of 3D geometric tex-
tures. To show the potential and the suitability of mesh-LBP
for such task, and contemporarily show the inadequacy of
existing descriptors, two applications have been proposed
and investigated: 1) A retrieval approach of 3D objects based
on the 3D geometric texture of the surface; 2) A retrieval
of terrain models, where the occurrence of small 3D terrain
patches is searched for similarity in large terrain mesh mod-
els. In both these applications, mesh-LBP shows the capabil-
ity to construct effective representations, relieving the recog-
nition process from the need for registration and normaliza-
tion procedures, while preserving the full 3D geometry of
the shape. The rest of the paper is organized as follows: In
Sect. 2, we give an overview on the mesh-LBP concept; In
Sect. 3, the 3D texture retrieval scenario is introduced and
the mesh-LBP results are presented in comparison to other
solutions; Concluding remarks are discussed in Sect. 4.

2. LBP descriptor on 2D mesh-meanifolds

Werghi et al. [WBD15] elegantly extended the LBP concept
to the 2D mesh-manifold by proposing a simple yet efficient

technique for constructing sequences of facets ordered in a
circular fashion around a central facet (see Figure 2).

Figure 2: Generation of a sequence of rings of ordered
facets providing the support for computing mesh-LBP.

The so obtained structure of ordered and concentric rings
around a central facet forms an adequate support for com-
puting LBP operators (referred as mesh-LBP in [WBD15])
at different radial and azimuthal resolutions, while preserv-
ing the simplicity of the original LBP. Let A(f) be a scalar
function defined on the mesh, which can incarnate either a
geometric (e.g., curvature) or photometric (e.g., color) infor-
mation. The mesh-LBP operator is defined as follows:

m—1

meshLBP,,(fe) = ) s(h(fi) —h(fe))-o(k) . (1)
k=0
1 x>0
s(x):{ 0 x<0 ’

where r is the ring number, and m is the number of facets uni-
formly spaced on the ring. The parameters r and m control,
respectively, the radial resolution and the azimuthal quan-
tization. The discrete function c(k) permits different LBP
variants: with (k) = 2 the mesh counterpart of the ba-
sic LBP operator firstly suggested in [OPH96] is obtained;
with ol(k) = 1 we obtain the sum of the digits composing the
binary pattern (these two functions are referred by o; and
o, respectively). To cope with mesh tessellation irregulari-
ties, the scalar function A(f) is interpolated and sub-sampled
across each ring, allowing thus to maintain a constant az-
imuthal quantization. In [WBD15], it has also been found
that the majority of patterns have a number of 0-1 transitions
below 4 (uniform patterns), which are used in the following.

3. Retrieval based on 3D geometric texture

We consider the 3D geometric texture as a property of the
surface, distinct from the shape, characterized by the pres-
ence of repeatable geometric patterns. These patterns can be
seen as geometric corrugations of the surface that do not al-
ter the overall 3D shape, but rather change the local smooth-
ness and appearance of the surface. This can result in 3D
objects that show similar or equal shape, but very different
3D geometric texture. This concept can find applications in
distinguishing and retrieving 3D objects where the informa-
tion of interest lies in the geometric texture of the surface,
rather than in the shape (Sect. 3.1), or in the identification of
textured query patches in large textured surfaces where the
shape feature cannot be effectively used, being it vague or
even impossible to represent (Sect. 3.2).
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3.1. Textured objects

In this experiment, we assume a sample of specific 3D tex-
ture (probe) is available, and we want to automatically detect
regions, in a gallery surface, matching that particular probe.
To the best of our knowledge, we are the first to attempt re-
trieving geometric texture on a mesh manifold. The experi-
ments aim to showcase the potential of the mesh-LBP and
its performance for such a task in comparison with other
standard descriptors. Therefore, we used a naive template-
matching-like method, where the gallery mesh surface is
browsed, and at each facet a texture descriptor is computed
and compared to its probe texture counterpart using a given
metric (i.e., the Bhattacharyya distance in this application).
Facets exhibiting a distance below a certain threshold are se-
lected as a potential match.

Figure 3: Surfaces extracted from the bird, pot owl, and
mural models, and their corresponding position, highlighted
with a rectangle, in the probe models.

In the experiments, we considered as gallery a represen-
tative set of four surfaces (see Figure 3), exhibiting differ-
ent global and local shape characteristics. These surfaces
were extracted from the bird, pot, owl, and the murail ob-
jects in the MIT CSAIL database [mit08]. The order of the
aforementioned objects reflects an ascending level of 3D tex-
ture retrieval complexity. The fourth model (murail) is a U-
shaped surface, composed of harsh flat bottom surface, and
two border textured bands. The texture retrieval is deemed
the most complex for this object, because what we want to
retrieve here, is not the textured areas, but rather a partic-
ular 3D shape pattern in the textured surface, shown in the
probe sample in Figure 3. The experiment consists in search-
ing each probe within its corresponding surface and then
assessing the detection and retrieval capacity of the differ-
ent descriptors. In so doing, we computed the 0, mesh-LBP
variant, using the Gaussian curvature (K), mean curvature
(H), angle between facets normal (D), and curvedness (C)
as surface functions. In addition, we compared the mesh-
LBP with other standard 3D surface descriptors including:
the Shape Distribution variants [OFCDO02], D1, D2, D3, D4,
and A3 (best results are obtained and reported for the D1 and
D4 variants); the Spin-Images [JH99]; and the recently pro-
posed Intrinsic Shape Context (ISC) descriptor [KBLB12].

Figure 4 shows the maps of the Bhattacharyya distance
computed at each facet, and the related retrieval results for
the murail object (results for the other objects are not re-
ported here due to space limitations). Referring to the dis-
tance maps (first row), none of shape distribution descrip-
tors seems capable of detecting the 3D probe pattern. The
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Figure 4: Results for the owl surface. Two rows are reported
in each case: the upper row represents the distance map ob-
tained with the Bhattacharyya distance; in the lower row, the
region on the mesh where the probe texture is best identified
is highlighted in blue. For competitor methods, results are
reported for the Shape Distribution variants D1 and D4, for
Spin Images and Intrinsic Shape Context (ISC). For mesh-
LBP, results using the 0y operator in combination with the
surface functions K, H, D and C are reported.

spin-image could only achieve a partial retrieval of the tex-
tured areas, with some false positives detected at flat surface
though. The ISC does not indicate a particular ability for
spotting the probe texture. These observations are confirmed
in the texture retrieval results (second row), which indicate
a nearly total failure in recovering the searched texture. The
mesh-LBP distance maps (third row), on the opposite, indi-
cate a neat superior performance with an overall improve-
ment. We can observe that the regions in related maps look
compact and well localised when compared with the other
descriptors. The appearances of these maps suggest an even
more ability in texture retrieval, which has been confirmed in
the detection results depicted in the last row. Results indicate
clearly the ability of the mesh-LBP descriptors for detecting
and retrieving the 3D pattern of the murail object. The H and
C variants exhibit the best performance whereby the eight
3D pattern instances have been successfully detected. We
can appreciate this performance by observing their distance-
maps showing saliently the 3D texture pattern locations.

3.2. Terrain models

In this experiment, we considered a remote sensing applica-
tion. Here the retrieval task is described as follows: given a
3D terrain query representing a specific area, find its corre-
sponding match in a gallery of 3D terrain models. We used
terrain models from the public “The Visualization Virtual
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Services databases” . These terrain models are originally
digital elevation models (DEM) converted into mesh mod-
els. A set of 21 terrain mesh models have been set as gallery
models. From these models, we generated three rotated sets
at angles of 45°, 90 and 135, thus obtaining 63 query mod-
els simulating different sensor poses. Also, to simulate the
effect of distortion in the mesh construction from the DEM
model, which might result from the sensor pose change, we
applied the rotation on the cloud of points derived from
the terrain model after perturbing their positions by small
amount, then we construct a new mesh out of them. Figure 5
depicts samples of gallery and query terrain models.

Figure 5: Samples of gallery terrain models (top), and of
probe models with 45°, 90° and 135° rotations (bottom).

In each query model, we selected a sample area to be used
as probe. The area is a geodesic disc around a given point,
which is approximated, in the terrain mesh, by the facets
confined within a given sphere. The histogram of mesh-LBP
descriptors computed at this area is compared with its coun-
terpart computed at each facet of the gallery models, looking
for the instance that produces the minimum distance. Table 1
shows the rate of correctly retrieved models with the differ-
ent mesh-LBP descriptors (in this case we also reported re-
sults when the Shape Index (SI) descriptor is used as surface
scalar function in Eq. 1). We restricted the comparison to the
Spin Image descriptor in view of the previous experiment re-
sults, in which the Spin Image performed quite above the
others. We notice the neat superiority of the mesh-LBP over
the Spin Image, with the K and D performed best.

mesh-LBP o,
Spin Image K H SI D C
84.1% 100% | 98.4% | 952% | 100% | 96.8%

Table 1: Retrieval accuracy for terrain models.

4. Discussion and conclusions

In this paper, we propose a new 3D retrieval paradigm based
on the 3D geometric texture of a mesh surface. This is re-
garded as a 3D property of a surface different from the shape,
which is evidenced by the presence of repeatable geometric
patterns, so that 3D objects can have similar shapes, but very

t http://shapes.aimatshape.net/ontologies/shapes/

different geometric texture of the surface. To capture such
property, we propose to use the mesh-LBP descriptor. This
framework keeps the simplicity and the elegance character-
izing the original LBP, relieving object surface data from
normalization and registration procedures required when us-
ing depth images, while it extends the spectrum of LBP anal-
ysis to closed surfaces. The potentials of this new 3D re-
trieval paradigm are reported in: 1) An original 3D retrieval
paradigm based on the 3D texture of mesh surfaces; 2) A ter-
rain model retrieval application. Results revealed the great
potential of the mesh-LBP descriptors and the incapacity of
the standard descriptors for such tasks.
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