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Résumé

Les systèmes et matériaux mécaniques non linéaires sont largement utilisés dans divers do-
maines. Cependant, leur modélisation et leur conception ne sont pas triviales car elles néces-
sitent une compréhension complète de leurs non-linéarités internes et d’autres phénomènes.
Pour permettre une conception efficace, nous devons d’abord introduire des modèles de cal-
cul afin de caractériser avec précision leur comportement complexe. En outre, de nouvelles
techniques de conception inverse sont également nécessaires pour comprendre comment le
comportement change lorsque nous modifions les paramètres de conception des systèmes mé-
caniques non linéaires et des matériaux. Par conséquent, dans cette thèse, nous présentons
trois nouvelles méthodes pour la modélisation informatique et la conception de systèmes
mécaniques non linéaires et de matériaux.

Dans le premier article, nous abordons le problème de la conception de systèmes mé-
caniques non linéaires présentant des mouvements périodiques stables en réponse à une
force périodique. Nous présentons une méthode de calcul qui utilise une approche du do-
maine fréquentiel pour la simulation dynamique et la puissante analyse de sensibilité pour
l’optimisation de la conception afin de concevoir des systèmes mécaniques conformes avec
des oscillations de grande amplitude. Notre méthode est polyvalente et peut être appliquée
à divers types de systèmes mécaniques souples. Nous validons son efficacité en fabriquant et
en évaluant plusieurs prototypes physiques.

Ensuite, nous nous concentrons sur la modélisation informatique et la caractérisation
mécanique des matériaux non linéaires dominés par le contact, en particulier les matériaux
à emboîtement discret (DIM), qui sont des tissus de cotte de mailles généralisés constitués
d’éléments d’emboîtement quasi-rigides. Contrairement aux matériaux élastiques conven-
tionnels pour lesquels la déformation et la force de rappel sont directement couplées, la mé-
canique des DIM est régie par des contacts entre des éléments individuels qui donnent lieu
à des contraintes de déformation cinématique anisotrope. Pour reproduire le comportement
biphasique du DIM sans simuler des structures à micro-échelle coûteuses, nous introduisons
une méthode efficace de limitation de la déformation anisotrope basée sur la programma-
tion conique du second ordre (SOCP). En outre, pour caractériser de manière exhaustive
la forte anisotropie, le couplage complexe et d’autres phénomènes non linéaires du DIM,
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nous introduisons une nouvelle approche d’homogénéisation pour distiller des limites de dé-
formation à grande échelle à partir de simulations à micro-échelle et nous développons un
modèle macromécanique basé sur des données pour simuler le DIM avec des contraintes de
déformation homogénéisées.

Mots-clés: Vibration non linéaire, systèmes mécaniques non linéaires, méthode
d’équilibre harmonique, mouvements périodiques, cotte de mailles, matériaux discrets
à emboîtement, limitation de déformation, caractérisation mécanique, homogénéisation,
analyse de sensibilité, Gauss-Newton, conception computationnelle.
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Abstract

Nonlinear mechanical systems and materials are broadly used in diverse fields. How-
ever, their modeling and design are nontrivial as they require a complete understanding
of their internal nonlinearities and other phenomena. To enable their efficient design, we
must first introduce computational models to accurately characterize their complex behav-
ior. Furthermore, new inverse design techniques are also required to capture how the behavior
changes when we change the design parameters of nonlinear mechanical systems and materi-
als. Therefore, in this thesis, we introduce three novel methods for computational modeling
and design of nonlinear mechanical systems and materials.

In the first article, we address the design problem of nonlinear mechanical systems ex-
hibiting stable periodic motions in response to a periodic force. We present a computational
method that utilizes a frequency-domain approach for dynamical simulation and the power-
ful sensitivity analysis for design optimization to design compliant mechanical systems with
large-amplitude oscillations. Our method is versatile and can be applied to various types of
compliant mechanical systems. We validate its effectiveness by fabricating and evaluating
several physical prototypes.

Next, we focus on the computation modeling and mechanical characterization of contact-
dominated nonlinear materials, particularly Discrete Interlocking Materials (DIM), which
are generalized chainmail fabrics made of quasi-rigid interlocking elements. Unlike conven-
tional elastic materials for which deformation and restoring forces are directly coupled, the
mechanics of DIM are governed by contacts between individual elements that give rise to
anisotropic kinematic deformation constraints. To replicate the biphasic behavior of DIM
without simulating expensive microscale structures, we introduce an efficient anisotropic
strain-limiting method based on second-order cone programming (SOCP). Additionally, to
comprehensively characterize strong anisotropy, complex coupling, and other nonlinear phe-
nomena of DIM, we introduce a novel homogenization approach for distilling macroscale
deformation limits from microscale simulations and develop a data-driven macromechanical
model for simulating DIM with homogenized deformation constraints.
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Chapter 1

Introduction

Nonlinear mechanical systems and materials are widely used in a diverse range of appli-
cations and tasks due to their fascinating mechanical properties. However, predicting and
designing them is challenging due to their complex nonlinear nature. The recent advance-
ments in 3D printing technology and computation have enabled the development of efficient
digital modeling methods for designing nonlinear mechanical systems and materials. This
approach allows us to iterate and validate designs in a virtual environment, and with the aid
of physical simulation, we can design the desired functioning and mechanical properties of
systems and materials with complex structures and other nonlinear phenomena. Neverthe-
less, designing nonlinear mechanical systems and materials is still a nontrivial problem: 1)
nonlinear mechanical systems and materials are characterized by large deformations, strong
anisotropy, internal contacts, and other inherently nonlinear phenomena that are already
hard to predict and characterize; 2) local design parameters such as mass distribution and
structural geometry have a complex, nonlinear effect on the performance of mechanical sys-
tems and materials. Together, these parameters combine into a high-dimensional design
space that is all but expensive to navigate with trial-and-error exploration. To unlock the
design of nonlinear mechanical systems and materials, we must develop accurate and efficient
models for their simulation so that we can manage and leverage the internal nonlinearities
for their design.

In this thesis, we aim to develop novel techniques for modeling and designing nonlinear
mechanical systems and materials at various levels, as depicted in Fig. 1.1. The first part of
the thesis focuses on designing nonlinear dynamical motions. Specifically, we present a new
computational tool that allows for efficient and accurate design of nonlinear periodic motions
for compliant mechanical systems. In the remaining chapters of the thesis, we explore a new
class of contact-dominated nonlinear materials that are subject to deformation constraints
imposed by contact and display kinematic deformation limits in both in-plane and out-of-
plane deformation. To enable efficient simulation and exploration of potential applications



Figure 1.1 – In this thesis, we model and design nonlinearities at dynamical and kinematic
levels. Specifically, we design nonlinear mechanical systems with nonlinear periodic motions.
Furthermore, we model and characterize nonlinear kinematic deformation limits for a new
class of contact-dominated nonlinear materials by considering micro-, meso-, and macro-
levels.

of these nonlinear materials, we develop new methods for modeling and characterizing their
nonlinear kinematic deformation limits across micro-, meso-, and macro-levels.

1.1. Designing Compliant Mechanical Systems with
Nonlinear Periodic Motions

Compliant mechanical systems are essential for a wide range of applications, and many
researchers have used physics-based simulations to analyze and improve the stability of 3D-
printed flexible structures [Dumas et al., 2015; Zehnder et al., 2016a; Ulu et al., 2017] while
minimizing material use [Lu et al., 2014a; Martínez et al., 2015]. Various methods have
also been proposed to design compliant structures such as thin shells, elastic rods, and de-
formable solids under static equilibrium for different purposes. Designs have varied from
inflatable membranes [Skouras et al., 2014a] to flexible rod meshes [Pérez et al., 2015],
Kirchhoff plateau surfaces [Pérez et al., 2017], and flat, flexible panels for assembling desired
3D shapes [Malomo et al., 2018]. However, to accomplish specified tasks or functions for
compliant mechanical systems, they are always designed to perform specified motions. For
example, Miyashita et al. [2020] designed a compliant mechanism to mimic the walking mo-
tion of horses via an external periodic driving force. Most structures driven by periodic forces
will eventually reach stable steady-state motions, which is also referred to as limit cycle or
periodic motions. Though lots of works design nonlinear mechanical systems with desired
periodic motions, most of them only consider kinematics [Ceylan et al., 2013a; Megaro et al.,
2017] and ignore the dynamics. To consider nonlinear dynamics with periodic motions, a
naive way is using nonlinear time-domain methods, e.g., Newmark time integration. How-
ever, this approach needs to simulate an unknown number of time steps to reach the periodic
motion, which depends on the internal elastic and viscous properties of the structure, ex-
ternal periodic stimuli, and external damping. This makes the inverse design intractable to
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handle because inverting all steps of time integration would become extremely expensive to
compute. Another alternative method for predicting periodic motions is linear modal analy-
sis (LMA), which is a well-known frequency-space method. However, this method is limited
to predicting structures under small-amplitude oscillations. Therefore, in the first project
of the thesis, we aim to develop a new computational tool to design nonlinear mechanical
systems with desired nonlinear periodic motions, as described in Chapter 2.

1.2. Modeling and Characterizing Discrete Interlocking
Materials

Metamaterials are carefully-engineered materials that exhibit unique mechanical proper-
ties and functionalities that cannot be found in nature, e.g., negative Poisson’s ratio [Li et al.,
2020a; Babaee et al., 2013; Qin and Qin, 2020], tunable stiffness [Wang et al., 2021; Chen
et al., 2021; Wang and Sigmund, 2021], and shape morphing in response to mechanical forces
[Overvelde et al., 2016; Li et al., 2021a]. These unusual properties of metamaterials have led
to the development of new applications and products in diverse fields, including medical de-
vices, aerospace applications, and smart clothing, which makes the design of metamaterials a
popular field. Consequently, a plethora of dedicated structures and materials has been intro-
duced in material science and engineering. Lots of works devoted to the design of dedicated
structures, such as mechanism-based [Grima and Evans, 2000; Cui and Ju, 2020], origami-
inspired [Filipov et al., 2015; Tang and Yin, 2017; Zhai et al., 2018], and kirigami-inspired
[Isobe and Okumura, 2016; Hwang and Bartlett, 2018; Zhang and Paik, 2022] metamateri-
als. Researchers in the graphics community have also explored several methods to design
complex fine-scale geometric structures [Schumacher et al., 2015; Panetta et al., 2015] with
isotropic [Martínez et al., 2016], orthotropic [Martínez et al., 2017], and anisotropic [Zehnder
et al., 2017; Schumacher et al., 2018; Martínez et al., 2019] properties.

Here, we consider contact-dominated nonlinear materials, particularly Discrete Interlock-
ing Materials (DIM), which are generalized chainmail fabrics made of quasi-rigid interlocking
elements as shown in Figure 1.2. Unlike traditional materials, DIMs are regular arrangements
of elements connected through interlocking. The dimensions of the elements are chosen in
such a way that they can move freely within a range defined through contact with neigh-
boring elements. This results in nonlinear kinematic deformation limits for both in-plane
and out-of-plane deformations. This fabric-like structure gives DIMs extreme flexibility to
allow materials to adapt to necessary shapes; see Figure 1.2(a). After deforming beyond a
certain threshold, rigidity and elasticity start to appear and the structure will show strong
stiffness to the environmental stimuli; see Figure 1.2(b) and (c). The macroscopic behav-
iors indicated above show DIMs are very particular, biphasic materials that can be applied
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Figure 1.2 – Physical prototypes of DIM deform under different states. (a) The
structure exhibits extreme flexibility. (b) A DIM shows stiff bending response to resist self-
weight under gravity. (c) The chainmail structure presents a strong in-plane stiffness to the
external deformation.

to diverse potential applications, e.g., robotics, orthotics, sportswear, and many other ar-
eas of application. To support such applications, however, we must be able to predict the
macro-mechanical behavior of DIM from their native-scale structure, i.e., element shape and
connectivity. This relation is highly non-trivial as small changes in element shape can change
the macromechanical behavior substantially. To address this problem, we first developed an
efficient anisotropic strain-limiting method to replicate the mesoscopic biphasic behavior
of DIM instead of simulating expensive microscale structures in Chapter 3. Additionally,
to comprehensively characterize strong anisotropy, complex coupling, nonlinear kinematic
deformation limits, and other nonlinear phenomena of DIM, we introduce a novel homog-
enization approach for distilling macroscale deformation limits from microscale simulations
and developed a data-driven macromechanical model for simulating DIM with homogenized
deformation constraints in Chapter 4.
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Figure 2.1 – Our method enables optimization-driven design of compliant mechanical sys-
tems with periodic large-amplitude motions. For this pair of dragon wings, the initial design
(a, b) exhibits only small oscillation response when driven by harmonic forcing at a frequency
of 2.5Hz. Our approach automatically finds optimized design parameters (extra masses at
the trailing edge of the wing) that lead to substantially increased amplitude (c, d).

Abstract. We present a computational method for designing compliant mechanical sys-
tems that exhibit large-amplitude oscillations. The technical core of our approach is an
optimization-driven design tool that combines sensitivity analysis for optimization with the
Harmonic Balance Method for simulation. By establishing dynamic force equilibrium in
the frequency domain, our formulation avoids the major limitations of existing alternatives:
it handles nonlinear forces, side-steps any transient process, and automatically produces
periodic solutions. We introduce design objectives for amplitude optimization and trajec-
tory matching that enable intuitive high-level authoring of large-amplitude motions. Our
method can be applied to many types of mechanical systems, which we demonstrate through
a set of examples involving compliant mechanisms, flexible rod networks, elastic thin shell
models, and multi-material solids. We further validate our approach by manufacturing and
evaluating several physical prototypes.
Keywords: Nonlinear Vibration, Dynamic Motion Design, Harmonic Balance Method,
Mechanical Systems, Periodic Motions, Nonlinear Modes.

2.1. Introduction
From the seismic response of high-rise buildings, to the aeroelastic stability of turbine

blades, and to the micro-vibrations of energy harvesting devices—understanding and control-
ling the behavior of mechanical systems subject to periodic forcing is key to many engineering
applications. Designing for vibrations typically means bracing against resonance, i.e., the
strong increase in oscillation amplitude that occurs when driving a system at its characteristic
frequency. Unless explicitly prevented, resonance can induce increasingly large deformations
that, ultimately, lead to failure. While avoiding resonance is therefore often a main design
goal, in this paper we explore the design of flexible structures that exploit resonance to
produce periodic motion in the form of large-amplitude oscillations.
Modeling Periodic Motion. Most real-world systems will reach a stable steady state
motion—a so called limit cycle—when driven by a periodic force. However, before reaching
its limit cycle, the system goes through a transient process of non-periodic motion whose
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length depends on the complexity as well as the elastic and viscous properties of the system.
One approach to computing limit cycles is to simulate this transient process by numerically
solving the equations of motion until some periodicity condition is met. However, using
such a time-domain approach as a basis for computing system parameters that yield desired
steady state behavior would require inverting a transient process of a priori unknown length,
which is computationally all but intractable.
Frequency-Domain Approaches. A more promising approach for designing limit cycles
is to use frequency-domain methods that directly solve for the system’s steady state behavior
without the need for simulating the transient process. As another advantage, periodicity is
obtained by construction and does not have to be enforced explicitly. Arguably the most
widely used frequency-domain method for vibration analysis is Linear Modal Analysis (LMA)
[Shabana, 1990]: based on the assumption of small-amplitude oscillations, the equations of
motion are linearized around the origin and transformed to frequency space using general-
ized Eigenvalue decomposition. The resulting modal equations decouple and can be solved
efficiently to yield the approximate limit response of the system to excitation at arbitrary fre-
quencies. LMA is particularly well suited when vibrations and resonance are to be avoided
and, hence, the assumption of small oscillations is valid. For compliant mechanisms and
other systems with large-amplitude oscillations and finite rotations, however, nonlinearities
play a critical role and LMA is unable to predict the steady state behavior in such cases.

To embrace nonlinearities from the start, we build our approach on the basis of the
Harmonic Balance Method (HBM)—a nonlinear frequency-domain method that extends to
a wide range of vibration problems [Krack and Gross, 2019]. The basic idea of HBM is to
project the time-continuous equations of motion to a finite-dimensional subspace spanned
by a small number of trigonometric basis functions. These nonlinear basis functions allow
for efficient modeling of nonlinearities in nodal positions, velocities, and forces.
Overview & Contributions. Using HBM as a basis, we propose an optimization-based
design tool that leverages sensitivity analysis to automatically discover design parameters
that best approximate target steady-state behavior. Our method is able to control steady-
state motion based on high-level user input by adjusting mass distribution, stiffness, or shape
parameters of the designs. By performing simulation and design optimization directly in
frequency space, our method avoids long transition times, the need for periodicity constraints,
and other difficulties associated with time-domain approaches. Our method is furthermore
general with respect to mechanical models, and we present examples of planar mechanisms
augmented with elastic elements, rod networks, thin shells, and multi-material solids. We
demonstrate the capabilities of our method on a set of simulation examples and real-world
prototypes that include mechanical legs, compliant mechanisms, and animatronic characters.
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2.2. Related Work
This work aims at designing real-world mechanical systems that exhibit desired large-

amplitude oscillations. To our knowledge, this exact problem has not been considered before,
but there are close ties to several sub-fields of visual computing and engineering.
Designing Mechanical Motion. The problem of designing mechanisms that exhibit de-
sired kinematics has received considerable attention from the visual computing community
in recent years [Coros et al., 2013a; Thomaszewski et al., 2014a; Bächer et al., 2015; Zhang
et al., 2017]. Perhaps closest to our setting is the work by Ceylan et al. [2013a] who opti-
mize for periodic motion of their characters using a frequency-space formulation. However,
their method is purely kinematic and does not consider dynamics. Megaro et al. [2017]
and Takahashi et al. [2019] proposed optimization-based design tools for mechanisms that
are augmented with or partly replaced by compliant elements. While these examples go
beyond pure kinematics, they did not consider dynamics. As one particular application, our
method can be seen as a continuation of these previous works toward the design of compliant
mechanisms that exhibit dynamic, periodic motion.

Few works from the graphics community on fabrication-oriented design have considered
dynamics so far. Notable exceptions include the work by Chen et al. [2017], who propose a
dedicated coarsening approach for optimization-based design of flexible objects with dynamic
motion and contact. Another example is the work by Bächer et al. [2014], who design the
mass distribution of rigid bodies in order to obtain sustained rotational motion. However,
neither of these works considers periodic motion, forced vibrations, or resonance.

The work by Hoshyari et al. [2019] on motion control for robotic characters is related
to our effort in that it predicts oscillations induced by external forcing. However, whereas
their goal is to suppress vibrations by optimizing actuation parameters, we aim at generating
large-amplitude oscillations by optimizing for shape, mass, and material parameters.

In order to create real-world animations of deformable characters, Skouras et al. [2013a]
optimize for multi-material distributions and the parameters of a string-based actuation
system. While we also leverage heterogeneous material distributions for motion control, our
actuation principle is based on resonance induced by harmonic forcing.
Modal Subspaces for Animation. The idea of using modal subspaces for efficient ani-
mation of flexible models in graphics goes back to the early work of Pentland and Williams
[1989]. Due to the inherent inefficiency of linear modal bases to model large rotational dis-
placements, many works have proposed more efficient alternatives using, e.g., modal deriva-
tives [Barbič and James, 2005], higher-order derivative information [Hildebrandt et al., 2011],
or rotation-strain coordinates [Pan et al., 2015]. Adaptive basis selection has also been con-
sidered [Hahn et al., 2014; Kim and James, 2009].
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Compared to the problem of constructing efficient linear bases for large-deformation
simulation, nonlinear bases have not received much attention so far. An exception is the
work of Fulton et al. [2019], who use machine learning techniques to construct nonlinear
subspaces from simulation data. But besides the fact that none of the above approaches
aim at optimization, they are all time-domain methods, meaning that they must simulate
the entire evolution leading up to the steady-state behavior. By building on the Harmonic
Balance Method, our approach is able to sidestep the transient process and thus directly
operate on the steady-state behavior.
Audible Vibrations. Simulating vibrations is also of importance for physics-based sound
synthesis. For instance, Zheng et al. [2011] and Bonneel et al. [2008] used Linear Modal Anal-
ysis (LMA) to efficiently generate sound for rigid body impact. To increase richness and fi-
delity, nonlinear approaches have been investigated for vibrating thin-shell structures [Chad-
wick et al., 2009; Cirio et al., 2018].

In the context of fabrication-oriented design, LMA has been the predominant approach
so far; see, e.g., the works of Umetani et al. [2010] and Bharaj et al. [2015] on metallophones.
Another stream of work in this context has investigated the simulation [Allen and Raghu-
vanshi, 2015] and design [Umetani et al., 2016] of wind instruments and acoustic filters [Li
et al., 2016]. While sound synthesis is concerned with high-frequency, small-amplitude vibra-
tions, we consider the design of mechanical systems with low-frequency but large-amplitude
oscillations.
Nonlinear Vibrations in Engineering. The study of nonlinear vibrations is fundamental
for structural dynamics, fluid structure interaction, aeroelasticity, and many other fields of
engineering. As an extension of LMA beyond the linear regime, nonlinear normal modes are
often used to analyze nonlinear dynamical phenomena [Kerschen et al., 2009]. One approach
to compute steady-state behavior is to use time-domain integration schemes for simulating
the transient process of the system until stable, periodic motion is obtained. An alternative
approach that avoids computing the entire transient process are shooting methods [Peeters
et al., 2009] that simulate only a single cycle while optimizing initial conditions and period
to obtain periodicity.

Instead of enforcing periodicity in the time domain, we leverage the Harmonic Balance
Method (HBM) to directly compute nonlinear periodic motion in frequency space. HBM
is a versatile approach for nonlinear vibration analysis and has been widely used for many
applications including nonlinear circuits [Bandler et al., 1992], fluid dynamics [Hall et al.,
2013], and nonlinear mechanical systems in general [Detroux et al., 2014]. Its basic principle
is to represent motion as a truncated Fourier series composed of periodic, trigonometric
functions with different frequencies and phase offsets. Unlike the shooting method which
already requires optimization for computing steady-state behavior, HBM only requires the
solution of a nonlinear root-finding problem. Moreover, once the steady-state behavior for
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a given driving frequency has been obtained, solutions for different inputs can be computed
efficiently using numerical continuation.

Besides its advantages for solving forward simulation problems, HBM holds great promise
for optimization-based design automation in elasticity and aeroelasticity applications [Engels-
Putzka et al., 2019]. Perhaps closest to our work, Dou and Jensen [2015] combine HBM with
sensitivity analysis to suppress vibrations in a simple beam by minimizing the amplitude at
resonance. While we follow a similar methodology, our goal is not to suppress but to amplify
oscillations and to control large-amplitude motion. To this end, we introduce amplitude
and trajectory objectives that we integrate with forward and inverse design tools based on
sensitivity analysis. Together, these tools enable interactive design space exploration as
well as fully-automated design optimization of compliant systems with low-frequency, large-
amplitude oscillations.

2.3. Theory
Our optimization-based design tool builds on the Harmonic Balance Method, a frequency-

domain method for simulating the steady-state behavior of nonlinear mechanical systems.
We first lay out the parts of the theory as relevant to our setting and briefly describe the
corresponding computational framework.

2.3.1. Equations of Motion in Frequency Space

To arrive at the frequency-domain formulation, we start with the canonical equations of
motion for a forced dynamical system in the time domain,

Mẍ + Dẋ = fint(x) + fext(x,ω,t) , (2.3.1)

where x, ẋ, ẍ ∈ R3n denote nodal displacement, velocity, and acceleration, respectively.
Furthermore, fint(x) is the nonlinear internal force and fext(x,ω,t) is the periodic external
force with frequency ω. Finally, M denotes the mass matrix, D = DαM + DβK(x) is the
Rayleigh damping matrix, and

K(x) = ∂fint(x)
∂x

is the tangential stiffness matrix. To simplify the subsequent derivations, we separate linear
and nonlinear terms as

Mẍ + D̂ẋ = f(x,ẋ,ω,t) , (2.3.2)

where D̂ = DαM and nonlinear forces are summarized as

f(x,ẋ,ω,t) = fint(x) + fext(x,ω,t)−DβK(x)ẋ . (2.3.3)
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Discretization. At the steady-state solution, positions and forces are periodic functions.
We approximate these time-domain functions in frequency-space as finite Fourier series

x(t) ≈ cx
0 +

NH∑
k=1

(
sx

k sin(kωt) + cx
k cos(kωt)

)
(2.3.4)

f(t) ≈ cf
0 +

NH∑
k=1

(
sf

k sin(kωt) + cf
k cos(kωt)

)
(2.3.5)

truncated to the NH-th harmonic. In the above expressions, s∗
k ∈ R3n and c∗

k ∈ R3n are
the vectors of Fourier coefficients decorated with x and f superscripts for positions and
forces, respectively. Velocities v(t) follow through direct differentiation of (2.3.4) and, hence,
require no additional coefficients. We gather position and force coefficients into vectors of
size (2NH + 1) · 3n as

z = [(cx
0)T (sx

1)T (cx
1)T . . . (sx

NH
)T (cx

NH
)T ]T , (2.3.6)

b = [(cf
0)T (sf

1)T (cf
1)T . . . (sf

NH
)T (cf

NH
)T ]T . (2.3.7)

Since the force f(t) in (2.3.3) is a nonlinear function of position and velocity, its Fourier
coefficients b are functions of the position coefficients z and we write b = b(z,ω).

Substituting (2.3.4) and (2.3.5) into (2.3.2) and balancing the harmonic terms with a
Galerkin projection (see Appendix 2.A.1 for details) yields the following set of nonlinear
equations in the frequency domain,

h(z,ω) ≡ A(ω)z− b(z,ω) = 0 , (2.3.8)

where A = diag(0,A1, . . . ,Aj, . . . ,ANH
) is a square, block-diagonal matrix of dimension

(2NH + 1) ·3n describing the linear dynamics of the system. Each of the 6n blocks is defined
as

Aj =
−(jω)2M −jωD̂

jωD̂ −(jω)2M

 . (2.3.9)

Eq. (2.3.8) is the frequency-domain version of (2.3.1), projected to a finite-dimensional
Fourier subspace. Once we find the root z∗ of (2.3.8), we can convert it to the corresponding
time-domain motion x∗ using inverse Fourier transformation.

2.3.2. Evaluation of Nonlinear Forces and Derivatives

We solve the system of nonlinear equations (2.3.8) using Newton’s method. In every
iteration, the solver requires the evaluation of b and the Jacobian ∂h/∂z for a given driving
frequency ω. Since the elastic and viscous forces are nonlinear and often non-polynomial
functions of position and velocity, expressing them directly in frequency space is difficult.
An alternative approach is given by the alternating frequency/time-domain (AFT) tech-
nique [Cameron and Griffin, 1989]. Using discrete Fourier transforms (DFT), motion is first
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converted from frequency space to the time domain where nonlinear forces are then evaluated
and finally converted back to the frequency domain as

z DFT−1
−−−−→ [x(t),ẋ(t)] −→ f(x,ẋ,ω,t) DFT−−→ b(z) . (2.3.10)

Let ti = i∆t, i = 1...N denote uniformly distributed samples in the time domain with
∆t = 2π

Nω
and N ≥ 2NH +1. We start by evaluating (2.3.4) at the N sample points to obtain

the discrete time-domain trajectory x̃ ∈ RN ·3n and corresponding sample velocities ṽ. Due
to the linearity of inverse DFT, we have

x̃ = Γxz , and ṽ = Γvz , (2.3.11)

where Γx and Γv are sparse linear operators of size 3n ·N × (2NH +1) ·3n. We then compute
nonlinear forces for each sample point according to the mechanical model (see Appendix
2.A.5) and store the result as f̃ = (f̃T

1 , ..., f̃T
N)T where f̃i = f(x̃i, ṽi) ∈ R3n is the vector of

nodal forces for sample ti. The time-domain forces are transformed back to frequency space
using DFT,

b = Γ−1
f f̃ , (2.3.12)

where Γ−1
f is again a sparse linear operator; see Appendix 2.A.2. With these transformations,

the Jacobian of (2.3.8) is obtained as

∂h
∂z

= A− ∂b
∂ f̃

(
∂ f̃
∂x̃

∂x̃
∂z

+ ∂ f̃
∂ṽ

∂ṽ
∂z

)
= A− Γ−1

f

(
∂ f̃
∂x̃

Γx + ∂ f̃
∂ṽ

Γv

)
(2.3.13)

where ∂ f̃/∂x̃ and ∂ f̃/∂ṽ can be computed analytically from (2.3.3).

2.3.3. Frequency Response Curves and Continuation

With the Jacobian (2.3.13) of the governing equations in hand, we can use Newton’s
method to compute the solution for a given driving frequency. In order to characterize
the behavior of nonlinear mechanical systems, however, it is usually necessary to compute
solutions for a range of driving frequencies, leading to so-called frequency response curves
that plot amplitude as a function of driving frequency; see Fig. 2.2 for an example. Frequency
response curves summarize important characteristics of nonlinear mechanical oscillators in
a compact form. In particular, they reveal the number, location, amplitude, and sharpness
of resonance peaks—quantities that are of interest for analysis as well as design. We start
by introducing our measure of amplitude, then proceed to the conditions that characterize
resonance, and finally explain how to compute frequency response curves numerically using
continuation.
Amplitude. To quantify motion magnitude, and to encourage large-amplitude oscillation
during design optimization, we must first develop a general definition of amplitude. For
the one-dimensional case, amplitude is defined as the maximum displacement over a period
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Figure 2.2 – Frequency response curve for a thin shell model. Amplitude is measured using
the trajectory of a selected vertex shown in green. The inset figures illustrate maximum-
deflection configurations at 9 rad/s, 11 rad/s and 13 rad/s, respectively.

of oscillation. While seemingly simple, this concept does not readily generalize to higher
dimensions and it translates into computational difficulties: maximizing displacement means
solving for zeroes of the velocity function, which is a trigonometric root-finding problem
with potentially many local extrema. To avoid these difficulties, we instead quantify the
magnitude of motion for a given vertex xi as the distance traveled within one period,

Ai(z) =
∫ T

0
∥vi∥ dt =

∫ T

0

√
(vx

i )2 + (vy
i )2 + (vz

i )2 dt , (2.3.14)

where
vj

i =
NH∑
k=1

sxj

k kω cos (kωt)− cxj

k kω sin (kωt) . (2.3.15)

While this expression could be evaluated in frequency space through quadrature, we simply
compute the length of the piece-wise linear trajectory in the time domain using the AFT
scheme described above.
Resonance. Having established a way of quantifying motion magnitude, we can now make
precise the conditions for resonance as a local maximum of amplitude with respect to the
driving frequency,

ωres = arg max
ω

A(z(ω)) , (2.3.16)

where ωres is the corresponding resonance frequency and z(ω) are steady-state Fourier co-
efficients expressed as a function of the driving frequency. The map between z and ω is
implicitly given through the dynamic equilibrium condition h(z,ω) = 0. As a necessary
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condition for resonance, we require that
dA(z)

dω
= ∂A(z)

∂z
dz
dω

= 0 . (2.3.17)

Continuation. To avoid solving (2.3.8) from scratch every time when computing frequency
response curves, we use numerical continuation to follow the path of the solution while
changing the input frequency. Each continuation step consists of a prediction step ti for
updating the current state [zT

i ,ωi]T , followed by a projection step that enforces h(z,ω) = 0.
The prediction step requires the derivative of (2.3.8) with respect to both the state z and
the driving frequency ω. The latter is obtained as

hω = ∂h
∂ω

= ∂A
∂ω

z− ∂b
∂ f̃

∂ f̃
∂ω

= ∂A
∂ω

z− Γ−1
f

∂ f̃
∂ω

(2.3.18)

where ∂ f̃
∂ω

= −DβK(x) ∂ẋ
∂ω

= −DβK(x)Γvz
ω

. Note that the derivative of the external force
with respect to ω is zero; cf. the derivation of Γ and Γ−1 in Appendix 2.A.2. The prediction
step ti, tangent to the response curve at [zi, ωi]T , is then determined ashz hω

tT
i−1

 ti =
0

1

 , (2.3.19)

where hz is a shorthand for (2.3.13). The first line in the above equation asks that the step
should maintain force balance to first order. The second condition requires the prediction
step to have a positive dot product with the previous step, thus preventing the continuation
scheme from going backwards. The resulting prediction step is then used in conjunction
with an arc-length control strategy [Seydel, 2009] to compute an initial guess for Newton’s
method.

To reliably track down resonance peaks, we use condition (2.3.17) and monitor the sign of
the gradient dA

dω
. Whenever the sign changes from negative to positive between two samples,

we compute the exact resonance frequency ωres by solving (2.3.17). The Jacobian matrix dz
dω

required for this procedure can be computed through sensitivity analysis on h(z,ω) = 0.

2.4. Computational Design
Given an initial design, we would like to determine changes for parameters such as shape,

mass distribution, and driving frequency such that the resulting steady-state motion best
approximates a given target behavior. To this end, we consider two design approaches:
user-driven forward exploration of the design space and optimization-driven inverse design.

2.4.1. Dynamical Equilibrium and Sensitivity

For both forward and inverse design, we must be able to predict the change in steady-
state behavior induced by a given change in design parameters. To this end, we leverage
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the equilibrium constraints as an implicit map between parameters and state: the Fourier
coefficients z must be a dynamic equilibrium configuration for the design parameters p. We
make this explicit by rewriting (2.3.8) as

h(z,p, ω) = A(p,ω)z− b(p, z,ω) = 0 . (2.4.1)

Since this relation must hold for every admissible choice of p, the Fourier coefficients effec-
tively become a function of the design parameters, i.e., z = z(p). Moreover, any change
to the parameters will entail a corresponding state change such that the system is again at
equilibrium. More formally, we have

dh
dp

= ∂h
∂z

dz
dp

+ ∂h
∂p

= 0 , (2.4.2)

from which we obtain the so-called design sensitivity matrix as

S = dz
dp

= −∂h
∂z

−1 ∂h
∂p

. (2.4.3)

The above equations form the basis of the forward and inverse design tools that we describe
next.
Rank of Constraint Jacobian. Eq. (2.4.1) provides exactly as many constraints as there
are degrees of freedom. In order for the constraint Jacobian in (2.4.3) to be invertible, the
constraint gradients must be linearly independent. Even if the Jacobian is non-singular,
numerical problems can still arise if the matrix is indefinite. While the conditions on rank
and definiteness cannot be guaranteed for all configurations of nonlinear oscillators, we are
only interested in stable steady-state solutions, which fulfill these properties by definition.
If transient rank-deficiency or indefiniteness are still encountered (manifesting through fail-
ure of the LU solver or a large residual of the linear system), we apply adaptive diagonal
regularization until a valid solution is found.

2.4.2. Forward Sensitivity Exploration

The sensitivity matrix provides an efficient tool for interactive exploration of the design
space. For a given initial design p and corresponding state z, we compute a first-order
prediction for the new equilibrium state as

zp = z + dz
dp

∆p . (2.4.4)

Once the sensitivity matrix is computed, this prediction is instantaneous and thus enables
interactive exploration of the design space around a given set of parameters. For larger
parameter changes, however, the first-order prediction can become inaccurate, requiring a
full, nonlinear update. In our interface, the user can manually issue such update commands,
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which entail re-simulation with the new parameters and re-computation of the sensitivity
matrix.

Besides changing parameters individually, we found it useful to provide additional com-
pound variables that change multiple parameters simultaneously along the gradient of se-
lected design objectives—see Sec. 2.5.3 for an example.

2.4.3. Inverse Design

Even when aided by sensitivity information, forward design based on manual exploration
soon becomes unattractive as the number of parameters increases. If design goals can be
quantified, automatic parameter optimization can be a very efficient and effective alternative.
With the implicit relation between z and p defined as above, we can cast design optimization
as an unconstrained minimization problem, where we aim to minimize an objective function
f(z(p),p) that encodes various design goals as described below. Using Eq. (2.4.2), we obtain
the objective gradient as

df

dp
= dz

dp

T ∂f

∂z
+ ∂f

∂p
= −∂h

∂p

T ∂h
∂z

−T ∂f

∂z
+ ∂f

∂p
. (2.4.5)

It is worth noting that this expression can be rearranged such that only a single linear system
needs to be solved. We use this gradient in combination with L-BFGS-B [Byrd et al., 1995]
to find parameters that minimize the objective function while enforcing bound constraints
where applicable, e.g., positivity for mass values.

As we show in Sec. 2.5, HBM-based simulation and frequency-space sensitivity analysis
for optimization combine into an efficient tool for inverse design. In order for this tool to
be effective, however, we must define objective functions that allow users to express their
design intents.
Trajectory Matching. An intuitive and direct way of specifying motion goals is by pre-
scribing target trajectories that selected nodes should track. Given a time-domain target
trajectory for a given vertex k as input, we first compute the corresponding Fourier coef-
ficients ẑ = (ŝ, ĉ) using DFT. We then measure the distance between current and target
trajectories in frequency space as

fDist(z) =
NH∑
i=1

3∑
j=1

(
(s3k+j

i − ŝj
i )2 + (c3k+j

i − ĉj
i )2
)

, (2.4.6)

where the superscript selects individual components from the coefficient vectors. The objec-
tive in its above form assumes that both target and actual trajectory have the same phase
offset, but this is generally not the case. To eliminate phase dependence, we evaluate (2.4.6)
for different phase offsets and define the final objective value as the smooth minimum over
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the individual distances, i.e.,

fTrack(z) =
∑N−1

i=0 fDist(z,ϕi)e−αfDist(z,ϕi)∑N−1
i=0 e−αfDist(z,ϕi)

, (2.4.7)

where α is a parameter controlling the sharpness of the smooth minimum function, ϕi = i2π
N

are phase offsets, and fDist(z,ϕ) is the same as in Eq. (2.4.6) but with the Fourier coefficients
of the target trajectory shifted by a phase offset ϕ.
Amplitude. Although the trajectory matching objective affords some degree of amplitude
control, we have seen in our experiments that it can be difficult to obtain large amplitudes
in this way—arguably because the tracking objective is biased towards a specific motion,
rather than more general, large-amplitude oscillations. We therefore introduce an objective
that explicitly aims to maximize the magnitude of motion for user-selected nodes. Based on
the amplitude definition in Sec. 2.3.3, we define an amplitude objective for vertex k as

fAmpl(z) = (Ak(z)− Āk)2 (2.4.8)

where Āk is the target amplitude. Note that, besides optimizing for specific, reachable values
for the amplitude, we can also simply encourage amplitude maximization by setting Ā to
an arbitrarily large value. Likewise, with a straightforward modification of (2.3.14), it is
possible to optimize amplitude only along selected dimensions.

2.5. Results
We evaluate our method on a set of examples that highlight the impact of our design

objectives both in simulation and on actual physical prototypes. We start by analyzing the
accuracy of HBM compared to ground truth time-domain simulations as well as a linear
frequency-space approach.

2.5.1. Analysis & Validation

Comparison with Newmark. One of the central advantages of HBM is that it directly
yields periodic steady-state solutions without having to simulate the transient process of the
system. In order to analyze the accuracy of HBM in our setting, we compare to ground truth
simulations obtained using the Newmark integration scheme, a time-domain method that is
widely used for structural dynamics and vibration analysis in general; see section 2.A.3 for
details.

To this end, we consider a fork-shaped thin shell oscillator (188 elements, 144 nodes)
with one end driven by a periodic force while the other two extremities are vibrating freely
as shown in Fig. 2.2. To measure the difference in steady state solution for Newmark and
HBM, we must first define an appropriate convergence criterion for the time-domain method.
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Figure 2.3 – Trajectory error for HBM compared to ground truth time-domain simulations.
The plot shows error as a function of the number of harmonics using damping coefficients as
indicated.

We measure the difference in trajectories between two successive periods as

ep =
NNM −1∑

i=0
∥x(tpNNM +i)− x(t(p+1)NNM +i)∥ , (2.5.1)

where the subscripts of t∗ refer to time-step indices, p denotes the index of the period, and
NNM = 2π

ω∆t
is the number of time steps used to simulate a single period.

Using this error metric, Fig. 2.3 shows accuracy plots for different driving frequencies and
different numbers of harmonics. We use NNM = 4096 for computing the step size and run the
Newmark simulation until the trajectory difference between two successive periods satisfies
ep < 1e−7. It can be seen that the error is larger for driving frequencies near resonance,
which is at ωres = 11.0 rad/s for this example (see Fig. 2.2). This observation is explained
by the fact that near-resonance frequencies lead to larger amplitude motion. Nevertheless,
using NH = 5 harmonics leads to sufficiently good accuracy, and more terms yield virtually
no improvements. Additional analysis is given in Appendix 2.A.4.

We furthermore conducted an experiment to analyze the impact of the number of samples
used to evaluate the nonlinear forces in the time-domain using Eq. (2.3.3) for HBM. While
a lower bound is given by the Nyquist limit, as can be seen from Fig. 2.4, the effect of using
more samples is almost imperceptible. This visual impression is confirmed by an additional
quantitative analysis, showing that the difference in Fourier coefficients is less than 1e−10 in
this case.
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Figure 2.4 – Trajectory comparison between fabricated L-wing and HBM simulations at
driving frequency of 2.0Hz with different numbers of sampling points NAF T : physical pro-
totype (a) and HBM simulation using (b) NAF T = 128, (c) NAF T = 64, and (d) NAF T = 32.

To summarize our analysis of HBM and comparison with Newmark, we can conclude
that, already with a small number of harmonics and time-domain samples, HBM accurately
captures the nonlinear large-amplitude oscillation behavior that is the focus of this work. We
note that, when using NH = 5 and NAF T = 64 for this example, HBM computes steady-state
solutions one to two orders of magnitude faster than time-domain methods. For the general
case, determining the optimal number of harmonics a priori is difficult. However, we found
the following strategy to work well in practice: we first simulate using a small number of
harmonics (e.g. NH = 3), which we increase until the trajectory error between two successive
runs falls below a given threshold value. While this threshold needs to be set by the user,
setting it to a small fraction of the trajectory length (e.g. 1e−3) simplifies this task.

Before we present examples obtained using our optimization-based design method, we
briefly comment on an alternative frequency-domain method.
Comparison with Linear Modal Analysis. In order to illustrate the importance of in-
corporating nonlinearities in the simulation model, we compare to Linear Modal Analysis
(LMA), a frequency-space approach based on a linearization of modal dynamics around
the rest state.As can be seen in Fig. 2.5, this first-order approximation leads to significant
in-plane distortions. This is not surprising, as methods based on linearized deformation mea-
sures are known to introduce artifacts for rotational displacements. Perhaps more severe,
however, is the fact that neither the resonance frequency nor the motion at resonance are
captured with acceptable accuracy. These shortcomings effectively disqualify linear modal
analysis as a basis for design and optimization in the large-amplitude setting.
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Figure 2.5 – Frequency responses computed with LMA and HBM for different driving fre-
quencies with damping coefficients Dα = 0.5 and Dβ = 0.00005. Trajectory of a selected tip
point (green) and color-coded maximum in-plane stretch. For LMA, the maximum strains
over one period for the three driving frequencies are 0.655, 0.582, and 0.575. The correspond-
ing values for HBM (8.25e−5, 1.00e−4, and 8.50e−5) are 4-5 orders of magnitude smaller.

2.5.2. Measuring Damping Parameters

Damping parameters play an important role for the dynamics of a mechanical system. To
experimentally estimate damping coefficients for a given design task, we first choose a simple
real-world specimen, e.g., the L-wing (see Fig. 2.4) for the thin shell model and the three-link
mechanism (see Fig. 2.8) for compliant mechanisms. We then determine damping parameters
such that the simulated steady-state motion is as close as possible to the corresponding real-
world motion. Real-world trajectories are captured using off-the-shelf cameras for side and
back views. We then extract trajectories for selected key points (such as wing tips) and use
them to fit damping coefficients for simulation.

2.5.3. Forward Design with Sensitivity Exploration

We demonstrate the sensitivity-based forward design approach described in Sec. 2.4.2 on
the mechanical character shown in Fig. 2.6. This character consists of 10 links connected
through 6 joints and 8 springs. During interactive design exploration, the goal for the user
is to obtain an understanding of the design space and to discover a large-amplitude motion
that makes for an appealing animation. We drive the character by applying harmonic forcing
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Figure 2.6 – Forward Design with Sensitivity Exploration illustrated on an animatronic
character. The initial design (left) exhibits only small oscillations at the hands (indicated
in green). After several steps of forward exploration, the final design exhibits an expressive
large-amplitude motion (right33).

Figure 2.7 – Amplitude of the wing tip before (blue) and after (orange) optimization for
the dragon example. The dashed line indicates the driving frequency (2.5Hz) used during
optimization.

to its feet, which we initially choose to act in the vertical direction and in-phase. The design
parameters for this exploration are extra masses for each node as well as the phase offset
and amplitude for the forcing. In addition to changing each parameter individually, we add
controls to the interface that change parameters simultaneously along the gradient of the
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Initial design Optimized design

Figure 2.8 – Trajectory matching for the three-link compliant mechanism. Initial
design (left) and optimized design (right) with simulated (top) and real-world (bottom) end-
effector trajectories shown in green. The target trajectory is shown in blue.

amplitude objective for selected nodes. This enables convenient exploration along parameter-
space directions that lead to large motion amplification.

Having computed the initial frequency-response curve and the sensitivity matrix, the user
starts exploring motion variations by changing design parameters. Our system then provides
instant feedback on the predicted change in motion. As best seen in the accompanying
video, this approach allows the user to quickly converge towards a large-amplitude motion.
Re-simulation with the new parameters exhibits only little deviation from the first-order
prediction shown during sensitivity exploration.

2.5.4. Optimization-Based Inverse Design

We demonstrate our optimization-driven approach on a set of examples that illustrate
applications to a diverse range of mechanical models and highlight the impact of our design
objectives. For validation, we manufacture physical prototypes for several examples and
evaluate their performance.
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Figure 2.9 – Running Ostrich. Four images from a running sequence of our ostrich model
with two legs driven at 1.2Hz with a phase offset of half a period.

Initial design Optimized design

Figure 2.10 – Ostrich leg. Performance of initial (left) design and optimized design (right)
in simulation (top) and on the physical prototype (bottom). Target and actual trajectories
are shown in blue and green, respectively.
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Dragon Wings. Our first example is a dragon model obtained from a shape repository 1

for which we aim to create large amplitude oscillations for the wings such as to suggest
flapping flight. The body of the dragon is kept static while its wings are driven with a
servomotor that creates rotational motion with programmable frequency and an amplitude
of 40 degrees; see Fig. 2.1. We model the wings using discrete shells [Grinspun et al., 2003a]
and fit elastic material parameters as described in [Pabst et al., 2008] to match the behavior
of an FDM-printed PLA cantilever, from which we obtain a Young’s modulus of 3.3Gpa

and a Poisson’s ratio of 0.36. With the elasticity coefficients determined, we experimentally
set viscous parameters such as to minimize discrepancy between simulated and real-world
motion using the setup shown in Fig. 2.4. We use as design parameters the masses of three
points distributed along the trailing edge of the wing.

We start by computing the frequency response curve for the initial design, which shows
only small-amplitude oscillations throughout the range of 0.5 − 5.0Hz (blue curve in Fig.
2.7). We then employ our amplitude objective to determine design parameters that lead
to motion amplification at 2.5Hz. With an almost four-fold increase in amplitude, the
optimized design exhibits greatly improved performance in simulation (orange curve in Fig.
2.7). This prediction is confirmed by the manufactured prototypes for the two designs, both
of which show very good agreement with the corresponding HBM simulations. It should be
noted that, rather than just amplifying the initial motion, the optimized trajectory at the
wing tip is quite different from the original one. Whereas manually finding a sufficiently
close target trajectory is a difficult task for the user in this case, our amplitude objective
provides the freedom needed to automatically discover this large-amplitude motion.
Compliant Three-Link Mechanism. The ability to control large-amplitude oscillations
for nonlinear mechanical systems enables new, efficient designs for robotics applications. We
investigate the potential of this approach on two compliant mechanisms. The first design,
shown in Fig. 2.8, is a simple three-segment chain augmented with two elastic springs. We
use custom-made springs with stiffness coefficients of 70.2N/m and 16.0N/m, respectively,
and corresponding rest lengths of 0.146m and 0.088m. We drive the hip joint with harmonic
forcing in the vertical direction with an amplitude of 1mm and a frequency of 3Hz such as
to mimic the footfall frequency of a fast quadrupedal walking gait [Moro et al., 2013]. To
encourage walking-like motion, we prescribe a corresponding target trajectory for the bottom
joint and optimize over joint masses, spring attachment points, and link lengths. As can be
seen from Fig. 2.8 (left), the initial design shows little response. After optimization, however,
the mechanism closely tracks the desired trajectory, thus converting a simple vertical input
signal into a complex two-dimensional output motion. It is worth noting that the design
changes found by our method are quite significant and leverage all available parameters.

1. https://www.thingiverse.com/thing:2714125
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Compliant Ostrich Leg. In our second mechanism example we consider a complex ostrich
leg inspired by the work of Cotton et al. [2012]. Our leg design consists of 5 bars connected
through 5 revolute joints and 3 custom-made springs with stiffnesses of 41.86N/m, 70.2N/m,
and 16.0N/m and corresponding rest lengths of 0.108m, 0.146m, and 0.088m. The leg is
driven by a servomotor located at the hip joint that induces harmonic rotational oscillation
in the attached link with a frequency of 1.2Hz and amplitude of 40 degrees. To generate
large-amplitude oscillations that approximate the characteristic running motion observed
in ostriches, we prescribe target trajectories for the toe and ankle joints that we manually
extracted from real-world video footage.

As can be seen from Fig. 2.10 (left), the initial design produces trajectories that corre-
spond to simple, reciprocating motion along a one-dimensional curve. After optimization,
however, the motion closely tracks the target trajectories for both ankle and toe (see Fig.
2.10 (right)). We optimize the mass for every joint to match the target trajectory during
optimization. As best seen in the accompanying video, the optimized design also successfully
reproduces the rotation of the toe between swing and stance phases that characterizes the
real-world gait. We use the optimized design to build the physical ostrich model shown in
Fig. 2.9, whose two legs are driven at a phase offset such as to mimic running motion.
Animatronic Wire Character. The HBM formulation extends to a large range of me-
chanical models and materials. Our optimization-driven approach is able to leverage this
flexibility, which we demonstrate on two additional examples that use multi-material solids
and elastic rods. Taking a result from Xu et al. [2018] as inspiration, we design a wire
character in the form of a fish as illustrated in Fig. 2.11. We model this character using
discrete elastic rods [Bergou et al., 2008] and the extension to networks described by Zehnder
et al. [2016b]. In order to control the frequency response of the character, we add three extra
weights to the model whose mass we optimize such as to maximize the amplitude at the tail
for a driving frequency of 2.0Hz. For the physical prototype, we use standard aluminum
wire with a diameter of 1.1mm, a Young’s modulus of 69GPa, and density of 2.7g/cm3. We
use brass weights customized according to the solution returned by the optimizer. Interest-
ingly, the optimization completely removed the weight attached to the tip of the tail. To
verify this somewhat counter-intuitive result, we experimented with manually-designed mass
distributions with roughly the same total weight. As can be seen in the accompanying video,
none of these alternatives is able to amplify the input motion, whereas the optimized design
produces large-amplitude oscillation as predicted in simulation. We conclude that, even for
seemingly simple cases, manually finding parameters that lead to large-amplitude oscilla-
tions at the designated driving frequency can be very challenging. Our optimization-based
approach removes this burden from the user.
Multi-material Solid. We investigate applications of our approach to material optimiza-
tion for viscoelastic solids undergoing nonlinear vibrations. Our setup consists of an inverted
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Figure 2.11 – For this animatronic wire character, we optimize the weights of three addi-
tional masses such as to achieve large-amplitude oscillation of its tail.

T-shaped model shown in Fig. 2.12, whose upper face we drive through harmonic rotational
excitation. The solid is structured vertically into 7 layers of homogeneous material, each of
which can have different viscoelastic properties. For the inverse design problem, we aim to
optimize the Young’s modulus for each layer such that the amplitude of a selected node on
the bottom extremity is maximized under a given driving frequency of 2.0Hz. The per-layer
material assignment found by the optimization successfully amplifies the motion by a factor
of more than 4.
Eiffel Tower. Inspired by the work of [Skouras et al., 2013a], we consider a material opti-
mization problem for the Eiffel tower model show in Fig. 2.13. We actuate the base of the
model using harmonic driving in horizontal direction. We use 2D constant strain triangle
elements with an St.Venant-Kirchhoff material for simulation, and optimize for per-element
stiffness coefficients such as to maximize the amplitude of the top of the tower at 2.0Hz.
The optimized design exhibits an increase in amplitude by a factor of more than 50.

2.5.5. Statistics & Additional Validation

Performance & Statistics. All examples run on a machine with an Intel Core i9-7900X
3.3GHz processor and 32 GB of RAM. Statistics are given in Tab. 2.1.
Constraint Violations. For the simulation of compliant mechanisms, we use stiff penalty
terms to enforce angular and distance constraints for rigid joints and links. To analyze the
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Figure 2.12 – We optimize per-layer material stiffness for this solid such as to maximize
the amplitude of the selected vertex when driving the top face with harmonic rotational
excitation at 2.0Hz.

Table 2.1 – Statistics for inverse design examples. The columns list numbers of degrees
of freedom (NDoF ), harmonics (NH), sampling points (NAF T ), parameters (Np), iterations
required for convergence (Nit), as well as the total time spent on optimization.

Example NDoF NH NAF T Np Nit time [s]
Dragon 780 8 64 3 12 1098.09
Three-Link Leg 8 8 64 16 146 34.89
Ostrich Leg 14 14 64 7 128 163.98
Fish 187 8 64 3 46 456.96
3D Solid 918 8 64 7 10 7926.43
Eiffel Tower 658 8 64 525 150 5534.82

validity of this approach, we monitored constraint violations, i.e., the change in angles of
rigid joints and link lengths. We plot the corresponding maximum values as a function of
time in Fig. 2.14, from which it can be seen that constraint violations are small for all three
mechanism examples.

As another potential concern known from time-domain methods, stiff penalty terms can
give rise to numerical damping when using lower-order implicit integration methods. While
we cannot guarantee that our HBM simulations are free from this effect, they closely track
the Newmark solutions which are known to exhibit very little numerical dissipation.
Feasible Regions of Design Space. Understanding and navigating the space of feasible
dynamics for a given input model is crucial for successful design. Our inverse design tool
can be used to answer the question whether a given motion is achievable, and one positive
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Figure 2.13 – Material optimization on an Eiffel Tower model. For the initial design with
homogeneous material (left), the amplitude at the tip is almost the same as for the driving
signal. After optimizing for per-element stiffness values, the tip amplitude is substantially
increased (right).

answer is often enough to fulfill the user’s intent. However, if the desired motion is infeasible,
our method will return a design whose motion is, at least locally, as close as possible to the
target behavior. If deviations are substantial, however, the solution computed in this way
might not be subjectively optimal or even acceptable for the user. In such cases, finding good
compromises requires further design space exploration. While our method does not offer an
explicit representation of the space of feasible motions, if model complexity allows for it,
our interactive tool provides an efficient way to explore the possibilities and limitations of a
given input model.

2.6. Limitations & Future Work
We presented an optimization-driven frequency-space approach for designing mechanical

systems that exhibit desired nonlinear oscillations. Our results indicate that Harmonic Bal-
ance paired with Sensitivity Analysis is indeed an efficient and effective combination that
enables the construction of powerful forward and inverse design tools.
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Figure 2.14 – Maximum error of constraints violation. We use a penalty stiffness
of 1e7 and NAF T = 64 time-domain samples for these three compliant mechanism examples.
Each curve shows the maximum error (change in angle/length divided by corresponding
original value for angular and distance constraints) over all constraints for each example
within a period. It can be seen that constraint violations remain below 2e−3% at all times
for all cases.

There are several limitations of our method that we briefly discuss below along with other
potential directions for future research. If constraints are present in the mechanical system,
the truncated Fourier series will generally not satisfy them exactly. This would be the case,
e.g., when modeling mechanisms as articulated multi-body systems. Nevertheless, to satisfy
the requirements of a specific application, constraint violations can be made arbitrarily small
by using a sufficiently large number of harmonics.

Using our amplitude objective, we found it unnecessary to explicitly enforce resonance
in order to generate large-amplitude motion—and the designs that our method discovered
nevertheless proved to be at or close to resonance peaks. Other applications, however, require
explicit control over resonance peaks and it would be interesting to extend our formulation
in this direction.

We use relatively simple constitutive models for both elastic and viscous material behav-
ior. While our damping model does not explicitly account for air drag, the mass contribution
in the Rayleigh damping model emulates this effect to some extent. This choice is justified
for problems in which air drag is insignificant, but other applications might require more
accurate models.
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In our examples, we have not tried to generate periodic motions that include contact or
friction. However, HBM can be extended to handle these effects [Krack et al., 2017] and it
would be worthwhile exploring their integration in our optimization-based design approach.
There are many other aspects of nonlinear vibrations that we deliberately chose to ignore
in this work, including bifurcations, period doubling, and internal resonance. Nevertheless,
incorporating these phenomena would increase the range of mechanical systems that can be
designed with our approach.

The computational burden of our method depends on the complexity of the model, since
each mesh vertex is endowed with 3 · (2NH +1) Fourier coefficients. While model complexity
might necessitate a large number of vertices, the low-frequency oscillations that we aim at are
typically confined to a low-dimensional, albeit nonlinear, subspace. Extending our method
towards nonlinear subspaces of frequency-space is a promising direction for future research.

We have shown applications of our approach to mechanical leg designs. To be useful for
robotics applications, however, the weight carried by the legs (robot body and additional
payload) must be accounted for during design. Another interesting direction would be to si-
multaneously optimize for different driving frequencies such as to adapt leg motion according
to running speed.

2.A. Appendix
2.A.1. Frequency-Space Equilibrium Equations

To derive the dynamic equilibrium equations in frequency space, we start by rewriting
the time-dependent nodal positions (2.3.4) and forces (2.3.5) in matrix as

x(t) = (Q(t)⊗ I3n)z , (2.A.1)

f(t) = (Q(t)⊗ I3n)b (2.A.2)

where z and b are Fourier coefficients for positions and forces, and Q(t) holds the individual
terms of the sine and cosine series

Q(t) = [1 sin (ωt) cos (ωt) . . . sin (NHωt) cos (NHωt)] . (2.A.3)

Similarly, velocities and accelerations are expressed as

ẋ(t) = (Q̇(t)⊗ I3n)z = ((Q(t)∇)⊗ I3n)z , (2.A.4)

ẍ(t) = (Q̈(t)⊗ I3n)z = ((Q(t)∇2)⊗ I3n)z (2.A.5)
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where the derivative operators are defined as

∇ = diag(0,∇1, . . . ,∇j, . . . ,∇NH
) , (2.A.6)

∇2 = diag(0,∇2
1, . . . ,∇2

j , . . . ,∇2
NH

) (2.A.7)

with

∇j =
 0 −jω

jω 0

 and ∇2
j =

−(jω)2 0
0 −(jω)2

 . (2.A.8)

Substituting expressions (2.A.1, 2.A.2) and (2.A.4, 2.A.5) into the equations of motion (2.3.2)
yields

M((Q(t)∇2)⊗ I3n)z + D̂((Q(t)∇)⊗ I3n)z = (Q(t)⊗ I3n)b . (2.A.9)

The mixed-product property of the Kronecker tensor product

(A⊗B)(C⊗D) = (AC)⊗ (BD)

is then applied to the left-hand side of the equation as

M((Q(t)∇2)⊗ I3n)z = (1⊗M)((Q(t)∇2)⊗ I3n)z

= ((Q(t)∇2)⊗M)z ,

D̂((Q(t)∇)⊗ I3n)z = (1⊗ D̂)((Q(t)∇)⊗ I3n)z

= ((Q(t)∇)⊗ D̂)z .

Using this reformulation, Eq. (2.A.9) is rewritten as

((Q(t)∇2)⊗M)z + ((Q(t)∇)⊗ D̂)z = (Q(t)⊗ I3n)b . (2.A.10)

The time dependency can be removed by a Galerkin procedure, projecting (2.A.10) onto the
orthogonal trigonometric basis Q(t) and integrating over the period T of the external force,
to obtain((

2
T

∫ T

0
QT (t)Q(t)dt∇2

)
⊗M

)
z +

((
2
T

∫ T

0
QT (t)Q(t)dt∇

)
⊗ D̂

)
z =((

2
T

∫ T

0
QT (t)Q(t)dt

)
⊗ I3n

)
b (2.A.11)

Since orthogonality of Q(t) implies
2
T

∫ T

0
QT (t)Q(t)dt = I2NH+1 , (2.A.12)

Eq. (2.A.9) finally transforms into a set of algebraic equations

(∇2 ⊗M)z + (∇⊗ D̂)z = (I2NH+1 ⊗ I3n)b (2.A.13)

which can also be written in a more compact form to yield (2.3.8).
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2.A.2. DFT Operators

Using Eq. (2.A.1), we can define the inverse DFT operator that transforms from Fourier
coefficients to time domain positions as

x̃ = [Q(t1)⊗ I3n, . . . , Q(tN)⊗ I3n]T z = (Γ⊗ I3n)z ≡ Γxz . (2.A.14)

Similarly, using Eq. (2.A.4), the inverse DFT operator for velocity is obtained as

ṽ = ((Γ∆)⊗ I3n)z ≡ Γvz . (2.A.15)

Having transformed positions and velocities from frequency space to the time domain, we
can evaluate the nonlinear forces for all sampling points and then transform them back to
the frequency domain as

b = (Γ⊗ I3n)−1f̃ = (Γ−1 ⊗ I3n)f̃ ≡ Γ−1
f f̃ . (2.A.16)

The operators Γ and Γ−1 are given as

Γ =


1
...
1

sin (θ1)
...

sin (θN)

cos (θ1)
...

cos (θN)

. . .
...

. . .

sin (NHθ1)
...

sin (NHθN)

cos (NHθ1)
...

cos (NHθN)

 , (2.A.17)

Γ−1 = 1
N



1
2 sin (θ1)
2 cos (θ1)

...
2 sin (NHθ1)
2 cos (NHθ1)

. . .

. . .

. . .
...

. . .

. . .

1
2 sin (θN)
2 cos (θN)

...
2 sin (NHθN)
2 cos (NHθN)


. (2.A.18)

It is worth noting that θi = ωti = ω(i∆t) = 2πi/N such that Γ and Γ−1 do not depend on
ω.

2.A.3. Newmark Time Integration

The Newmark integration scheme determines end-of-step positions xt+∆t, velocities ẋt+∆t

and accelerations ẍt+∆t such as to satisfy

ẋt+∆t = ẋt + ∆t(1− γ)ẍt + ∆tγẍt+∆t , (2.A.19)

xt+∆t = xt + ∆tẋt + 1
2∆t2 ((1− 2β)ẍt + 2βẍt+∆t) (2.A.20)

where 0 ≤ β ≤ 1
2 and 0 ≤ γ ≤ 1 are parameters that we set to β = 1

4 and γ = 1
2 to obtain

second-order accuracy. We express ẋt+∆t and ẍt+∆t in terms of xt+∆t and known quantities
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Figure 2.15 – Trajectory difference between HBM and Newmark as a function of the
number of time-domain samples NAF T for NH = 5 harmonics. The step size for Newmark is
set as ∆t = T/NAF T , where T is the period of the forcing.

at time t as

ẍt+∆t = 1
β∆t2 (xt+∆t − xt)−

1
β∆t

ẋt −
1− 2β

2β
ẍt , (2.A.21)

ẋt+∆t = γ

β∆t
(xt+∆t − xt) +

(
1− γ

β

)
ẋt + ∆t

(
1− γ

2β

)
ẍt . (2.A.22)

Substituting the above equations into the time-domain equations of motion (2.3.1) yields

R(xt+∆t) = M
(

1
β∆t2 (xt+∆t − xt)−

1
β∆t

ẋt −
1− 2β

2β
ẍt

)
+

[DαM + DβK(xt+∆t)]
(

γ

β∆t
(xt+∆t − xt) +

(
1− γ

β

)
ẋt+

∆t

(
1− γ

2β

)
ẍt

)
− fint(xt+∆t)− fext(xt+∆t) = 0 . (2.A.23)

We solve the above system of nonlinear equations using Newton’s method. Note that the
tangential stiffness matrix depends on the end-of-step positions xt+∆t.

2.A.4. Accuracy of HBM vs. Newmark

To further investigate the accuracy of HBM compared to Newmark, we additionally
analyze the impact of the number of sample points used to evaluate the nonlinear forces in
the time domain.
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It can be seen from Fig. 2.3 that, with increasing number of harmonics, the error between
HBM and Newmark initially decreases very rapidly. For NH > 5, however, the error stays
almost constant. This seemingly odd behavior is explained by the fact that the reference
solution, computed using Newmark, is itself subject to discretization error. We can reduce
this time-domain error by using smaller step sizes and, as we increase both the number of
harmonics NH and time-domain samples NAF T , the error should vanish. This expectation
is supported by the results shown in Fig. 2.15, indicating a sustained decrease in error for
increasing number of time-domain samples and, accordingly, the step size used for Newmark.

2.A.5. Mechanical Models

Our approach extends to a large range of mechanical models and we show examples using
compliant mechanisms, rod networks, thin shells, and volumetric solids. All computational
models are implementations of standard approaches. We represent compliant mechanisms
through their joint positions, enforcing angular and distance constraints for rigid joints and
links with stiff penalty terms. Compliant elements are modeled using standard linear springs
whose endpoints are expressed in local coordinates of the corresponding link. For the rod
network example, we use discrete elastic rods [Bergou et al., 2008] together with the formu-
lation by Zehnder et al. [2016b] for network connections. For our thin shell examples, we use
the discrete shell model by Grinspun et al. [2003a] for bending and linear triangle finite ele-
ments with St. Venant-Kirchhoff material [Skouras et al., 2014b] for in-plane deformations.
Our solid example uses standard linear tetrahedron elements with a St. Venant-Kirchhoff
material.

Each model gives rise to a discrete elastic energy, whose negative gradients with respect
to time-domain positions and velocities determine internal forces which enter the frequency-
space equations of motion (2.3.8) through the nonlinear force term (2.3.3). For sensitivity
analysis, we require the derivatives of the forces with respect to material parameters, masses,
and rest shape. All of these derivatives are computed symbolically using compile-time auto-
matic differentiation. Additionally, we use the same penalty term for all mechanical model to
enforce harmonic motion for the boundary nodes attached to the motor or driving element.
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Abstract. Strain limiting is a widely used approach for simulating biphasic materials such
as woven textiles and biological tissue that exhibit a soft elastic regime followed by a hard
deformation limit. However, existing methods are either based on slowly converging local
iterations, or offer no guarantees on convergence. In this work, we propose a new approach
to strain limiting based on second order cone programming (SOCP). Our work is based on
the key insight that upper bounds on per-triangle deformations lead to convex quadratic
inequality constraints. Though nonlinear, these constraints can be reformulated as inclusion
conditions on convex sets, leading to a second order cone programming problem—a convex
optimization problem that a) is guaranteed to have a unique solution and b) allows us to
leverage efficient conic programming solvers. We first cast strain limiting with anisotropic
bounds on stretching as a quadratically constrained quadratic program (QCQP), then show
how this QCQP can be mapped to a second order cone programming problem. We further
propose a constraint reflection scheme and empirically show that it exhibits superior energy-
preservation properties compared to conventional end-of-step projection methods. Finally,
we demonstrate our prototype implementation on a set of examples and illustrate how
different deformation limits can be used to model a wide range of material behaviors.
Keywords: Biphasic Materials, Second Order Cone Programming, Strain Limiting, convex
optimization, deformation limits, energy conservation.

3.1. Introduction
From biological tissues in plants and animals to woven textiles and 3D-printed

chainmail—many natural and human-made materials exhibit complex stress-strain re-
sponses characterized by strong nonlinearities and direction-dependent behavior. For
example, due to their yarn-level structure, many textiles initially exhibit only weak resis-
tance to deformation but stiffen rapidly beyond a direction-dependent threshold. Another
extreme example is given by the 3D-printed chainmail shown in Fig. 3.1. One way of
modeling this biphasic behavior is to use concepts from nonlinear elasticity in combination
with experimentally acquired data. An alternative approach that enjoys widespread use in
computer animation is to use strain limiting, which combines a soft elastic material with
hard constraints on the maximum allowed deformation.

Many strain limiting methods enforce deformation limits per spring or element, using,
e.g., Gauss-Seidel like iterations [Provot et al., 1995; Bridson et al., 2002; Thomaszewski
et al., 2009]. While simplicity is an advantage of this local approach, convergence is often
exceedingly slow, in particular if tight deformation bounds are used. Another class of meth-
ods combines individual constraints into a globally-coupled problem. While this strategy
can greatly accelerate convergence, existing methods either solve only a linearized version of
the problem [Goldenthal et al., 2007; Perez et al., 2013] or resort to nonlinear programming
techniques to deal with potentially nonconvex constraints [Narain et al., 2012; Jin et al.,
2017a]. In either case, there are no formal guarantees on convergence.
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Figure 3.1 – Two examples of 3D-printed chainmail with experimentally measured defor-
mation limits. Orange areas in the plots indicate the variation of experimental data.

In this work, we propose a new approach to strain limiting based on second order cone
programming (SOCP). Using a finite element discretization, we model bounds on triangle
deformations in given material directions using quadratic inequality constraints. Our work
is based on the key insight that bounds on compression lead to non-convex constraints,
whereas bounds on stretching lead to convex constraints. Though nonlinear, stretching
constraints can be reformulated as inclusion conditions on convex sets, leading to a second
order cone programming problem—a convex optimization problem that a) is guaranteed to
have a unique solution and b) can be solved much more efficiently than a general nonlinear
program [Andersen et al., 2003].

To develop our formulation, we first cast strain limiting with anisotropic bounds on
stretching as a quadratically constrained quadratic program (QCQP), then show how this
QCQP can be mapped to a second order cone programming problem. We further pro-
pose a constraint reflection scheme and empirically show that it exhibits superior energy-
preservation properties compared to conventional end-of-step projection methods. Finally,
we demonstrate our prototype implementation on a set of examples and illustrate how differ-
ent anisotropic deformation limits can be used to model a wide range of material behaviors.

3.2. Related Work
Modeling the mechanical behavior of materials is a problem that received much attention

in computer animation; see, e.g., [Xu et al., 2015; Li and Barbič, 2015] for recent examples.
For textiles, the spectrum ranges from simple mass spring systems with manually specified
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Figure 3.2 – Our method can enforce stretching limits in arbitrary material directions
including isotropic, orthotropic, and fully anisotropic constraints. Top row: polar plots
showing input curves for deformation limits and sample locations for which constraints are
enforced. Bottom row: simulation results for a static drape test using a mesh resolution of
60× 60.

stiffness coefficients [Provot et al., 1995; Bridson et al., 2002] to continuum mechanics models
with material parameters extracted from real-world measurements [Wang et al., 2011; Miguel
et al., 2012]. Instead of modeling fabrics using general nonlinear elasticity, another approach
is to approximate them as biphasic materials that exhibit low stiffness for small deformations
followed by a quasi-inextensible limit. Strain limiting is a way of modeling these biphasic
materials.

The idea of strain limiting goes back to the work of Provot [1995] who experimented with
mass-spring simulations using explicit time integration. Using lower stiffness coefficients
allowed for larger time steps, but led to undesirable over-elongation effects. Provot corrected
for these artifacts by iteratively adjusting vertex positions after every integration step. This
relatively simple idea has been widely successful and was used and extended in numerous
works. For example, Bridson et al. [2002] integrate strain limiting and collision handling
as layers in a velocity filtering stack. Thomaszewski et al. [2009] extended strain limiting
to the continuum-mechanics setting by enforcing bounds on the entries of the co-rotated
Cauchy strain tensor. Subsequent work introduced limits on the principal strain to achieve
isotropic [Wang et al., 2010] and anisotropic [Hernandez et al., 2013] behaviors, and proposed
extensions to quadratic strain measures [Müller et al., 2015a].

While all the above approaches enforce strain limits locally by iterating over individual
springs and elements, another line of work aimed at globally-coupled enforcement based on
constrained optimization techniques. For example, Goldenthal et al. [2007] propose a fast
projection scheme in which constraints are linearized and combined into a global system.
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The corresponding system is solved repeatedly until the constraint violation is sufficiently
small. While this approach is computationally more efficient than simpler per-element iter-
ations, there are no formal convergence guarantees. Nevertheless, fast projection has been
extended to triangle meshes [English and Bridson, 2008], and it has been used for augmenting
conventional simulators with energy-momentum conservation [Dinev et al., 2018].

In the context of haptic simulation, Perez et al. [2013] propose a globally-coupled treat-
ment of strain limiting and frictional contact, combining linearized constraints into a linear
complementarity problem that is solved with Projected Gauss-Seidel. The resulting method
is fast enough to enable haptic interaction, although tight constraint enforcement cannot be
guaranteed due to the linearized formulation.

In contrast, Jin et al. [2017a] propose a fully nonlinear formulation in which inequal-
ity constraints on edge lengths are enforced in an iterative fashion using an active set-like
algorithm. While Jin et al. stress the importance of their constraint relaxation and tight-
ening scheme to avoid undesirable local minima, our formulation is convex and is therefore
guaranteed to converge to a single global optimum.

Generalizing the idea of strain limiting, Position-based Dynamics (PBD) is a constraint-
based animation technique that has been widely successful in computer animation; see [Ben-
der et al., 2015] for an overview. In analogy to developments in strain limiting, Bouaziz
et al. [2014] introduced a method that combines the local constraint projections of PBD
into a global solve. Overby et al. [2017] showed that the formulation by Bouaziz et al. is
equivalent to solving a corresponding constraint optimization problem using the Alternating
Direction of Multipliers Method (ADMM) and can thus benefit from progress in ADMM
solvers [Zhang et al., 2019]. While ADMM is often the method of choice when it comes to
solving non-convex optimization problems, our formulation is convex from the ground up.
Nevertheless, some SOCP solvers are implemented using ADMM on their inside.

3.3. Theory
We consider discrete elastic surfaces represented by triangle meshes with two sets of ver-

tices, X and x, holding undeformed and deformed positions, respectively. Let xi
k, Xk

i denote
deformed and undeformed vertex positions for a given triangle Ti. Using a finite element dis-
cretization over the space of piece-wise linear functions, the deformation gradient F ∈ R3×2

is the unique matrix that maps undeformed edge vectors to their deformed counterparts as

(xi
k − xi

l) = F(Xi
k −Xi

l) . (3.3.1)

It is evident from this expression that F is a linear function of the deformed positions x—a
fact that allows us to formulate bounds on stretching as quadratic inequality constraints.

63



3.3.1. Deformation Limits as Quadratic Constraints

Orthotropic and anisotropic materials show variations in their stress-strain response as a
function of the direction of deformation. Likewise, deformation limits are generally direction-
dependent. In order to properly enforce these limits, we must first establish how to measure
deformation in arbitrary directions. Using the deformation gradient from (3.3.1) for a given
deformed triangle, we can quantify the directional deformation for any unit-length material-
space direction d̄ ∈ R2 as the squared length of the transformed vector, i.e.,

s(d̄) = dT d = d̄T FT Fd̄ . (3.3.2)

Values s(d̄) ≥ 1 indicate stretching, whereas s(d̄) ≤ 1 implies compression. By parameter-
izing the direction d̄ through a single scalar, d̄=d̄(αi), we obtain a continuous measure of
deformation in polar space. We note that, for any direction α, this measure is a quadratic
function of the element’s deformed positions xi

k. Next, we discuss how to impose limits on
deformations.

We assume that deformation limits are provided through m samples, (αi,bi), consisting of
an angle αi ∈ [−π/2,π/2] and a stretch limit bi. We then impose a set of quadratic inequality
constraints, i.e., s(αi,x) ≤ b2(αi) ∀i . Before we can proceed to a conic reformulation, we
must first transform these constraints into a different form. To this end, we observe that for
any material-space direction d̄i, the corresponding deformed vector di(x) is a linear function
of x and we write

di(x) = F(x)d̄i = Aix , (3.3.3)

where Ai = ∇x(Fd̄i) ∈ R3×9 holds products between the partial derivatives of F and com-
ponents of d̄i (see Appendix). We can now rewrite the quadratic constraints as

si(x) = s(αi,x) = ||Aix||2 = xT AT
i Aix ≤ b2

i . (3.3.4)

3.3.2. Constraint Projection as QCQP

We simulate biphasic materials using a step-and-project approach [Goldenthal et al.,
2007]: we first compute candidate positions x̂ using a standard implicit time stepping scheme
without deformation constraints. We then project these candidate positions onto the con-
straint manifold by computing the closest configuration that satisfies all constraints, i.e.,

min 1
2 ||x− x̂||2 such that (3.3.5)

xT AT
i Aix ≤ b2

i ∀i .

The above expression describes a quadratically-constrained quadratic program (QCQP).
Since the matrices AT A are symmetric positive semi-definite, this QCQP is convex and thus
has a single global optimum. Conversely, imposing lower bounds on deformation corresponds
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to multiplying the quadratic constraint by −1. The matrix −AT
i Ai is evidently negative

semi-definite and the constraint is no longer convex. Interestingly, the bilateral version of
this constraint is likewise nonconvex. This can be understood geometrically since the feasible
set for the quadratic equality constraint corresponds to an ellipsoidal surface which is not a
convex set: for any two points on the surface, the line connecting the two points does not
belong to the feasible set. These observations are valuable as they assert that our projection
problem—which enforces bounds on stretching but not compression—has a unique solution.
This is a crucial property that previous formulations did not possess or expose. However,
in order to leverage the full computational advantages that this setting offers, we must
transform (3.3.5) into a conic formulation as follows.

3.3.3. Conic Reformulation

Conic Programs (CP) are optimization problems in which inequality constraints are ex-
pressed as set inclusion conditions on convex cones [Lobo et al., 1998; Alizadeh and Goldfarb,
2003]. A set K ⊂ Rn is called a convex cone if for each y,z ∈ K we have y + z ∈ K and for
each y ∈ K we have αy ∈ K for all α ≤ 0. We focus on quadratic (i.e., second-order) cones,
which are defined as

Qn+1 = {(t,y) ∈ Rn+1 | ||y||2 ≤ t} . (3.3.6)

While quadratic cones directly allow for Euclidean norm constraints, it is often more con-
venient to impose constraints on squared norms. To this end, we use so-called rotated
second-order cones, which are defined as

Qn+1
r = {(u,v,y) ∈ Rn+2, u,v ≥ 0 | ||y||22 ≤ 2uv} . (3.3.7)

To convert the quadratic inequality constraints (3.3.4) into equivalent second-order cone
constraints, we first introduce two auxiliary variables ti and yi such that

ti = b2
i , (3.3.8)

yi = Aix .

The quadratic constraint is now readily expressed in a second-order cone form as

xT AT
i Aix ≤ b2

i ⇐⇒ (1
2 ,ti,yi) ∈ Qk+2

r . (3.3.9)

With all constraints reduced to conic form, we must now transform the quadratic objective
function in (3.3.5) into a linear form. This can be accomplished by first writing out the
quadratic objective as

min 1
2xT x− xT x̂ + 1

2 x̂T x̂ . (3.3.10)
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Algorithm 1 Step-and-Reflect
1: procedure StepAndReflect(x0,v0)
2: x̃1/2,ṽ1/2 ← ImplicitEulerStep(x0,v0,∆t

2 )
3: x1/2 ← StrainLimitingSOCP(x̃1/2)
4: v1/2 = x1/2−x0

∆t/2
5: x̂1/2 = 2x1/2 − x̃1/2,v̂1/2 = v1/2

6: x̃1,ṽ1 ← ImplicitEulerStep(x̂1/2,v̂1/2)
7: x1 ←StrainLimitingSOCP(x̃1)
8: v1 = x1−x̂1/2

∆t/2
9: end procedure

Omitting the constant term and introducing an additional auxiliary variable t0, this quadratic
objective is equivalent to

min
x,t0

t0 − x̂T x s.t. xT x ≤ 2t0 , (3.3.11)

where the quadratic inequality constraint can be directly translated into conic form as out-
lined above. Combining the conic reformulations for the objective and all constraints, we
arrive at

min
x,t0,ti,yi

t0 − x̂T x such that (3.3.12)

(1,t0,x) ∈ Qn+2
r

ti = b2
i ∀i,

yi = Aix ∀i,

(1
2 ,ti,yi) ∈ Qk+2

r ∀i .

With the above formulation, we have converted our constraint projection problem into SOCP
form. It is therefore guaranteed to have a unique solution, and that solution can be computed
with any SOCP solver (we use Mosek 9.3).

3.4. Time Stepping
When implemented as a post-step velocity filter in the spirit of [Bridson et al., 2002], our

SOCP formulation integrates seamlessly with standard time-stepping schemes and collision
response methods. This step-and-project (SAP) approach generally leads to stable and visu-
ally pleasing motion. We notice, however, that it largely inherits the numerical dissipation
of lower-order implicit integration schemes, which manifests as a loss of kinetic energy and
dynamic detail over time; see the accompanying video.
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Figure 3.3 – A schematic visualization of our quasi-symmetric step-and-reflect method. We
first step to the middle of the time interval, where we apply twice the correction necessary to
satisfy deformation constraints. We then integrate from mid-step to the end of the interval
and apply a standard projection step.

Figure 3.4 – Evolution of total energy over time for different methods on a swinging cloth
example with 1% isotropic strain limits. Unconstrained implicit Euler (IE) loses energy more
rapidly than our SOCP approach with end-of-step projection (SAP). Our step-and-reflect
method (SAR) further improves energy conservation. For BDF-2 versions of projection
(BAP) and reflection (BAR) methods, we obtain even lower numerical damping, but larger
energy fluctuations.

To improve upon this behavior, we follow the idea by Zehnder et al. [2018] and experi-
ment with a quasi-symmetric constraint reflection scheme that we refer to as step-and-reflect
(SAR).

To this end, we first integrate to the middle of the time interval, where we enforce
constraints by solving (3.3.12). We then apply twice the correction required to satisfy all
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Figure 3.5 – Evolution of total energy over time for different step sizes on a swinging cloth
example with 1% isotropic strain limits.

Figure 3.6 – Our SOCP-based strain limiting method can be integrated into standard col-
lision resolution approaches. Here we use simple penalty functions that prevent intersection
during time integration and enforce isotropic strain limits of 0.1%.

constraints which, visually, reflects the current configuration to the other side of the con-
straint manifold (i.e., the boundary between feasible and infeasible configurations). We step
from this reflected configuration to the end of the interval, where we apply a standard con-
straint projection. See Fig. 3.3 for a visual summary and Algorithm 1 for a pseudo-code
description of this scheme.

The rationale of this step-and-reflect approach is that, in analogy to symmetric (i.e.,
time-reversible) integration schemes, the quasi-symmetric arrangement of constraint correc-
tion and integration steps should lead to better energy conservation [Hairer et al., 2006].
Similar to Zehnder et al. [2018], we indeed observe that the reflection scheme leads to better
energy conservation, as can be seen in Fig. 3.4. The plot also shows that, unlike the implicit
Euler and step-and-project approach, the energy evolution for the step-and-reflect scheme
shows slight oscillations around a smoothly evolving curve. We conjecture that this behavior
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might be akin to the fluctuations observed in symplectic integration methods which, al-
though non-monotonic, exhibit excellent long-term energy conservation [Hairer et al., 2006].
Using a second-order reflection scheme [Narain et al., 2019] might further improve energy
conservation.

We additionally experimented with BDF-2 variants of our end-of-step projection and
reflection schemes for comparison. By directly replacing implicit Euler with BDF-2 in SAP,
we recover the projection method by English and Bridson [2008] to which we refer as BAP.
In addition, we also implemented a reflection version of BAP, termed BAR, but noticed
instability problems when using the BDF-2 formula for the mid-step velocity v1/2. As shown
in Fig. 3.4, the energy curves of BDF-2 methods exhibit larger fluctuations, but show overall
better energy conservation as expected. Finally, we also investigate the impact of step size
on our SAR method. As can be seen in Fig. 3.5, SAR is robust even for large step sizes even
though energy conservation deteriorates.

3.5. Results
We tested our method on a number of static and dynamic examples that we discuss below.

In all cases, we use a square sheet of fabric with 0.5m side length initialized in the xz-plane
and fixed at two corners. We use constant strain triangle (CST) elements [Thomaszewski
et al., 2009] and hinge-based elements [Grinspun et al., 2003b] for modeling the in- and
out-of-plane behavior of the material, respectively. We set the material thickness to 0.5mm,
its density to 200kg/m3, and use a Young’s modulus 1800Pa and a Poisson’s ratio of 0.41.
Using these parameters, we evaluate our method for different deformation limits and different
mesh resolutions.

Our method allows us to freely impose arbitrary bounds on stretching in any material
direction. This, in turn, enables simulation of a large variety of materials, including quasi-
inextensible isotropic materials, orthotropic fabrics with tight and loose bounds in different
directions, as well as fully anisotropic weaves. As illustrated in Fig. 3.2, different combi-
nations of deformation limits lead to different static drapes—and a similarly rich variety in
dynamic behavior, as shown in the accompanying video. Another dynamic example illus-
trates the feasibility of combining our method with standard collision resolution algorithms
(see Fig. 3.6).

During all these experiments, we observed that our SOCP-based method is extremely
robust, yielding stable results for both static and dynamic examples that precisely satisfy
all constraints, regardless of the deformation limits. We attribute this favorable behavior to
the strict convexity of our formulation.
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Table 3.1 – Performance of our method compared to unconstrained implicit Euler (IE),
general nonlinear programming (NLP), and Gauss-Seidel (GS) as a function of mesh resolu-
tion under isotropic strain limiting. Timings are averaged across 100 animation steps. The
symbol ∗ indicates that some steps did not converge whereas − indicates solver failure.

Mesh resolution 10× 10 20× 20 40× 40 60× 60
IE 0.017s 0.064s 0.361s 1.318s

1%
strain

Ours 0.108s 0.285s 1.289s 4.060s
NLP 0.436s ∗21.009s − −
GS 0.422s ∗7.184s ∗54.725s ∗100.033s

10%
strain

Ours 0.107s 0.278s 1.242s 3.790s
NLP 0.405s ∗27.001s − −
GS 0.016s 0.238s 6.311s ∗48.427s

3.5.1. Performance

We analyze the performance of our method by measuring the average time spent inside
the SOCP solver across 100 simulation steps of our swinging cloth example using different
mesh resolutions. Note that our SAR method involves two projections, so we average across
200 SOCP solves. For reference, we also present the average time spent inside the Newton
solver for implicit integration. As can be seen from Tab. 3.1, the timings for the SOCP solver
and implicit Euler are comparable for small and moderate problem sizes. For larger problems,
however, computation times increase much more rapidly for SOCP, taking roughly 8s per
time step for 10,000 degrees of freedom and approximately 30,000 inequality constraints.

We further evaluated the impact of constraint tightness on computation times, but ob-
served almost no effect when decreasing bounds from 20% to 0.1%. Similarly, we noticed
only slight changes (approximately 20%) in computation time when increasing the number
of constraints per element from 4 to 18.

To analyze the performance of our SOCP formulation, we compare to two common strain
limiting methods: 1) solving a general nonlinear programming (NLP) problem (similar to [Jin
et al., 2017a]) and 2) using Gauss-Seidel (GS) to iteratively enforce constraints per element
(similar to [Thomaszewski et al., 2009]). We solve the SOCP using MOSEK 9.3 with default
parameters, whereas the NLP is solved using Ipopt 3.14 with default parameters. For GS,
flag convergence once constraint violations drop below 1e-6 and set the maximum number of
iterations to 1e5. As shown in Tab. 3.1, our method stands out over these two alternatives,
especially for high-resolution meshes and tight deformation bounds. In addition, we can
see that both NLP and GS may not converge or even fail to handle the problem for high-
resolution meshes. In contrast, our SOCP method handles all of these cases robustly.
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All examples were run on a machine with an Intel Core i9-7900X 3.3GHz processor and
32 GB of RAM.

3.6. Conclusion
We presented a new formulation for strain limiting based on second order cone program-

ming. Unlike previous methods for globally-coupled strain limiting, our formulation is convex
from the ground up and is guaranteed to have a single optimum. We have translated our
quadratic inequality constraints into the conic form, allowing us to leverage powerful conic
programming solvers.

While our SOCP excels at enforcing bounds on stretching, it cannot handle bounds on
compression since the corresponding constraints are not convex. We argue that, for thin
sheet materials such as textiles, this is a worthwhile compromise as compressions generally
lead to immediate out-of-plane buckling.

Our initial results demonstrate the feasibility of our approach and indicate that, by
setting arbitrary bounds on stretching in arbitrary directions, a large range of interesting
material behaviors can be modeled. Our experiments further indicate that our SOCP-based
approach is unconditionally robust, yielding stable and temporally smooth animations even
for tight deformation bounds.

Computation times seem to be largely unaffected by constraint tightness and the number
of constraints per element, but they grow rather rapidly with respect to mesh resolution.
However, our method still outperforms conventional approaches by large margins, especially
for high-resolution meshes and tight deformation bounds. While our formulation will auto-
matically benefit from progress in SOCP solvers, multi-resolution approaches that enforce
constraints on coarser levels than the simulation mesh might be a worthwhile direction for
future exploration.

We have demonstrated that our method can be combined with a simple collision response
approach. However, future work should investigate ways of integrating our method with
advanced collision handling frameworks such as [Narain et al., 2012] or [Li et al., 2021b].

While we have focused on in-plane behavior, it would also be interesting to develop qua-
dratic formulations for bending deformation limits. Enforcing limits on bending deformation
would enable simulating materials such as quasi-rigid chainmail.

Our results, both qualitative and quantitative, focus on simple geometries and simple
test cases. While they constitute a proof-of-concept, we would like to confirm the promising
behavior of our method on clothing examples with production-level complexity.

Finally, we believe that many other animation problems can benefit from conic program-
ming reformulations. One particularly interesting case would be frictional contact modeling,
for which SOCP methods have already shown their promise [Boyd and Wegbreit, 2007].
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3.A. Appendix A
For the deformation gradient F ∈ R3×2, we compute it as

F = dx
dx̄

= dxN(x̄)
dx̄

= x
dN(x̄)

dx̄
= xB , (3.A.1)

where N is the shape functions for the triangle. Therefore, we get the matrix A in Equation
(3.3.3) as

A =


d̄

d̄
d̄


T



B1

B1

B1

B2

B2

B2

B3

B3

B3



T

, (3.A.2)

where Bi indicates the i-th row of matrix B.
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Figure 4.1 – Discrete Interlocking Materials are governed by strongly coupled, highly
anisotropic, and asymmetric deformation limits. Our method is able to capture and repro-
duce these effects for many types of interlocking materials (a). Using native-scale simulations
as a basis (b), we construct macromechanical deformation limits on bending and stretching
(c) which we use to develop an efficient macro-scale simulation model (d).

Abstract. We present a method for computational modeling, mechanical characterization,
and macro-scale simulation of discrete interlocking materials (DIM)—3D-printed chainmail
fabrics made of quasi-rigid interlocking elements. Unlike conventional elastic materials for
which deformation and restoring force are directly coupled, the mechanics of DIM are gov-
erned by contacts between individual elements that give rise to anisotropic deformation
constraints. To model the mechanical behavior of these materials, we propose a computa-
tional approach that builds on three key components. (a): We explore the space of feasible
deformations using native-scale simulations at the per-element level. (b): Based on this sim-
ulation data, we introduce the concept of strain-space boundaries to represent deformation
limits for in- and out-of-plane deformations, and (c): We use the strain-space boundaries
to drive an efficient macro-scale simulation model based on homogenized deformation con-
straints. We evaluate our method on a set of representative discrete interlocking materials
and validate our findings against measurements on physical prototypes.
Keywords: Bi-Phasic Materials, Homogenization, Mechanical Characterization, Strain
Limiting, Data-Driven Macromechanical Model.

4.1. Introduction
Designing materials with desired mechanical properties is an important problem in sci-

ence and engineering. Often, designers must create materials whose flexibility allows for
proper functioning while providing the strength needed to prevent excessive deformation
and support external loads. For conventional elastic materials, reconciling these soft-stiff re-
quirements means designing for strong nonlinearities—and with increasing stiffness contrast,
this task becomes ever more challenging. Here we consider a new class of Discrete Interlock-
ing Materials (DIM): generalized chainmail fabrics made of quasi-rigid interlocking elements.
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Figure 4.2 – Element cross-section determines coupling for bending. Two threefold sym-
metric materials are bent using the same uniaxial load case. The elements of design (a) have
circular cross-section, while cross-sections for design (b) are slightly ellipsoidal. This small
asymmetry in geometry leads to much larger coupling between principal and orthogonal cur-
vature.

Unlike conventional elastic materials for which restoring force increases in lockstep with de-
formation, the mechanics of DIM is governed by contacts between individual elements. Their
particular structure leads to extremely high contrast in deformation resistance: when con-
tacts are sparse or unstructured, deformation is possible without any restoring force (the
slack regime). Once a chain of contacts is formed along a given loading direction, further
deformation is resisted with the full strength of the base material (the taut regime). This
bi-phasic behavior lends DIM both strength and flexibility, making them attractive for use
in robotics, orthotics, sportswear, and many other areas of application. To support such
applications, however, we must predict the macro-mechanical behavior of DIM from their
native-scale structure, i.e., element shape and connectivity. This relation is highly non-trivial
as small changes in element shape can change the macromechanical behavior substantially
(see Fig. 4.2).

In this work, we propose a computational approach for modeling and characterizing
discrete interlocking materials composed of quasi-rigid elements. Rather than through the
properties of their base material, we describe DIM through their strain-space boundaries
that delineate the space of kinematically feasible configurations. These boundaries describe
multi-dimensional, highly anisotropic limits for in- and out-of-plane deformations. In order to
capture this complex mechanical behavior, we propose a novel homogenization approach for
distilling macroscale deformation limits from native scale simulations. For each material, we
perform thousands of virtual deformation tests for uni- and bi-axial stretching and bending
in different directions. We thus establish a sample-based representation of a material’s
feasible set of deformations, from which we extract its strain-space boundary. We use this
boundary to derive various metrics for characterization and to develop a homogenized model
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for DIM that combines thin-shell simulation with anisotropic deformation constraints for
stretching and bending. Using this computational framework, we explore the space of discrete
interlocking materials and characterize the macro-mechanical behavior of a diverse set of
samples. Our simulation-based results are validated through real-world experiments, showing
good agreement on both qualitative and quantitative levels. In summary, the key technical
contributions of our work are

— the first formal framework for computational modeling and mechanical characteriza-
tion of discrete interlocking materials,

— a method for homogenizing strain limits for in- and out-of-plane deformations,
— a representation of multi-dimensional deformation limits as feasible sets in strain

space,
— a data-driven macromechanical model for discrete interlocking materials that com-

bines thin shell simulation with homogenized deformation constraints.

4.2. Related Work
Metamaterial Design. Through precisely architected microstructures, flexible metamate-
rials can achieve a broad range of macromechanical properties [Bertoldi et al., 2017]. Fueled
by the increasing availability of 3D printing technology, the graphics community has started
to embrace the problem of generating 3D-printable content such as models optimized for sta-
bility [Stava et al., 2012; Lu et al., 2014b; Zhou et al., 2013], mechanical assemblies [Zhu et al.,
2012; Ceylan et al., 2013b; Coros et al., 2013b; Thomaszewski et al., 2014b], or characters
that can be posed and deformed in desired ways [Skouras et al., 2013b; Bächer et al., 2012].
One particular line of research in this context investigates the creation of 3D-printable meta-
materials. The spectrum includes layered materials fabricated with multi-material printers
[Bickel et al., 2010], materials with lattice- [Panetta et al., 2015, 2017], voxel- [Schumacher
et al., 2015; Zhu et al., 2017], and foam-like [Martínez et al., 2016, 2017] structures, as well as
two-dimensional, sheet-like materials [Schumacher et al., 2018; Martínez et al., 2019; Tozoni
et al., 2020; Leimer and Musialski, 2020]. While these previous works have explored many
aspects of mechanical metamaterials, they all focus on elastic behavior. In contrast, we in-
vestigate a new class of metamaterials whose macro-scale behavior is regulated by internal
contact, not elastic deformation.
Homogenization. The macromechanical properties of metamaterials can be determined
using the toolset of homogenization theory [Bensoussan et al., 1978]. The central idea of
homogenization is to infer macroscopic descriptions for the mechanical behavior of struc-
tured materials, typically by analyzing a representative patch of material subject to periodic
boundary conditions. Most approaches use the same discretization (e.g., volumetric finite
elements) for both native and macro scale simulation [Kharevych et al., 2009; Schumacher
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et al., 2015; Panetta et al., 2015]. Nevertheless, there are also cross-discretization approaches
that map between very different computational models, e.g., from elastic rods to thin plates
[Schumacher et al., 2018] or thin shells [Sperl et al., 2020]. Our method is likewise a cross-
discretization approach, mapping from rigid body simulation to a 3D shell model. Unlike
previous methods, however, we use homogenization to infer macroscopic deformation limits,
not elasticity constants.
Bi-Phasic Materials. Capturing and modeling the behavior of elastic materials has a long
history in graphics [James and Pai, 1999; Bickel et al., 2009; Hahn et al., 2019]. An alternative
to using highly nonlinear material models is to combine a weak elastic base material with
deformation constraints [Provot et al., 1995; Goldenthal et al., 2007; Jin et al., 2017b].
Whereas previous methods focused on edge-based strain limiting, Thomaszewski et al. [2009]
suggested to enforce limits on per-triangle strain tensors, thus taking into account the full
state of deformation. Wang et al. [2010] extended this concept to strain limiting based on
singular value decomposition, which subsequent work applied to fully anisotropic limits on
nonlinear deformation measures [Perez et al., 2013; Hernandez et al., 2013; Müller et al.,
2015b; Tang et al., 2022]. Our discrete interlocking materials can be considered an extreme
case of bi-phasic materials: they initially show no resistance to deformation, but exhibit
a hard stop once a limit is reached. However, instead of selecting deformation limits to
approximate the behavior of highly nonlinear materials, we characterize materials by inferring
deformation limits from native-scale simulation data.
Simulating Contact. Robust simulation of mechanical systems with frictional contact has
been a core focus of graphics research for many years [Hahn, 1988; Baraff, 1989; Kaufman
et al., 2008; Bertails-Descoubes et al., 2011; Erleben, 2018; Peiret et al., 2019; Geilinger
et al., 2020; Li et al., 2022]. We focus our survey on methods most relevant to interlocking
assemblies with tight contacts. In this context, Qu and James [2021] propose a method that
computes certificates for topological validity between arrangements of closed curves found,
e.g., when simulating knitwear [Kaldor et al., 2008; Cirio et al., 2014] or chainmail. Robust
time stepping with tight contacts is also the focus of Li et al. [2020b], who propose smoothly
clamped logarithmic barriers to guarantee intersection-free states at all times. Our native-
scale simulation model builds on an extension by Ferguson et al. [2021] for intersection-free
rigid body simulation. Building on data from this native-scale model, we propose a macro-
scale simulation model that captures the high-level deformation behavior without the need
to handle inter-element contacts.
Interlocking Materials & Structures. Using interlocking as a mechanism for creating
stable assemblies is a concept that is used across architecture, robotics, and material sciences.
For example, interlocking can be used to build functional furniture without nails or adhesives
[Yao et al., 2017; Song et al., 2017], rigid assembly puzzles [Xin et al., 2011; Song et al., 2012;
Wang et al., 2018], and stable surfaces made from flexible [Skouras et al., 2015] or rigid [Wang
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et al., 2019] components. Interestingly, imperfections during manufacturing can lead to loose
joints such that assemblies, despite the rigidity of their components, can produce macroscopic
deformations that can be harnessed, e.g., for robotics applications [Lensgraf et al., 2020].

Interlocking can also be used to create strong but flexible materials such as chainmail—a
technique that has been known since ancient times. There are comparatively few works
in material science and engineering that have revisited this technique. One example is
the work by Engel and Liu [2007] who proposed a micro-machining process for creating
chainmail-like fabrics. Ransley et al. [2017] combined a chainmail material with tempera-
ture controlled actuation for soft robotics applications. More recently, Wang et al. [2021]
described a friction-modulated stiffening effect when subjecting sealed chainmail fabrics to
external pressure. Our work uses the same material principle, i.e., periodic fabric-like ar-
rangements of interlocking quasi-rigid elements. However, whereas Wang et al. focus on
elasticity as an emerging property, we address the fundamental question of quantifying the
kinematic behavior of discrete interlocking materials.

4.3. Computational Model
Our goal is to construct macroscopic descriptions for discrete interlocking materials

(DIM) with a wide range of element shapes and topologies. To this end, we must first be able
to predict the behavior of given DIM. We start by describing our native-scale model that
simulates DIM on the level of individual elements (Sec. 4.3.1). We then use native-scale sim-
ulations to create macroscopic states of in-plane and out-of-plane deformations (Sec. 4.3.2).
Using these macroscopic deformation tests, we construct a strain-space representation—the
boundary between slack and taut regimes—that describes the space of feasible deformations
for a given material. Finally, we propose a macro-scale simulation model that leverages this
strain-space representation to efficiently predict the macromechanical behavior of DIM based
on homogenized deformation constraints.

4.3.1. Native-Scale Model

The mechanical behavior of Discrete Interlocking Materials is determined by the shape of
their elements and the way in which they interconnect, i.e., their topology. By varying element
shape and topology, a large range of macromechanical behavior can be obtained. Here we
focus on quasi-rigid elements such that the mechanical behavior is entirely determined by
kinematics—deformation limits—not elasticity. A natural choice to model this class of DIM is
to represent individual elements as rigid bodies and model interactions between neighboring
elements through contact forces. To predict deformation limits, we must compute static
equilibrium configurations for given boundary conditions. We follow Ferguson et al. [2021]
and cast rigid-body simulation with contact as an unconstrained minimization problem with
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Figure 4.3 – Deformation limits for a three-fold symmetric material are probed in simulation
using in-plane periodic boundary conditions (a) and paraboloid bending tests (b).

logarithmic penalty functions that guarantee intersection-free states,

min
q

EExt(q) + EColl(q) , (4.3.1)

where q = (q1, . . . , qn)T ∈ R6n is a vector holding six degrees of freedom qi = (xi, ωi) for
each of the n rigid elements, with xi and ωi denoting center-of-mass positions and rotations,
respectively. Furthermore, EExt(q) and EColl(q) are potentials due to gravity and contacts.
We refer to [Ferguson et al., 2021] for details.

4.3.2. Macro-Scale Deformations

The native-scale model allows us to study the response of DIM to arbitrary external
forces. However, in order to describe these materials at a level of abstraction that is inde-
pendent of the size and shape of a given sample, we must choose forces that lead to uniform
macroscopic states of deformation. While we draw inspiration from homogenization theory
for elastic media, the discrete nature of DIM requires a different approach as described next.
In-plane Deformations. To characterize the in-plane behavior of DIM, we first define a
tileable unit cell as shown in Fig. 4.3(a). In order for this cell to be tileable, the positions
of corresponding elements on opposite boundaries must be related by the same translation
and their orientations must match. For each boundary pair, these requirements lead to
a set of periodicity conditions of the form xj = xi + tij for translation and ωj = ωi for
rotation. Analogous conditions are imposed for the second boundary pair, i.e., xk = xi + tik

and ωk = ωi. Apart from enforcing tileability, these periodic boundary conditions can also
serve for prescribing in-plane strains. For a given angle θ, any such macroscopic strain
can be defined through a principal direction dp = (cos(θ), sin(θ))T , its orthogonal direction
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do = (cos(θ + π
2 ), sin(θ + π

2 ))T , and corresponding directional strains εp and εo. Given these
quantities, we can define periodic translations for biaxial states of deformation as

tij = εp(t̄T
ijdp)dp + εo(t̄T

ijdo)do , (4.3.2)

where the translations tij and t̄ij map vertices from one boundary to their counterparts
on the opposite boundary in the current and reference configurations, respectively. The
translation tik for the second boundary pair is determined analogously, see Fig. 4.3. To
draw a native-scale simulation towards a given macroscopic target strain ε̂, we solve the
constrained minimization problem

min
q,ε

1
2(ε− ε̂)2 + Ecoll(q) s.t. CBC(q,ε) = 0 , (4.3.3)

where CBC(q,ε) encode the periodic boundary conditions from (4.3.2) and ε = (εx,εy,εxy)T .
Thanks to the coupling between strain variables ε and element transformations q through
boundary conditions and collision penalties, this formulation ensures that strains remain
valid even if target values are outside the feasible set.
Out-of-plane Deformations. To analyze deformation limits for bending, we initially con-
sider using periodic boundary conditions analogous to the planar setting. While single curva-
ture states—i.e., cylindrical bending—can be conveniently modeled in this way [Sperl et al.,
2020], the concept of periodic boundary conditions does not readily extend to the doubly-
curved setting: one cannot, in Euclidean geometry, define a finite-sized, double-curvature
patch that tiles with itself [Sausset and Tarjus, 2007]. Nevertheless, finite patches of DIM
can generally assume states of double curvature. Some materials will even strongly resist
uniaxial bending and prefer negative Gaussian curvature instead, see Fig. 4.2(b). For this
reason, we lay aside periodic boundary conditions for out-of-plane behavior and instead turn
towards a penalty approach that encourages states of double curvature without strictly en-
forcing them through constraints. To this end, we define target surfaces with prescribed
curvatures and ask that a given patch of interlocking elements should match this target as
closely as possible. We use circular patches of paraboloid surfaces for this purpose, which are
defined as z = Ax2 + By2 + Cxy. To achieve a given target curvature κ̂, we reparameterize
the positions of all elements as xi(κ) = (xi, yi, Ax2

i + By2
i + Cxiyi)T , where κ = (A,B,C)T .

We then find the feasible curvature closest to the target value by solving the minimization
problem

min
q,κ

1
2(κ− κ̂)2 + EColl(q(κ)) . (4.3.4)

As in the planar setting, simultaneously optimizing for paraboloid parameters κ and element
transformations q ensures that the corresponding curvature remains in the feasible set: any
deviation would lead to intersections between elements, which are strongly penalized by the
logarithmic penalty term EColl.
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4.3.3. Strain-Space Representation

Having established the means to enforce macro-scale deformations for native-scale simu-
lations, we can now start to build macromechanical representations of discrete interlocking
materials. Unlike elastic materials, DIM can freely deform in a given direction until a hard
stop due to tight contact between elements prevents further deformation. These deforma-
tion limits can vary strongly with direction and often depend on orthogonal deformations
in highly nonlinear ways. To derive these limits, we observe that DIM can be fully de-
scribed by enumerating all feasible macroscopic deformations. We assume that the set of
all feasible in- and out-of-plane deformations forms a closed, simply-connected region in a
six-dimensional strain space. While it is conceivable that materials violating this assumption
can be constructed using, e.g., bi-stable/snap-through connections, we do not consider this
case here. Even though bending and stretching deformations are coupled for the case of
double curvature, our experiments and analysis indicate that treating in- and out-of-plane
limits separately is a reasonable approximation (see Sec. 4.4.2). We, therefore, use distinct
three-dimensional strain spaces for stretching and bending. See Fig. 4.4 for an example.
Stretching. Planar states of strain form a three-dimensional space that can be parameter-
ized in different ways. Using a canonical coordinate system with two axial stretches εx, εy,
and one shear strain εxy is one possible choice. However, simple sampling strategies in this
space will not lead to uniform distributions of samples with respect to the direction of defor-
mation. For this reason, we parameterize planar strain through an angle θ that transforms
the canonical coordinate axes into the orthogonal directions of principal stretch. This system

Figure 4.4 – Strain-space boundaries for the threefold symmetric chainmail material for
in-plane (left) and out-of-plane (right) deformations. Projections of the 3D shapes onto
strain-space planes are shown to improve readability.
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has zero shear strain such that two auxiliary variables ε′
p and ε′

o for stretch along the princi-
pal axes fully describe the planar state of strain as in Eq. (4.3.2). To explore the strain space
boundary, we start by uniformly sampling directions θ ∈ [0,π). For each sampled direction
θi, we gradually increase (and decrease) the principal stretch ε′

p. For each principal stretch
value we then explore the limits of stretching and compression in the orthogonal direction.
We always enforce zero shear to ensure that our principal strain coordinate system remains
valid. Whenever we find a state for which deformation in either the principal or orthogonal
direction cannot be further extremized, we have found a point on the boundary of the feasible
set. In preparation for our macro-scale model, we then convert this point into its equivalent
Green strain representation E = (Ex,Ey,Exy)T in material coordinates and add it to the list
of points used for constructing the strain space boundary.
Bending. To enable directional sampling of curvatures in analogy to the planar setting, we
observe that any paraboloid with nonzero torsion C ̸= 0 can be reparameterized in terms
of an angle θ indicating the rotation of the canonical axes onto the directions of principal
curvature. In this rotated system, we have nonzero curvatures A′ ̸= 0, B′ ̸= 0 but vanishing
torsion C ′ = 0 such that we can use the same boundary exploration strategy as for in-plane
deformations.
Strain-Space Representation. The data generation strategy outlined above yields sets of
points on the boundary between slack and taut regimes. We triangulate these point sets
to obtain closed and watertight surface meshes that serve as explicit boundary representa-
tions Bs and Bb for stretching and bending, respectively. See also Fig. 4.4. Based on these
strain-space boundaries, we define high-level directional deformation limits for characteriz-
ing discrete interlocking materials. We furthermore use these representations to construct
macromechanical simulation models as explained next.

4.3.4. Macro-Scale Model

Native-scale simulation allows for accurate modeling and, consequently, analysis of the
mechanical behavior of discrete interlocking materials. While the costs of native-scale simu-
lation are acceptable for distilling macroscopic deformation limits from small samples, they
become an impediment when exploring the behavior of larger assemblies. To enable effi-
cient preview of DIM with larger numbers of elements, we develop a macro-scale model that
combines thin-shell simulation with homogenized deformation constraints. To this end, we
use the bending model by Gingold et al. [2004] as a basis, which provides direct access to
curvature tensors using simple four-triangle elements. We complement this bending model
using linear triangle finite elements for in-plane deformations, which we quantify using the
rotationally-invariant Green strain.
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A key insight in this context is that we can enforce per-element stretching and bending
limits as set inclusion constraints in strain space. Since the set boundaries are represented
with triangle meshes, we can leverage established collision detection algorithms for model-
ing and enforcing strain-space constraints. To this end, we interpret per-triangle strain and
curvature tensors as points in three-dimensional strain space. We enforce deformation limits
through soft constraint functions that penalize the motion of points in strain space outside
their boundaries Bs and Bb, respectively. Let si ∈ R3 denote a point in strain space corre-
sponding to the in- or out-of-plane deformation of triangle i. We first determine the distance
d of si to the closest primitive—point, edge, or triangle—on B using standard geometry tests
and bounding volume hierarchies for acceleration. We then set up smooth, unilateral penalty
functions as

Ess(d) =

kssd
3 d ≥ 0

0 otherwise ,
(4.3.5)

where positive distance values d ≥ 0 indicate points outside the strain-space boundary
and kss is a penalty coefficient. We use the same strategy for defining penalty functions
for stretching and bending limits, which are complemented by weak elastic potentials that
regularize behavior inside the feasible region. For these regularizing materials, we aim to
select stiffness coefficients that are large enough to prevent numerical problems, but small
enough to not interfere with the deformation limits. To this end, we use a soft elastic base
material with a Young’s modulus of 1250Pa, a Poisson’s ratio of 0.4, and a mass density
of 250kg/m3. To enable both implicit time stepping and static equilibrium simulation for
our macro-scale model, we combine elastic and penalty potentials with an inertia term as
described by Martin et al. [2011].

By reducing the number of variables and avoiding contact resolution at the element
level, our macro-scale model is able to reduce computation times by one to two orders of
magnitude compared to native-scale simulations. We present a detailed analysis of accuracy
and computation times in Sec. 4.4.

4.4. Results
We evaluate our method on a representative set of discrete interlocking materials and

compare results obtained through simulation to measurements on physical prototypes. We
start with a brief description of our experimental setup, after which we present our analysis
of individual discrete interlocking materials.

4.4.1. Experimental Validation
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For experimental validation, we fabri-
cate sets of physical prototypes using 3D-
printing. To obtain controlled deforma-
tion for both in-plane and out-of-plane mo-
tion, we use a custom experimental setup as
shown in the inset figure, consisting of a lin-
ear stage for precision actuation and a load
cell for force measurement.
In-plane Deformation Limits. To experimentally identify the limits of the slack region,
we stretch and compress samples along given directions until the load cell signals that a force
threshold of 2N has been reached. This process is repeated 5 times in each direction, and
we report lower and upper bounds for the measurements in our plots.

These experiments result in a set of deformation limits for stretching and compression
measured in absolute units of length. To remove dependencies on sample size and increase
readability, we convert these limits into a Cauchy strain-like relative measure,

c = ls − lc
lc

= (1 + εs)L− (1 + εc)L
(1 + εc)L

= εs − εc

1 + εc

, (4.4.1)

where ls and lc are the measured lengths for stretching and compression experiments. Vi-
sually, this directional Cauchy strain indicates the free range of travel relative to the cor-
responding minimal length under compression. Eq. (4.4.1) also shows that we can easily
compute this metric from simulation data, with L denoting a reference length while εs and εc

are corresponding stretch and compression limits. Summarizing strain values for different di-
rections in a polar plot then enables direct comparison between experimental measurements
and simulation data.
Out-of-plane Deformation Limits. We measure bending limits on physical prototypes
using the same basic setup. To capture the state of curvature of a given sample, we addi-
tionally use an optical tracking system. To this end, we place markers on selected elements
such as to sample both curvatures in principal and orthogonal directions. We then recover the
closest state of constant curvature from the data by fitting circular arcs to the corresponding
marker positions. We use the same experimental protocol as for the in-plane measurements.
Due to the finite accuracy of our setup, however, we restrict bending tests to a smaller set
of discrete directions that can be easily measured.

4.4.2. Analysis of Discrete Interlocking Materials

Our approach allows us to analyze a wide range of discrete interlocking materials. Here
we show results for a set of four representative examples, illustrated in Fig. 4.5, that cover
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Figure 4.5 – Dimensions of elements (mm) and topology of interlocking for the materials
considered in this work.

some of the major effects to be observed in these materials. For each example, we validate
our method by comparing simulation results to measurements on physical prototypes.
Threefold Symmetric Chainmail. Our first example is the three-fold symmetric struc-
ture shown in Figs 4.5(a) and 4.6(a). Each element of this material connects to its six
immediate neighbors, leading to an overall threefold symmetric structure. As can be seen
from Fig. 4.6(b), the material shows an almost isotropic limit profile for in-plane deforma-
tions with only small higher-frequency fluctuations. The simulation data is furthermore
within the error bars (orange) of the experimental data. Here, the large discrepancy in the
measurements is arguably due to displacements being small compared to the finite accuracy
of our experimental setup. While the bending profiles under uniaxial bending shown in Fig.
4.6(c) and 4.6(d) are also almost isotropic, the difference in sign between principal and or-
thogonal curvature limits indicates a rather interesting coupling behavior: when applying
uniaxial bending in any given direction, the material will bend with opposite curvature in
the orthogonal direction, leading to characteristic saddle shapes as shown in Fig. 4.1(a).
Interestingly, the amount of coupling seems to be determined by the aspect ratio of the
elements’ cross-sections. As shown in Fig. 4.2, ellipsoidal shapes induce hyperbolic curva-
ture, whereas circular shapes lead to almost cylindrical bending. The limit plots are just a
partial view onto the full set of kinematically-feasible deformations that is captured by our
strain-space boundaries, shown in Fig. 4.6(e, f ). These strain-space boundaries, which are
best appreciated in the accompanying video, feed directly into our macro-scale simulation
model, allowing us to predict the complex coupling behavior of this material in an accurate
and efficient way. See Fig. 4.1(d).
Torus Knot Material. Our second example is a fourfold symmetric material consisting of
torus knot elements arranged in a regular quadrilateral grid as shown in Fig. 4.5(b). As can
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Figure 4.6 – Deformations limits for threefold symmetric chain mail, torus knot,
and scale mail materials. Polar plots show directional deformation limits for uniaxial
stretching (b) as well as biaxial curvature in the principal (c) and orthogonal (d) directions
under uniaxial loading. For the uniaxial tests, we bend structures in a given principal
direction until reaching their curvature limits. In the orthogonal direction, the structure is
left free to deform under gravity and thus reaches a secondary curvature limit. We show
the corresponding curvature limits in the principal (c) and orthogonal (d) directions. Solid
curves (blue) correspond to simulation results which are sampled from [0,π) and rotated
to fill the range [π, 2π), experimental data is indicated using error bars (orange). These
polar plots are partial views onto strain space boundaries for in-plane (e) and out-of-plane
deformations (f ).

be seen from the uniaxial strain plot in Fig. 4.6(b), this material exhibits almost isotropic
in-plane limits, albeit with somewhat larger margins in 30 and 60 degrees. Compared to the
threefold symmetric chainmail, however, these limits are much tighter. This material nev-
ertheless admits significantly larger curvature, especially in 0 and 90 degrees. Interestingly,
whereas this torus knot material only allows cylindrical curvature in 0 and 90 degrees, it
admits doubly-curved states in 45 degrees. All of these observations can again be derived
from the corresponding strain-space boundaries shown in Fig. 4.6(e, f ).
Scale Mail. Our method can also be applied to elements with more complex geometry. In
our third example, we consider a material made from elements with a sixfold symmetric
base and a hexagonal plate on top of one side in Fig. 4.5(c) 1. As can be seen from the

1. This model is a modified version of the NASA chain mail material available at https://www.
thingiverse.com/thing:3095799
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(a) (b)

(c) (d)

Figure 4.7 – 4-in-1 chainmail consisting of a staggered arrangement of rings, each of which
connects to their four immediate neighbors (a). Deformation limits for uniaxial stretching
(b) and strain space boundary for in-plane deformations (c). Bending limits are determined
by contact between non-connected elements (d).

uniaxial strain plot in Fig. 4.6(b), our simulation results are in good agreement with the
measurements, showing a sixfold symmetric behavior with local maxima and minima for
range of motion separated by 15 degrees. The curvature limits computed for this structure,
shown in Fig. 4.6(c, d), show slightly larger deviations from the measurements but are still
within acceptable margins.

Unlike all other materials considered here, this scale material is not symmetric through
the thickness. This asymmetry in shape translates into an asymmetric bending behavior as
shown in Fig. 4.12. For positive curvature, contact between the scales puts an early stop to
bending. In the negative curvature direction, the bending limit is determined through contact
between the interlocking rings and the base, which allows for much larger deformations. This
peculiar asymmetric bending behavior can also be observed from the strain space boundaries
shown in Fig. 4.6(f ), which—unlike for the other materials—shows no symmetry with respect
to curvature sign changes.
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Figure 4.8 – Limits for double curvature depend on sample size. Absolute curvature values
in both the principal and orthogonal directions decrease as patch size increases from 4 (a) to
6 (b) and 8 (c) elements along the diameter, corresponding to patch radii of 2.8cm, 4.8cm,
and 5.8cm, respectively.

4-in-1 Chainmail. As our fourth example, we characterize the behavior of classic chainmail.
This material is made of a staggered arrangement of ring-shaped elements that connect to
their four immediate neighbors as shown in Fig. 4.5(d). As can be seen from Fig. 4.7(b),
our simulation results for in-plane limits again show good agreement with experimental
measurements. Although the range of travel for in-plane deformation is not substantially
different from other materials, this chainmail admits very large bending deformations. As
shown in Fig. 4.7(d), the bending limits are indeed not determined by contact between
directly connected elements but occur when remote elements come into contact upon folding.
Since these folded configurations are far away from the constant-curvature case that we use
for determining bending limits, our method cannot extract meaningful bending limits for this
type of material. Nevertheless, accurate macro-mechanical behavior can still be obtained by
combining the in-plane limits extracted from simulation data with a penalty-based collision
handling approach such as IPC [Li et al., 2020b].
Discussion. In summary, our method is able to capture the deformation limits for a wide
range of discrete interlocking materials. In our analysis of different materials, we have
identified several interesting phenomena, including strong coupling between bending modes

88



as well as asymmetric bending limits. Although some of the results obtained through native-
scale simulation may not align perfectly with experimental measurements, all of them can be
deemed within acceptable margins. While many of the plots obtained from simulation data
are smooth and symmetric, others exhibit imperfections and high-frequency fluctuations that
are not in obvious ways connected to the symmetry of the pattern. One explanation for such
perturbations is the fact that in-plane strain is a function of the minimum length obtained
for compressive loading. Compared to stretching, these compression tests are inherently
more sensitive to noise, both in simulation and reality. Discrepancies between simulated
and measured limits can also partly be attributed to the finite precision of our measurement
setup. Bending tests generally showed much larger variations, which is arguably due to
inaccuracies in marker placement, elastic deformations, as well as friction and gravity.

While our characterization of in-plane limits applies to arbitrary sample sizes, the same
is not true for bending limits. As explained in Sec. 4.3.2, periodic tilings of doubly-curved
patches do not exist in Euclidean geometry. Experimentally, however, we observe that
finite sample sizes do admit double curvature. As shown in Fig. 4.8, our analysis of the
relation between double curvature limits and sample size suggests that both principal and
orthogonal curvature limits tighten with increasing sample size. We conjecture that this
behavior is a direct consequence of Gauss’s Theorema Egregium, i.e., the fact that nonzero
Gaussian curvature inevitably leads to in-plane deformation. To see this, consider a given
patch size with constant nonzero Gaussian curvature. Relative to its flat configuration,
this patch must exhibit differential in-plane deformation, e.g., stretching at its center and
compression along its boundaries. Increasing the patch size while maintaining the same
Gaussian curvature, we must either increase stretch at the center, or compression at the
boundary—but both deformations are ultimately bounded by in-plane limits. Our conclusion
from this observation is that in-plane limits, not bending limits, prevent double curvature
states as sample size increases. We argue that, by measuring double curvature on smaller
samples, our method nevertheless provides meaningful information on the intrinsic curvature
preferences of discrete interlocking materials. Furthermore, our macro-scale simulations will
automatically produce the effect of diminishing double curvature as sample size is increased
even though we do not directly model coupling between in- and out-of-plane limits.

4.4.3. Macro-Scale Simulation

Having validated the deformation limits obtained through native-scale simulation and
our strain-space boundary representation, we now evaluate the behavior of our macro-scale
simulation model. All examples were run on a machine with an Intel Core i9-12900HK
2.5GHz processor and 32 GB of RAM.
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Threefold Symmetric Chainmail Torus Knot Material Scale Mail

(a)

(b)

(c)

Figure 4.9 – Comparison between native- and macro-scale simulations for different mate-
rials. Static equilibrium states for applied point loads of 0.5N (red arrows) with different
patch sizes. Threefold symmetric chainmail: we use disk patches of size 2.8cm (a),
4.8cm (b), and 5.8cm (c). Our macro-scale model uses the same resolution—but different
physical sizes— of 384 faces and 217 nodes for all three cases. Torus knot material: we use
patches with 4×4 (a), 5×5 (b), and 6×6 (c) elements. Our macroscale model use again the
same resolution (#face = 200, #nodes = 121) but different physical sizes with 4.4cm (a),
5.5cm (b), and 6.4cm (a) side length, respectively. Scale mail: we use disk-shaped patches
with 19 (a), 37 (b), and 61 (c) elements and corresponding radii of 3.4cm, 4.6cm, and 5.9cm,
respectively. Our macro-scale simulations use the same mesh resolution (384 faces and 217
nodes) for all patch sizes.

Comparison between Native- and Macro-Scale Simulations. Using the materials
analyzed in Sec. 4.4.1, we apply the strain space representations captured from native-scale
simulation data to drive the deformation constraints in our macro-scale model. Fig. 4.9
shows a comparison between macro- and native-scale simulation results for the threefold
symmetric chainmail, torus knot, and scale mail materials. For each material, we further
compare results for different physical patch sizes. For native-scale simulations, we increase
the number of elements according to patch size. For macro-scale simulations, we simply
change the size of the mesh while keeping its resolution fixed. As can be seen from these
comparisons, our macro-scale simulation results are in good agreement with their native-scale
counterparts.

As can be seen from Tab. 4.1, computation times for our macro-scale model are between
one and two orders of magnitude smaller than for the native-scale model. It can further be
noted that computation times for the native-scale model grow very rapidly with increasing
problem size. Our macroscale model, however, shows almost constant cost since the same
mesh resolution is used for all physical sample sizes. Small differences between macro-scale
timings are due to the fact that more solver iterations are required to reach equilibrium
states with larger deformations.
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Table 4.1 – Performance comparison between native- and macro-scale simulations for the
examples shown in Fig. 4.9.

Example Native-scale [s] Macro-scale [s] Speedup
Threefold (a) 133.526 68.394 2.0x
Threefold (b) 883.701 61.104 20.5x
Threefold (c) 1883.044 61.734 14.5x

Torus knot (a) 216.75 78.618 2.8x
Torus knot (b) 722.203 97.602 7.4x
Torus knot (c) 1647.41 141.261 11.7x
Scale mail (a) 179.057 43.581 4.1x
Scale mail (b) 962.517 36.821 26.1x
Scale mail (c) 4929.636 40.755 121.0x
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Figure 4.10 – Comparison of macro-scale simulation with increasing mesh resolution. We
start from with coarse meshes (a) and increase resolution by a factor of 4 (b) and 16 (c).

Increasing Mesh Resolution and Young’s Modulus. To investigate the mesh depen-
dence of our method, we compare macro-scale simulation results with increasing mesh res-
olution in Fig. 4.10. It can be seen that our macro-scale simulations behave consistently
under refinement. We furthermore analyze the influence of the regularizing elastic material
by comparing macro-scale simulation results for increasing Young’s moduli. From the results
shown in Fig. 4.11, it can be seen that using too large a stiffness value (5000Pa) prevents the
materials from reaching their deformation limits. It should be noted that the lower bound
on the regularizing stiffness is determined by purely numerical considerations—below a cer-
tain stiffness, the linear solver will need additional diagonal regularization which slows down
convergence, but the solution will be largely unaffected.
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Figure 4.11 – Comparison of macro-scale simulations with increasing Young’s Modulus.

Figure 4.12 – Asymmetric Bending Limits. Due to the through-the-thickness asym-
metry of its elements, this scale mail prototype (left) exhibits very different bending limits
for positive and negative curvature. Our macro-scale model (right) accurately captures this
behavior and closely tracks the native-scale simulation results (middle).
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Figure 4.13 – Constraint violations for the examples shown in Fig. 4.9. Maximum con-
straint per-element constraint violations are plotted separately for in- and out-of-plane limits
as indicated. It can be seen that constraint violations stay below 0.01% for all cases.

Bending under Gravity. As an additional test, we further analyze the ability of our macro-
scale model to reproduce the asymmetric bending behavior of the scale mail material. To
this end, we clamp one side of a hexagonal patch with 19 elements and let it deform into
its equilibrium state under gravity. We then turn the sample upside down and repeat the
experiment. As shown in Fig. 4.12, our macro-scale model captures the salient asymmetry
in bending and closely tracks the behavior of both native-scale simulation and the physical
prototype.
Constraint Violations. We use penalty terms to enforce both in- and out-of-plane de-
formation limits. For all our macro-scale simulations, we use a stiffness coefficient of 1e7

to ensure that constraint violation remains below 0.01%. To further analyze the accuracy
of our macro-scale model, we investigate maximum constraint violations for the examples
shown in Fig. 4.9. For each element, we compute the smallest positive distance between
its corresponding point in strain space and the strain-space boundary. We normalize these
values with respect to the diagonal length of the bounding box of the strain-space boundary
and plot the maximum value as a function of sample size. The results shown in Fig. 4.13
indicate that constraint violations are small for all cases.
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4.5. Conclusions
We presented a method for computational modeling, mechanical characterization, and

efficient macro-scale simulation of Discrete Interlocking Materials—generalized chainmail
fabrics made from quasi-rigid elements. Unlike elastic materials, the mechanical behavior
of DIM is governed by inter-element contacts that give rise to anisotropic deformation con-
straints. We proposed to explore these limits using thousands of native-scale simulations
for in- and out-of-plane deformations. Using this simulation data, we have introduced the
concept of strain-space boundaries as an explicit representation of the set of feasible defor-
mations. These strain-space boundaries provide insight into the mechanics of DIM, and they
also give rise to an efficient macro-scale simulation model based on homogenized deforma-
tion constraints. We have applied our method to a set of representative discrete interlocking
materials and validated our findings against measurements on physical prototypes. We con-
clude that our methodology is well-suited for characterizing and modeling a broad range of
discrete interlocking materials.

4.5.1. Limitations & Future Work

There are nevertheless several limitations of our work that indicate avenues for future
work. Our analysis has focused on kinematic motion and, consequently, we have neither
considered friction nor elastic deformations in the structure. While this approximation is
justified for many types of discrete interlocking materials, friction forces can become domi-
nant for tight materials in which elements have little freedom to move. Moreover, as shown by
Wang et al. [2021], resistance to deformation can be controlled through normal pressure—a
mechanism which crucially relies on friction. To apply our method to such friction-dominated
scenarios, we would like to extend our macro-scale model to account for internal friction.
The work by Miguel et al. [2013] for modeling hysteresis in textiles through internal friction
might be a good starting point.

While we modeled elements as rigid bodies, this is clearly an idealized assumption. None
of our physical prototypes showed noticeable deformations for in-plane loading. For bending,
however, an elastic regime can be felt for some of the materials. Modeling and characterizing
elasticity of discrete interlocking materials outside the slack region is an interesting direction
for future research.

Our method successfully captured the strain spaces for four different types of DIM using
an increasing-and-decreasing biaxial loading scheme. Nevertheless, this simple scheme might
not be able to fully explore strain spaces that are not star-shaped, i.e., for which rays from the
origin can intersect the boundary more than once. We expect DIM with elements admitting
twist or screw-like motions to fall into this category.
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Our method offers an intuitive, systematic way for macromechanical characterization
which can pave the way to using DIM for garment design. An interesting direction for future
work would be to extend our formulation to inverse design problems such as finding element
shapes that lead to desired deformation limits.

While strain space boundaries could perhaps be derived analytically for simple elements,
obtaining closed-form deformation limits for complex-shaped elements seems elusive. Nev-
ertheless, further analysis into the relation between structural symmetry and deformation
limits is another exciting direction for future work.

Our macro-scale model offers a computationally efficient alternative that closely tracks
native-scale behavior. However, our method does not provide geometric detail at the element
level, which may be important for applications. Exploring mechanically-aware geometry
synthesis and rendering methods in the spirit of Sperl et al. [2021a] would be a worthwhile
direction for future work.

Finally, while we have focused on homogeneous patterns with planar rest states, the
space of possible discrete interlocking materials is much larger. In the future, we would like
to explore the design and simulation of heterogeneous materials with curved rest shapes and
spatially varying element shapes and connectivities.
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Chapter 5

Conclusion

In this thesis, we present three methods for the modeling and design of compliant me-
chanical systems and materials.

In Chapter 2, we introduce a harmonic balance approach for designing compliant mechan-
ical systems with desired nonlinear periodic motions. Combined with sensitivity analysis,
our method allows us to interactively explore the design space. However, as the number of
parameters increases, manual exploration soon becomes unattractive. Therefore, we further
introduce amplitude and trajectory objectives to enable efficient, automatic inverse design
of steady-state motion for a given target behavior. We validate our method by fabricating a
set of physical prototypes. Our results indicate that harmonic balance paired with sensitiv-
ity analysis is indeed an efficient and effective combination that enables the construction of
powerful forward and inverse design tools.

In Chapter 3, we develop a strain-limiting method based on second-order cone program-
ming (SOCP) for the modeling and simulating of biphasic materials. Unlike previous meth-
ods, our method is convex from the ground up and is guaranteed to have a unique solution.
Our SOCP method can seamlessly combine with existing implicit Euler time integration,
however, the step-and-projection approach presents a severe loss of kinetic energy and dy-
namic detail over time. Thus, we further introduce a quasi-symmetric constraint reflection
scheme, named as step-and-reflection scheme, with SOCP for simulating biphasic materi-
als. Our results show our method can simulate a large range of materials with different
deformation limits and is much faster than previous methods.

In Chapter 4, we introduce a new method for computational modeling, mechanical char-
acterization, and efficient macro-scale simulation of quasi-rigid Discrete Interlocking Materi-
als (DIM). To characterize all nonlinear mechanical properties of DIM, we explore both in-
and out-of-plane deformation limits using thousands of native-scale simulations. Based on
all simulation data in strain space, we build both in- and out-of-plane strain-space bound-
aries as an explicit representation of the set of feasible deformations. These strain-space



boundaries provide insight into the mechanics of DIM, and they also give rise to an efficient
macro-scale simulation model based on homogenized deformation constraints. Our results
reveal that our method can characterize a broad range of discrete interlocking materials.

In summary, this thesis contributes new knowledge for modeling and designing of mechan-
ical nonlinearities at different levels. Specifically, we propose three methods for modeling and
designing nonlinear mechanical systems and materials, each advancing the state-of-the-art.
Our first approach is the design of nonlinear dynamics with periodic motions for nonlinear
mechanical systems. This method is general with respect to mechanical models and can be
applied to design a wide range of complex nonlinear mechanical systems. We then explore
the modeling and characterization of nonlinear materials dominated by contact, particularly
Discrete Interlocking Materials. The micro-level nonlinearities of DIM, such as complex
structure and discontinuity of contact, give rise to complex mechanical properties at the
meso- and macro-level. We develop two methods to efficiently simulate and explore these
materials. Although these two approaches are inspired by DIM, our methods are not lim-
ited to modeling and simulating DIM and can be applied to other materials with similar
properties.

5.1. Future Work
For the design of nonlinear periodic motions for compliant mechanical systems, we have

developed a leg design that mimics the running motion of the ostrich. However, to further
explore promising mechanical systems, it would be interesting to consider nonsmooth contact.
Rather than developing advanced machine learning control algorithms, it would be also
interesting to use our design tool to explore stable periodic motions of walking and running
for compliant mechanical systems [Miyashita et al., 2020]. This direction is also appealing
because animals are capable of efficient walking and running motions without conscious
thought, and our design tool can help to replicate these motions in mechanical systems.

For individuals without a background in mechanical system design, it can be challenging
to propose an initial design that aligns with their goals. Often, they may only know their
target goal or desired functionality, without any knowledge of how to create an initial design
for subsequent optimization. Moreover, without a clear understanding of nonlinear mechani-
cal systems, they may not know whether their initial design will ultimately achieve their final
goals. Additionally, a potentially feasible initial design may behave quite differently from
the final optimized version. To address this, we recommend introducing new methods, such
as machine learning-based techniques, for the automatic generation of mechanical systems.
This can serve as a helpful starting point for our design tool, particularly for individuals
without a professional background in design.
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Simulating discrete interlocking materials with certain shapes, e.g., clothing and orthe-
ses, requires mapping rigid discrete interlocking material onto the specified surfaces without
introducing intersection. In addition, designing shapes with discrete interlocking materials
that are stable and structural sound under static equilibrium is also a potential direction.
Achieving these goals requires careful consideration of the geometry and mechanical proper-
ties of the interlocking materials and the surfaces onto which they are mapped. Therefore,
future research can focus on developing new design approaches that can ensure the successful
integration of discrete interlocking materials into complex shapes while maintaining stability
and structural integrity.

We can use our macro-scale model to simulate a wide range of discrete interlocking
materials. It provides a much more efficient way of simulating interlocking materials than
native-scale simulation. However, we did not provide the rendering of native-scale geometry
along with the macro-scale simulation. Several works [Montazeri et al., 2019; Sperl et al.,
2021b] have been proposed to render mechanics-aware yarn-level cloth before. However,
unlike super elastic yarn-level rods, ours are almost rigid so their methods cannot directly
apply to our setting. Therefore, developing new mechanical-aware rendering techniques for
quasi-rigid interlocking materials is also a good direction for future research. Such techniques
would allow us to generate more realistic visualizations of the interlocking materials and their
behavior for more potential applications.

Our results demonstrate that discrete interlocking materials exhibit a range of interesting
mechanical properties that differ from those of traditional continuous materials. However,
interlocking materials are currently passive materials that only respond to external stimuli.
To enable more diverse functionality for this type of material, future research can explore
the use of discrete interlocking materials in the design of active metamaterials. By incorpo-
rating active elements into the interlocking structure, such as sensors or actuators, we could
create materials that can actively respond to changes in their environment, opening up new
possibilities for their use in various applications.

Nowadays, machine learning algorithms have also shown good performance for material
characterization. Due to complex geometry and topology, designing interlocking materials
via machine learning will be also a potential direction.
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