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Abstract

In this paper we show that indoor location retrieval can be posed as a part-in-whole matching problem of Kinect-
Fusion (KinFu) query scans in large-scale target indoor point clouds. We tackle the problem with a local shape
feature-based 3D Object Retrieval (3DOR) system. We specifically show that the KinFu queries suffer from ar-
tifacts stemming from the non-linear depth distortion and noise characteristics of Kinect-like sensors that are
accentuated by the relative largeness of the queries. We furthermore show that proper calibration of the Kinect
sensor using the CLAMS technique (Calibrating, Localizing, and Mapping, Simultaneously) proposed by Teichman
et al. effectively reduces the artifacts in the generated KinFu scan and leads to a substantial retrieval performance
boost. Throughout the paper we use queries and target point clouds obtained at the world’s largest technical mu-
seum. The target point clouds cover floor spaces of up to 3500m>. We achieve an average localization accuracy of

6¢cm although the KinFu query scans make up only a tiny fraction of the target point clouds.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image

Generation—Line and curve generation

1. Introduction

The advent of the Microsoft Kinect and similar cheap hand-
held 3D sensors has made 3D shape sensing of the local
environment easily possible. The Kinect Fusion algorithm
(KinFu) [NIH*11] can stitch multiple Kinect depth frames
into a more extensive surface allowing the scanning of an ob-
ject beyond single-view occlusions. Meanwhile, means for
large-scale 3D indoor mapping in the form of point clouds
have been developed [LCC*10, HSH*12].

In this paper we show that the 6-DOF pose of local shape
scans obtained with a Kinect-like sensor and KinFu (as
shown in Figure la) can be matched in a large scale in-
door point cloud to accurately retrieve the indoor location
of a user (as shown in Figure 1b). We use a feature-based
3D object retrieval (3DOR) system. Compared to the estab-
lished camera-based localization schemes which are based
on content-based image retrieval it has some fundamental
advantages: First, the accuracy is no longer a function of the
spatial density of the recorded reference views. Second, the
local shape of an object is not affected by the lighting condi-
tions. Third, by using KinFu, a view-independent and largely
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occlusion-free query can be generated. Finally, the sensor’s
6-DOF pose can be retrieved achieving superior accuracy.

(a) Scanning an object (SteamLocomotive) using a Kinect and
KinFu [NIH* 11] (left) to produce its 3D query scan (right).

(b) Matching the query scan to its respective point cloud using the
system explained in Section 2 retrieves the Kinect’s 6-DOF pose
identifying the person’s location.

Figure 1: Pose retrieval of a KinFu scan in a large-scale in-
door point cloud to retrieve the indoor location of a person.
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Figure 2: Retrieval system: The KinFu query is pre-
processed (see Section 4). Keypoints are computed for the
KinFu query scan and the target point cloud. A descriptor is
computed for each keypoint. The descriptors are matched to
determine point correspondences between the query and the
target. A tentative alignment is computed using RANSAC
and refined using ICP producing the 6-DOF homogeneous
alignment transform 1.

The used retrieval system (Section 2) computes descrip-
tors of 3D keypoints of the KinFu scan and the target point
cloud. Good descriptor quality is crucial for successful re-
trieval. The relatively large KinFu scans that we generate, as
opposed to the standard table-top scans, exhibit strong dis-
tortions in the form of bent surfaces and amplified noise that
adversely impact the descriptor quality.

Our contribution is an analysis of these KinFu scanning
artifacts, which arise due to the largeness of the query scans
which articulate 3D sensing distortions typical for Kinect-
like sensors (Section 3). Moreover, we show how to effec-
tively reduce these artifacts by proper 3D sensor calibration
using the CLAMS technique [TMT13] together with pre-
processing of the final KinFu scan (Section 4). Finally, we
demonstrate the effectiveness of the location retrieval system
in Section 5 using real data obtained at the Deutsches Mu-
seum in Munich achieving cm-level accurate localization.

2. Retrieval System

We use a 3DOR system that performs part-in-whole shape
matching (as defined by Tangelder and Veltkamp in [TV04])
to retrieve the 6-DOF pose of the KinFu scan (henceforth
called query) in the indoor point cloud (henceforth called
target). Figure 2 shows that the KinFu scans are first pre-
processed — as explained in detail in Section 4 — to han-
dle scanning distortions and produce reliable surface nor-
mals. The normals for the target are also computed. For each
keypoint a shape descriptor is computed. The descriptors
of the query are matched to the target descriptors to estab-
lish query-target point correspondences. A random sample
consensus (RANSAC) estimator is used to validate the cor-
respondences and estimate the 6-DOF transformation that
aligns the query to the target: At each RANSAC iteration
three points are semi-randomly (see Section 5.5) sampled
to establish a transformation hypothesis which is validated
with the remaining correspondences. The iteration with the
highest amount of inliers delivers the used transformation
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Figure 3: KinFu overview. An incoming depth frame is
aligned to the most recent predicted surface to produce the
transformation matrix Ty. The TSDF of the registered frame
Fy is computed and fused with the cumulative TSDF F;.;_;
to produce Fj.;. A new surface is predicted from the view-
point T}, to be used in the alignment of the next depth frame.

hypothesis. Finally, the Iterative Closest Point (ICP) algo-
rithm [Zha94] runs to retrieve the pose more accurately ex-
pressed as the 6-DOF homogeneous transformation T.

The presented retrieval system is inspired by the one pre-
sented by Aldoma at al. [AMT*12]. In that paper, the au-
thors compare different local shape descriptors in terms of
3DOR performance. The Signature Histogram of OrienTa-
tions (SHOT) [TSDS10b] as well as the Unique Shape Con-
text (USC) [TSDS10a] are identified as being the best in
terms of retrieval performance among a group that includes
six state-of-the-art local shape descriptors implemented in
the Point Cloud Library (PCL) [RC11]. Given SHOTs rel-
ative compactness compared to USC, we decide to use it
as a main descriptor. As a keypoint detector we use the In-
trinsic Shape Signature of Zhong [Zho09] which has been
shown to outperform many standard detectors in terms of
relative repeatability under various distortions and transfor-
mations [FA14].

The used shape feature-based 3DOR system is substan-
tially faster than the 4-point congruent sets (4PCS) algo-
rithm of Aiger et al. [AMCOO0S8]. Mellado et al. presented
an accelerated version of 4PCS, the Super4PCS [MAM14].
4PCS-based methods can be superior in cases with dominant
semi-planar surfaces. In our case, however, we have many
articulated shape features which are better exploited using a
shape feature-based retrieval approach which was confirmed
by our experiments.

3. KinFu Scan Issues

The KinFu scans suffer from distortions that can be at-
tributed to two main sources: the sensor data and the KinFu
reconstruction algorithm. The distortions are explained in
detail in Section 3.2 preceded by a brief explanation of
KinFu in Section 3.1 to aid in understanding the distortions.

3.1. KinFu algorithm

As shown in Figure 3, KinFu has two main processing func-
tions: registration and mapping. These processing functions
are interdependent whereby the outcome of registration is
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Figure 4: SDF computation in KinFu. KinFu uses the “pro-
jective distance” which is an approximation of the true
smallest distance to the sensed surface. The projective dis-
tance 5" for point p in the TSDF is always an overestimation
of the true distance s. The incurred error increases with in-
creasing 0.

used during mapping and the outcome of mapping is used
for the registration of a newly incoming depth frame.

During registration, a new incoming depth frame is regis-
tered to the local scene to retrieve the 6-DOF pose of the 3D
sensor. ICP with the point-to-plane metric [Zha94] is used
for this purpose. In KinFu an incoming depth frame is reg-
istered against the most recently updated 3D shape model
of the scene obtained through mapping resulting in highly
accurate registration. This, however, requires updating the
scene’s 3D scene model at frame rate.

To compute the 3D scene model at frame rate a volumet-
ric scene representation based on the Truncated Signed Dis-
tance Function (TSDF) [CL96] is used. The TSDF captures
for each point in a cubic volume encompassing the scene the
minimum distance to the 3D surface. Two TSDFs are main-
tained: One that accumulates the knowledge about the sur-
face over multiple frames and another computed only using
the sensed surface in the current registered depth frame.

KinFu uses a discretized lattice of 3D points as an ap-
proximation of a continuous TSDF. So a cubic volume of
side length [ is subdivided into voxels of side length (I/m).
[ is adapted to the largeness of the scene (/ = 300 cm in our
case). m is usually limited by the graphics card memory (we
use m = 512 as in the original KinFu paper). The ratio //m
determines the granularity with which the surface is mapped.

The TSDF value at any point p in the lattice should be
the smallest distance from the point to the sensed surface.
KinFu, however, approximates this distance, as shown in
Figure 4, by computing the projective distance. It is obtained
along the ray connecting p to the sensor origin. It is argued
that this approximation still leads to good mapping results
while allowing computing the TSDF at high frame rates.

For any depth frame k, the TSDF volume F}, is computed.
and subsequently fused with the cumulative volume Fj.;_;
using a per-voxel simple running average update rule.

Once the current mapping iteration is done, the surface is
partially predicted from the perspective of the currently reg-
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(a) Without CLAMS calibration.  (b) With CLAMS calibration.

Figure 5: 3D sensor raw data (Asus Xtion Pro Live) of a
wall scanned from two distances (1.5m & 2.5m) shown as
a point cloud from above. Despite IR camera calibration a
bending of the wall is observed. The curvature of the bending
increases with increasing distance from the sensor. Calibrat-
ing with CLAMS [TMT13] effectively reduces the bending.

istered frame. This is used to provide a reference surface to
be used in the registration of the next incoming depth frame.
Hence, abrupt trajectory changes and movements can lead
to ICP failure. At the end of the scanning, the most recently
obtained cumulative TSDF is used to produce a 3D mesh.
The zero-crossings inside the TSDF represent the surface.

3.2. KinFu query scan distortions

Surface bending. One fundamental issue we have faced is
related to bent planar surfaces as shown in Figure 6. This
issue can be mainly attributed to the raw Kinect data. We
have observed that the raw 3D data suffers from non-linear
distortions as shown in Figure 5a. Critically, planar surfaces
appear curved and the curvature increases with increasing
distance from the scene. Teichman et al. [TMT13] show that
this is especially true for PrimeSense-based sensors (Mi-
crosoft Kinect, Asus Xtion, Primesense Carmine). The latter
two sensors are particularly interesting because they can be
carried around and thus lend themselves for our application.
In our case we use the ASUS Xtion Pro Live.

Considering that KinFu essentially runs mapping and reg-
istration on each frame in succession, the bending of the raw
3D data is particularly harmful. Initial surfaces exhibiting
the bending will cause new depth frames to be registered
slightly wrong. This in turn results in a wrong mapping up-
date in the cumulative TSDF which in turn affects future
registrations. As a result the error propagates and with in-
creasingly larger scans the bending effect is accentuated.

To prove this we perform the following experiment: We
use KinFu to scan a scene at our lab which includes a large
wall as well as some articulated objects to ensure accurate
registration. We perform a number of different scans. In the
first one, identified by label (1) in Figure 6 we stand far from
the wall and pan the sensor left and right. In the second, we
perform a similar scan, however at a close proximity from
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Figure 6: Lab scene scanned using KinFu with Xtion Pro
Live using three different approaches: (1) Standing still;
(2) Same as 1 but closer to the wall; (3) Scanning side-
ways while remaining close to the wall. The generated point
clouds prove that surface bending is less in (2) than in (1)
due to the decreased curvature of the raw 3D data at lower
distances as shown in Figure 5. Maintaining a close distance
to the surface as in (3) further reduces the bending.

the wall. The generated point clouds, shown in the same
figure, clearly exhibit bending which increases towards the
edges. However and as expected, the bending of scan (2) is
notably less than that in (1). In a third experiment we scan
parallel to the wall while maintaining a close distance to it.
As can be seen in Figure 6, experiment (3) exhibits a sub-
stantially reduced bending compared to (1) and (2) albeit
at the cost of making the scene scanning complicated. The
bending problem was less severe when we used a Microsoft
Kinect which, however, is less portable than the Xtion.

It remains to be said that the errors in depth impact also
the calculated x and y coordinates of the scan points as these
are computed using the pin-hole camera model. Indeed, Fig-
ure 6 shows that the less the wall is bent, the larger is also
the extent of the scene and the scan dimensions are closer to
reality which is important for the descriptors.

Sensor noise. Besides surface bending another issue we
have to deal with is surface noise which affects surface nor-
mal estimation. The used SHOT descriptor as well as all
other mentioned descriptors in [AMT*12] rely on surface
normals. USC, 3DSC and SI require proper normals to setup
the local descriptor reference frame of a keypoint. FPFH,
RSD and SHOT compute a keypoint’s descriptor using a
function of the normals of all points within a defined vicinity.
Hence, errors in the normal estimation typically distort the
descriptors which adversely impacts the subsequent feature
matching.

Point p;’s surface normal can be typically computed by
first computing the covariance matrix of the points in p;’s
neighborhood as follows:

Ci= Y (i—p)pi—p) )
Jex;

where N is the set of points within radius 7, of p;. The
eigenvector corresponding to the smallest eigenvalue of C;
is deemed as the normal vector.

After Pre-Processing

Figure 7: KinFu query pre-processing shown for Stea-
mEngine. The color represents the surface curvature. The
greener, the higher the curvature value. Prior to retrieval
MLS and SOR filters (see Section 4) are used to reduce sur-
face noise and eliminate spurious points. Especially flat sur-
faces as well as edges benefit from the filtering.

Surface noise and surface distortions can have signifi-
cant impact on the covariance matrix C and the computed
eigenvectors [MNO3]. This is is especially critical when ry
is small. Unfortunately, this is the case with our museum
KinFu scans which have articulated small shapes which re-
quire 7, to be small (14cm). Figure 7 shows the surface cur-
vature of an example query scan. The unprocessed scan sur-
face is noisy and results in noisy normals.

A fundamental noise source is again the 3D sensor.
Assuming a Gaussian error model, Koshelham and El-
brink [KE12] showed that the standard deviation in the mea-
sured depth of a point by Kinect can be given as:

Oy = 65d2(X (2)

where d is the depth of the point, 65 is the standard de-
viation of the measured disparity, and o is a constant that
depends on the Kinect camera parameters. So in essence,
the Kinect depth error increases quadratically with increas-
ing depth. KinFu implicitly runs a maximum likelihood es-
timation over multiple measurements from multiple frames
by averaging new TSDFs into the cumulative TSDF, as ex-
plained in Section 3.1. This results in substantially smoother
surfaces when comparing to the raw point clouds delivered
in individual frames. Nevertheless, the noise will inevitably
increase with increasing distance from the scene as the vari-
ance in the estimate itself increases.

Due to the use of the projective distance when comput-
ing the TSDF, see Section 3.1, the noise can furthermore be
amplified for points with unfavorable scanning conditions
(large 0 in Figure 4). This is because the projective distance
will always overestimate the true smallest distance to the
sensed surface. For the case shown in Figure 4 the projec-
tive distance s’ for the point p can be computed as a function
of the true signed distance s as:

5" = s/cos(8) 3

The error in Kinect depth measurement leads to an error in
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the signed distance function that can, for the example shown
in Figure 4, also be described by a Gaussian model. How-
ever, the standard deviation is amplified and can be com-
puted as:

Ospr = G4/cos(0) (€]

Hence, the larger the angle between the surface normal and
the sensor-to-TSDF-point ray the larger is the variance in the
projective signed distance. Since the Kinect and the Asus
both have a horizontal field of view (FOV) of around 60°,
the largest value for O for the case shown in Figure 4 is
60/2 = 30°. In this case the standard deviation according to
Equation 4 increases by 15%. For surfaces that are not per-
pendicular to the sensor’s z-axis (Z; in Figure 4) even higher
amplifications can occur.

Surface points lying on the fringe of a large KinFu scan
are worse off in terms of surface noise compared to other
points. They are affected more by the variance amplification
explained above. Moreover, they are sensed by relatively few
frames and thus will not benefit as much from the TSDF
averaging. This explains the visible increase in surface noise
seen in the right part of the scans in Figure 6.

It is important to note that these two fundamental KinFu
scan distortions, the surface bending and the surface noise,
arise particularly due to the largeness of the scans as op-
posed to the relatively small scenes presented in the KinFu
paper [NIH*11]. Hence, they deserve special attention and
proper processing to ensure good location retrieval perfor-
mance.

4. Sensor calibration and KinFu scan pre-processing

Sensor calibration. One of the main issues with our rela-
tively large KinFu query scans is surface bending. Exper-
iment (3) shown in Figure 6 showed that it is principally
possible to mitigate the bending issue in the raw data by
scanning a scene from close proximity which requires large
translations to cover the entire scene. This may not be prac-
tical as the close proximity greatly increases the probability
of ICP failure. Also, longer scanning times are necessary.

The obvious practical solution is to calibrate the sensor to
deliver better raw data that is not bent. A standard camera
calibration of the Infrared (IR) camera of Kinect-like sen-
sors can accurately compute the focal length, principal point
and radial distortion coefficients. However, these parameters
cannot be uploaded onto the device. Since disparity com-
putation happens on the device, these estimated coefficients
will not help producing more accurate disparity maps. In-
deed, our IR camera calibration did not deliver the desired
improvements and the produced KinFu scans remained bent.

Teichman et al. [TMT13] investigated 3D sensor calibra-
tion of Kinect-like sensors and showed that such devices are
essentially myopic in terms of their distortion characteris-
tics. Like us, they observed that depth images (and their de-
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Figure 8: Learned depth multiplier images using CLAMS for
three depth levels. Red regions imply multiplicative factors
that lead to depth value decrease as opposed to blue regions.
The color intensity is directly related to the amount of ap-
plied correction. Clearly, at higher depth larger corrections
are needed to compensate the depth errors. Also, more com-
pensation is necessary when deviating away from the princi-
pal point to offset the bending.

rived point clouds) exhibit a bending that increases with dis-
tance. As a solution they propose using mutliplicative depth
compensation factors that are learned differently for differ-
ent pixel regions at various discrete depth levels [TMT13].

Teichman et al.’s learning technique essentially runs si-
multaneous localization and mapping (SLAM) on the RGBD
data of a Kinect-like sensor. The sensor trajectory is esti-
mated. This is used to build a 3D model of the scene, how-
ever, only using reliable depth data (depth < 2m). Finally,
all depth data from all pixels of each frame are used to com-
pute the depth error at different pixel regions and different
depth levels to compute the multiplicative factors that would
compensate these errors.

We used the CLAMS technique to calibrate our Xtion
RGBD sensor. The learned depth multiplier images are
shown in Figure 8. Applying the learned model on the raw
3D sensor data leads to visible improvements as shown in
Figure 5b and the bending is largely removed. Using the
undistorted depth images KinFu can produce scans without
bending artifacts as shown in Figure 9a. If the scan is rela-
tively small, however, and scanned from a close distance no
visible improvement can be observed as seen in Figure 9b.

KinFu surface pre-processing. Having obtained unbent
KinFu scans we address the remaining issues highlighted in
Section 3. First, we reduce surface noise using a moving
least squares (MLS) filter. Spurious points and remaining
noise that does not fit with the local surface point statistics
are treated using a sparse outlier removal (SOR) filter.

The MLS filter is a projection-based procedure that
approximates surfaces locally by polynomial func-
tions [ABCO*03]. For a surface point s a local refer-
ence domain must first be defined. For that the plane
H = {X| (n,x)—D:O,X€R3},n € R |n|| = 1 min-
imizing the sum of weighted squared distances of points
pi, Vi € N is computed. A is the set of points in the
neighborhood of point s. Point s’s projection onto H forms
the origin of the reference domain. The computed reference
domain and its origin q are used to compute a bivariate
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(b) Generator3 KinFu Query Scan.

Figure 9: Two used query scans generated once with prior
CLAMS sensor calibration and once without. Especially
large scans benefit from the calibration and do not exhibit
the bending artifact.

polynomial approximation g(x,y) of the surface. The value
£(0,0) is used to compute the filtered point value.

To deal with the shadow surface problem as well as spu-
rious points and remaining noise an SOR filter [RMB*08] is
used. The SOR filter is a method based on point statistics.
For each point, the average distance to its k-nearest neigh-
bors is computed. The individual averages are used to com-
pute the global mean u and the standard deviation in the av-
erage distance ©. A threshold is defined:

t=u+0-m %)

where m is a factor used to relax the threshold. Points that
have an average k-nearest neighbors distance lower than ¢
will be considered as outliers and removed.

The combined effect of MLS and SOR filtering are
smoother surfaces as shown in Figure 7, allowing a better
normal estimation. Once filtering is finished, we estimate
surface normals and disambiguate them to a consistent ori-
entation that agrees with that of the respective part in the
target point cloud.

5. Evaluation

The used query scans and target clouds are introduced in
Section 5.1 followed by an explanation of the evaluation
metrics in Section 5.2. The used retrieval parameters are
mentioned in Section 5.3 followed by the obtained results
in Section 5.4 and concluded by an analysis of the results in
Section 5.5.

Figure 10: One of the used target clouds including the air-
planes exhibition. A photo and the corresponding part in the
point cloud are shown from the indicated view point.

5.1. Kinfu queries and reference point clouds

We recorded a set of 9 queries in the Deutsches Museum
(DM), the world’s biggest technical museum, with an Xtion
Pro Live. The Xtion is chosen over the Kinect because it can
be powered via USB. The same set of depth images is fed to
KinFu once undistorted with the learned CLAMS model and
once without distortion compensation. Once the query scans
have been generated they are pre-processed as explained in
Section 4. The ground truth transform aligning queries to
their respective target clouds has been manually established
using Meshlab [CCRO8].

The target clouds have been recorded using the indoor
mapping trolley from Huitl et al. [HSH"12]. The target
clouds cover up to 3500m> of floor space and encompassing
multiple exhibition areas. Figure 10 shows the target cloud
for the queries GF200-Plane, Generator1 and Generator3.

5.2. Evaluation metrics

While retrieving any query we measure the true correspon-
dence rate (TCR). This is the fraction of correspondences
that adhere to the ground transformation T. Also, the fi-
nally computed transformation using RANSAC and ICP is
checked for correctness. This process is repeated 100 times
to give reliable results as RANSAC is random. The percent-
age of successful retrievals from within the 100 runs defines
the precision of retrieval P. For each successful retrieval we
measure the accuracy of retrieval. For that we first compute
the error transformation

_ Re te I et U s
Te*(OOO 1)7T T. (6)
The accuracy in the angle Ay is obtained by computing
the axis-angle representation of the rotation matrix R.. The

translation error A, is obtained using the query’s centroid ¢
as follows:

Ar = ||Rec+te||2 (7)

The accuracy values are averaged over all successful runs of
the respective query.
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Al-Nuaimi et al. / Indoor Location Retrieval with Kinect Fusion 37

5.3. System parameters

The keypoint and descriptor radii have been tuned to 10 cm
and 1m, respectively. The order of the polynomial for the
MLS filter is 4. The MLS search radius is 5 times the mesh
resolution. For the SOR filter, we use k = 60 neighbors for
the statistics and a threshold multiplier m = 1.0.

5.4. Evaluation results

Table 1: Retrieval results using the evaluation metrics intro-
duced in Section 5.2. We show the true correspondence rate
(TCR[%]) and the retrieval precision (P[%]) for two cases:
No CLAMS calibration (T'CR;, and Pp,); With CLAMS
calibration (TCR jgms and Ppjgps). The retrieval accuracy
(Ay[°] and A;[cm)]) is shown for the case with CLAMS.

Query TCRuo TCR1ams| Pro Petams, A Ag
FrancisTurbine 25.0 31.9 100 100 + 3 0.8
GirardTurbine 14.3 208 ' 8 100 ' 6 1.9

Astro-Spas 270 494 100 100 ; 0 0.0
GF200-Plane 13.6 129 1 78 96 1 9 2.1
SteamLocomotive 7.5 14.4 : 15 92 : 5 5.7
SteamEngine 20.5 138 , 0 100 , 5 24
Balloon 16.2 237 1+ 0 70 v 4 05
Generatorl 202 234 100 100 | 4 19
Generator3 7.8 74 74 65 , 17 9.3
Weighted Average| 16.9 220 '"61 91 ' 6 25

Comparing TCR_j4ms and TCRy, in Table 1 it can be seen
that the CLAMS calibration leads to an increase in TCR in
6/9 queries. For the remaining three queries the decrease in
true correspondence rate is notable only in one query (Stea-
mEngine) while it is less than 1% in the other two. The in-
crease in TCR can reach up to 22.4% and averages 5.1%.
Nevertheless, it can be seen that even after pre-processing,
the TCR is relatively low averaging 22%.

The increase in TCR is seen to have a large impact on the
retrieval precision which rises from 61% to reach 91%.

Columns TCRj4s and Pejumns in Table 1 show that a true
correspondence rate as low as 12.9% is sometimes enough
to lead to a 96% precision (GF200-Plane).

Columns Ay and A; of Table 1 show that for all success-
ful retrievals, the average error in the retrieved orientation is
2.5%and the average location accuracy is 6¢m.

5.5. Analysis

The results in Section 5.4 show that proper calibration for
our relatively large KinFu scans, as opposed to simple IR
camera calibration, leads to a significant improvement in re-
trieval results. Especially large query scans such as Francis-
Turbine, GirardTurbine, Astro-Spas and SteamLocomotive
benefit greatly from the calibration either in terms of true
correspondence rate (TCR) or precision or both.
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Figure 11: The true correspondence rate (TCR) of Girard-
Turbine reduces substantially with increasing target cloud
floor size as opposed to FrancisTurbine proving that the
query itself is less distinctive.

The precision values for the queries SteamEngine and
Balloon rise, as can be seen in Table 1, from 0% to 100%
after CLAMS calibration. While this is easily justifiable in
the case of Balloon through the increase in TCR, it seems
counter intuitive in the case of SteamEngine whose TCR de-
creases after CLAMS calibration. A deeper inspection shows
that while the TCR decreases, the actual absolute number of
true correspondences increases by 33%. In fact, the abso-
lute number of true correspondences, not shown in Table 1,
increases for all nine queries after CLAMS calibration. This
increase is effectively exploited by our RANSAC implemen-
tation which includes a built-in false correspondence rejector
that will be explained later.

The TCR of the GirardTurbine is 10% less than that of
FrancisTurbine which is located beside it in the museum.
We argue that the problem is related to the lack of intrinsic
distinctiveness of the shape itself. To prove this we compare
the reduction in TCR of both scans as we match each one
of them to increasingly larger cutouts of their common tar-
get cloud. We argue that a distinctive query exhibits a stable
TCR irrespective of the target size. The curves in Figure 11
indeed show a large decrease in the TCR of GirardTurbine
as the target cloud increases as opposed to FrancisTurbine
whose TCR decreases at a far less rate. The GirardTurbine
query scans from multiple matching runs without CLAMS
calibration are visualized after alignment in red in Figure 12.
It can be seen that occasionally the query gets matched to the
nearby turbines. This problem is not observed in the case of
CLAMS calibration. All 100 retrieval attempts succeed in
that case.

The results in Table 1 show that the average true corre-
spondence rate is generally low even after CLAMS calibra-
tion. This is mainly due to the fact that the queries make
up a tiny fraction of the large-scale target clouds. Despite
the low true correspondence rates, the final retrieval is very
precise on average. This is a testimony to the robustness of
RANSAC and the used parameters. One fundamental feature
of the RANSAC we implemented is a built-in false corre-
spondence rejector. The rejector validates any sampled cor-
respondence with already pre-sampled correspondences in
the same iteration. The validation is achieved by checking
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Wrong Location Correct Location
Figure 12: The results of multiple retrievals of the Girard-
Turbine query (red) are shown overlapped on the same tar-
get cloud (blue). Some retrieval attempts match the query to
neighboring turbines displaying the issue of distinctiveness.

whether the spatial distances to the other samples on the
query side are preserved on the target side, exploiting a fun-
damental property of the Special Euclidean Group SE3. This
helps to exclude wrong correspondences effectively and fo-
cus the relatively limited number of iterations on correspon-
dences with a high likelihood of being correct. Moreover,
for a completely invalid triplet to be used, the three sampled
correspondences have to all adhere to the same wrong trans-
formation. The probability of such a case is very low.

6. Conclusions

‘We pose indoor localization as a part-in-whole shape match-
ing problem of KinFu scans in large-scale point clouds using
a 3DOR system with local shape features. We show that cal-
ibration of Kinect-like sensors using the CLAMS technique
is essential to producing geometrically correct KinFu scans
and explain the necessity for surface filtering of the rela-
tively large KinFu scans used in our application. Finally, we
evaluate the location retrieval performance using real data
captured in a large museum environment with target clouds
of up to 3500m? floor space achieving an average accuracy
of 6cm. Currently, retrieval takes around 15s time. Possible
future work could focus on accelerating the retrieval
process. The datasets are publicly accessible at: http:
//www.lmt.ei.tum.de/team/mitarbeiter/
anas—al-nuaimi.html#forschung.
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