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Abstract

Non-rigid 3D shape retrieval has become an important research topic in content-based 3D object retrieval. The
aim of this track is to measure and compare the performance of non-rigid 3D shape retrieval methods implemented
by different participants around the world. The track is based on a new non-rigid 3D shape benchmark, which
contains 600 watertight triangle meshes that are equally classified into 30 categories. In this track, 25 runs have
been submitted by 9 groups and their retrieval accuracies were evaluated using 6 commonly-utilized measures.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [Computer Graphics]: Information Systems—

Information Search and Retrieval

1. Introduction

Figure 1: Examples of non-rigid 3D models.

Recently, the problem of Non-rigid 3D Shape Retrieval
has attracted more and more researchers from several re-
search communities including computer graphics, computer
vision, pattern recognition, and applied mathematics. In fact,
how to quickly and accurately compare non-rigid 3D shapes
is not only important in practice but also interesting in the-
ory. On the one hand, deformable objects are widely-seen
in both real and virtual worlds. For instance, as shown in
Figure 1, a hand can appear in many different poses by
articulating around its joints. Those articulated hands are
very likely to be recognized as different kinds of objects us-
ing many traditional rigid-shape analyzing techniques (e.g.,
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methods compared in the PSB Benchmark [SMKF04]). On
the other hand, many elegant mathematical tools like Singu-
lar Value Decomposition [SFH*09], Multidimensional Scal-
ing [BBKO8], Heat Kernel diffusion [SOGO09], Laplace-
Beltrami operator [RWP06], etc. are well suited for the anal-
ysis of non-rigid 3D shapes. Usually, creating an isometry-
invariant 3D shape descriptor can be formulated as a beauti-
ful mathematical problem.

As the number of algorithms for non-rigid 3D shape re-
trieval increases rapidly, it is often required to compare them
in a fair and effective way. However, most of these meth-
ods need to be implemented on watertight manifolds, while
both collecting and creating large amounts of those kinds
of deformable models are not trivial, until recently, the most
commonly-used non-rigid 3D shape benchmark (i.e., McGill
3D Shape Database [SZM*08]) contains only 255 models.
That somehow hinders the further development of this re-
search direction. To address the problem, we organized the
SHREC’11 Track: Shape Retrieval on Non-rigid 3D Water-
tight Meshes based on a new database consisting of 600
watertight triangle meshes that were generated using our
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own program as well as several commercial 3D modeling
software. In this track, we asked each participant to sub-
mit up to five distance matrices obtained using their methods
within one week. Finally, 25 matrices have been submitted
by 9 groups and their retrieval accuracies were evaluated and
compared based on 6 standard measures.

2. Data Collection

The new database used in this track contains 600 watertight
triangle meshes that are derived from 30 original models,
among which 26 objects are collected from several freely-
accessible repositories (e.g., PSB database [SMKFO04],
McGill database [SZM*08], TOSCA shapes [BBK0S], etc.)
while the other 4 models (i.e., lamp, paper, scissor, and
twoballs) are created by us using Autodesk 3d Max. Given
a 3D mesh, we use Autodesk 3d Max to build its skeleton
and then generate 19 deformed versions of the mesh by ar-
ticulating around its joints in different ways. To remove the
inner structures of those articulated models, we implement
our own codes to first capture 18 depth-buffer views for the
normalized object on the vertices of a unit geodesic sphere,
and then convert those images into a point cloud. Finally, we
wrap the point cloud into a polygon surface and fix it to form
a watertight 3D manifold without any topological errors by
using Geomagic, which can be automatically implemented
with recorded macros. As shown in Figure 2, those 600 non-
rigid models have been equally classified into 30 categories.

3. Evaluation

Participants are asked to test their algorithms on the database
to compute the dissimilarity between every two objects, and
then generate a distance matrix for each method. The matrix
is composed of 600 x 600 floating point numbers, where the
number at position (i, j) represents the dissimilarity between
models i and j.

Analyzing the matrices submitted by participants, we
evaluate their retrieval performance based on Precision-
recall curves as well as the following five quantitative
measures (see [SMKF04] for detailed definitions): Near-
est Neighbor (NN), First Tier (FT), Second Tier (ST), E-
measure (E), and Discounted Cumulative Gain (DCG).

4. Participants

This year, we have 9 groups taking part in the SHREC’11
Track: Shape Retrieval on Non-rigid 3D Watertight Meshes
and, totally, 25 dissimilarity matrices have been submitted.

1. FOG, FOG+MR and FOG+MRR submitted by Shun
Kawamura, Yukinori Kurita and Ryutarou Ohbuchi from
University of Yamanashi, Japan.

2. T-NoNorm-40Coef, T-r01-40Coef, T-r01-50Coef, T-r015-
40Coef and T-r015-50Coef submitted by Guillaume
Lavoué from Insa of Lyon, France

3. MDS-CM-BOF submitted by Zhouhui Lian and Afzal
Godil from National Institute of Standards and Technol-
ogy, USA.

4. BOGH submitted by Hien Van Nguyen from University
of Maryland, College Park, USA and Fatih Porikli from
Mitsubishi Electric Research Laboratories, USA.

5. LSF and MLSF submitted by Yuki Ohkita, Yuya Ohishi,
Shun Kawamura and Ryutarou Ohbuchi from University
of Yamanashi, Japan.

6. ShapeDNA: OrigM-n10-norml, OrigM-nl2-norml,
OrigM-ni12-normA, OrigM-nl5-norml and ReM-nl2-
norml submitted by Martin Reuter from Martinos
Center for Biomedical Imaging, Massachusetts General
Hospital / Harvard Medical / MIT, USA.

7. Harris3DGeoMapl16, Harris3DGeoMap32 and HKS
submitted by Ivan Sipiran and Benjamin Bustos from
University of Chile, Chile.

8. MeshSIFT, SD-GDM and SD-GDM-meshSIFT submit-
ted by Dirk Smeets, Jeroen Hermans, Dirk Vandermeulen
and Paul Suetens from Katholieke Universiteit Leuven,
Belgium.

9. PatchBOF_100 and PatchBOF_150 submitted by Hedi
Tabia from University Lille 1, France and Mohamed
Daoudi from Institut TELECOM, France.

5. Methods

5.1. Features on Geodesics (FoG), by S. Kawamura, Y.
Kurita and R. Ohbuchi

The Features on Geodesics (FoG) algorithm is based on a
diffusion-like distance on 3D mesh surface to achieve ro-
bustness against articulation. In addition, the FoG is de-
signed to accept diverse surface-based 3D models, e.g., non-
watertight mesh or polygon-soup.

To compute features, the FoG method first resamples the
surface of a model by uniformly and quasi-randomly gen-
erating Ny, oriented points (Nsp ~ 3000). These points are
then reconstructed into a mesh by using k-nearest neighbor
connectivity. This remeshing gains invariances to shape rep-
resentation and tessellation, in exchange for retrieval accu-
racy.

After remeshing, the algorithm computes a set of local-
FoG features at Nj (N ~ 500) randomly-selected key-points
on the mesh by using the Manifold Ranking algorithm de-
veloped by Zhou et al. [ZBL*03]. The manifold ranking al-
gorithm is originally designed to compute distances among
features in high dimensional feature space. The k-nearest
neighbor meshing in the feature space of the original mani-
fold ranking algorithm is replaced with the mesh resampling
mentioned above.

For each key-point, a local-FoG is computed as a set of
geodesic-like distances for vertices that lie within a radius
r sphere of interest (using 3D Euclidian distance). A local-
FoG feature centered at the key-point captures local geome-
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Figure 2: Examples of models in our database that is classified into 30 categories.

try at multiple scales, by having multiple radius of interest r
and multiple parameters ¢ that controls the diffusion speed
during the computation of manifold ranking.

A histogram of these distances coupled with a local geo-
metrical feature within the same sphere becomes the local-
FoG feature at the key-point. A set of N, local FoG features
are integrated into a feature vector per 3D model by using the
bag-of-words approach. For the FoG algorithm, Kullback-
Leibler Divergence is used to compute distance between two
features. For the FoG-MR and FoG-MRR methods, simi-
larity between features is computed by using the (original)
Manifold Ranking algorithm. Using manifold ranking for
feature distance computation appears to improve high-recall
retrieval performance at the expense of low-recall (e.g., near-
est neighbor) retrieval performance.

5.2. Bag of Words with Local Spectral Descriptors, by
G. Lavoué

The method is based on the Bag of Words (BoW) paradigm.
In this method, a uniform sampling is first utilized to gener-
ate feature points on the mesh surface; for this goal, a ran-
dom set of np vertices on the mesh is considered as an initial
set of seeds, and then Lloyd relaxation iterations are imple-
mented. Lloyd’s algorithm [L1082] is a fixed-point iteration
that simply consists of iteratively moving the seeds to the
centroids of their Voronoi cells. Each feature point p; is then
associated with a local patch P; on which a descriptor is cal-
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culated. For each feature point, this local patch is extracted
by considering the connected set of facets belonging to a
given sphere of center p; and of a given radius r.

After that, each feature point is associated to a descrip-
tor computed on its patch. The Fourier spectra of the patch
is computed by projecting the geometry onto the eigenvec-
tors of the Laplace-Beltrami operator. The Laplace-Beltrami
operator A is the counterpart of the Laplace operator in Eu-
clidian space. It is defined as the divergence of the gradi-
ent for functions defined over manifolds. The eigenfunction
and eigenvalue pairs (H*,A;) of this operator satisfy the
following relationships:—AHk = Xka. In the case of a 2-
manifold triangular mesh the above eigen-problem can be
discretized and simplified within the finite element model-
ing framework [LZ10]: Qhk Xthk in which h* denotes
the vector [H{‘7 H,’f,} where m is the number of vertices of
the patch. D is the Lumped Mass matrix and Q is the Stiff-
ness matrix. To resolve this discrete eigenproblem, the fast
algorithm from Vallet and Lévy [VLOS], based on a band-
by-band approach and an efficient eigen-solver, is adopted;
hence the eigenvectors K¢ (i.e. the manifold harmonic bases)
and the associated eigenvalues are obtained. The spectral co-
efficients are then calculated as the inner product between
the geometry of the surface and the sorted eigenvectors. For
X (resp. y,z):

m
G =<x,h >=Y xD;Hf (1)

i=1
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The k' (k = 1..m) spectral coefficient amplitude is then de-
fined as:

e = /(82 + ()2 + (3)2 @
Thus, for a given patch P; around a feature point p;, the
descriptor is the spectral amplitude vector ¢ = [c},...c),.],

with c};, the k" spectral coefficient amplitude of the patch
P;. Here, only the n. first spectral coefficients are considered
to limit the descriptor to low/medium frequencies.

Given a 3D object containing a set of patches P; associ-
ated with descriptors ¢, the next step is to represent it as a
distribution of visual words from a given dictionary. First,
the visual dictionary is created by clustering a huge dataset
of descriptors and keep the n,, centroids ¢ of the clusters as
visual words. Then, each patch P, is associated with its clos-
est visual word and the bag of words bM of the whole model
M is a ny,-dimensional vector containing the distribution of
the visual words over all its patches. The matching between
two bags of words is simply done using the L; distance.

For the track, settings of this algorithm are as follows:

e The size ny, of the dictionary was set to 200 and the num-
ber of patchs n, was set to 200.

e The visual vocabulary was computed from the test set.

e Four versions have been proposed by changing the size
of the patches (r = 10% and r = 15% of the bounding
box length) and by changing the number of spectral coef-
ficients (n, = 40 and n, = 50). A supplementary version
is also tested where the radius of the patches is fixed to
r=0.15.

5.3. Visual Similarity based Non-rigid 3D Shape
Retrieval Using MDS, by Z. Lian and A. Godil
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Figure 3: Procedures of the canonical form computation.

The method [LGSZ10] performs step by step as follows:

1) Canonical Form Computation: Calculate the canoni-
cal form for a 3D model based on MDS and PCA. As shown
in Figure 3, the least squares technique with the SAMCOF
algorithm is chosen to implement the MDS embedding (Fig-
ure 3(c)), and before that the number of vertices on the mesh
has been reduced to about 1000 (Figure 3(b)).

2) Local Feature Extraction: Capture 66 depth-buffer
views for the canonical form on the vertices of a given
geodesic sphere, and then extract salient SIFT descrip-
tors [Low04] from these views (Figure 4).

A p
= §f<
(©) (d

3) Word Histogram Construction: Generate a word his-
togram by vector quantizing each view’s local features
against a pre-specified codebook, such that the shape can
be represented by a set of histograms. It should be pointed
out that the codebook is built by using K-means to create
256 clusters for large numbers of local features randomly
sampled from MDS embedded McGill database, and a par-
ticular data structure (Figure 4) is designed to represent the
histogram in a more efficient and effective way [LGS10].

4) Dissimilarity Calculation: Carry out an efficient multi-
view shape matching (Clock Matching) scheme [LRS10] to
measure the dissimilarity between two models by calculating
the minimum distance of their 24 matching pairs.

Since the method is mainly based on Multidimen-
sional Scaling, Clock Matching, and Bag-of-Features,
for the sake of convenience, it is denoted as “MDS-
CM-BOF”. More details of this method can be found
in [LGSZ10] [LGS10] [LRS10].
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Figure 4: Represent a depth-buffer view as a word histogram
by the vector quantization of its SIFT local features.

Data Structure

5.4. Bag of Geodesic Histograms, by H.V. Nguyen and F.
Porikli

The method uses a Bag-of-Feature approach and Normalized
Geodesic Distances to retrieval non-rigid 3D shapes.

Consider a shape to be a closed set S € R". The geodesic
distance Y(p, q) between two points p and ¢ is defined to be
the shortest path among all paths connecting these two points
on the shape. Let h(p) = [h1(p),ha(p),-..,h:(p)] denotes
the histogram of geodesic distances from the point p to all
points in S, which is defined as follows:

hi(p) = % 3

0= {quI(i—l)Ag "p.q) giA} )
Tp

where Y is the mean of geodesic distance from p to all
points, and A is the separation between histogram bins. Here,
n =100 and A = 0.025. Since the descriptor is based on the
geodesic distances, they are robust to various 3D non-rigid
articulations. In addition, the normalization with respect to
average geodesic distances take into account the scaling ef-
fects.

(© The Eurographics Association 2011.
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For each shape, N points (here N = 300) are randomly
chosen and a bag of descriptors is computed. Shape match-
ing is done by first finding the optimal correspondences be-
tween their bags of descriptors using the Hungarian algo-
rithm.

Let two sets of the descriptors for two shapes A and B be
A h/?,hé7 ..h‘;&, and AP : hlf ,hg , ..hﬁ. The correspondence
is established through a one-to-one mapping function T such
that T: A* — AP If a descriptor h‘,-4 is matched to another h?
then t(i*) = j% and 1(;j%) = i*. The cost function is defined

as

e(t(0), i) )

1<i<N
where the distance between two descriptors is computed us-
ing Xz statistic
(1) (k) — hf ()

1<E<N h?(,-) (k) + hB (k)

e(x(i), ) = ©)

Finally, the optimal cost E(h) is used as the similarity
measure between two shapes.

5.5. Localized Statistical Features (LSF), by Y. Ohkita,
Y. Ohishi, S. Kawamura and R. Ohbuchi

Oriented point set model

Figure 5: Localized Statistical Features (LSF).

The Localized Statistical Features (LSF) is a very sim-
ple 3D shape descriptor that has a set of good robustness
properties [OFO09]. The LSF is robust against shape rep-
resentations; the LSF can handle 3D models represented as
polygon soup, oriented point set, watertight mesh, afwater
leakinga$ manifold mesh, etc. The LSF is robust against sim-
ilarity transformation without requiring any pose normaliza-
tion. It is also fairly robust against geometrical/topological
noise. Finally, the LSF is robust against articulation.

The LSF computes a set of Ny (N, = 500) localized
3D statistical features, which are then combined into a
feature vector per 3D model by using the bag-of-words
approach. Each statistical feature is a derivative of the
Surflet-Pair-Relation Histograms (SPRH) feature by Wahl et
al. [WHHO3]. The SPRH feature accepts a 3D model in ori-
ented point set representation. From the point set, the SPRH
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computes a 4D joint histogram consisting of three angles (in-
ner product, etc.) and a distance among all the pairs of the
oriented points.

For the LSF, the SPRH descriptor is made to be local.
Each LSF is computed from the point set within the sphere
of radius r about the N} keypoints quasi-randomly and uni-
formly placed on the surfaces of the model. In LSF, his-
togram is computed from point pairs in which one of the
points is the keypoint. If there are n points in the sphere,
there are (n — 1) pairs of points filling the histogram. In the
Multi-resolution LSF (MLSF), multiple radii of influences
are used, in an attempt to capture multi-scale geometrical
features.

After the set of local features are computed, they are com-
bined into a feature vector per 3D model by using the bag-
of-features approach. Here, the LSF feature is used as is, i.e.,
without Manifold Ranking and other distance metric learn-
ing.

5.6. ShapeDNA: Laplace Spectra for Non-Rigid Shape
Analysis, by M. Reuter

The ShapeDNA has been introduced in 2005 [RWP06] as
the first spectral method used for non-rigid shape analy-
sis. Spectral methods have later been employed by the au-
thors for local shape analysis of structures in the human
brain to analyse disease effects [RWSNO09] and for automatic
shape segmentation [ReulO]. ShapeDNA is the normed be-
ginning sequence of the spectrum (i.e. the first eigenvalues)
of the Laplace-Beltrami operator (LBO) for 2D surfaces or
3D solids. The eigenvalues A and eigenfunctions u are the
solution of the Laplacian eigenvalue problem Au = —Au,
where Au := div(grad(u)) with grad being the gradient and
div the divergence with respect to the underlying domain or
Riemannian manifold in general. The normed first smallest
N eigenvalues 0 < Ay < Ay < ... < A, are employed as a
shape descriptor (ShapeDNA). In addition to the isometry
invariance, the beginning sequence of the Laplace spectra
has many desirable properties. This descriptor is insensi-
tive to noise, which influences mainly the higher eigenval-
ues. Possible switching of eigenvalues is not problematic (as
opposed to comparing eigenfunctions), as the values must
have been close to begin with. The spectrum can be com-
pared easily and can be computed for many different shape
representations. It can deal with objects containing cavities
(when using 3D solids), depends continuously on shape de-
formations and can easily be made scaling invariant. Note
that the ShapeDNA does not rely on any prior knowledge
and opposed to other methods involving eigenfunctions or
the heat kernel, it yields a very simple and robust, isometry
invariant shape descriptor.

For this shape retrieval contest, the simple linear FEM is
utilized to compute the first eigenvalues of the LBO. Since
for shape retrieval only a small number of eigenvalues is
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needed (usually less than 15) linear approaches should be
sufficient. Note that in order to compute a large number of
eigenvalues and eigenfunctions, maybe to approximate the
heat kernel, higher order approximations are advisable, due
to their superior accuracy [RBG*09].

For the ShapeDNA, several parameters can be modified.
In addition to the FEM discretization, several parameters can
be specified. Earlier tests showed that usually N = 10---15
eigenvalues are a good number (less have often not enough
power to distinguish shapes, while including higher val-
ues increases influence of noise and non-isometric deforma-
tions).The first eigenvalue is omitted as it is zero for closed
manifolds. Another parameter is the distance metric to com-
pare the spectra, where the simple Euclidean distance on the
N dimensional vector of numbers is chosen. Finally, in order
to compare shape rather than size of the objects, the spectra
need to be normalized. One option is to multiply the spec-
trum by the surface area (normA), which is the same as nor-
malizing the area of the shapes before computation. Another
option is to divide the sequence by the first non-zero eigen-
value (norm1), which is of course the same in the perfect iso-
metric cases. However, shapes are usually not perfectly iso-
metric and dividing by the first non-zero eigenvalue can help
to identify similar shapes in spite of noise or near-isometric
deformations. As sometimes mesh quality can degrade the
accuracy especially of the linearly approximated eigenval-
ues, the ShapeDNA is also computed on remeshed (ReM)
shapes, in addition to the original meshes (OrigM).

Software to compute eigenvalues and vectors of the
Laplace-Beltrami operator with up to cubic FEM on triangle
meshes is freely available for non-profit research at [Reu].

5.7. Keypoints-based matching of non-rigid shapes, by
I. Sipiran and B. Bustos

This section presents two techniques, including Harris 3D
and Heat Kernel Signatures methods, to tackle the problem
of non-rigid 3D shape retrieval.

5.7.1. Harris 3D Geodesic Map

The idea behind this method is to compute a characteristic
distribution of geodesic distances between the interest points
of a shape. So the method starts by detecting interest points
of a shape using the Harris 3D method [SB]. For this track,
adaptive neighborhoods with 8 = 0.01 are utilized and the
0.01% of the number of vertices with the highest Harris re-
sponse are selected as interest points.

Let F be the set of interest points detected. The com-
plete set of geodesic distances between each pair of inter-
est points is computed. This set is represented by the ma-
trix D of dimension |F| x |F|. Values in the matrix are nor-
malized through dividing each entry by the maximum value.
This makes the values invariant against scale.

Next, a histogram is created with n bins, which divides

the interval [0, 1] of possible normalized geodesic distances.
Then, m samples are randomly selected from the matrix
D, accumulating a vote in their corresponding bin. For this
track, two configurations are chosen to compute the his-
tograms: 1) n = 16, m = 1000; 2) n = 32, m = 2000. The
distance between two histograms is measured using the Eu-
clidean distance.

5.7.2. HKS based Point-to-point Matching

Heat kernel signatures method (HKS) [SOGO09] has proven
to be an interesting mesh analysis tool. Unlike Harris 3D,
HKS computes a descriptor for each vertex on a mesh. These
descriptors are invariant to non-rigid transformations, allow-
ing to detect interest points too.

The method starts by detecting the interest points using
the Heat kernel signatures. For this track, descriptors of
length 100 are used and ¢ = 0.1 of the area of the surface is
considered as the value for comparing the HKS for interest
point detection. Once the interest points have been detected,
each interest point has an associated HKS descriptor. Then,
a shape is represented by a set of HKS descriptors associated
to the interest points.

As HKS is based on an intrinsic formulation of a mesh,
the descriptors are expected to be very similar in pres-
ence of non-rigid transformations. Based on this fact, the
set of descriptors of two shapes are compared. Let S =
{s1,52,--+,sn} and P = {py1,p2,---,sm} be the sets of de-
scriptors of two shapes. The dissimilarity between S and P
is defined as

Y1 dmin (k. P)
n

d(S,P) = o

where

Apin (51, P) = gneirlgHSi*Ssz ®
Sj

5.8. Fusion of SD-GDM and meshSIFT, by D. Smeets, J.
Hermans, D. Vandermeulen and P. Suetens

The method combines a global feature method (SD-GDM)
with a local features method (meshSIFT) for non-rigid 3D
shape retrieval.

5.8.1. Spectral Decomposition of the Geodesic Distance
Matrix (SD-GDM)

For the SD-GDM approach [SFH*09], 3D shapes are repre-
sented by a geodesic distance matrix (GDM), which is a iso-
metric deformation invariant matrix. It contains the geodesic
distance between each pair of points on the surface.

As preprocessing, the surface meshes are first down-
sampled to about 2500 points. Geodesic distances are then
calculated with a fast marching algorithm for triangulated
meshes [PC09]. To compensate for scale differences in the
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3D shapes, the geodesic distances are normalized by the
square root of the total surface area.

Next, spectral decomposition (SD) of the GDM provides
a sampling order invariant global feature (shape descriptor).
In [SFH*09], it is proved that the modal representation, i.e.,
the eigenvalue matrix, is invariant to the sampling order un-
der the condition that each point on one surface has one cor-
responding point on the other surface, which can be assumed
for watertight meshes after resampling. Object recognition
reduces to direct comparison of the shape descriptors with-
out the need to establish explicit point correspondences. For
computational reasons, only the 40 largest eigenvalues are
calculated. The modal representations of the GDMs are then
compared using the mean normalized Manhattan distance as
in [SFH*09].

5.8.2. Scale Invariant Feature Transform for meshes
(meshSIFT)

Similar to the scale invariant feature transform (SIFT) al-
gorithm [Low04], the meshSIFT algorithm consists of three
major components: keypoints detection, orientations assign-
ment and a local feature descriptor [MFK*10].

The algorithm first detects scale space extrema as local
feature locations. The scale space contains the mean curva-
ture in each vertex on different smoothed versions of the in-
put mesh. Smoothing consists of subsequent convolutions of
the mesh with a binomial filter.

In order to have an orientation-invariant descriptor, each
keypoint is assigned a canonical orientation. Therefore the
normal vectors in the neighborhood of each keypoint are
projected onto the tangent plane. The canonical orientation
is the most frequently occurring orientation in the tangent
plane (more details in [MFK*10]).

The meshSIFT algorithm then describes the neighbour-
hood of every scale space extremum in a feature vector con-
sisting of concatenated histograms of shape indices and slant
angles. The 144D feature vectors are matched by comparing
the angle in feature space. If the ratio between the first and
the second smallest angle is smaller than 0.9, a match is ac-
cepted; other matches are rejected. Finally, the number of
matches is used as similarity between two shapes. The simi-
larity matrix is converted into a dissimilarity matrix by sub-
tracting the matrix from the maximum number of matches.

5.8.3. Fusion (SD-GDM-meshSIFT)

To combine the SD-GDM approach with the meshSIFT ap-
proach, the corresponding dissimilarity matrices are first
normalized using min-max normalization. Finally they are
fused using the sum rule.

(© The Eurographics Association 2011.

5.9. Bag-of Densely-Sampled Local Visual Features, by
H. Tabia and M. Daoudi

The method consists of the following four steps
(see [TDVC11] for more details):

1) Detection and description of 3D patches: Let v; and
vy be the farthest vertices (in the geodesic sense) on a con-
nected triangulated surface S. Let f; and f> be two scalar
functions defined on each vertex v of the surface S, as fol-
lows: f1(v) =d(v,v) and f>(v) = d(v,v,) where d(x,y) is
the geodesic distance between points x and y on the surface.
In a critical point classification, a local minimum of f;(v)
is defined as a vertex vy, such that all its level-one neigh-
bors have a higher function value. While, a local maximum
is a vertex vmgx such that all its level-one neighbors have
a lower function value. Let Fj be the set of local extrema
(minima and maxima) of f; and F, be the set of local ex-
trema of f,>. The set of feature points F of the triangulated
surface S is defined as the closest intersecting points in the
sets F1 and F;. Given a 3D object O, for every feature point
F; € F, adescriptor P(F;) is defined for F; and the geodesic
distances {d(F;,v);Vv € V} with V is the set of all vertices
on the surface are calculated. Consider f the distribution of
vertices according to these distances, the descriptor P(F;)
is defined as a R-dimensional vector: P(F;) = (p1,...,PR)
where p, = f(rr/fl)/Rf(d)Sd. P(F;) is a R-bin histogram of
vertex distribution of geodesic distances measured from F;.
In order to make the descriptors comparable between differ-
ent shapes, the geodesic function d is scaled by the geodesic
diameter of the shape.

2) Shape vocabulary construction: The vocabulary used
in this method is a way of constructing a feature vector that
relates descriptors in 3D-object query to descriptors previ-
ously seen in the indexing step. The k-means algorithm is
chosen for clustering. In order to determine the parameter
k, the k-means method is implemented several times with
different number of desired k, and then the final clustering
giving the lowest empirical risk is selected.

3) Shape histogram computing: Descriptors in the 3D ob-
ject are assigned to the nearest neighbor keyshapes in the vo-
cabulary. Then each object is represented using an histogram
whose " bin contains the number of i’ keyshapes in that
object.

4) Shape matching: Compare two objects, treating their
bag of keyshapes as feature vectors, and thus determine their
dissimilarity by calculating L, difference between two his-
tograms.

6. Results

This section presents and compares the results of 25 runs
submitted by 9 groups. Given the 25 dissimilarity matrices,
we carry out evaluations for these methods not only on the
average performance of the whole database, but also on the
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Table 1: Retrieval performance of all runs evaluated using
five standard measures on the whole database.

PARTICIPANT METHOD NN FT ST E DCG
FOG 0.968]0.817]0.903|0.660 [ 0.944

Kawamura FOG+MR 0.955]0.875(0.945]0.694 | 0.957
FOG+MRR 0.960]0.881]0.9460.696 [ 0.959

T-NoNorm-40Coef | 0.955[0.672|0.803|0.579] 0.897

T-r01-40Coef 0.953]0.641(0.783|0.562 | 0.889
Lavoué T-r01-50Coef 0.965)0.631(0.774]0.556 | 0.886
T-r015-40Coef | 0.963[0.638]|0.777|0.559] 0.888
T-r015-50Coef |0.957/0.639]0.776|0.557 | 0.886

Lian MDS-CM-BOF 0.995]0.913]0.969|0.717[0.982
Nguyen BOGH 0.993]0.811]|0.884|0.647 [ 0.949
Ohkita LSF 0.995]0.799(0.863]0.633]|0.943

MLSF 0.987]0.809]0.879|0.643[0.948

OrigM-n10-norm1 | 0.9920.871]0.935|0.685] 0.967
OrigM-n12-norm1 | 0.9970.890] 0.952 | 0.696 | 0.975
Reuter OrigM-n12-normA |0.992(0.915]|0.957|0.705] 0.978
OrigM-n15-norm1 | 0.9930.868|0.943|0.690] 0.971
ReM-n12-norm1 |0.990|0.882|0.948|0.693|0.972
Harris3DGeoMap16(0.503]0.304[0.447) 0.306 [ 0.628
Sipiran Harris3DGeoMap32|0.562 [ 0.325]0.466|0.322] 0.654

HKS 0.837]0.406(0.497]0.353]0.730
MeshSIFT 0.995)0.884(0.962 | 0.708| 0.980
Smeets SD-GDM 1.000/0.962]0.984)0.731|0.994

SD-GDM-meshSIFT | 1.000|0.972]0.9900.736 | 0.996
PatchBOF_100 |0.577[0.514]0.728|0.503|0.758
PatchBOF_150 |0.748[0.642]0.833|0.588|0.837

Tabia

result corresponding to each specific class. The evaluation
measures used here are the five quantitative statistics (i.e.
NN, FT, ST, E, and DCG) and the Precision-recall curves
mentioned in Section 3.

Table 1 lists the retrieval accuracies of all 25 methods
(or methods with different settings) evaluated on the whole
database. We observe that most of these methods perform
well in this track. For example, DCG values of 15 runs are
greater than 0.940 and 20 runs have NN values that are above
0.950. In Figure 6, we also provide column charts to intu-
itively compare the best results of each group evaluated us-
ing five quantitative measures, respectively. As we can see
from Figure 6, Smeets’s SD-GDM-meshSIFT clearly out-
performs all other algorithms, while the second and third
best methods are not so obvious. Considering the values of
NN and FT, Reuter’s methods get better performance than
Lian’s, but if we base the evaluation on ST, E, and DCG,
Lian’s MDS-CM-BOF would take the second place. Simi-
lar observations can be made from Figure 7, which shows
Precision-recall curves of the best runs submitted by each
group on the whole database.

Figure 8 shows the Precision-recall curves of the best
runs of each group measured for selected 12 classes in the
non-rigid database. We find that none of these methods per-
forms best for all kinds of objects. For instance, Smeets’s
SD-GDM-meshSIFT obtains the best results when searching
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Figure 6: Column charts of the best retrieval accuracies of
each group evaluated on the whole database using five stan-
dard measures, respectively.

for lots of categories but not ant, paper, spider models, etc.,
while although Tabia’s PatchBOF_150 performs worst in
the retrieval of alien models, it outperforms others for lamp
models. As shown in Figure 2, our database contains a set of
models which have similar overall appearances but belong
to various categories because they are different in the details
of local regions or/and topological structures. This makes
the new benchmark more challenging than other non-rigid
3D databases. However, as we can see from Figure 8, the
challenge can be well resolved by several algorithms used in
this track. For example, Lian’s MDS-CM-BOF are able to
perfectly discriminate two types of bird models (i.e., birdl
and bird2), which have slightly different skeletons, while
Smeets’s SD-GDM-meshSIFT obtains considerably high re-
trieval accuracies for the bird models as well as the human
models (i.e., man and woman) that possess dissimilar fea-
tures based on gender. Generally speaking, most of these

(© The Eurographics Association 2011.
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Figure 8: Precision-recall curves of the best runs of each participant evaluated for 12 different classes, respectively.
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Figure 7: Precision-recall curves of the best runs of each
group evaluated for the whole database.

methods (e.g., Smeets’s SD-GDM-meshSIFT) work well for
every class in this database, as their precision-recall curves
all in the top right parts of these figures.

(© The Eurographics Association 2011.

Analyzing the methods run in this track, we find that the
most popular approach (15 runs) is to employ the bag-of-
features method to quantize a model’s local features into
a word histogram. There are also some methods (2 runs
including Smeets’s meshSIFT and Sipiran’s HKS) that ex-
tract salient local features and match them directly to com-
pare 3D shapes. While Reuter’s ShapeDNA (5 runs) and
Smeets’s SD-GDM are based on isometry-invariant global
properties of 3D models. Other methods (i.e., Lian’s MDS-
CM-BOF and Smeets’s meshSIFT) are insensitive against
various isometric transformations mainly due to the utiliza-
tion of 3D Canonical Forms. We also observed that, the
combination of several different kinds of methods can re-
sult in better retrieval accuracies (e.g., Smeet’s SD-GDM-
meshSIFT), and it is possible to further improve perfor-
mance by applying some unsupervised Machine Learning
algorithms (e.g., Manifold Ranking used in Kawamura’s
FoG+MR and FOG+MRR).

Due to the page limit of the conference paper, here, we
are not able to present and discuss more results, which can
be found at the track’s official website [SHR], where the new
Non-rigid 3D Shape Benchmark and the evaluation code are
also freely-available for academic use.
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7. Conclusion

In this paper, we first presented the background of non-rigid
3D shape retrieval. Next, we mentioned how to construct the
new database and how to evaluate retrieval performance for
the SHREC’11 Track: Shape Retrieval on Non-rigid 3D Wa-
tertight Meshes. Afterwards, we briefly described all meth-
ods (25 runs) used by 9 groups who successfully participated
in this track. Finally, experimental results were presented to
compare the effectiveness of different algorithms.

The non-rigid track organized this year is the second
attempt in the history of SHREC to specifically focus
on the performance evaluation of non-rigid 3D shape re-
trieval algorithms. Compared to the first non-rigid SHREC
track [LGF"] (200 models and 3 groups) we organized in
2010, both the size of database (600 models) and the number
of participants (9 groups) tripled this year, which indicates
that more and more researchers have become interested in
analyzing non-rigid 3D shapes. We believe that, with such a
large number of participants taking part in the track, meth-
ods described in this paper most likely represent the state-of-
the-art in this important research direction, and we hope that
the new benchmark will further promote the investigation of
non-rigid 3D shape retrieval.

Disclaimer

Any mention of commercial products or reference to com-
mercial organizations is for information only; it does not
imply recommendation or endorsement by NIST nor does
it imply that the products mentioned are necessarily the best
available for the purpose.
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