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Abstract

In this work, we propose and experiment an original solution to 3D face recognition which supports partial match-
ing of facial scans as occurs in the case of missing parts and occlusions. In the proposed approach, distinguishing
traits of the face are captured by first extracting SIFT keypoints on the face scan and then measuring how the
face changes along facial curves defined between pairs of keypoints. Facial curves are also associated with a
measure of salience so as to distinguish curves that model characterizing traits of some subjects from curves that
are frequently observed in the face of many different subjects. The recognition accuracy of the approach has been
experimented on the Face Recognition Grand Challenge dataset.

Categories and Subject Descriptors (according to ACM CCS): 1.3.8 [Computer Graphics]: Applications— 1.3.5
[Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object repre-

sentations

1. Introduction

Automatic recognition of human faces is a challenging com-
puter vision task especially in presence of illumination vari-
ations or in the case parts of the face are missing. Recently,
the availability of 3D facial data acquired with scanner de-
vices has increased the interest in 3D face recognition solu-
tions that are expected to feature less sensitivity to pose and
illumination changes. Based on this, many 3D face recog-
nition approaches have been proposed and experimented in
the last years [BCF06], [BDP10a]. In summary, these ap-
proaches can be grouped in two broad categories: global (or
holistic), that perform face matching based on representa-
tions extracted from the whole face; and local (or region-
based), that partition the face surface into regions, and ex-
tract and match appropriate descriptors for each of them.
Many of these approaches have been designed to support
face recognition also in presence of expression variations
reporting very high accuracy on benchmark databases like
the Face Recognition Grand Challenge (FRGC version 2.0
dataset) [PFS*05]. However, a problem that can substan-
tially affect the accuracy of recognition and that has not been
extensively addressed is the effect induced by missing parts
and partial occlusions of the face. More generally the prob-
lem of supporting the recognition of a subject when only a
part of her/his facial scan is available. Missing parts can be
determined by self-occlusions of the face due to pose vari-
ations, whereas face occlusions are likely to occur in real
applications due to the hair, glasses, scarves or caps.
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The effects of face occlusions have been first studied
in 2D face recognition applications. In 3D, just few solu-
tions have explicitly considered the problems posed by miss-
ing parts and occlusions in the design and experimentation
of recognition methods. In general, global approaches can-
not effectively manage these conditions, instead local ap-
proaches have the potential to address partial face matching.
In [PPT*09], an automatic face landmarks detector is used
to identify the pose of the facial scan so as to mark regions
of missing data and to roughly register the facial scan with
an Annotated Face Model (AFM). The AFM is fitted using
a deformable model framework that exploits facial symme-
try where data are missing. Wavelet coefficients extracted
from a geometry image derived from the fitted AFM are
used for the match. Experiments have been performed using
the FRGC v2.0 gallery scans and side scans with 45° and
60° rotation angles as probes. In [DBDS10], the facial sur-
face is represented as a collection of radial curves originating
from the nose tip and face comparison is obtained by elastic
matching of the curves. A quality control permits the exclu-
sion of corrupted radial curves from the match, thus enabling
the recognition also in the case of missing data. Results of
partial matching are given for the 61 left and right side scans
of the Gavab database.

Many local approaches are limited by the need to iden-
tify facial landmarks used to define the interesting parts
in matching faces. Methods that use keypoints of the face
promise to solve some of these limitations. In particular, a
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few recent works have shown that local descriptors com-
puted around salient keypoints can be usefully applied to
describe 3D objects and faces. Following this idea, in this
work we develop on the approach in [BDP10b] to support
3D face recognition in presence of missing parts. The ap-
proach is motivated by the observation that SIFT keypoints
can detect salient points of the face with high repeatability
and these can be complemented with data that model the
morphological changes of the face across pair of keypoints.
For this purpose, we introduce the facial curve to model the
depth of the face scan along the surface line connecting two
SIFT keypoints. Characterizing traits of the face are captured
by considering the SIFT descriptors of detected keypoints as
well as the set of facial curves identified by each pair of key-
points. Facial curves are also associated with a measure of
salience so as to distinguish those that model characteriz-
ing traits of some subjects from those that are frequently ob-
served in the face of many different subjects. In the compar-
ison of two faces, SIFT descriptors are matched to measure
the similarity between pairs of keypoints identified on the
two range images. Then, the distance between the two faces
is derived by composing the individual distances between fa-
cial curves (weighted by their salience) that originate from
pairs of matching keypoints. The proposed solution is exper-
imented using the FRGC dataset.

The paper is organized as follows. In Sect. 2, the main
characteristics of the SIFT are summarized, and its adapta-
tion to our case is described. The extraction of facial curves
and the definition of a distance to measure the dissimilar-
ity between curves are discussed in Sect. 3, together with
a method to evaluate the salience of facial curves. Experi-
ments carried out with the proposed approach, with results
obtained on the FRGC database are reported in Sect. 4.

2. SIFT keypoints of range facial images

The proposed 3D face description approach relies on the de-
tection of a number of keypoints on the 3D face surface and
the description of the 3D face surface in correspondence to
these keypoints as well as along linear paths connecting pairs
of keypoints. We expect the position of keypoints to be in-
fluenced by the specific morphological traits of each sub-
ject. In particular, assuming that the process of keypoint de-
tection incorporates a measure of the scale associated with
each keypoint, we relax the assumption that detected key-
points correspond to meaningful landmarks and exploit the
more general assumption of within subject repeatability: the
position of the most stable keypoints—detected at the coars-
est scales—do not change substantially within facial scans
of the same subject.

Following this approach, we used the SIFT algorithm for
the purpose of keypoints identification and description. SIFT
has been defined for 2D gray-scale images and cannot be di-
rectly applied to 3D face scans. However, the 3D information
of scanned faces can be captured through range images that

(a) (b)

Figure 1: Keypoints detected on the range images of two
subjects (the orientation of the lines shown at the keypoints
also represent the orientation of the main component of the
SIFT descriptor). The range images in (a) and (b) represent
the same subject, whereas the image in (c) represents a dif-
ferent subject.

use the gray-scale of image pixels to represent the depth of
a face scan. According to this, the SIFT keypoint detector is
applied to the range images in order to extract image key-
points. Although many possible keypoints at different loca-
tions in an image could be detected, only the most distinctive
and invariant ones should be retained for matching. These
often lay on edges and corners of the image, and can be of
many different sizes and orientations as well.

For the detected keypoints, the SIFT descriptors are com-
puted. Briefly, a SIFT descriptor for a small image patch, for
example of size 4 X 4, is computed from the gradient vector
histograms of the pixels in the patch. There are 8 possible
gradient directions, and therefore the total size of the SIFT
descriptor is 4 x 4 x 8§ = 128 elements. This descriptor is
normalized to enhance invariance to changes in illumination
(not relevant in the case of range images), and transformed in
other ways to ensure invariance to scale and rotation as well.
These properties make the SIFT descriptor capable to pro-
vide compact and powerful local representation of the range
image and, as a consequence, of the face surface. In partic-
ular, in our solution SIFT keypoints are extracted, and their
scale and orientation angles are retained. The orientation his-
tograms of 4 x 4 sample regions of each keypoint are used
to calculate the SIFT descriptor.

In Fig. 1, the detected SIFT keypoints are shown for
the range images of two different subjects. In particular,
Figs. 1(a)-(b) show the keypoints for two range images of
the same subject, whereas the range image in (c) repre-
sents a different subject. In general, the position of key-
points detected on a face scan depends on the morphological
traits of the face. This is confirmed by the fact that the spa-
tial arrangement of keypoints detected on different scans of
the same subject—with neutral expression—is very similar.
However, the information that is captured by combining lo-
cal SIFT descriptors of the keypoints detected in a face scan
is not discriminant enough to support accurate recognition
of the identity of the subject. This leads to the definition of
facial curves that is discussed in detail in the next Section.
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Figure 2: Facial curves originated by some pairs of keypoints. In each plot, the horizontal axis reports the number of pixels
between the two keypoints, whereas the vertical axis is the normalized gray-level of the range image along the curve.

3. Facial curves between keypoints

Each pair of SIFT keypoints detected on a range image is
used to identify a facial curve, that is the 1D function of the
depth values of the pixels that lay on the segment connect-
ing the two keypoints. More formally, let /(x) with x € ??
be the range image representing a face scan, x; and x; two
keypoints, then the facial curve identified by the ordered pair
(x1,Xp) is defined as:

Chox (1) =1((1 —1)x +1%3), 1 €0,1]. M

As an example, Fig. 2 shows three facial curves derived
from the range image of a sample subject. It can be observed
as the curves capture the shape of the face across different
paths and in particular the nose protrusion.

In the proposed face description model, distinguishing fa-
cial traits are captured by retaining SIFT descriptors of key-
points detected on the range image as well as the curves
identified by pairs of these keypoints. These data are orga-
nized in a graph G(N,E), where nodes correspond to key-
points and edges to facial curves. Given the graphs of two
faces, their dissimilarity is evaluated by first assigning to
each node of the first graph its closest node in the second
graph, proximity being measured as the Euclidean distance
dy between the 128-dimensional SIFT descriptors associ-
ated with the keypoints. Then, for each pair of matching
nodes in the two graphs all curves originating from the key-
points are compared so as to identify the two curves with
minimum distance. Considering the generic curve C(t),
t € [0,1] extracted from the pair of keypoints (x;,x;) of the
face scan I}, and the curve Cy(¢), t € [0,#,] extracted from
the pair of keypoints (x3,X4) of the face scan I, the distance
between the two curves is measured as:

min{t 1>}
D(C1 (1), Ca (1)) = /0 C1(0) -G dr. @)

Eventually, the distance between the two face scans is
measured by averaging the curve minimum distance values
over all pairs of matching nodes. It should be noticed that
the matching scheme does not exploit any specific assump-
tion about the parts of the face that are modeled by nodes
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and edges of the graph. As a consequence, the matching
scheme can be used without any change to support match-
ing between a partial scan and a full scan of the face, thus
enabling the recognition of faces with missing parts and/or
occlusions.

3.1. Salience of facial curves

In the following, a model is defined to associate with a
generic curve a value of salience. The higher the salience
of the curve y, the lower the uncertainty about the identity of
the subject that is represented in the 3D scan M if y is ob-
served in M. Formally, let’s assume that the 3D face scans
of n different subjects are available and let X be a discrete
random variable taking values in the set {xy,...,xs}, rep-
resenting the identity of the subject. Furthermore, let Y be
a continuous random variable representing a sample curve.
Given an observation Y =y, the uncertainty of X once y is
observed can be measured through the Shannon entropy of
the posterior distribution, that is defined as:

H(X|Y =y) ==Y P(X =x;|[Y =y)logP(X =x;|Y =y).
Xi

3

Values of H(X|Y =y) are high for those curves y that are
observed in the faces of many subjects and low for those
curves y that are observed in the faces of just a few subjects.

Operatively, since in a real application context only the
gallery scan is available for each subject, estimation of
P(X = x;|Y =) is prevented. Therefore, in the proposed
solution the salience of the curve y is estimated through the
formula S(y) = eV, being N the occurrences of y in the
scans of the gallery. The salience of curves is included in
Eq. (2) by weighting the values of the distance with S so as
to penalize the distance to non salient curves. In particular,
the distance between a curve Cy (1), t € [0,7] extracted from
a probe face scan 11, and a curve C(1), t € [0,1;] extracted
from a gallery face scan I, is measured as:

f(;nm{tl n} |Cl ([) — C2 (t) | di

D(C1(1),Ca(r)) = S(Ca (1))

“
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4. Experimental Results and Discussion

In the following, we present the 3D face recognition re-
sults in presence of missing parts obtained on the FRGC
v1.0 dataset [PFS*05], which includes 943 3D face scans
of 275 individuals showing a neutral facial expression. First,
face descriptions are extracted from depth images of the 3D
face scans [BDP10b]. According to the proposed approach,
SIFT keypoints are automatically extracted from the range
images of all the faces. This results in a variable number of
keypoints per image, dependent on the specific characteris-
tics of the face surface. On every depth image, only the top
15 keypoints—selected after ordering all keypoints from the
coarsest to the finest scale (G) value—are retained, and fa-
cial curves are computed between every pair of these key-
points. On these keypoints and the corresponding incident
facial curves the computation of salience is applied as re-
ported in Sect. 3.1.

In the experiments, the first scan of each subject is se-
lected to be included in the gallery. This resulted in a gallery
with 275 reference scans, whereas all the scans were used as
probes and compared against the gallery. To evaluate the ac-
curacy of the proposed solution with respect to missing parts
of the face, each probe face scan is divided into the left and
right parts with respect to the ideal vertical plane of symme-
try passing from the nose tip. The curves that originate from
only one part of the face are compared to gallery scans, in
two separated matching experiments using, respectively, the
left and the right part of each probe face scan. The effec-
tiveness of recognition has been measured through the rank-
k recognition rate, and presented with Cumulative Match-
ing Characteristics (CMC) curves. Fig. 3, reports the CMC
curves for recognition using just a half of the face as probe.
The recognition accuracy obtained using the full probe face
scans without facial curve salience is reported as baseline
for comparison (dotted green curve). It can be observed that
if the salience of the curves is disregarded, the accuracy of
recognition is about 70%. In contrast, if the salience of facial
curves is used in the comparison of two scans, recognition
accuracy is improved by more than 10%. In particular, the
rank-1 recognition accuracy is up to 83% if the full face is
used as probe and the salience of facial curves is considered.
It is 80% and 79% if just the left and right part of the face is
used as probe.

Results on 3D partial face matching are also reported
in [FBFO08], [PPT*09] and [DBDS10], but using differ-
ent datasets so that the results are not directly comparable
among them and with our work. In [FBFO08], a rank-1 recog-
nition rate of 88% and 89.2% on the FRGC v2.0 dataset is
reported, respectively, matching regions in the left and right
part of the face with the entire scans in the gallery (i.e., all
facial regions are used to represent gallery scans). However,
their experimental setting implicitly assumes that the match-
ing regions are not affected by missing parts (i.e., regions can
miss, but not their parts). In [PPT*09], rank-1 of 69% and
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Figure 3: CMC curves on the FRGC v1.0 dataset. Four
curves are shown: the first three correspond to the use of
the Full/Left/Right probes with facial curve salience; the last
curve is used as baseline and corresponds to the use of the
Full probes without facial curve salience.

44% are reported for left and right probes of the face rotated
of 45° and 60° on the FRGC v2.0 gallery. Instead, recog-
nition rates of 70.5% and 86.9% are reported in [DBDS10],
respectively, for the right and left side probes of the Gavab
database on a gallery of 61 subjects.
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