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Abstract

“What is the difference between a cup and a door?” These kinds of questions have to be answered in the context
of digital libraries. This semantic information, which describes an object on a high, abstract level, is needed in
order to provide digital library services such as indexing, markup and retrieval. In this paper we present a new
approach to encode and to extract such semantic information. We use generative modeling techniques to describe
a class of objects: each class is represented by one algorithm; and each object is one set of high-level parameters,
which reproduces the object if passed to the algorithm. Furthermore, the algorithm is annotated with semantic
information, i.e. a human-readable description of the object class it represents.
We use such an object description to recognize objects in real-world data e.g. laser scans. Using an algorithmic
object description, we are able to identify 3D subparts, which can be described and generated by the algorithm.
Furthermore, we can determine the needed input parameters. In this way, we can classify objects, recognize them
semantically and we can determine their parameters (cup’s height, radius, etc.).

Categories and Subject Descriptors (according to ACM
CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—H.3.1 [Information Storage and Re-
trieval]: Content Analysis and Indexing—G.1.6 [Numerical
Analysis]: Optimization—

1. Introduction

With increasing number of (3D) documents, digital library
services become more and more important. A digital library
provides markup, indexing, and retrieval services based on
metadata. In the simplest case, metadata is of the Dublin
Core type [Ini95] (title, creator/author, time of creation, etc).
This is insufficient for large databases with a huge number
of 3D objects, because of their versatility and rich structure.
Scanned models are used in raw data collections, for doc-
umentation archival, virtual reconstruction, historical data
analysis, and for high-quality visualization for dissemina-
tion purposes [SUF07]. Navigation and browsing through
the geometric models should be possible not only in 3D,
but also on the semantic level. This requires higher-level se-
mantic information. Semantic questions (“How many win-
dows does this facade have?”, “How many steps do these
stairs have?”, etc.) cannot be answered, if the library sim-
ply treats 3D objects as binary large objects (BLOB). The

need for semantic information becomes immediately clear
in the context of electronic data exchange, storage and re-
trieval [Fel01, FSK07].

2. Object Descriptions

The problem of 3D semantic enrichment is closely related to
the shape description problem [May11]: How to describe a
shape and its structure on a higher, more abstract level?

2.1. Description by Definition

The traditional way of classifying objects, pursued both in
mathematics and, in a less formal manner, in dictionaries, is
to define a class of objects by listing their distinctive proper-
ties:

cup – a small, open container made of china, glass,
metal, etc., usually having a handle and used chiefly
as a receptable from which to drink tea, soup, etc.

http://dictionary.reference.com

This approach is hardly realizable because of the fact that
definitions cannot be self-contained. They depend on other
definitions (e.g., container, handle, receptable, . . . ), which
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Figure 1: The example data set consists of twelve laser-scanned cups made of porcelain. Each scanned cup comprehends
between 15 573 (small espresso cup) and 130 973 triangles (big mug). As the real cups have clean and shiny surfaces, they are
difficult to scan. The scan results are noisy and not-cleaned-up meshes with many holes. In this illustration the surfaces are
rendered semi-transparent, so that incomplete parts (with missing inner / outer surface) appear brighter than complete parts.
Please note, each subimage is scaled to a common bounding box.

leads to circular dependencies that cannot be resolved au-
tomatically by strict reasoning, but rely on intuitive under-
standing at some point.

2.2. Description by Example

An alternative, non-recursive approach for describing shape
uses examples. Each entry in a picture dictionary is illus-
trated with a photo or a drawing. This approach is widely
used, for example in biology for plant taxonomy. It avoids
listing an exhaustive list of required properties for each en-
try. However, it requires some notion of similarity, simply
because the decision whether object x belongs to class A or
B requires measuring the closeness of x to the exemplars
a ∈ A resp. b ∈ B. This decision can be reached by a clas-
sifier using statistics and machine learning [Bis07,UB05]. A
good survey on content-based 3D object retrieval is provided
by Benjamin Bustos et al. [BKSS07]. Statistical approaches
clearly have their strength in discriminating object classes.
However, feature-based object detection, e.g., of rectangular
shapes, does not yield object parameters: width and height of
a detected rectangle must typically be computed separately.

2.3. Shape Analysis

To describe a shape and its construction process, its inner
structure must be known. Structural decomposition is well
in line with human perception. In general, shapes are rec-
ognized and coded mentally in terms of relevant parts and
their spatial configuration or structure [KW05]. One idea
to operationalize this concept was proposed, among oth-
ers, by Masaki Hilaga [HSKK01], who introduces the Mul-
tiresolution Reeb Graph, to represent the skeletal and topo-
logical structure of a 3D shape at various levels of reso-
lution. Structure recognition is a very active branch in the
field of geometry processing. The detection of shape regu-
larities [PMW∗08], self-similarities [BWS10] and symme-
tries [MGP06, MGP07] is important to understand a 3D
shape.

To summarize, structural decomposition proceeds by pos-
tulating that a certain type of general regularity or structure
exists in a class of shapes. This approach clearly comes to its
limits when very specific structures are to be detected, i.e.,
complicated constructions with many parameter interdepen-
dencies.
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2.4. Description by Algorithm

A possibility to describe a shape is realized by the genera-
tive modeling paradigm [ÖK08, USF10]. The key idea is to
encode a shape with a sequence of shape-generating opera-
tions, and not just with a list of low-level geometric primi-
tives. In its practical consequence, every shape needs to be
represented by a program, i.e., encoded in some form of pro-
gramming language, shape grammar [MWH∗06], modeling
language [Hav05] or modeling script [Aut07].

3. Generative Modeling and Semantic Enrichment

To encode a shape we use the “definition by algorithm” ap-
proach based on a scripting language: Each class of objects
is represented by one algorithm M. Furthermore, each de-
scribed object is a set of high-level parameters x, which
reproduces the object, if an interpreter evaluates M(x). As
this kind of modeling resembles programming rather than
“designing”, it is obvious to use software engineering tech-
niques such as versioning and annotations. In this way,
model M may contain a human-readable description of the
object class it represents.

This encoding of semantic information can be used by
our algorithm to enrich 3D objects semantically: the algo-
rithm starts with a point cloud P and a generative model
M. Without user interaction it determines a parameter set
x0, which minimizes the geometrical distance between P
and M(x0). This distance d can be interpreted as a multidi-
mensional error function of a global optimization problem.
Therefore, standard techniques of function minimization can
be used. Having found the global minimum x0, the geomet-
ric distance d(P,M(x0)) can be interpreted. A low value cor-
responds to a perfect match; i.e. the point cloud P is (at
least partly) similar to M(x), whereas a high value indicates
no similarity. Consequently, the presented approach is able
to semantically recognize instances of generative objects in
real data sets.

As the computational complexity of global optimization
depends on the dimensions of the error function, our ap-
proach uses a hierarchical optimization strategy with coarse
model descriptions and few parameters at the beginning and
detailed model descriptions at the end. This multi-step opti-
mization determines free parameters successively, fixes them
and introduces new parameters. This process stops, if the end
of the hierarchy is reached, or if high error values indicate no
object similarity.

In contrast to related work on fitting algorithms – such as
“Creating Generative Models from Range Images” by Ravi
Ramamoorthi and James Arvo [RA99] – our approach can
classify data semantically. Although Ravi Ramamoorthi and
James Arvo also use generative models to fit point clouds,
they modify the generative description during the fitting pro-
cess. As a consequence the optimization can be performed

locally with a computational complexity, which is signifi-
cantly reduced. But starting with the same generative de-
scription to fit a spoon as well as a banana does not allow
to generate or preserve semantic data.

4. Proof of Concept

The input data sets of our algorithm are a point cloud P and a
generative model M. Then, the algorithm answers the ques-
tions

1. whether the point cloud can be described by the genera-
tive model and if so,

2. what are the input parameters x0 such that M(x0) is a
good description of P.

To demonstrate this algorithm we laser-scanned twelve cups
and scripted a generative model of a cup, which takes 15
input parameters: six parameters describe its position and
orientation, nine parameters describe its attributes (radius,
height, . . . ). The scans are visualized in Figure 1 whereas the
generative model is sketched in Figure 2. The 15 parameters
of the generative model are determined using three hierar-
chical levels.

1. The first level determines the cup’s base point (x,y,z) and
its orientation (α,β), as well as its height h, radius r, and
shape. At this level the cup is rotationally symmetric;
therefore, position and orientation only need five instead
of six parameters. The shape parameter is used in two

(x,y,z)

(α,β,γ)

r

h

h1
h2A h2B

h3A h3B
h4

fin(x) = 1
25 (x+

1
10 )

2+shape

fout(x) = x3+shape

Figure 2: The generative cup model takes 15 parameters:
(x,y,z) is the base point of the cup and (α,β,γ) define its
orientation. Its shape is defined by an inner fin and outer
fout shape function with one free parameter shape. These
functions are rotated around the cup’s main axis and scaled
with the parameters r and h.
The handle is defined via six parameters, which form points
in 2D (the plane of the handle); namely (h1, fout(h1)),
(h2A,h2B), (h3A,h3B), and (h4, fout(h4)). They are the con-
trol points of a Bézier curve. Its tube with a fixed diameter
(10mm) defines the cup’s handle.
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functions fin, fout which define the cup’s inner and outer
shape (see Figure 2).

2. Afterwards, the algorithm determines the parameter γ –
the rotational position of the handle.

3. At the last level, the parameters h1, h2A, h2B, h3A, h3B,
h4 are determined. These parameters define four points
of a Bézier curve. As h1 and h4 are start and end point
of the handle, they are located at (h1, fout(h1)) resp.
(h4, fout(h4)), whereas the second (h2A,h2B) and third
point (h3A,h3B) may float freely within the plane with
orientation γ. The resulting Bézier curve is expanded to a
3D tube with a fixed diameter of 10mm.

This generative model is able to describe the scanned cups
and its parameters can be determined automatically by the
proposed algorithm.

5. Algorithmic Details & Implementation

The scanned data set is a point cloud P = {p1, . . . , pn} and
the generative model can be regarded as a function M(x),
x ∈ G ⊂ Rk. The objective function of our algorithm min-
imizes the distance between the geometric objects P and
M(x); i.e. d(P,M(x)). As the commonly-used least-squares

function_XY_shape
(v_1, ..., v_n)

function_XY_check
(v_1, ..., v_n, 
 ...distances...)

fitting algorithm determines optimal 
instantiation parameters (v_1, ..., v_n)

fitting algorithm calculates distance
values (one-sided, Hausdorff, etc.)

generative check function is called and
evaluated: possible return values are

reject stop continue

Figure 3: This diagram illustrates the fitting process at
one level within the fitting hierarchy. The input parameters
(green) are a point cloud and a generative description of a
shape.

approach weights outlying points, the chosen weighting
function is ψ(x) = 1− e−x2/σ

2
. This function reduces the

disproportional effect of outlying points [Zha97, USF08].
Consequently, the objective function is

f (x) = ψ(d(P,M(x))) !
= min . (1)

5.1. Hierarchical Models

In order to reduce the number of dimensions which are op-
timized at once, we use a hierarchy of model descriptions.
Each level within this hierarchy reuses the parameters al-
ready defined in previous levels and refines the generative
model. In this way the optimization problem is split up in
several smaller problems. At each level of the hierarchy (as
illustrated in Figure 3) a check function (a part of the gener-
ative description) is called and its returned value determines
the following steps of the process. If it is too high, the fit-
ting process is rejected or stopped. Otherwise the process is
continued with the next level’s shape function. The differ-
ence between rejected and stopped is subtle. In both cases
the process has come to an end, but in one case the result is
not acceptable (e.g. no cup found at all in hierarchy level #1)
and in the other case the result is acceptable (e.g. no handle
found in hierarchy level #2).

Using this hierarchy the generative model contains model
descriptions at different levels of resolution. Especially at
early stages within the hierarchy it may not be able to de-
scribe geometry precisely – due to missing parameters. We
solved this problem by introducing fuzzy geometry.

5.2. Fuzzy Models

Fuzzy geometry is a point cloud, in which each point is ex-
tended by a probability value σ. This value defines a normal
distribution in 3D. A fuzzy geometry model consists of all
overlapping normal distributions; i.e. a blurred point cloud.
This technique allows a modeler to describe diffuse geome-
try. For example, in hierarchy level #2 of the cup model, the
orientation of the handle (parameter γ) can be determined

Figure 4: Geometry at a low resolution can be described by
a fuzzy point cloud; i.e. a point cloud in which each point is
normally distributed in space. This illustration shows such a
fuzzy point cloud. Each point is drawn as a semi-transparent
sphere whose radius corresponds to a fixed probability – an
isosurface in probability space.
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before its shape (parameters h1, . . . , h4) is known. At hierar-
chy level #2 the handle is just a very fuzzy, fixed “standard”
handle.

This model description is used for all hierarchy levels ex-
cept those, which may stop the fitting process with an accept-
able solution. These levels produce precise geometric mod-
els based on meshes.

5.3. Inverse Models

The fuzzy models can be interpreted as an energy field –
each point is an energy source whose power is quantified
by σ. According to this interpretation the objective function
“tries” to place the generative model, so that the scan is in a
high energy area. This attraction effect is inverted by a new
geometry description: inverse models. In inverse models the
values of σ are negative and the used weighting function is
1−ψ(x) (see Figure 5). As a consequence, negative points
“try” to maximize the distance to the scan. Inverse models

distance x

ψ(x) = 1− e−x2/σ
2

1

Figure 5: The weighting function ψ(x) (plotted in red) re-
duces the disproportionate effect of outlying points. Further-
more, its bounded codomain 0 ≤ ψ(x) ≤ 1 can be used to
introduce distance-based “penalty” terms 1−ψ(x) (plotted
in blue) in the objective function. These terms are the main
idea of inverse models.

are able to describe objects, which can hardly be described
otherwise. For example, the main feature of a window is:
being a hole in a wall. Using inverse models, this hole can
be filled with negative points, which introduce penalty terms
into the objective function, if placed within wall geometry.

5.4. Distance Calculation

The distance computation is by far the most time-consuming
part of the algorithm. Due to the fact that the weighting func-
tion ψ has an upper limit

∀x ∈ R : ψ(x)< 1 (2)

and converges relatively fast to one (see Figure 5), the objec-
tive function can be evaluated very efficiently. The weighted
distances of points “far away” (depending on a threshold

calculated using σ) can be approximated by ψ ≈ 1 and
do not have to be calculated exactly. Bounding volumes,
partitioning of space, and hashed grid structures speed up
the evaluation of f . Only small distances are evaluated ex-
actly [USK∗07].

5.5. Script Compilation

The previous subsections describe the objective function
f . This function is called by the numerical optimization
routine, which consists of two parts. The first part uses
a statistical optimization routine called Differential Evolu-
tion [SP97]. This algorithm is used to find a “good” starting
point for the second optimization part – a Conjugate Gra-
dients optimization according to Fletcher-Reeves [GMW82,
Fle00, GJH95].

Both parts evaluate the generative script up to several
thousand times. Therefore, we integrated a compiler which
translates the script code to machine code. Furthermore,
the compiler parses the script, creates an abstract syn-
tax tree and differentiates it with respect to input parame-
ters [UKF08, SSUF10a, SSUF10b]; i.e. the optimization can
use both the objective function

f (x1, . . . ,xk) = ψ(d(P,M(x1, . . . ,xk))), xi ∈ R (3)

as well as its partial derivatives ∂ f
∂xi

. The complete genera-
tive model description M(x1, . . . ,xk) (including all possibly
called subroutines) is differentiated with respect to the input
parameters. This differentiating compiler offers the possibil-
ity to use gradient-based optimization routines in the first
place. Without partial derivatives many numerical optimiza-
tion routines cannot be used at all or in a limited way.

6. Results and Conclusions

6.1. Example

The example data set consists of twelve laser-scanned cups
(see Figure 1) and a generative cup description (see Figure
2). The fitting results are visualized in Figure 6. In 11 of
12 cases (92%) the algorithm is able to detect an instance
of the generative cup M. In these cases the cups’ properties
(position, orientation, radius, height, handle shape) are de-
termined with only a small error.

In one case (cup #5) the global optimization routine is
stuck in a local minimum. Despite the local minimum, the
error values are too high, so that the algorithm rejects the
hypothesis of a generative cup. For no apparent reason the
algorithm failed in this case. Further investigations on this
failure are a task of future work. For illustration purposes
Figure 6 (top row, right) shows the last best-fit result of the
optimization which would have been returned, if the algo-
rithm had not stopped and rejected the fitting process.
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Figure 6: The scanned cup (rendered in semi-transparent gray) have been identified as instances of the generative cup descrip-
tion in 11 of 12 cases. In these cases the cups’ properties (position, orientation, radius, height, handle shape) are determined
successfully. Detailed distance measurements are listed in Table 1.
Please note, each subimage is scaled to a common bounding box.

In the other cases, the fitting process has been successful.
Especially, the cups #1 and #12 have been fitted, although
their shapes (the scan is rendered semi-transparent in gray)
are not rotationally symmetric. Cup #1 (Figure 6, top row,
left) has quadratic footprint with beveled edges; cup #12
(Figure 6, bottom row, middle-left) has an octagonal foot-
print. In both cases the generative cup is able to describe
them within a tolerable rate of variance.

Also cup #9 (Figure 6, middle row, middle-right) has been
detected to be a cup, although its shape looks like a busted
paper cup. Its error value passed the threshold of rejection at
the first level, but it did not pass the following ones. There-
fore, the algorithm perfectly identifies a cup without a han-
dle.

The distance values of all cups are listed in Table 1. Dur-
ing the fitting process mainly one-sided distances (from the
generative model to the scan) and Hausdorff distances are
used. While the Hausdorff distance gives an “overall impres-
sion”, the one-sided distances can be used to measure local
fits; e.g. if each point on the generated handle is (in average)
half its diameter away from the scan, then the cup will most
probably not have a handle.

6.2. Contribution & Benefit

In this article we present a shape description approach based
on generative modeling techniques and an algorithm, which
is able to identify instances of a generative description in
real-world data sets. The algorithm demonstrates the proof
of concept.

The main contributions and benefits of this article are
an implementation of a generative shape description ap-
proach including the inverse recognition and indexing prob-
lem. Based on a generative description the algorithm is able
to identify instances of a script and it can determine its call-
ing parameters.

To implement this concept, we used a hierarchical model
description with fuzzy geometry to represent “unknown”
parts of a model (parts which are fitted at lower levels within
the hierarchy). Furthermore, we used inverse models to de-
scribe the absence of geometry. This concept offers the pos-
sibility to formulate “missing” geometry (e.g. a window is a
hole in a wall).

Including our generative compiler with automatic deriva-
tion, our algorithm can evaluate both the objective function
f (x1, . . . ,xk) as well as its partial derivatives ∂ f

∂xi
. This tech-
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one-sided distance one-sided distance one-sided distance Hausdorff
(generative model→ scan) (generative model→ scan) (generative model→ scan) distance

average maximum standard deviation

scan #1 3.372281 mm 8.048851 mm 1.9997352 mm 9.246573 mm
scan #2 3.162463 mm 6.746494 mm 1.8630469 mm 6.800794 mm
scan #3 4.701682 mm 8.877957 mm 2.4739857 mm 10.01246 mm
scan #4 2.355809 mm 8.229928 mm 1.5147543 mm 8.229928 mm
scan #5 – – – 68.26691 mm
scan #6 2.098856 mm 5.484409 mm 1.1627039 mm 14.90319 mm
scan #7 1.751712 mm 5.558793 mm 0.9201700 mm 7.465546 mm
scan #8 2.239976 mm 6.327161 mm 1.3496941 mm 6.327161 mm
scan #9 2.257052 mm 10.77931 mm 1.7870259 mm 10.77931 mm
scan #10 2.258514 mm 6.985035 mm 1.3106395 mm 6.985035 mm
scan #11 3.919888 mm 7.815891 mm 2.1347158 mm 11.44331 mm
scan #12 2.961438 mm 8.685675 mm 1.9820354 mm 8.685675 mm

Table 1: The detailed measurements of the fitted, generated cups. The scan numbers correspond to the visualizations shown in
Figure 6. As cup #5 have been rejected, it does not have sensible distance values. In all other cases, the distance values have
been calculated between a scan and its best-fit generative description.

nique offers the possibility to use standard optimization al-
gorithms to solve the inverse problem efficiently. Each fitting
process (with one scan and one generative hierarchy) takes
about 2-3 minutes one a single PC to finish. These timings
just give an impression of the algorithm’s performance. Due
to open problems it is currently not sensible to run bench-
marks at great length.

6.3. Open Problems and Future Work

An urgent open problem is the algorithm’s failure in test case
#5. As long as this problem is not solved, detailed bench-
marks would not be reasonable. If the problem was caused
by a premature termination of the routine to avoid local min-
ima, the algorithm’s timings would change signifcantly.

In the medium term we will use generative shape descrip-
tions with human-readable annotations in order to index 3D
data. Generative scripts will describe 3D subparts (stairs,
windows, cups, etc.) and the presented algorithm processes
them. It will search for them within the 3D data. Having
found an instance of a generative description, this offline in-
dexing step can copy the human-readable annotation (“This
is a cup.”) into its markup. Afterwards, a search query – per-
formed on the copied textual annotations – can return all
corresponding models. The challenge of this task is the gen-
eralizability of this approach, the concurrence of generative
descriptions and their discriminatory power. We believe that
our approach can be generalized to different kinds of objects.
Nevertheless, the handling of concurrent generative descrip-
tions will be interesting. They may be handled separately (in
order to avoid interdependencies) or joined to one hierarchy
(for performance). We will investigate these questions on a
data base of 3D models in the future.
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