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Abstract
In this paper we present the results of the 3D Shape Retrieval Contest 2011 (SHREC’11) track on generic shape
retrieval. The aim of this track is to evaluate the performance of 3D shape retrieval algorithms that can operate
on arbitrary 3D models. The benchmark dataset consists of 1000 3D objects classified in 50 categories. The 3D
models are mainly classified based on visual shape similarity and each class has equal number of models to reduce
the possible bias in evaluation results. Two groups have participated in the track with six methods in total.

Categories and Subject Descriptors (according to ACM CCS): I.5.4 [Pattern Recognition]: Applications—Computer
vision; H.3.3 [Computer Graphics]: Information Systems—Information Search and Retrieval

1. Introduction

In this paper, we report the results of six 3D retrieval algo-
rithms tested in the generic shape retrieval track of SHREC
2011, held in conjunction with the fourth Eurographics
Workshop on 3D Object Retrieval. The Generic 3D Shape
Benchmark, we provided for this track, is suitable for 3D re-
trieval algorithms that do not require any assumption on the
query and target models, besides being complete. Many of
the models in large 3D repositories and those circulating in
the Internet don’t meet criteria such as being oriented, man-
ifold or watertight triangular meshes. For some models, due
to their nature, and modeling necessities, these criteria are
impossible to meet, such as a CAD model of a car with many
disconnected components and internal structures. Therefore,
there is an ongoing need for effective retrieval algorithms
which can operate on all kinds of complete 3D meshes, in-
cluding those referred to as "polygon soups" [FMK∗03].

2. Dataset

The dataset consists of 1000 models, acquired from ma-
jor 3D repositories on the Internet. The dataset is based
on two previous NIST efforts to establish a Generic 3D
Shape Benchmark. 800 models are from the work described
in [FGLW08], which were also used in the SHREC’09 track:
Generic Shape Retrieval [GDA∗09], and the 200 models

are from the dataset of the SHREC’10 Track: Generic 3D
Warehouse [VGD∗10]. We have obtained permission to re-
distribute the models for research purposes. There are 50
classes defined with respect to their semantic categories (Ta-
ble 1), and each class contains the same number of 3D mod-
els (20 models). This reduces the possible bias in evaluation
results; i.e. one method performing better for certain types
of models is not favored due to the higher number of models
in that category. The file format to represent the 3D models
is the ASCII Object File Format (*.off).

Table 1 gives the labels of the categories, most of which
correspond to man-made objects. Mostly, the models are not
acquired via scanning and reconstruction, but created using
modeling tools such as CAD. Therefore, the resolution vary
significantly among models, surface normals are not con-
sistent among and within models, and the models are far
from being manifold or watertight surfaces. This is typical
for most of the models residing in online repositories such
as Google 3D Warehouse.

3. The Task and Performance Evaluation

The participants submit a 1000× 1000 distance matrix per
method. The matrix gives the pairwise dissimilarity fig-
ures of all the possible model pairs in the dataset. Using
the dissimilarity matrices provided by the participants, we
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Bird Fish NonFlyingInsect
FlyingInsect Biped Quadruped
ApartmentHouse Skyscraper SingleHouse
Bottle Cup Glasses
HandGun SubmachineGun Guitar
Mug FloorLamp DeskLamp
Sword Cellphone DeskPhone
Monitor Bed NonWheelChair
WheelChair Sofa RectangleTable
RoundTable Bookshelf HomePlant
Tree Biplane Helicopter
Monoplane Rocket Ship
Motorcycle Car MilitaryVehicle
Bicycle Bus ClassicPiano
Drum HumanHead ComputerKeyboard
TruckNonContainer PianoBoard Spoon
Truck Violin

Table 1: 50 classes of the generic dataset.

based our evaluations on six standard metrics widely used
by 3D model retrieval community: Precision-Recall curve,
Nearest Neighbor (NN), First-Tier (FT), Second-Tier (ST),
E-measure (E), and Discounted Cumulative Gain (DCT)
[SMKF04].

4. Participants

Two groups have participated in SHREC’11 track on generic
shape retrieval. The participants and their methods can be
listed as follows:

• P. Daras, A. Axenopoulos, G. Litos, and S. Manolopoulou
from Centre for Research and Technology Hellas, Greece,
participated with two methods (described in Section
5): 1) COMBINED-CMVD-STT-DSR, 2) COMBINED-
CMVD-STT-DSR-LE

• K. Goto, T. Yanagimachi, Y. Kurita, S. Kawamura, T.
Furuya, and R. Ohbuchi from University of Yamanashi,
Japan, participated with four methods (described in Sec-
tion 6: 1) DSIFT, 2) E0VF, 3) EVF, 4) EVF-MR

5. 3D Object Retrieval combining View-based and
Volumetric Information

The proposed unified framework is a combination of three
3D object retrieval approaches: the Compact Multi-View
Descriptor (CMVD [DZTS09], the Spherical Trace Trans-
form (STT) [ZDA∗07] and the Depth-Silhouette-Radial-
EXTent descriptor (DSR) [Vra04]. Moreover, two novel fea-
tures are introduced in order to improve the retrieval per-
formance: The first is a new method for rotation estimation
and the second is a manifold learning approach based on
Laplacian Eigenmaps. In the following subsections, a brief
description of each method is given.

5.1. Rotation Estimation

During preprocessing, both CMVD and DSR require a ro-
tation estimation step, since the 3D object may have an ar-
bitrary orientation. In the proposed framework, a new Com-
bined Pose Estimation (CPE) method is introduced, which
intuitively merges the well-known Continuous PCA (CPCA)
[Vra04] with plane symmetry and rectilinearity. It must be
noted here that STT does not require rotation estimation
since it is a rotation-invariant descriptor.

As a first step, CPCA is applied to the input 3D object
to produce a first pose estimation. Then, the reflection sym-
metry for the three CPCA-coordinate planes (0xy,0xz,0yz)
is computed [CVB09]. If symmetry is observed in two or
three coordinate planes, the transformation is kept as it is
and the process terminates. In case symmetry is observed in
only one or zero coordinate planes, then, the algorithm pro-
ceeds to a correction step based on rectilinearity [LRS10].
The outcome of this step is finally kept as the result of the
CPE method.

5.2. Compact Multi-View Descriptor

After the pre-processing step, a set of uniformly distributed
views are extracted. The viewpoints are chosen to lie at the
18 vertices of a regular 32-hedron. The 2D image types
are binary images (black/white images). Three rotation-
invariant functionals are applied to the views to produce the
descriptors: 1) 2D Polar-Fourier Transform, 2) 2D Zernike
Moments, and 3) 2D Krawtchouk Moments. A more de-
tailed description of the extraction of these 2D functionals
is available in [DZTS09]. The number of descriptors per
view, ND is determined experimentally, and is equal to ND =
NFT + NZern + NKraw, where NFT = 78, NZern = 56, and
NKraw = 78. The CMVD framework measures the distance
between two 3D objects by summing up the L1-distances be-
tween the descriptors of their corresponding pairs of views.

5.3. Spherical Trace Transform

Every 3D object is expressed in terms of a binary volumetric
function. In order to achieve translation invariance, the cen-
ter of mass of the 3D object is calculated and the model is
translated so that its center of mass coincides with the origin
of the coordinates system. Scaling invariance is also accom-
plished by scaling the object in order to fit inside the unit
sphere. Then, a set of concentric spheres is defined. For ev-
ery sphere, a set of planes which are tangential to the sphere
is also defined. Further, the intersection of each plane with
the object’s volume provides a spline of the object, which
can be treated as a 2D image.

Next, 2D rotation invariant functionals F are applied to
this 2D image, producing a single value. Thus, the result
of these functionals when applied to all splines, is a set of
functions defined on every sphere whose range is the results
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of the functional. Finally, a rotation invariant transform T
is applied on these functions, in order to produce rotation
invariant descriptors. For the needs of the SHREC, the im-
plemented functionals F are the 2D Krawtchouk moments,
and the 2D Zernike Moments, while the T function is the
Spherical Fourier Transform.

A more detailed description of the extraction of these de-
scriptors is available in [ZDA∗07]. The dimension of de-
scriptor vectors is NZernike = 1080 for the descriptors based
on the 2D Zernike Moments and NKrawtchouk = 1080 for the
descriptors based on the Krawtchouk 2D functional. For de-
scriptor matching, the Minkowski L1 distance is computed
for a pair of descriptor vectors.

5.4. Depth-Silhouette-Radial-Extent descriptor

The DSR descriptor was introduced in [Vra04]. It combines
the Depth Buffer descriptor, the Silhouette descriptor and the
Radialized Spherical Extent function.

As a preprocessing step, CPCA is applied to the 3D ob-
ject. In order to extract the 2D views, the 3D object is pro-
jected perpendicularly on the coordinate hyperplanes. Three
silhouette images and six depth buffer images are extracted.
In the case of silhouette images, a 1D FFT transform is ap-
plied to the contour which approximates the silhouette. This
descriptor is invariant to rotation of the 2D view. In the case
of depth buffer images, a 2D FFT transform is applied to
the depth image. In the Radialized Spherical Extent descrip-
tor, the 3D model is described by a spherical function which
decomposes the model into a sum of concentric shells and
gives the maximal distance of the model from the center of
mass as a function of angle and the radius of the equivalent
shell. The spherical function is represented by spherical har-
monics coefficients. The above descriptors are concatenated
in order to form a single descriptor vector for each 3D object.

5.5. Manifold Learning based on Laplacian Eigenmaps

The overall dissimilarity between two 3D objects A and B
is a weighted sum of the dissimilarities of each descriptor
separately:

dis(A,B) = wCMV D disCMV D(A,B)
+ wST T disST T (A,B)
+ wDSR disDSR(A,B)

(1)

where wCMV D = 0.5, wST T = 0.2, wDSR = 0.3.

The dis(A,B) for all pairs of models in the SHREC
database were used to create the dissimilarity matrix. This
dissimilarity matrix corresponds to the output of the com-
bined method referred to as COMBINED-CMVD-STT-
DSR.

The method referred to as COMBINED-CMVD-STT-
DSR-LE has an additional step involving a manifold learn-
ing method based on Laplacian Eigenmaps, which is used to

Figure 1: The EVF is based on the BF-DSIFT [FO09]. Un-
like BF-DSIFT, which used depth image only, the EVF uses
more than one kind of rendering methods with the intet of
extracting richer local, multi-scale, visual features.

improve the retrieval accuracy. The method creates an adja-
cency matrix W as follows:

Wi j =

{
1 if j ∈ k−neighbours of i,
0 otherwise .

(2)

The Laplacian Eigenmaps method [BN03] creates a feature
space of lower-dimension, where each 3D object is repre-
sented by an l-dimensional point. In our case, the feature
space is of dimension l = 40. Then the dissimilarity between
two 3D objects of the database is calculated by applying L2
distance to their 40-dimensional feature vectors.

6. Expressive Visual Features (EVF)

The Expressive Visual Features (EVF) algorithm is an
appearance-based method for comparing and retrieving 3D
shapes. The EVF is based on the BF-DSIFT algorithm by
Furuya et al [FO09].

The BF-DSIFT is designed for a diverse range of shape
representations, including B-Rep solid, point set and poly-
gon soup. So far as a shape representation can be rendered
as surfaces, it can be compared. In addition, the BF-DSIFT
is able to handle non-rigid or articulated shapes in addition
to rigid shapes without any change. This is because a set of
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local, multi-scale, rotation invariant visual features Scale In-
variant Feature Transform (SIFT) [Low04] extracted from
rendered images are integrated into a feature vector per 3D
model by using bag-of-features method. The bag-of-features
integration does not employ location information attached to
each local feature.

While quite capable, the BF-DSIFT, sometimes fails to
perform well on a database containing certain kind of shape
models. One of the reasons is the interaction between the
SIFT feature and depth images used for feature extrac-
tion. SIFT feature extracts scale, position, and orientation
of change in gray level values in the image. A range image
of a 3D model has clear and well defined contours, but of-
ten lacks features, that are, change in pixel values, inside the
shape. The lack of feature inside a 3D model is exactly the
reason to employ dense sampling at random locations on the
image, instead of using the interest point detector of built
into the original SIFT. Dense, random sampling forces SIFT
features to be extracted from around the points at which no
significant change in intensity is found. Even with the dense
and random sampling of BF-DSIFT, however, there are fea-
tures that are not easy to extract.

The EVF aims to alleviate the problem stated above by
introducing multiple rendering schemes. The EVF renders a
3D model by using multiple rendering techniques for captur-
ing rich and diverse set of features.

For SHREC 2011 Generic Shape Retrieval track, the
depth and silhouette renderings are employed. The four dif-
ferent methods tested on the Generic Dataset are 1) DSIFT
which corresponds to the algorithm described in [FO09], 2)
E0VF which uses silhouette images only, 3) EVF which is
a combination of silhouette and range images, and 4) EVF-
MR, which uses manifold ranking [ZBL∗04] on the EVF
feature for the distance metric learning [OF10].

The EVF combines the two feature vector per 3D model
by using distances computed from them, as indicated in the
Figure 1. Note that the EVF (as well as the DSIFT included
as a reference) are still based on bag-of local visual features,
and retains the invariance against articulation and deforma-
tion. If we were to add a global feature, as in the 1SIFT de-
scribed in [OF10], the retrieval performance could have been
higher.

7. Results

Table 2 gives the scalar performance measures of the six
methods. The COMBINED-CMVD-STT-DSR-LE method
proposed by Daras et al. outperforms all the other meth-
ods with respect to the scalar measures other than the
Nearest Neighbor. In terms of Nearest Neighbor, the
COMBINED-CMVD-STT-DSR achieves the best perfor-
mance. The COMBINED-CMVD-STT-DSR-LE method is
followed by COMBINED-CMVD-STT-DSR.

Figure 2: Precision-Recall curves of the methods.

In Figure 2, the precision-recall diagrams of all partic-
ipating methods are presented. The COMBINED-CMVD-
STT-DSR has similar performance to DSIFT and EVF meth-
ods. More specifically, the COMBINED-CMVD-STT-DSR
is slightly better for recall values up to 0.3, while DSIFT
and EVF are slightly better for recall values higher than 0.4.
When the Laplacian Eigenmaps method is applied to the
combination of CMVD, STT and DSR, the performance is
significantly improved.

As for the SIFT-based methods, silhouette images (E0VF)
by itself is outperformed by the original DSIFT, but the com-
bination of silhouette and range images (EVF) is comparable
to the DSIFT for this dataset and queries. For this bench-
mark, the EVF performed about as well as DSIFT. For other
dataset, however, EVF could perform better.

8. Conclusions

In this paper, we have described and compared the perfor-
mance of six algorithms submitted by two research groups
that participated in this track. Based on all the perfor-
mance evaluation measures, except for the NN, Daras et
al.’s COMBINED-CMVD-STT-DSR-LE method performed
best.
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Table 2: Retrieval performance of the methods.
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