
SHREC’11 Track: 3D Face Models Retrieval

R. C. Veltkamp1, S. van Jole1, H. Drira2,3, B. Ben Amor3,4, M. Daoudi3,4, H. Li5, L. Chen5, P. Claes6,
D. Smeets6, J. Hermans6, D. Vandermeulen6, P. Suetens6

1Utrecht University, Department Computer Science, The Netherlands
2 University of Lille1, 3 LIFL (UMR CNRS 8022), 4 Institut TELECOM/TELECOM Lille 1, France.

4Ecole Centrale de Lyon, LIRIS UMR5205, Lyon, France
6K. U. Leuven, Department of Electrical Engineering, Leuven, Belgium

Abstract
In this paper we present the results of the 3D Shape Retrieval Contest 2011 (SHREC’11) track on face model
retrieval. The aim of this track is to evaluate the performance of 3D shape retrieval algorithms that can operate
on 3D face models. The benchmark dataset consists of 780 3D face scans of 130 individuals. Four groups have
participated in the track with 14 method variations in total.

Categories and Subject Descriptors (according to ACM CCS): I.5.4 [Pattern Recognition]: Applications—Computer
vision; H.3.3 [Computer Graphics]: Information Systems—Information Search and Retrieval

1. Introduction

For this contest we have created a new three-dimensional
data set consisting of scans of masks of faces. 130 masks
have been scanned using a Roland PICZA LPX-250 scanner.
Five range scans were made using an Escan laser scanner.
The position of the mask has been varied for each of the
range scans.

Using this dataset we can compare different methods and
evaluate how well these performs in overcoming problems
such as the pose and missing portions of the faces due to
occlusion.

The process is as follows: a query is compared to all ob-
jects in the dataset. Using the recognition rate we can de-
termine how well a certain method is able to retrieve the
corresponding scan from the database. However, using the
recognition rate alone limits the evaluation of the different
methods. We use several other evaluation measures, such as
the first and second tier recall, which takes more than only
the first returned object into account, and the mean average
precision, which considers the position of all relevant objects
in the entire ranked list.

2. Datasets

The dataset is based on a new collection of scans, made of
an anthropological collection of 130 masks, which have been

acquired about a century ago [dZ14]. Two sets of scans are
made. Each of the 130 masks are scanned by a Roland scan-
ner from a single orientation, and by an Escan scanner from
5 viewing directions, see figure 1 for examples. The com-
plete data set of 780 scans was split into three different sub-
sets; the training set, the query set and the test set. The train-
ing set consists of 60 randomly selected Roland scans. The
query set consists of 70 randomly selected Escan scans. The
testset is the remainder, resulting in 70 Roland scans and 580
escans.

3. Evaluation

Every participant submitted a single ranked list per run con-
taining every query object matched against all objects in the
testset, resulting in 70 ranked lists containing 650 distance
values. Scans are considered relevant only if it belongs to the
same person. Since the class sizes per query object are rather
small, we’ve decided not to use the F-measure and Precision.
The numbers would be rather meaningless. Instead we calcu-
late the recognition rate (the frequency that the highest rank
is from the same class), first tier recall (the fraction of masks
from the right class among the first n), second tier recall (the
fraction of masks from the right class among the first 2n),
where n is the class size of the specific object, and the mean
average precision (the ratio of class object among the first
k ranked objects, averaged over k, where the mean is taken
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Figure 1: Frontal scan with the Roland and with the Escan (top), and side view scans with the Escan (bottom).

over all queries). Note that n is not a constant number since
the query objects have been selected randomly, so the same
object might occur more than once in the querylist.

4. Participants

Four groups have participated in SHREC’11 track on 3D
face models.

• Huibin Li and Liming Chen from Ecole Centrale de Lyon,
LIRIS UMR5205, Lyon, France. Their method is based on
salient points, and described in section 5.

• Hassen Drira, B. Ben Amor, and Mohamed Daoudi from
University of Lille1, LIFL (UMR CNRS 8022), and Insti-
tut TELECOM/TELECOM Lille 1, France. Their method
is based on radial curves, and described in section 6.

• Stefan van Jole and Remco Veltkamp from Utrecht Uni-
versity. Their method is based on a morphable model, and
described in section 7.

• Peter Claes, Dirk Smeets, Jeroen Hermans, Dirk Vander-
meulen, and Paul Suetens from K. U. Leuven, Depart-
ment of Electrical Engineering, Leuven, Belgium. Their
method is also based on a statistical model, fitted in by a
Bayesian strategy, and described in section 8.

5. Salient points

Our method is an extension of several works, including SIFT
[Low04], mesh-SIFT [CTK∗10], daisy [TLF08] and shape

index map based SIFT matching [HAWC10]. First, feature
points are detected on each 3D face models; then, the quasi-
daisy local shape descriptor of each feature point can be ob-
tained using histograms of multiple order surface differen-
tial quantities; finally, these local descriptors are matched by
computing their angles like SIFT-matching. The number of
matched points is employed as similarity between two face
models. Fig 1 illustrate the flowchart of our method.

5.1. Salient points detection

Given a 3D mesh face model, feature points are detected
by the feature detector of 3D Gaussian scale space extrema
technique similar to [CTK∗10, ZBVH09]. In order to de-
tect sufficient salient points at different locations, we employ
maximum and minimum principal curvatures as scalar field
functions [ZBVH09].

5.2. local descriptor and feature matching

We extract multiple order surface differential quantities
based local descriptor at the scale which salient points are
detected. To obtain orientation invariant local descriptor, the
geodesic neighboring points of each selected salient point
are transformed into a rotation invariant local coordinate sys-
tem as in RIFT [SS07]. Under this new local coordinate sys-
tem, a local shape descriptor based on a quasi daisy neigh-
borhood [TLF08] with nine circle topology can be obtained
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on the tangent plane of the salient point. To comprehensively
characterize 3D facial surfaces and their variations, we cal-
culate weighted statistical distributions of multiple order sur-
face differential quantities, including histogram of mesh gra-
dient (HoG), histogram of shape index (HoS) and histogram
of gradient of shape index (HoGS) in each circle. Thus, the
new shape descriptor describes local shape orientation as
well as shape bending and variation of shape bending. The fi-
nal shape descriptor can be achieved by concatenating these
histograms. The curvatures and shape index are estimated
by local cubic-order fitting method [GI04]. The gradient of
shape index is estimated by finite element method (FEM)
based method [MEM01]. Once the shape description pro-
cess has been completed for two face models, we then find
the correspondence by matching shape descriptors from each
of the models. We utilize a greedy feature matching process
similar to the one used by SIFT. The number of correspon-
dences points is employed as similarity between two face
models.

5.3. Experimental results

In our experiments, the methods 1-3 perform fusion of the
number of correspondences points originally detected by
minimum and maximum curvatures with SIFT matching rate
of 0.8, 0.75 and 0.7 respectively. Methods 4 and 5 are ob-
tained by only using maximum curvature and minimum cur-
vature respectively and the same SIFT matching rate of 0.75.
Experimental results show that method 3 achieves best re-
sults for recall (47.8%), mean average precision (47.6%) and
rank-1 recognition rate (92.9%). The experiments shows that
the average number of feature points detected by minimum
and maximum curvatures is about 100. In the matching step,
because we simply use the angle of feature vectors as the
similarity between two local descriptors, there will obtain
some wrong matching points at the locations which have
more than two similar local shapes. Further on, for a given
query, there are many tests models matched the same num-
bers of points to it. Since we use the number of matched
points as the dissimilarity between two 3D face models,
there are many tests having the same dissimilarity to the
given query. Thus, the mathching step and dissimilarity dis-
tance measure scheme make our method is not robust to the
query changes.

6. Radial curves

6.1. Overview of proposed method

Figure 3 illustrates the overall proposed 3D face recognition
method. First of all, the probe P and the gallery G images
are preprocessed. This step is essential to improve the qual-
ity of raw images and to extract the useful area of the face. It
consists of a Laplacian smoothing filter to reduce the acqui-
sition noise, a filling hole filter that identifies and fills holes
in input mesh, and a cropping filter that cuts and returns the

part of the input mesh inside of a specified sphere. Then, a
coarse alignment is performed based on the translation vec-
tor formed by the tips of the noses. This step is followed by
a finer alignment based on the well-known ICP algorithm
in order to normalize the pose. Next, we extract the radial
curves emanating from the nose tip and having different di-
rections on the face. Within this step, a quality control mod-
ule inspects the quality of each curve on both meshes and
keeps only the good ones based on defined criteria.

Figure 3: Overview of the proposed method.

Finally, using a past approach on shape analysis of curves,
we obtain algorithm for computing geodesics between pair-
wise of radial curves on gallery and probe meshes. The
length of one geodesic measure the degree of similarity be-
tween one pair of curves. The fusion of the scores on good
common curves, produced similarity score between the faces
P and G. We details the pipeline of all these stages contained
in our method in the following sections.

6.2. Preprocessing and surfaces alignment

As illustrated in figure 3, we start by preprocessing the input
raw images in order to improve their quality. Indeed, these
images present some imperfections as holes, spikes and in-
cludes some undesired parts (clothes, neck, ears, hair, etc.)
and so on. This step consists of a pipline of 3D mesh process-
ing filters. (i) Smoothing filter reduces high frequency in-
formation (spikes) in the geometry of the mesh, making the
cells better shaped and the vertices more evenly distributed.
(ii) Cropping filter cuts and returns parts of the mesh inside
a defined implicit function. The last-mentioned function is
a sphere defined by the nose tip as its center and the radius
75mm in order to avoid as much hair. (iii) Filling holes filter
identifies and fills holes in input meshes. Holes are created
either because of absorption of laser in dark areas such as
eyebrows and mustaches, occlusion or mouth opening. They
are identified in the input mesh by locating boundary edges,
linking them together into loops, and then triangulating the
resulting loops. After meshes preprocessing, we correct their
poses to properly compare the faces by establishing correct
correspondance between sets of curves of probe and gallery
images. (iv) Coarse alignment filter fix the probe image P
onto the Gallery image G at the nose tip. In other words, this
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Figure 2: Quasi-mesh-daisy local shape descriptor based free-form surface matching framework.

filter perform a translation transform along the vector de-
fined by the two tips of the noses. This step presents a good
initialisation to the (v) Fine alignment filter which performs
ICP algorithm on obtained meshes. The fine alignement fil-
ter corrects non-frontal meshes to make them frontal.

6.3. Radial curves extraction and quality control

Now we introduce our mathematical representation of a fa-
cial surface. Let S be a facial surface denoting the output of
the previous preprocessing step. Although S is a triangulated
mesh, we start the discussion by assuming that it is a contin-
uous surface. Let βα denote the radial curve which make an
angle α with a reference radial curve. The reference curve is
chosen to be the vertical curve once the face has been rotated
to the upright position.

If needed, we can approximately reconstruct S from these
radial curves according to S ≈ ∪αβα = ∪α{S∩ Pα}. This
indexed collection of radial curves captures the shape of a
facial surface and forms our mathematical representation of
that surface. We have chosen to represent a surface with a
collection of curves since we have better tools for analyzing
shapes of curves than we have for surfaces.

Notice that some curves can reduce the performance of the
algorithm as they have bad quality. These curves should be,
first, detected then removed using the quality filter. The aim
of that filter is to remove curves which have bad quality. To
pass the quality filter, a curve should be continous and hav-
ing a minimum of length. The discontinuity or a shortness
of a curve results on missing data on the face or presence of
reat noise.

Once the quality of the features is controlled, we proceed
to faces comparison. In the following sections we describe
our framework to analyze shape of curves in order to com-
pare the selected features.

6.4. Shape analysis of radial curves

Let β : I → R3, for I = [0,1], represent a facial curve gen-
erated as described above. To analyze the shape of β, we
shall represent it mathematically using a square-root veloc-
ity function (SRVF), denoted by q(t), according to:

q(t) .
=

β̇(t)√
‖β̇(t)‖

. (1)

q(t) is a special function introduced by [JKSJ07] that cap-
tures the shape of β and is particularly convenient for shape
analysis. It has been shown in [JKSJ07] that the classical
elastic metric for comparing shapes of curves becomes the
L2-metric under the SRVF representation. This point is very
important as it simplifies the calculus of elastic metric to
the well-known calculus of functional analysis under the L2-
metric. We define the set:

C = {q : I→ R3|‖q‖= 1} ⊂ L2(I,R3) . (2)

With the L2 metric on its tangent spaces, C becomes a Rie-
mannian manifold. In particular, since the elements of C
have a unit L2 norm, C is a hypersphere in the Hilbert
space L2(I,R3). In order to compare the shapes of two ra-
dial curves, we can compute the distance between them in C
under the chosen metric. This distance is defined to be the
length of the (shortest) geodesic connecting the two points
in C. Since C is a sphere, the formulas for the geodesic and
the geodesic length are already well known. The geodesic
length between any two points q1,q2 ∈C is given by:

dc(q1,q2) = cos−1(〈q1,q2〉) , (3)

and the geodesic path α : [0,1]→C, is given by:

α(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q2) ,
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where θ = dc(q1,q2).

6.5. Shape analysis of facial surfaces

Now we extend the framework from radial curves to full
facial surfaces. As mentioned earlier, we are going to rep-
resent a face surface S with an indexed collection of radial
curves. That is, C↔{βα,α∈ [0,α0]}. Through this relation,
each facial surface has been represented as an element of
the set C[0,α0]. The indexing provides a correspondence be-
tween curves across faces. For example, a curve at an angle
α on probe face is matched with the curve at the same angle
on gallery face. With this correspondence, we can compute
pairwise geodesic paths and geodesic distances between the
matched curves across faces. This computation has several
interesting properties. Firstly, it provides a Riemannian dis-
tance between shapes of full facial surfaces by combining
distances between the corresponding radial curves.

7. Morhable model

7.1. Method

First of all, a morphable model was built using the training
set. Building this model requires the trainingset to be in full
correspondence. In order to achieve this, all scans were pose
normalized in such a way that the orientation is the same and
the nose tip is located at the origin. This is achieved by us-
ing a nose template to find the position most likely to be the
nose tip, and a face template to calculate the correct orien-
tation. After pose normalizing, 26 landmarks were manually
assigned, see figure 4. These landmarks are used to build
a low resolution face mesh. We subdivide each triangle into
four smaller congruent triangles to generate face meshes in a
higher resolution. In the end, a set of dense correspondences
is acquired for each input face. After calculating the corre-
spondence sets, a morphable model can be calculated by ap-
plying Principal Component Analysis to all the face scans so
that each instance can be described as a linear combination

of principal shape vectors: Sinst = S+
m

∑
i=1

wiσisi. The mor-

phable model has been built using 140 scans (the trainingset
and it’s mirrored variant). This means there is one average
face (see figure 5), and 139 shape vectors. An instance can
thus be defined as a single vector containing the weights for
every shape vector.

In order to calculate the distance between a query object
and a test object, we first pose normalize all query and test
objects as described above. Then we fit the morphable model
to each object in the query set and the test set. Two objects
are compared by comparing the first 99 weights. This re-
sults in m+ n vectors, where m = 70 and n = 650, that rep-
resent the weights for the eigenvectors. These vectors were
then compared using the Euclidean Distance (run 1) and the
Weighted Minkowski Distance (run 2). The formulas for the
Weighted Minkowski Distance is:

Figure 4: Assigning landmarks.

d(X ,Y ) =

√
99

∑
i=1

wi(xi− yi)
2, where wi =

99−i

∑
j=1

1
99− j

Figure 5: Mean morphable model.

7.2. Discussion

As can be seen in the results, both our methods score lower
than the other methods, because 39 out of 70 query scans
were incorrectly pose normalized. The nose tip was often lo-
cated on a different part of the face that approximates the
shape of the nose template (for example the cheek or the
supraorbital ridge). Therefore, the morphable model had dif-
ficulties fitting the scan correctly. Another reason for failing
to fit the scan accurately is because of missing face data due
to occlusion which occured mainly on the non-frontal scans.
In general, the morphable model was able to fit the remain-
ing 31 scans more precisely.

The method scored relatively low for some queries,
and high for some others. We will compare three
query objects, of which at least one has a high
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Results Per Query
QC CS CP R1 R2 AP

query0025 Y 4 3 0.7500 0.7500 0.7520
query0037 Y 3 2 0.6667 0.6667 0.6684
query0052 N 4 2 0.0000 0.0000 0.0055

Table 1: QC: Query correctly pose normalized?; CS: Class
size; CP: Correctly pose normalized; R1: 1st Tier Recall;
R2: 2nd Tier Recall; AP: Average Precision

score and another one has a low score, see ta-
ble 1. For more results per query, see http://give-
lab.cs.uu.nl/SHREC/shrec2011/faces/results/. When looking
at query0025, we see that the query object and three out of
four objects in the testset were correctly pose normalized,
thus yielding higher results. For query0052, only 2 out of 4
test objects were correctly pose normalized. The pose for the
query object was also incorrect.

An advantage of our method is that we do not have
to compare complete objects to each other, only their 99
weights. We simply fit the morphable model to every query
and test object, in order to retrieve a single weight vector for
every object. This makes comparing two objects generally
easy. The main disadvantage of our method is the sensitivity
to correcty align the pose, and to locate accurately the nose
tip and in the case of of missing data.

8. Robust fitting of statistical model

8.1. Method

In a first stage, a PCA based shape model was learned from
the given training set. To do so, the average face from an
existing shape model in [ACVC10] was used here as a ref-
erence template to start from. 12 manually indicated and ho-
mologous landmarks were used to provide a rigid and crude
registration for each of the training scans with the reference
template. Subsequently the template was warped onto the
training scans using a non-rigid registration based on vari-
ational implicit functions [Cla07]. Following a Generalized
Procrustes alignment of the dense point correspondences, a
principal component analysis was performed to obtain the
shape model. Only 99% of the variations in the training data
was retained, meaning that only 37 principal components
were used hereafter.

In a second stage this model was initialized and subse-
quently fitted onto given test and query scans in order to gen-
erate model-based descriptions thereof for recognition pur-
poses. The challenge and the main contribution of this work
was to perform this automatically and robustly as in insen-
sitive to spikes, holes and missing data or occlusions in the
facial scans.

To normalise or initialize the test and query scans for pose
with the average of the shape model, a local feature method,

called meshSIFT, was used consisting of three major com-
ponents: key point detection, local features description and
local feature matching [MFK∗10]. The algorithm first de-
tects scale space extrema as local feature locations. In or-
der to have an pose-invariant descriptor, each key point is
assigned a canonical orientation. The meshSIFT algorithm
then describes the neighbourhood of every scale space ex-
tremum in a feature vector consisting of concatenated his-
tograms of shape indices and slant angles. The feature vec-
tors are matched by comparing the angle in feature space.
Using RANSAC, the best rigid transformation can be esti-
mated based on the matched features. In less than 2.5% of
the scan, a manual initialisation was needed.

After pose initialization, the model was fitted following
a Bayesian strategy with outlier detection and estimation.
The result was an EM alike optimization wherein iteratively
the model updates are alternated with outlier updates. On
the one hand, outliers were estimated following a stochastic
approach adopted from [VLMV∗01]. This dealt with spikes
and other gross errors within the scan meshes. On the other
hand, outliers were detected following a deterministic ap-
proach using scan border information. Model points whose
closest point to the scan were located on the border were
flagged as outliers. This dealt with missing data. The combi-
nation of both stochastic and deterministic outliers was done
as outlined in [Cla07].

Test and query scan model-descriptions were compared
using the Euclidean Cosine (run 1) and the Mahalanobis Co-
sine (run 2) similarity measures.

8.2. Discussion

As can be seen in the results, our method using the Euclidean
Cosine as similarity measure (run 1) outperforms all partici-
pants with respect to recall and mean average precision. The
performance decreases when using the Mahalanobis Cosine
(run 2) as similarity measure, indicating that discriminative
variation can be found following the first principal com-
ponents. Wrong recognition is mostly due to model under-
fitting, especially near the nose and jaw regions, which are
often not fully scanned. On the other hand, over-fitting oc-
curs for query shapes for which the training database is not
representative.

The main advantage of our method is that it can deal with
missing data. Since the method uses a global shape model
and a robust model fitting, it allows to compare face scans
with little or no overlap. Local feature methods on the other
hand require the scans to overlap. Another benefit is that
the query scans must not be matched to every test scan,
but only to the statistical shape model. Face comparison is
done by comparing the corresponding model coefficients.
This makes statistical methods generally the fastest. An im-
portant disadvantage of our method, and in extenso of all
learning based methods, is the need for representative train-
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Results
Method Run Recall MAP RR
Salient points 1 0.3963 0.4019 0.8571
Salient points 2 0.4573 0.4536 0.9000
Salient points 3 0.4781 0.4758 0.9286
Salient points 4 0.4019 0.3957 0.8571
Salient points 5 0.3737 0.3639 0.7714
Radial curves 1 0.2046 0.2111 0.4143
Radial curves 2 0.2424 0.2477 0.4429
Radial curves 3 0.2095 0.2102 0.3143
Radial curves 4 0.2200 0.2224 0.4243
Radial curves 5 0.2186 0.2212 0.4143
Morph model 1 0.1967 0.1908 0.4143
Morph model 2 0.1948 0.1824 0.3857
Robust PCA fit 1 0.6837 0.7029 0.8857
Robust PCA fit 2 0.6123 0.6190 0.8000

Table 2: Results per method. MAP: mean average precision,
RR: recognition rate

.

ing data. In the available training set, the bottom of the jaw
is often missing and only a few female scans are included.

9. Results

Table 2 give a summary of results, in terms of recall, mean
average precision, and recognition rate. The table show high
performances for the method "Robust PCA fit". The recog-
nition rates of both that method, and the "Salient Points"
method are high, meaning that for most of the queries a rel-
evant face is retrieved on top of the ranked list. The recall is
the average of the first tier and second tier recall.

10. Concluding Remarks

For this content we have used a new dataset of 3D face scans.
The scans have been slightly modified to remove unneces-
sary information from it. In total we received 14 ranked lists
from 4 different groups. Since the Average Recall alone is
not enough to evaluate a single run due to the small class
size, the Mean Average Precision is also calculated. These
two, in combination with the Recognition Rate, give a fairly
good view on how well a specific method works. The two
highest Mean Average Precision were both obtained by the
Robust PCA fit method (run1: 0.7029; run2: 0.6190), fol-
lowed by the "Salient Points" method (run3: 0.4758).
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