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Abstract

Through this thesis we use virtual reality (VR) as a tool to better understand human visual
perception and attentional behavior. We leverage the intrinsic properties provided by VR in order
to build user studies tailored to a set of different topics: VR provides increased control over
sensory information when compared to traditional media, as well as more natural interactions
with the environment and an increased sense of realism. These qualities, together with the
feeling of presence and immersion, increase the ecological validity of user studies made in VR.
Furthermore, it allows us researchers to explore closer to real-world scenarios in a safe and
reproducible way. By increasing the available knowledge about visual perception we aim to
provide visual computing researchers with more tools to overcome current limitations in the field,
either hardware- or software-caused. Understanding human visual perception and attentional
behavior is a challenging task: measuring such high-level cognitive processes is often not feasible,
more so without medical-grade devices (which are commonly invasive for the user). For this
reason, we settle on measuring observable data, both qualitative and quantitative. This data is
further processed to obtain information about human behavior and create high-level guidelines or
models when possible.

We present the contributions of this thesis around two topics: visual perception of realistic
stimuli and multimodal perception in immersive environments. The first one is devoted to visual
appearance and has two separate contributions. First, we have created a learning-based appearance
similarity metric by means of large-scale crowdsourced user studies and a deep learning model
which correlates with human perception. Additionally, we study how low-level, asemantic visual
features can be used to alter time perception in virtual reality, manifesting the interplay between
visual and temporal perception at interval timing (several seconds to several minutes) intervals.
Regarding the second topic, multimodal perception, we have first compiled an in-depth study
of the state of the art of the use of different sensory modalities (visual, auditory, haptic, etc.)
in immersive environments. Additionally, we have analyzed a crossmodal suppressive effect in
virtual reality, where auditory cues can significantly degrade visual performance. Finally, we have
shown how temporal synchronization is key to correctly perceive multimodal events and enhance
their realism, even when visual quality is degraded.

Ultimately, this thesis aims to increase the understanding of human behavior in immersive
environments. This knowledge can not only benefit cognitive science researchers, but also computer
graphics researchers, especially those in the field of VR, who will be able to use our findings to
create better user experiences.
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Resumen

En esta tesis utilizamos la realidad virtual (VR) como herramienta para comprender mejor la
percepción visual y el comportamiento atencional del ser humano. Aprovechamos las propiedades
intrínsecas que proporciona la VR para construir estudios de usuarios adaptados a un conjunto de
temas diversos. La realidad virtual proporciona un mayor control sobre la información sensorial en
comparación con los medios tradicionales, así como interacciones más naturales con el entorno y
una sensación de realismo mayor. Estas cualidades, junto con la sensación de presencia y la inmer-
sión, aumentan la validez ecológica de los estudios de usuarios realizados en VR. Esto permite a
los investigadores explorar escenarios más cercanos al mundo real de forma segura y reproducible.
Al aumentar los conocimientos disponibles sobre la percepción visual, pretendemos proporcionar
a los investigadores en informática gráfica más herramientas para superar las limitaciones actuales
del campo, ya sean causadas por el hardware o el software. Comprender la percepción visual y el
comportamiento atencional del ser humano es una tarea difícil: medir directamente estos procesos
cognitivos de alto nivel no suele ser factible, más aún sin dispositivos de grado médico (que suelen
ser invasivos para el usuario). Por ello, debemos medir datos relacionados observables, tanto
cualitativos como cuantitativos. Estos datos se procesan posteriormente para obtener información
sobre el comportamiento humano y crear pautas o modelos de alto nivel siempre que sea posible.

Presentamos las aportaciones de esta tesis en torno a dos temas: la percepción visual de estímulos
realistas y la percepción multimodal en entornos inmersivos. El primer tema está dedicado a
la apariencia visual y tiene dos contribuciones distintas. En primer lugar, hemos creado una
métrica de similitud de apariencia basada en el aprendizaje por medio de estudios de usuarios
a gran escala y un modelo de deep learning que correla con la percepción humana. Además,
estudiamos cómo las características visuales asemánticas de bajo nivel pueden utilizarse para
alterar la percepción del tiempo en realidad virtual, manifestando la interacción entre la percepción
visual y temporal en intervalos temporales de hasta tres minutos. En cuanto al segundo tema, la
percepción multimodal, primero hemos recopilado un estudio en profundidad del estado del arte
del uso de diferentes modalidades sensoriales en entornos inmersivos. Además, presentamos un
efecto de supresión intermodal en realidad virtual, en el que diferentes señales auditivas degradan
significativamente la percepción visual. Por último, mostramos cómo la sincronización temporal
es clave para percibir correctamente los eventos multimodales y mejorar la percepción de ciertas
propiedades incluso cuando la calidad visual disminuye.

En definitiva, esta tesis profundiza en la comprensión de la percepción humana en entornos
inmersivos. Este conocimiento puede beneficiar no solo a los investigadores de las ciencias
cognitivas, sino también a los investigadores del campo de la informática gráfica, especialmente
a los que tratan con realidad virtual, que podrán utilizar nuestros hallazgos para crear mejores
experiencias de usuario.
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Part I

I N T R O D U C T I O N & O V E RV I E W





1
Introduction

Human senses are a key component of the interface between the world and the concepts we create
in our brains. They are the only means to gather information about the reality we live in. From
sensory data, the human brain has evolved to unconsciously process and discard information
dynamically as needed in order to keep track of a stable, coherent version of our surroundings.
This mental scheme, together with our previous experiences, is necessary for high-order cognitive
processes, including those in charge of decision-making and interaction with the environment.
Regarding extrapersonal space, humans rely mainly on sight [395] to retrieve information. However,
additional sensory modalities are needed in order to integrate a complete notion of the world
and ourselves. Furthermore, we often receive information of different modalities from a single
object or event (for example, moving objects usually emit sound). We define multimodality as the
neural processing of several sensory modalities that are integrated or segregated into different
groups of coincident signals based on their spatiotemporal and structural coherence. In the
domain of multimodal perception, we define crossmodality as the interactions that arise between
several modalities. Both multimodal and crossmodal events shape human visual perception and
attentional behavior, having a significant influence over our relationship with the world. Since
every event and object (whether occurring naturally or designed by a human as part of a synthetic
experience) will be eventually filtered through human perception, it is important to take into
account how we integrate sensory information in our cognitive processes.

This thesis lies at the intersection of computer graphics and applied perception, drawing from
both fields to better understand human visual perception and attentional behavior in immersive
environments and virtual reality (VR). Cognitive sciences have studied visual perception for
decades through traditional displays and simple, two dimensional visual cues in controlled
laboratory conditions. However, our understanding of the real world is modulated not only by
the extrapersonal information we receive, but also by internal cues like proprioceptive, vestibular
or body motion information. These internal aspects are rarely present in studies with traditional
media, especially since it is common to ask users not to move while performing visual perception
experiments. This is were VR presents an advantage over traditional media. First, it provides
increased control over sensory information when compared to traditional media. Instead of
watching a conventional display in a laboratory room, users can see only the relevant visual
information needed for the experiment. Second, VR provides closer to real-life interactions. In
virtual reality we can move with our bodies, we can see the part of the environment behind us by
moving our head, we can touch virtual objects and we can hear where a sound is coming from in
real life. Third, the feeling of presence (the feeling of actually being in the virtual environment,
including feeling connected to the virtual world and being able to interact with it) and immersion
(the perception of being physically present in a non-physical world) in VR are key components
that make users behave realistically in the virtual environment, responding as they would in the
real world [354].

These qualities increase the ecological validity of user studies made in VR and the plausibility
of their behavior. Furthermore, it allows researchers to explore closer to real-world scenarios
in a safe and reproducible way. In return, our findings also directly benefit VR researchers and
practitioners, who can improve the quality of VR applications through an increased understanding
of visual and attentional behavior in immersive environments. At the same time, visual computing
(which includes the fields that deal with images like computer graphics and computer vision) can
also benefit from a greater understanding of human visual perception and attentional behavior.
Visual computing has advanced exponentially through the last decades to the point where we can
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1.1 visual perception of computer-generated realistic stimuli

Figure 1.1: A photorealistic, real-time, physically-based rendering of Lauren, a computer generated test
character by Jorge Jimenez in 2013. Note the detail and realism of the skin translucency, skin
surface and appearance of the eyes.

generate highly realistic images (see Figure 1.1), but there is still room for improvement. Current
challenges and problems, whether caused by a hardware or a software constraint, can leverage
the particularities of human perception. For example, foveated rendering techniques achieve an
increased perceived visual quality with less computational cost by tracking where the user is
looking in real time and reducing image quality in the periphereral vision area. Another example,
some locomotion techniques in VR like redirected walking can create a spatial distorsion in the
virtual world because we are aware of the thresholds where such changes are imperceptible to
humans. All in all, visual computing constantly leverages the existing knowledge about visual
perception to overcome all kind of technical limitations.

Throughout this thesis we face a set of different topics, but approach them all with a common
methodology. We measure user data (often behavioral, such as performance metrics, debriefing
sessions, subjective preferences, eye tracking data, etc.) both qualitative and quantitative. We then
extract meaningful information about human visual perception and attentional behavior and
create high-level guidelines or models when possible. An increased understanding of human
behavior in immersive environments will not only benefit the field of cognitive sciences, but also
that of computer graphics, whose researchers and practitioners will be able to create better user
experiences. In the following, we present the contributions of this thesis around two topics: visual
perception of realistic stimuli and multimodal perception in immersive environments.

1.1 visual perception of computer-generated realistic stimuli

We first focus on the visual perception of realistic stimuli through Chapter 2 and Chapter 3.
Although they both share a common user-centered approach, they address two different problems.
Chapter 2 studies and models the notion of perceived visual similarity in the context of material
appearance while Chapter 3 is focused on how visual appearance, in the context of semantic
visual features like contrast and frequency, can influence specific aspects of human cognition: in
particular we study the interplay of visual behavior and time perception in intervals of several
seconds up to several minutes.

Humans rely on their sight to get much of the information related to extrapersonal space. In
fact, humans can gather data about the illumination around a scene, its geometry and the visual
appearance of objects in a glimpse [89]. How this physical, complex interaction is processed and
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1.1 visual perception of computer-generated realistic stimuli

Figure 1.2: A still life picture of different objects. With a single glance we can infer different properties: how
rough or hard each material will be to touch, the expected weight and relative temperature of
each object, etc. Image generated with Dall-e [266] by the author.

integrated into perception is not well understood yet [279]. Just by looking at an object, a person
can usually tell what the properties of the physical object are, and can tell different materials
apart from each other under most circumstances (see Figure 1.2). Given the high dimensionality of
material perception, many works have focused on modeling individual material attributes like
glossiness, translucency or color. However, modeling how different or similar two materials are,
following perceptual principles, is a well-known open problem in computer graphics for a number
of reasons. Since the subjective nature of perception also plays a role in similarity, this concept is
different from image similarity which can be defined as the difference between intensity patterns
in two images. Additionally, materials are often represented with physically-based models that do
not take into account human perception. On top of that a high number of parameters is needed to
faithfully generate the appearance of an object, which means a correlation between such material
models and perceived similarity is not straightforward.

Chapter 2 provides a computational model that measures appearance similarity using human
perception as a learning base. Being able to compare how similar or different two objects are is an
everyday ability that we perform often: to select the best piece of fruit in the supermarket, what
materials will suit better in the decoration of a room or being able to distinguish a camouflaged
animal in its habitat. Studying similarity (usually by pairwise comparisons, with or without
a reference) allows researchers to understand how the brain represents and processes visual
attributes in a non-invasive, systematic and objective way.

Traditional methods to measure similarity usually work in image space but do not take into
account the influence of human perception, or the effect of different confounding factors (like
geometry or illumination) into the final appearance. We propose to use a model that can learn
from human perception in order to accurately reproduce the notion of human similarity. We devise
a dataset of rendered images that represents a wide range of physical appearance, including
different geometries, illuminations and real-world measured materials. Using online tools we run
large-scale user studies to gather enough data to model how appearance similarity is perceived.
With the data and the corresponding images we train a deep learning model that learns to correlate
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1.2 multimodal perception in immersive environments

Figure 1.3: A visual target (white star) is presented inside the field of view of the user (colored area) while
an auditory source is placed outside of the field of view (speaker in the gray area). We record
qualitative (pre and post-test questionnaires, debriefing sessions, etc.) and quantitative metrics
(eye tracking data, position in the virtual environment, task performance, etc.). The recorded data
is then processed in order to obtain information about the latent cognitive processes that we want
to study. The top right icons have been generated with Dall-e by the author.

with human behavior. We finally validate our model against previous work and propose several
applications including material clustering and summarization, database visualization and the
suggestion of materials of varying similarity.

Material perception is complex and depends on a combination of several features, including
geometry, illumination, motion, physical materials, previous experience, multimodal interactions,
etc. In Chapter 3 we move one step back and consider a simpler subset of asemantic visual features
and their influence on perception. Visual stimuli can affect emotions which in turn modulate
cognitive processes like attention, working memory and task performance [106]. In Chapter 3 we
isolate visual behavior from other high-level cognitive aspects and study how visual behavior and
time perception are related. Our perception of time affects our ability to process our surroundings,
make predictions and interact with the environment[42]. Being able to better understand the
interplay between visual behavior and time perception without the interference of other cognitive
aspects will give content creators increased control over the momentum of their experiences. So
far, manipulations of time perception have been leveraged in applications from medical therapy to
training and performance metrics [318, 83].

We provide high-level notions of how changes in these visual features can affect time perception,
both in traditional and in VR displays. We design two novel time judgment tasks that together
with a carefully designed set of visual cues allow us to measure perceived changes on the passage
of time in a series of user studies. This way, we disentangle the interplay between visual and time
perception from other high-level cognitive processes such as emotion, memory or cognitive load.
We find a consistent, significant correlation between larger visual spatiotemporal changes and a
shortening of perceived time in a range of several seconds to several minutes (interval timing),
while previous work had found a perceived expansion of perceived time under larger visual
changes in a range of several milliseconds (millisecond timing). Shortening the perceived time
could alleviate fatigue caused by prolonged sessions in VR thus potentially allowing for longer
sessions in simulation and training applications and even reduce the experienced treatment time
while undergoing medical care [318].

1.2 multimodal perception in immersive environments

Besides sight, additional sensory modalities are necessary to increase our understanding of the
world. Our brain integrates not only external information (like visual and auditory) but also
internal stimuli to precisely situate itself in the environment. Due to its intrinsic characteristics,
VR allows users to feel present in the virtual world and offers a unique way of integrating
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1.3 contributions and measurable results

external and internal stimuli of several modalities in a natural way. Most VR systems include
built-in headphones for a spatialized audio experience and support proprioception to some extent,
translating the user real movement to the virtual world. Haptic feedback can be provided through
a variety of gadgets, from controllers to haptic suits. Due to the high-dimensional, nonlinear neural
processes in charge of all sensory perception, considering several modalities is not as simple as
adding them up. In order to better understand the interplay of different modalities in immersive
environments we first present a state of the art survey of multimodality in VR in Chapter 4.

We then investigate the potential crossmodal suppressive effects between auditory and visual
cues in VR. Besides sight, hearing provides extrapersonal space information. This is particularly
useful to alleviate the limitations of sight: in dark environments, behind occlusions or outside
of the field of view (the extent of the observable world that we can see with our eyes). However,
suppressive effects may appear if the spatial congruency between modalities is broken (see Figure
1.3 for an illustrative example). In Chapter 5 we present a user study that shows how visual
performance can be degraded by presenting spatially incongruent sound in VR. Particularly,
we present bursts of different sounds at the same time as visual targets the participants are
asked to detect. The visual targets always appear inside the field of view, while the sounds are
always spatially located outside of the field of view. Compared to a baseline visual-only condition
participants experience a significant decrease in visual performance when sounds are present. In
addition, we record eye tracking data during the experiment. We observe that even in the absence
of saccades towards the sound source (an overt spatial attention redirection) the visual target is not
perceived. In other words, the eyes of the participants can be located directly on the visual target
and still not see it. This agrees with previous research carried out in traditional media with a more
limited environment on the relationship between auditory and visual modalities. This effect could
be used to induce subtle changes in the virtual environment without the user’s awareness, either
to guide attention or to be implemented in navigation techniques like redirected walking. Finally,
we study the importance of the temporal window of integration of crossmodal events (Chapter 6),
where the consistent presentation of spatial and temporal audiovisual information increases the
perceived realism and physical properties of a set of materials in a virtual environment even when
visual quality is degraded.

1.3 contributions and measurable results

1.3.1 Publications

In the following we state the publications which support the contributions of this thesis. Most
of the presented work has been already published. In particular, in five journals indexed in JCR,
including one paper in ACM Transactions on Graphics and presented at SIGGRAPH:

• Visual perception of realistic stimuli:

– Perceptually-based metrics for appearance similarity (Chapter 2, Part II). The work on
material appearance similarity was accepted in SIGGRAPH 2019, and published in
ACM Transactions on Graphics [177]. This journal has an impact factor of 5.08, and
its position in the JCR index is 8th out of 108 (Q1) in the category Computer Science,
Software Engineering (data from 2019).

– Time compression triggered by large visual changes (Chapter 3, Part II). The work
on time perception was published in PLOS One [210]. This journal has an impact
factor of 5.50, and its position in the JCR index is 9th out of 110 (Q2) in the category
Multidisciplinary Sciences (data from 2022).

• Multimodal perception in immersive environments:

– Multimodality in virtual reality (Chapter 4, Part III). The survey on multimodality
was published in ACM Computing Surveys [218]. This journal has an impact factor of
14.32, and its position in the JCR index is 3rd out of 109 (Q1) in the category Computer
Science, Theory & Methods (data from 2021).
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1.3 contributions and measurable results

– Auditory stimuli degrade visual performance in virtual reality (Chapter 5, Part III). The
work on audiovisual illusions was published in Scientific Reports [213]. This journal
has an impact factor of 4.37, and its position in the JCR index is 10th out of 142 (Q1) in
the category Multidisciplinary Sciences (data from 2020).

– Crossmodal perception in virtual reality (Chapter 6, Part III). The work on crossmodal
perception was published in Multimedia Tools and Applications [211]. This journal has
an impact factor of 2.76, and its position in the JCR index is 224th out of 1027 (Q1) in
the category Computer Science (data from 2020).

1.3.2 Research internships

Two research internships, totaling seven months, were carried out during this PhD:

• April 2019 – June 2019 (three months): Research Intern at Adobe Research, San Jose (California).
Supervisors: Dr. Qi Sun and Dr. Zoya Bylinskii. As a result of this internship we published
the work on time perception in virtual reality [210].

• September 2020 – December 2020 (four months): Research intern at Facebook Reality Labs,
remote. Supervisor: Dr. Alex Locher (from the Immersive Mixed Reality Team at the Zurich
office). The work carried out under this internship has been placed under a non-disclosure
agreement.

1.3.3 Supervised students

During the development of this thesis I have supervised the following students:

• 2022. Daniel Jimenez (MSc Thesis) – Investigating auditory-triggered suppressive effects in
virtual reality (9.0/10).

• 2021. Pedro Perez (BSc Thesis) – Development of a tool for data recording and visualization
in virtual reality (9.0/10).

• 2021. Daniel Jimenez (MSc Internship) – Unity pipeline for perceptual experiments.

• 2020. Miguel Gomez (BSc Thesis) – Implementation and analysis of 2D scanpath prediction
models (7.5/10).

1.3.4 Research projects

During my PhD studies I have participated in the following research project:

• CHAMELEON: Intuitive editing of visual appearance from real-world datasets. European
Research Council (ERC). Grant agreement No 682080. PI (in Spain): Diego Gutierrez.

1.3.5 Reviews and conference organization

During my PhD I have been a reviewer for a total of twelve different venues:

• 2022: Frontiers in Virtual Reality, ACM Special Interest Group on Graphics and Interactive
Techniques (SIGGRAPH), IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), the Spanish Conference in Computer Graphics (CEIG), ACM Symposium on
Applied Perception (SAP), International Journal of Human-Computer Interaction (IJHCI),
the ACM Conference on Human Factors in Computing Systems (CHI) and Virtual Reality
(VIRE).

• 2021: ACM Symposium on Virtual Reality Software and Technology (VRST), IEEE Conference
on Virtual Reality (IEEEVR), ISMAR and VIRE.
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1.3 contributions and measurable results

• 2020: EuroVR International Conference (EuroVR) and VIRE.

• 2019: International Conference on Computer Graphics Theory and Applications (GRAPP),
SAP and VRST.

Additionally, I also have been an International Program Committee Member for VRST 2021, a
Committee Member for CEIG 2022 and the Posters Chair for ACM SAP 2022.

1.3.6 Other activities

During my PhD I’ve had an active attitude towards dissemination and outreach events, and I have
participated in several talks and events to promote science, especially in those related with women
in STEM. In particular, I have participated in the VR Day, the European Researcher’s Night, the
Girls’ Day, Women Techmakers Zaragoza and the NEOCOM conference.

1.3.7 Ethics statement and other considerations

All experiments were carried out following the Helsinki recommendations, and ensuring data
anonymization. Our experimental protocols follow the guidelines of the Consejo de Gobierno
(Government Council) of Universidad de Zaragoza. At the beginning of the experiments, partici-
pants gave informed consent and were made aware of the possibility of stopping or abandoning
the experiments at any point at their will.

While the author of this thesis is the leading author in many of the presented works, they
have been done in collaboration with different colleagues. For this reason, the work described is
contextualized at the beginning of each chapter and the contributions of the author of this thesis
are discussed explicitly when needed.

9





Part II

V I S UA L P E R C E P T I O N

In this part we focus on the visual perception of realistic stimuli. It is important to note
that, although both Chapters 2 and 3 are related with the study of visual appearance
and share a user-centered approach, they address two fundamentally different prob-
lems through a common, objective methodology to evaluate human perception. The
first one (Chapter 2) is focused on the perception of material appearance; it introduces
a framework to model perceived similarity. The main contribution is the integration
of large-scale data from human judgements within a deep learning model in order to
create a similarity metric that aligns well with human perception. The second Chapter
(Chapter 3) is focused on how visual appearance can influence specific aspects of
human cognition. In particular, we study the existing correlation between low-level
visual features and temporal perception in immersive environments. Through a series
of user studies we find that larger visual changes (sequences of images or videos
with higher contrast, faster stimuli, etc.) shorten perceived time in the interval (several
seconds to several minutes) timing range.





2
Material Appearance Similarity

Here we describe a model to measure material similarity which strongly correlates with human
similarity judgements. We create a database of varying materials, geometry and illuminations (9000

rendered images) and gather data on perceived similarity using large-scale crowdsourcing tools for
the user studies (collecting over 114840 answers). We use the rendered images and gathered human
judgements to train a deep learning model which learns a latent space representation that is close
to human perception. Our evaluation shows that our model outperforms existing metrics. Finally,
we propose several applications enabled by our metric, including appearance-based search for
material suggestions, database visualization, clustering and summarization, and gamut mapping.

This work has been published in ACM Transactions on Graphics and presented at SIGGRAPH
2019 [177]. I include here the full description of the work for completeness, but my main contribu-
tions can be found in Sections 2.2 (the design of the dataset), 2.3 (the design of the crowdsourced
experiments), 2.5 (the evaluation of the trained network) and 2.6 (latent space visualizations,
creating proof of concepts for some of the applications), as well as in the writing of the manuscript.
A follow up work analyzing in more depth the role of objective and subjective measures in
material similarity learning was later presented as a peer-reviewed poster in ACM SIGGRAPH
2020 Posters [73].

M. Lagunas, S. Malpica, A. Serrano, E. Garces, D. Gutierrez, & B. Masia
A Similarity Measure for Material Appearance

ACM Transactions on Graphics Vol. 38 (4), SIGGRAPH 2019

2.1 introduction

Humans are able to recognize materials, compare their appearance, or even infer many of their key properties
effortlessly, just by briefly looking at them. Many works propose classification techniques, although it
seems clear that labels do not suffice to capture the richness of our subjective experience with real-world
materials [97]. Unfortunately, the underlying perceptual process of material recognition is complex, involving
many distinct variables; such process is not yet completely understood [10, 96, 208].

Given the large number of parameters involved in our perception of materials, many works have focused
on individual attributes (such as the perception of gloss [274, 417], or translucency [115]), while others have
focused on particular applications like material synthesis [430], editing [332], or filtering [154]. However, the
fundamentally difficult problem of establishing a similarity measure for material appearance remains an open
problem. Material appearance can be defined as “the visual impression we have of a material“ [79]; as such,
it depends not only on the BRDF of the material, but also on external factors like lighting or geometry, as
well as human judgement [96, 1]. This is different from the common notion of image similarity (devoted to
finding detectable differences between images, e.g., [408]), or from similarity in BRDF space (which has been
shown to correlate poorly with human perception, e.g., [332]). Given the ubiquitous nature of photorealistic
computer-generated imagery, and emerging fields like computational materials, a similarity measure of
material appearance could be valuable for many applications.

Capturing a human notion of perceptual similarity in different contexts has been an active area of research
recently [111, 2, 202]. In this work we develop a novel image-based material appearance similarity measure
derived from a learned feature space. This is challenging, given the subjective nature of the task, and the
interplay of confounding factors like geometry or illumination in the final perception of appearance. Very
recent work suggests that perceptual similarity may be an emergent property, and that deep learning features
can be trained to learn a representation of the world that correlates with perceptual judgements [428]. Inspired
by this, we rely on a combination of large amounts of images, crowdsourced data, and deep learning. In
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2.1 introduction

Figure 2.1: The cubes in the leftmost image have all been rendered with the same aluminum material. Our
similarity measure for material appearance can be used to automatically generate alternative
depictions of the same scene, where the similarity of the materials varies in a controlled manner.
The next three images show results with materials randomly chosen by progressively extending
the search distance from the original aluminum, from similar in appearance to farther away
materials within the same dataset.

particular, we create a diverse collection of 9,000 stimuli using the measured, real-world materials in the
MERL dataset [232], which covers a wide variety of isotropic appearances, and a combination of different
shapes and environment maps. Using triplets of images, we gather information through Mechanical Turk,
where participants are asked which of two given examples has a more similar appearance to a reference.
Given our large stimuli space, we employ an adaptive sampling scheme to keep the number of triplets
manageable. From this information, we learn a model of material appearance similarity using a combined
loss function that enforces learning of the appearance similarity information collected from humans, and the
main features that describe a material in an image; this allows us to learn the notion of material appearance
similarity explained above, dependent on both the visual impression of the material, and the actual physical
properties of it.

To evaluate our model, we first confirm that humans do provide reliable answers, suggesting a shared
perception of material appearance similarity, and further motivating our similarity measure. We then compare
the performance of our model against humans: Despite the difficulty of our goal, our model performs on
par with human judgements, yielding results better aligned with human perception than current metrics.
Last, we demonstrate several applications that directly benefit from our metric, such as material suggestionsAll the code, data,

and models are
available at:

webdiis.unizar.

es/~mlagunas/

publication/

material-similarity/

(see Figure 2.1), database visualization, clustering and summarization, or gamut mapping. In addition to
the 9,000 rendered images, our database also includes surface normals, depth, transparency, and ambient
occlusion maps for each one, while our collected data contains 114,840 answers; we provide both, along
with our pre-trained deep learning framework, in order to help future studies on the perception of material
appearance.

2.1.1 Material perception

There have been many works aiming to understand the perceptual properties of BRDFs [10, 99, 96, 208];
a comprehensive review can be found in the work of Thompson and colleagues [380]. Finding a direct
mapping between perceptual estimates and the physical material parameters is a hard task involving many
dimensions, not necessarily correlated. Many researchers focus on the perception of one particular property
of a given material (such as glossiness [47, 274, 417], translucency [114, 115], or viscosity [389]), or one
particular application (such as filtering [154], computational aesthetics [67], or editing [332, 251]). Leung and
Malik [188] study the appearance of flat surfaces based on textural information. Other recent works analyze
the influence on material perception of external factors such as illumination [137, 398, 172], motion [78], or
shape [399, 127].

A large body of work has been devoted to analyzing the relationships between different materials, and
deriving low-dimensional perceptual embeddings [232, 417, 332, 357]. These embeddings can be used to
derive material similarity metrics, which are useful to determine if two materials convey the same appearance,
and thus benefit a large number of applications (such as BRDF compression, fitting, or gamut mapping). A
number of works have proposed different metrics, computed either directly over measured BRDFs [101, 255],
in image space [275, 256, 371], or in reparameterizations of BRDF spaces based on perceptual traits [274, 332].
Our work is closer to the latter; however, rather than analyzing perceptual traits in isolation, we focus on the
overall appearance of materials, and derive a similarity measure that correlates with the notion of material
similarity as perceived by humans.
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2.2 materials dataset

2.1.2 Learning to recognize materials

Image patches have been shown to contain enough information for material recognition [323], and several
works have leveraged this to derive learning techniques for material recognition tasks. Bell et al. [29] introduce
a CNN-based approach for local material recognition using a large annotated database, while Schwartz and
Nishino explicitly introduce global contextual cues [322]. Other works add more information such as known
illumination, depth, or motion. Georgoulis et al. [112] use both an object’s image and its geometry to create a
full reflectance map, which is later used as an input to a four-class coarse classifier (metal, paint, plastic or
fabric). For a comprehensive study on early material recognition systems and latest advances, we refer to the
reader to the work of Fleming [97]. These previous works focus mainly on classification tasks, however mere
labels do not capture the richness of our subjective experience of materials in the real world [97].

Recent work has shown the extraordinary ability of deep features to match human perception in the
assessment of perceptual similarity between two images [428]. Together with the success of the works
mentioned above, this provides motivation for the combination of user data and deep learning that we
propose in this work.

2.1.3 Existing datasets

Early image-based material datasets include CURet [68], KTH-TIPS [129], or FMD [343]. OpenSurfaces [28]
includes over 20,000 real-world images, with surface properties annotated via crowdsourcing. This dataset has
served as a baseline to others, such as the Materials in Context Database (MINC) [29], an order of magnitude
larger; SynBRDF [166], with 5,000 rendered materials randomly sampled from OpenSurfaces; or MaxBRDF
dataset [402], which includes synthetic anisotropic materials.

Databases with measured materials include MERL [232] for isotropic materials, UTIA [95] for anisotropic
ones, the Objects under Natural Illumination Database [196], which includes calibrated HDR information,
or the recent, on-going database by Dupuy and Jakob which measures spectral reflectance [82]. We choose
as a starting point the MERL dataset, since it contains a wider variety of isotropic materials, and it is still
being successfully used in many applications such as gamut mapping [371], material editing [332, 370], BRDF
parameterization [357], or photometric light source estimation [200].

2.2 materials dataset

2.2.1 Why a new materials dataset?

To obtain a meaningful similarity measure of material appearance we require a large dataset with the
following characteristics:

• Data for a wide variety of materials, shapes, and illumination conditions.

• Samples featuring the same material rendered under different illuminations and with different shapes.

• Materials represented by measured BRDFs, with reflectance data captured from real materials.

• Real-world illumination, as given by captured environment maps.

• A large number of samples, amenable to learning-based frameworks.

These characteristics enable renditions of complex, realistic appearances and will be leveraged to train our
model, explained in Section 2.4. To our knowledge, none of the existing material datasets features all these
characteristics.

2.2.2 Description of the dataset

In the following, we briefly describe the characteristics of our dataset, and refer the reader to the supplemen-
tary material for further details.

Materials. Our dataset includes all 100 materials from the MERL BRDF database [232]. This database was
chosen as starting point since it includes real-world, measured reflectance functions covering a wide range of
reflectance properties and types of materials, including paints, metals, fabrics, or organic materials, among
others.

Illuminations. We use six natural illumination environments, since they are favored by humans in material The HDR
illuminations are
gathered from:
http://gl.ict.

usc.edu/Data/

HighResProbes/

perception tasks [98]. They include a variety of scenes, ranging from indoor scenarios to urban or natural
landscapes, as high-quality HDR environment maps.
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2.3 collecting appearance similarity information

Ennis Grace Uffizi Glacier PisaDoge

Figure 2.2: All six environment maps used in the dataset and corresponding rendered spheres with the
black-phenolic material.

Scenes. Our database contains thirteen different 3D models, with an additional camera viewpoint for
two of them, defining our fifteen scenes. It includes widely used 3D models, and objects that have been
specifically designed for material perception studies [127, 399]. The viewpoints have been chosen to cover
a wide range of features such as varying complexity, convexity, curvature, and coverage of incoming and
outgoing light directions.

By combining the aforementioned materials (100), illumination conditions (6), and scenes (15), we generateAll HDR images are
tone-mapped using

the algorithm by
Mantiuk et al. [214],

with the predefined
lcd office display, and
color saturation and

contrast enhancement
set to 1.

a total of 9,000 dataset samples using the Mitsuba physically-based renderer [413]. For each one we provide:
The rendered HDR image, a corresponding LDR image, along with depth, surface normals, alpha channel,
and ambient occlusion maps. While not all these maps are used in the present work, we make them available
with the dataset should they be useful for future research. Figure 2.3 shows sample images for all fifteen
scenes.

2.3 collecting appearance similarity information

We describe here our methodology to gather crowdsourced information about the perception of material
appearance.

Stimuli. We use 100 different stimuli, covering all 100 materials in the dataset, rendered with the
Ennis environment map. We choose the Havran-2 scene, since its shape has been designed to maximize
the information relevant for material appearance judgements by optimizing the coverage of incoming and
outgoing light directions sampled [127]. Figure 2.4 shows some examples.

Participants. A total of 603 participants took part in the test through the Mechanical Turk (MTurk) platform,
with an average age of 32, and 46.27% female. Users were not aware of the purpose of the experiment.

Procedure. Our study deals with the perception of material appearance, which may not be possible to
represent in a linear scale; this advises against ranking methods [162]. We thus gather data in the form of
relative comparisons, following a 2AFC scheme; the subject is presented with a triplet made up of one reference
material, and two candidate materials, and their task is to answer the question Which of these two candidates
has a more similar appearance to the reference? by choosing one among the two candidates. This approach has
several additional advantages: it is easier for humans than providing numerical distances [234, 321], while it
reduces fatigue and avoids the need to reconcile different scales of similarity among subjects [161].

However, given our 100 different stimuli, a naive 2AFC test would require 495,000 comparisons, which
is intractable even if not all subjects see all comparisons. To ensure robust statistics, we aim to obtain five
answers for each comparison, which would mean testing a total of 2,475,000 comparisons. Instead, we use an
iterative adaptive sampling scheme [377]: For any given reference, each following triplet is chosen to maximize
the information gain, given the preceding responses (please refer to the supplementary material of our
work [177] for a more detailed description of the method). From an initial random sampling, we perform 25

iterations as recommended by Tamuz et al. for datasets our size; in each iteration we sample 10 new pairs for
every one of our 100 reference materials, creating 1,000 new triplets. After this process, the mean information
gain per iteration is less than 10−5, confirming the convergence of the sampling scheme. This scheme allows
us to drastically reduce the number of required comparisons, while providing a good approximation to
sampling the full set of triplets.
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sphere waterpot

Einstein-1Suzzane

Havran-2

Einstein-2

statue

teapot

zenith

dragon-1

Havran-3

dragon-2

bunny

Lucy

blob

Figure 2.3: Sample images of all 15 scenes with different materials and illumination conditions. First row:
pink-felt and Uffizi; second row: violet-acrylic and Grace; third row: nickel and Pisa. The 3D models
bunny, dragon, Lucy and statue belong to The Stanford 3D Scanning Repository; waterpot (modelled
by gykservy), Suzzane (killzone75), Einstein (oliverlaric), and zenith (KuhnIndustries) were obtained
from TurboSquid.

Each test (HIT in MTurk terminology) consisted of 110 triplets. To minimize worker unreliability [413],
each HIT was preceded by a short training session that included a few trial comparisons with obvious
answers [302, 111]. In addition, ten control triplets were included in each HIT, testing repeated-trial consistency
within participants. We adopt a conservative approach and reject participants with two or more different
answers. In the end, we obtained 114,840 valid answers, yielding a participants’ consistency of 84.7%.

As a separate test, to validate how well our collected answers generalize to other shapes and illuminations,
we repeated the same comparisons, this time with symmetric and asymmetric triplets chosen randomly from
our dataset, with the condition that they do not contain the Havran-2 shape nor the Ennis illumination. For
symmetric triplets, the three items in the triplet differ only in the material properties, while in asymmetric
triplets geometry and lighting also vary. We launched 2,500 symmetric triplets, and found that participants’
majority matched the previous responses with a 84.59% rate. When we added the same number of asymmetric
triplets to the test, participants’ answers held with a 80% match rate.

Figure 2.4: Sample stimuli for our appearance similarity collection. They correspond to the Havran-2 scene,
with materials from the MERL database, rendered with the Ennis environment map. In reading
order: chrome, gold-metallic-paint3, specular-green-phenolic, maroon-plastic, dark-blue-paint and light-
brown-fabric.
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2.4 learning perceived similarity

2.4 learning perceived similarity

This section describes our approach to learn perceived similarity for material appearance. Given an input
image ψ, our model provides a feature vector f (ψ) that transforms the input image into a feature space well
aligned with human perception.

We use the ResNet architecture [130], based on its generalization capabilities and its proven performance on
image-related tasks. The novelty of this architecture is a residual block meant for learning a residual mapping
between the layers, instead of a direct mapping, which enables training very deep networks (hundreds of
layers) with outstanding performance. For training we use image data from our materials dataset (Section 2.2),
together with human data on perceived similarity (Section 2.3). We first describe our combined loss function,
then our training procedure.

2.4.1 Loss function

We train our model using a loss function consisting of two terms, equally weighted:

L = LTL + LP (2.1)

The two terms represent a perceptual triplet loss, and a similarity term, respectively. The terms aim at
learning appearance similarity from the participants’ answers, while extracting the main features defining
the material depicted in an image. In the following, we describe these terms and their contribution.

2.4.1.1 Triplet loss term LTL

This term allows to introduce the collected MTurk information on appearance similarity. Let A = {(ri, ai, bi)}
be the set of answered relative comparisons, where r is the reference image, a is the candidate image chosen
by the majority of users as being more similar to r, and b the other candidate; i indexes over all the relative
comparisons. Intuitively, r and a should be closer together in the learned feature space than r and b. It is not
feasible to collect user answers for all possible comparisons (n different images would lead to n(n−1

2 ) tests);
however, as we have shown in Section 2.3, the collected answers for a triplet (r, a, b) involving materials mr,
ma and mb generalize well to other combinations of shape and illumination from our dataset involving the
same set of materials. We thus define AM = {(mr

i , ma
i , mb

i )} as the set of relative comparisons with collected
answers (ma represents the material chosen by the majority of participants). We then formulate the first term
as a triplet loss [54, 319, 176]:

LTL =
1

|BA| ∑
(r,a,b)∈BA

[
|| f (r)− f (a)||22 − || f (r)− f (b)||22 + µ

]
+

(2.2)

where f (ψ) is the feature vector of image ψ, and the set BA is defined as:

BA =
[
(r, a, b) | (mr, ma, mb) ∈ AM ∧ (r, a, b) ∈ B

]
(2.3)

with B the current training batch. In Eq. 2.2, µ represents the margin, which accounts for how much we aim
to separate the samples in the feature space.

2.4.1.2 Similarity term LP

We introduce a second loss term that maximizes the log-likelihood of the model choosing the same material
as humans. We define this probability pra (and conversely prb) as a quotient between similarity values sra
and srb:

pra =
sra

srb + sra
, prb =

srb
srb + sra

(2.4)

These similarities are derived from the distances between r, a and b in the feature space, where a similarity
value of 1 means perfect similarity and a value of 0 accounts for total dissimilarity:

sra =
1

1 + dra
, srb =

1
1 + drb

, where (2.5)

dra = || f (r)− f (a)||22 , drb = || f (r)− f (b)||22 (2.6)

With this, we can formulate the similarity term as:

LP = − 1
|BA| ∑

(r,a,b)∈BA

log pra (2.7)
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Figure 2.5: Scheme of the training process, using both image data from our material dataset, and human
data of perceived similarity. We train our model so that, for an input image ψ, it yields a 128-
dimensional feature vector f (ψ).

2.4.2 Training details

For training, we remove the Havran-2 and Havran-3 scenes from the dataset, leading to 7,800 images (13

(scenes) × 6 (env. maps) × 100 (materials)), augmented to 39,000 using crops, flips, and rotations. These
39,000 images, together with the collected MTurk answers, constitute our training data. We use the corrected
Adam optimization [290, 168] with a learning rate that starts at 10−3 to train the network. We train for 80

epochs and the learning rate is reduced by a factor of 10 every 20 epochs. For initialization, we use the
weights of the pre-trained model [130] on ImageNet [75, 306]. To adapt the network to our loss function, we
remove the last layer of the model and introduce a fully-connected (fc) layer that outputs a 128-dimensional
feature vector f (ψ). We use a margin µ = 0.3 for the triplet loss term LTL. Figure 2.5 shows a scheme of the
training procedure.

2.5 evaluation

We evaluate our model on the set of images of the material dataset not used during training. We employ
the accuracy metric, which represents the percentage of triplet answers correctly predicted by our model. It
can be computed as raw, considering each of the five answers independently as the correct one, or majority,
considering the majority opinion as correct [417, 111]. Using our MTurk data from Section 2.3, the results
are 73.10% and 77.53% respectively for human observers, indicating a significant agreement across subjects.
Our model performs better than human accuracy, with 73.97% and 80.69% respectively. In other words, our
model predicts the majority’s perception of similarity almost 81% of the time. We include an oracle predictor
in Table 2.1, which has access to all the human answers and returns the majority opinion; note that its
raw accuracy is not 100 due to human disagreement. Figure 2.6 shows examples from our 26,000 queries
where our model agrees with the majority response, while we discuss failure cases later in this section. More
examples of queries and our model’s answer are included in the supplementary material.

2.5.1 Comparison with other metrics

We compare the performance of our model to six different metrics used in the literature for material modeling
and image similarity: The three common metrics analyzed by Fores and colleagues [101], the perceptually-
based metrics by Sun et al. [371] and Pereira et al. [275], and SSIM [408], a well-known image similarity
metric. We analyze again accuracy, and we additionally analyze perplexity, which is a standard measure of
how well a probability model predicts a sample, taking into account the uncertainty in the model. Perplexity
Q is given by:

Q = 2−
1
|A| ∑Ω log2 pra (2.8)

where Ω = (r, a) ∈ A, |A| is the number of collected answers, and pra is the probability of a being similar
to r (Section 2.4.1). Perplexity gives higher weight where the model yields higher confidence; its value
will be 1 for a model that gives perfect predictions, 2 for a model with total uncertainty (random), and
higher than 2 for a model that gives wrong predictions. As Table 2.1 shows, our model captures the human
perception of appearance similarity significantly better, as indicated by the higher accuracy and lower
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3 2 5 0

5 0 5 0

Figure 2.6: Examples from our 26,000 queries (reference, plus the two candidates) where our model agrees
with the majority response (this is the case almost 81% of the time). The numbers indicate the
number of votes each image received from the participants. More examples are included in the
supplementary material.

perplexity values. Note that perplexity cannot be computed for humans nor the oracle, since they are not
probability distributions.

Additionally, we compute the mean error between distances derived from human responses and our
model’s predictions, across all possible material pair combinations from the MERL dataset. To obtain the
derived distances from the collected human responses, we use t-Distributed Stochastic Triplet Embedding
(tSTE) [393], which builds an n-dimensional embedding that aims to correctly represent participants’ answers.
We use a value of α = 5 (degrees of freedom of the Student-t kernel), which correctly models 87.36% of
the participants’ answers. We additionally compute the mean error for the six other metrics. As shown in
Figure 2.7, our metric yields the smallest error. Error bars correspond to a 95% confidence interval.

2.5.2 Ablation study

We evaluate the contribution of each term in our loss function to the overall performance via a series of
ablation experiments (see Table 2.2). We first evaluate performance using only one of the two terms (LTL
and LP) in isolation. We also analyze the result of incorporating two additional loss terms, which could in
principle apply to our problem: A cross-entropy term LCE, and a batch-mining triplet loss term LBTL. The
former aims at learning a soft classification task by penalizing samples which do not belong to the same
class [374], while the latter has been proposed in combination with the cross-entropy term to improve the
model’s generalization capabilities and accuracy [108] (more details about these two terms can be found in the
appendix). Last, we analyze performance using only these two terms (LCE and LBTL), without incorporating
participants’ perceptual data. As Table 2.2 shows, none of these alternatives outperforms our proposed loss
function. Although the single-term LP loss function yields higher accuracy, it also outputs higher perplexity
values; moreover, as Figure 2.7 shows, the mean error is much higher, meaning that it does not capture the
notion of similarity as well as our model.

2.5.3 Alternative networks

We have tested two alternative architectures, VGG [352], which stacks convolutions with non-
linearities; and DenseNet [145], which introduces concatenations between different layers. Both
models have been trained using our loss function. As shown in Table 2.2, both yield inferior results
compared to our model. DenseNet has a low number of learned parameters, insufficient to capture
the data distribution, hampering convergence. VGG has a larger number of parameters; however,
the residual mapping learned by the residual blocks in the architecture of our model yields the
best overall performance.
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Table 2.1: Accuracy and perplexity of our model compared to human performance, an oracle (which always
returns the majority opinion), and six other metrics from the literature: RMS, RMS-cos, Cube-
root [101], L2-lab [371], L4-lab [275] and SSIM [408]. For accuracy, higher values are better, while
for perplexity lower are better.

Evaluation of our model

Metric
Accuracy Perplexity

Raw Majority Raw Majority

Humans 73.10 77.53 - -

Oracle 83.79 100.0 - -

RMS 61.63 64.72 3.61 3.13

RMS-cos 61.60 64.67 3.86 3.33

Cube-root 63.71 67.40 1.96 1.86

L2-lab 63.76 67.21 2.16 2.07

L4-lab 60.60 62.93 15.36 11.66

SSIM 62.35 64.74 2.02 1.94

Our model 73.97 80.69 1.74 1.55

2.5.4 Results by category

We additionally divide the materials into eight categories: acrylics, fabrics, metals, organics, paints,
phenolics, plastics, and other, and analyze raw and majority accuracy in each. We can see in Table 2.3
how our model is reasonably able to predict human perception also within each category. For
instance, although the numbers are relatively consistent across all the categories, humans perform
on average slightly worse for phenolics or acrylics, and better for fabrics; our metric mimics such
behavior. The only significant difference occurs within the organics category, where our metric
performs worse than humans. This may be due to the combination of a low number of material
samples and a large variety of appearances within such category, which may hamper the learning
process.

2.5.5 Failure cases

Being on par with human accuracy means that our similarity measure disagrees with the MTurk
majority 19.31% of the time. Figure 2.8 shows two examples where humans were consistent in
choosing one stimuli as closer to the reference (5 votes out of 5), yet our metric predicts that the
second one is more similar. In the leftmost example, the softness of shadows may have been a
deciding factor for humans. In the rightmost example, humans may have been overly influenced
by color, whilst our metric has factored in the presence of strong highlights. These examples are
interesting since they illustrate that neither color nor reflectance are persistently the dominant
factors when humans judge appearance similarity between materials.

2.6 applications

We illustrate here several applications directly enabled by our similarity measure.
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Figure 2.7: Left: Mean error for different metrics (each normalized by its maximum value) with respect to
distances derived from human responses, across all possible pair combinations from the MERL
dataset (the LTL and LP columns refer to the ablation studies in Table 2.2; please refer to the
main text). Error bars correspond to a 95% confidence interval. Right: Representative example
of the two most similar materials to a given reference, according to (from top to bottom): Our
model, and the two perceptually-based metrics L2-lab [371], and L4-lab [275]. Our model yields
less error, and captures the notion of appearance similarity better.

Figure 2.8: Two examples where humans’ majority disagrees with our metric. For both, humans agreed that
the middle stimulus is perceptually closer to the reference on the left, while our metric scores the
right stimuli as more similar.

2.6.1 Material suggestions

Assigning materials to a complex scene is a laborious process [430, 53]. We can leverage the fact
that the distances in our learned feature space correlate with human perception of similarity
to provide controllable material suggestions. The artist provides the system with a reference
material, and the system delivers perceptually similar (or farther away) materials in the available
dataset, thus creating a controlled amount of variety without the burden of manually selecting
each material. Figure 2.1 illustrates this, where the search distance is progressively extended from
a chosen reference, and the materials are then assigned randomly to each cube. Suggestions need
not be automatically assigned to the models in the scene, but may also serve as a palette for the
artist to choose from, facilitating browsing and navigation through material databases. Figure 2.9
shows two MERL samples used as queries, along with returned suggestions from the Extended
MERL dataset [332]. The figure shows results at close, intermediate, and far distances from the
query. Additional examples can be seen in Figure 2.10, and in the supplementary material.

2.6.2 Visualizing material datasets

The feature space computed by our model can be used to visualize material datasets in a mean-
ingful way, using dimensionality reduction techniques. We illustrate this using UMAP (Uniform
Manifold Approximation and Projection [236]), which helps visualization by preserving the global
structure of the data. Figure 2.11 shows two results for the MERL dataset, using images not
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Table 2.2: Accuracy and perplexity for other loss functions, as well as for two alternative architectures (VGG
and DenseNet).

Ablation study and alternative networks

Model
Accuracy Perplexity

Raw Majority Raw Majority

LTL 69.32 74.12 1.89 1.73

LP 75.22 82.31 3.16 2.13

LTL + LP + LCE 71.82 77.53 1.76 1.66

LTL + LP + LCE + LBTL 71.78 77.76 1.76 1.67

LCE + LBTL 56.88 58.44 1.96 1.93

VGG 70.70 76.40 2.25 1.89

DenseNet 60.90 63.49 2.66 2.46

Our model 73.97 80.69 1.74 1.55

Figure 2.9: Two examples of material suggestions using our model. Queries from MERL (violet frame), and
returned results for perceptually close, intermediate, and far away materials from the Extended
MERL dataset.

included in the training set. On the left, we can observe a clear gradient in reflectance, increasing
from left to right, with color as a secondary, softer grouping factor. The right image shows a
similar visualization using only three categories: metals, fabrics, and phenolics.

2.6.3 Database clustering

For unlabeled datasets like Extended MERL, our feature space allows to obtain clusters of
perceptually similar materials. To further analyze the clustering enabled by our perceptual feature
space, we rely on the Hopkins statistic, which estimates randomness in a data set [22]. A value
of 0.5 indicates a completely random distribution, lower values suggest regularly-spaced data,
and higher values (up to a maximum of 1) reveal the presence of clusters. The Hopkins statistic The Hopkins statistic

is an averaged value
over 100 iterations
since its computation
involves random
sampling of the
elements in the
dataset.

computed over our 128-dimensional feature vectors for the Extended MERL dataset yields a value
of 0.9585, suggesting that meaningful clusters exist in our learned feature space (Figure 2.13 shows
three representative clusters using the Extended MERL database). For comparison purposes, using
only metals in MERL the Hopkins statistic drops to 0.6935, since their visual features are less
varied within that category. Figure 2.12 shows an example of material suggestions leveraging our
perceptual clusters in unlabeled datasets.
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Table 2.3: Statistics per category. From left to right: Category, number of materials in each category, number
of collected answers, humans’ accuracy (raw and majority), accuracy of our model, and oracle raw
accuracy.

Analysis per material category

Category Materials Answers
Humans Our model Oracle

Raw Majority Raw Majority Raw

Acrylics 4 4719 67.27 70.69 67.57 74.18 79.89

Fabrics 14 16019 79.65 83.70 83.03 90.44 87.87

Metals 26 32337 74.20 78.90 75.63 83.10 84.54

Organics 7 8370 69.28 73.08 60.46 62.43 81.28

Paints 14 15101 74.22 78.85 75.22 81.84 84.61

Phenolics 12 13025 66.49 70.53 67.62 74.36 79.72

Plastics 11 12031 70.53 74.70 69.25 74.06 82.05

Other 12 13198 74.80 79.38 78.21 86.11 84.89

Total 100 114800 73.10 77.53 73.97 80.69 83.79

Figure 2.10: Additional material suggestion results. Queries (violet frame) and results for the closest materials
in the Extended MERL dataset.

2.6.4 Database summarization

Perceptually meaningful clustering leads in turn to the possibility of database summarization. We
can estimate the appropriate number of clusters using the elbow method, taking the number of
clusters that explains the 95% of the variance in our feature vectors. In the 400-sample Extended
MERL dataset, this results in seven clusters. Taking the closest material to the centroid for each
one leads to a seven-sample database summarization that represents the variety of material
appearances in the dataset (Figure 2.14).

2.6.5 Gamut mapping

In general, our model can be used for tasks that involve minimizing a distance. This is the case
for instance of gamut mapping, where the goal is to bring an out-of-gamut material into the
available gamut of a different medium, while preserving its visual appearance; this is a common
problem with current printing technology, or in the emerging field of computational materials. We
illustrate the effectiveness of our technique in the former. Gamut mapping can be formulated as
a minimization on image space [275, 371]. We can use our feature vector f (ψ) to minimize the
perceptual distance between two images as

minw|| f (o)− f (g ∗ w)||22, (2.9)
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Metals

Phenolics

Fabrics

Figure 2.11: Visualization of the MERL dataset in a 2D space based on the feature vectors provided by our
model, using UMAP [236]. Left: The entire MERL dataset. Right: Materials from three different
categories (metals, fabrics, and phenolics).

Figure 2.12: Material suggestions using our perceptual database clustering. The images show random materi-
als assigned from three different clusters of varying appearance. The robot model (cKalten) was
obtained from TurboSquid.

where o is the out-of-gamut image, and g ∗ w represents the image in the printer’s gamut, defined
as a linear combination of inks g [231]). Figure 2.15 shows some examples.

2.7 discussion

We have presented and validated a model of material appearance similarity that correlates with the
human perception of similarity. Our results suggest that a shared perception of material appearance
does exist, and we have shown a number of applications using our metric. Nevertheless, material
perception poses many challenges; as such there are many exciting topics not fully investigated
in this work. Several factors come into play that influence material appearance, i.e., the visual
impression of a material, in a highly complex manner; fully identifying them and understanding
their complex interactions is an open, fundamental problem. As a consequence of these interactions,
the same material (e.g., plastic) may have very diverse visual appearances, whereas two samples
of the same material may look very different under different illumination conditions [399, 98]. In
aiming for material appearance similarity, we aim for a material similarity metric that can predict
human judgements. There is a distinction, common in fields like psychology or vision science,
between the distal stimulus—the physical properties of the material—, and the proximal stimulus—
the image that is the input to perception—. The key observation here is that human perceptual
judgements usually lie between these two, and our training framework and loss function are
designed to take both into account. We combine the information about the physical properties
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Figure 2.13: Representative samples of three clusters on the Extended MERL database. The Hopkins statistic
on our feature space confirms that our similarity metric creates perceptually-meaningful clusters
of materials.

Figure 2.14: Example of database summarization for the Extended MERL dataset. These seven samples
represent the variety of material appearances in the dataset.

of the material contained in the images, by having the same material under different geometries
and illuminations, with the human answers on appearance similarity. In other words, a pure
image similarity metric would not be able to generalize across shape, lighting or color, while a
BRDF-based metric would be unable to predict human similarity judgements.

We do not attempt to identify nor classify materials (Figure 2.16). Our loss function could,
however, incorporate additional terms (such as the cross-entropy and batch-mining triplet loss
term discussed in the appendix) to help with classification tasks. We have carried out some tests
and found anecdotical evidence of this, but a thorough analysis requires a separate study not
covered in this work.

Despite having trained our model on isotropic materials, we have found that it may also yield
reasonable results with higher-dimensional inputs. Figure 2.17 shows three examples from the
Flickr Material Database (FMD) [343], which contains captured images of highly heterogeneous
materials. We have gathered all the materials from the fabrics, metals, and plastics categories in
the database; taking one reference from each, we show the three closest results returned by our
model, using an L2 norm distance in feature space. Images were resized to match the model’s
input size, with no further preprocessing. Note that the search was not performed within each
category but across all three, yet our model successfully finds similar materials for each reference.
This is a remarkable, promising result; however, a more comprehensive analysis of in-the-wild,
heterogeneous materials is out of the scope of this work.

We have also tested the performance of our model on grayscale images. In this case, we have
repeated the evaluation conducted in Table 2.1 for our model, using grayscale counterparts of the
images. Despite the removal of color information, we obtain results similar to those of our model
on color images: A raw accuracy of 72.55 (vs 73.97 on color images), a majority accuracy of 78.64
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Figure 2.15: Our similarity metric can be used for gamut mapping applications, by minimizing the perceptual
distance of our feature vectors. Each pair shows the ground truth (left), and our in-gamut result
(right).

Figure 2.16: In the feature space defined by our model, the middle image (chrome) is closer in appearance to
the reference (brass) than the image on the right (brass). The insets show the environment maps
used. Our model is driven by appearance similarity, and does not attempt to classify materials.

(vs 80.69), a raw perplexity of 1.82 (vs 1.74), and a majority perplexity of 1.67 (vs 1.55). This further
enforces the idea that we learn a measure of appearance similarity, and not image similarity.

To collect similarity data for material appearance, we have followed an adaptive sampling
scheme [377]; following a different sampling strategy may translate into additional discriminative
power and further improve our results. Our model could potentially be used as a feature extractor,
or as a baseline for transfer-learning [344, 422] in other material perception tasks. A larger database
could translate into an improvement of our model’s predictions; upcoming databases of complex
measured materials (e.g., Dupuy et al. [82]) could be used to expand our training data and lead
to a richer and more accurate analysis of appearance. Our methodology for data collection and
model training could be useful in these cases. Similarly, upcoming network architectures that may
outperform our ResNet choice could be adopted within our framework. Finding hand-engineered
features could also be an option and may increase interpretability, but it could also introduce bias
in the estimation.

In addition to the applications we have shown, we hope that our work can inspire additional
research and different applications. For instance, our model could be of use for designing com-
putational fabrication techniques that take into account perceived appearance. It could also be
used as a distance metric for fitting measured BRDFs to analytical models, or even to derive
new parametric models that better convey the appearance of real world materials. We have made
our data available for further experimentation, in order to facilitate the exploration of all these
possibilities.
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Figure 2.17: Results using highly heterogeneous materials from the FMD dataset. We show the three closest
results returned by our model, from the reference materials highlighted in violet. Note that the
search was performed across all three categories shown, not within each category.
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3
Asemantic Visual Changes A�ect Time

Perception

So far we have dealt with how static visual appearance is perceived. However, our day to day lives
are experienced through time, and we usually perceive a changing environment. The perception
of our surroundings is created and updated constantly, with time perception playing a key role in
our ability to make predictions and interact with our surroundings. Despite being a subjective
experience, time perception depends not only on inner factors like the emotional state but also
on the sensory information that is perceived at each moment. Time perception is known to be
affected by visual appearance and sometimes it is even considered as an independent sensory
modality. However, it is difficult to disentangle the effect of visual appearance from other high-level
cognitive processes, since visual information can also have an effect on factors like emotional
valence, cognitive load, etc. In this Chapter we focus on isolating low-level, basic features of visual
appearance and studying how these affect time perception in immersive environments, since they
provide a more natural and realist environment to work with than traditional media. We find
that larger visual changes (elicited by sequences of images or videos with higher contrast, faster
frequency, bigger field of view or higher visual complexity) shorten the perceived time.

This work has been published in PLOS One [210]. A previous work in progress was presented
as a peer-reviewed poster in Vision Science Society 2020 [209]. This work was started during my
internship in Adobe under the supervision of Qi Sun and Zoya Bylinskii. While I was the leading
author the rest of my coauthors collaborated with the design of the experiments and the writing.
Zoya Bylinskii also run a part of the experiments.

S. Malpica, B. Masia, L. Herman, G. Wetzstein, DM. Eagleman, D. Gutierrez, Z. Bylinskii & Q. Sun
Larger visual changes compress time: The inverted effect of asemantic visual features on interval time perception

PLOS One 17(3) 2022

3.1 introduction

Our perception of time crucially affects our ability to process our surroundings, make predictions,
and act in real and simulated environments. Manipulations of time perception have been leveraged
in broad applications. For instance, patients undergoing medical procedures can experience shorter
durations of time, helping them cope with anxiety [318]; urban planning is also affected by time
perception, since perceived waiting times in transit can be altered by the presence of basic
amenities, indirectly affecting productivity [88]; and reaction times have to be considered in the
context of public safety, especially for those who are driving [410]. Time perception can also be
used as a proxy to measure performance in professional training, particularly when considering
fitness for duty [83]. Evidence suggests that varied biological mechanisms might be involved in the
perception of different temporal durations [42], including sub-second range (millisecond timing),
seconds-to-hours range (interval timing), and a 24-hour range (circadian timing).

In this work, we define asemantic visual features as lower-level factors that are intrinsically related
to visual processing (e.g., luminance contrast, temporal frequency), but not high-level cognitive
aspects like emotions. In contrast, we denote factors related to high-level cognitive aspects as
semantic features. Millisecond range time perception has been reported as being affected by purely
visual, low-level patterns [421], which could be disentangled from other high-level cognitive

29
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aspects [23]. For instance, a positive correlation was found between visual magnitude and time
perception at the millisecond level: higher-magnitude stimuli (e.g., stronger luminance, larger sizes,
etc.) were judged to last longer in a prospective paradigm (participants knew beforehand that they
would be making a temporal judgement [411]). In comparison, interval timing is the most common
duration in high-order, real-world tasks, and it is known to be altered by semantic features such as
emotional valence, arousal, cognitive load, or zeitgebers [318, 392, 316]. Manipulating the visual
content to be sad or funny [392], varying the task difficulty (e.g., asking participants to solve either
a 2D or 3D puzzle) [318], or having participants notice the changes in the illumination of a scene
due to the position of the sun [316] are all examples of manipulations to semantic features that
have been reported to affect time perception at interval timing durations.

In these previous works, high cognitive load or arousal generally shortened perceived time at
the level of multiple seconds to more than one hour. However, since features like emotional valence
and arousal are partially subjective and individualized, it is difficult to consistently and universally
affect time perception by manipulating semantic features. It is much more practical to manipulate
asemantic visual features, since they can be explicitly controlled (e.g., by computer rendering
photo-realistic stimuli). Despite this, the effects of asemantic visual features on interval timing
remain significantly under-explored. This is likely because, within interval timing, it is difficult
to entirely disentangle asemantic from semantic features (e.g., manipulating color is known by
content creators to elicit different emotions [159]). While past work has thus mainly considered
the effects of high-level semantic features on time perception, we manipulate asemantic visual
features by carefully curating the experimental stimuli.

In this work, we aim to answer the fundamental question “whether and how do asemantic
visual features alter human time perception at the interval level?”. Specifically, we investigate
the prospective paradigm informing participants from the beginning that they will be making
judgements related to time. This contrasts with the retrospective paradigm, in which participants
report on the passage of time at the end of a task, without being informed in advance that a tem-
poral judgement will be solicited. Contrary to retrospective judgements that rely on memory [400],
we rely on prospective judgements to simulate ecologically valid applications and understand
how time perception is affected in real-world scenarios in which people are actively aware of the
passage of time.

Our experiments are designed to test the following hypothesis: differences in the magnitude of
asemantic visual features should alter time perception in prospective judgements at interval timing
durations. We initially deploy our experiments with two different display interfaces: conventional
displays (CDs) and virtual reality head-mounted displays (HMDs). Since we find similar (and
consistent with previous work) trends in time perception for both display conditions, we favor
HMD setups for the subsequent experiments. HMDs offer full immersion, allowing for more
realistic visual simulation with computer-generated stereo stimuli (thus depth cues), larger fields
of view effects [425], and free viewing with dynamic head motion. They enable full control over
the visual stimuli displayed to participants, regardless of whether they remain still or move. Thus,
time perception can be studied in more natural conditions while maintaining control over the
virtual environment [316, 412, 41, 25]. Besides, time perception is an important factor to consider
in VR applications in designing a better human-computer interface. This has been emerging as a
critical demand in the medical field, where, for example, the presentation of distracting content
through HMDs has proven to shorten the perceived duration of chemotherapy treatments [318].
We believe that time perception manipulations could have a similar effect in training or simulation
applications, allowing for longer exposure sessions.

The emotional valence, semantic or other high-level cognitive aspects of the presented content
cannot always be manipulated at will without affecting the experience or the goal of a given
application. Instead, we propose the manipulation of asemantic visual features to alter time
perception without affecting high-level cognitive aspects. In that regard, we study four visual
features pertaining to three abstraction levels: low-level spatiotemporal visual properties (spatial
luminance contrast and temporal frequency), mid-level display-related properties (field of view), and
high-level cognitive aspects (visual complexity, understood as the number of independent visual
sources in a scene).
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In our pre-studies, we replicated an experiment [421] that studied the effect of asemantic visual
stimuli at the millisecond timing level as a baseline and found similar results across different
viewing conditions (CD and HMD). However, directly extending the millisecond experimental
design to longer intervals did not reveal consistent results. We term this phenomenon a perceptual
break. This perceptual break may be due to the different neural mechanisms that have been found to
be in charge of processing different temporal magnitudes in mammals [42, 102] where millisecond
timing is processed ‘automatically’ [189] while interval timing is ‘cognitive’ (by engaging attention
and working memory [190]). A perceptual break can be defined as the point where the perceptual
process changes abruptly. In our case, we found that the perceived effect of visual changes on
time perception was different depending on the duration of the tested period, particularly when
comparing millisecond (less than one second) to interval (multiple seconds) timing.

Following, we present our main experiment (Experiment 1) and additional experiments that
suggest how the effect behaves under varied conditions. With Experiment 1 we tested how differ-
ences in the magnitude of luminance contrast, temporal frequency, and field of view affect time
perception using 30s intervals. In Experiment 2 we tested intervals of up to five minutes to check
whether the effects found in Experiment 1 hold for longer intervals. Both Experiments 1 and 2

make use of half-duration judgements, in which participants are interrupted part way through a
trial and asked to estimate whether more or less than half of the full timing interval has already
elapsed (binary response). Finally, we design Experiment 3 with the aim of providing a quantitative
estimate of the temporal distortion, which is based on a numerical estimation of the passage of
time, in seconds. See Figure 3.1 for a visual summary of the experimental procedures.

Results across all of our experimental conditions reveal a common trend: duration of time is
consistently perceived as shorter when high magnitude levels of each visual feature are present,
regardless of viewing conditions or experiment task. We found this trend to hold across intervals
ranging from 30 seconds to 3 minutes. In particular, larger spatial luminance contrast, higher
temporal frequency, larger FoV, and more complex visual content consistently shorten participants’
prospective time judgments when compared with lower levels of the same visual features.

3.2 methods

The objectives of our experiments were to analyze the effects of asemantic visual features on
prospective time judgements for interval timing (several seconds to minutes range). With that aim,
we designed two different tasks (A and B) and carried out four experiments with different sets of
participants for a total population size of 168 participants. In the following, we describe each of
the experiments in detail. A video showing an accelerated version of the experimental procedure
for Tasks A and B can be found online in Movie S1 , while a complete visualization of our results Available at

https://doi.org/

10.1371/journal.

pone.0265591.s001

can be found in Figs 3.3-3.6 and Tables 3.2 and 3.3.

3.2.1 Pre-studies

Previous work reported that the emotional reactions (level of arousal and valence) experienced
by observers while viewing short movie clips were driving factors in time perception, while
the viewing conditions (display type) were not [392]. Following the work of van der Ham et
al. [392], we ran an initial study to validate whether their findings held by replacing emotional
factors with asemantic visual features. With that aim, we first replicated a previous experiment
on millisecond timing that measured the effects of visual magnitude on time perception [421]
with simple 2D stimuli of abstract patterns (Fig 3.2 A), and compared the results obtained on a
conventional display, or CD (first viewing condition) with those obtained on an HMD (second
viewing condition). This study was completed by five participants who observed both viewing
conditions. Participants judged the duration of pairs of “small” and “large” stimuli, presented
for 600-937ms using a pairwise forced-choice comparison. The stimuli were simple and abstract.
Following Xuan et al.’s notation, “small”/“large” indicates the level of the visual features in the
stimuli. For example, a square with low luminance is referred to as “small”, while a square with
high luminance is referred to as “large”. Size, numerosity, and digits were similarly categorized.
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Figure 3.1: Task A) Binary task used in Experiments 1-2. Illustrative example for a single trial (L-FOV
condition in Experiment 1 at the 55% sp, see Section 2.1). During a trial, participants indicated
whether “more than half” or “less than half” of the duration had passed, at a temporal sampling
point that was 55% of the total duration (16.5s). Task B) The double production task used in
Experiment 3. First participants were presented with an empty scene for 30s (ground truth) while
performing an auxiliary task (detecting the presence of A or L on screen with a corresponding
keypress). Then they were asked to press a key after 30s had elapsed (empty production task). At
this point, the empty scene was replaced with a scene in the H-VC or L-VC condition (high or low
visual complexity, respectively). After the change of scene, participants had to press a key when
30 more seconds had elapsed (visual complexity production task). In the H-VC condition, the four
screens of the virtual room displayed different videos at the same time. In the L-VC condition, the
four screens presented the same video synchronously.
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As in Xuan et al.’s work [421], we denote as incongruent short durations with “large” stimuli, and
correspondingly, long durations with “small” stimuli, since their temporal and visual magnitudes
do not match. According to the results reported in the paper, participants were inclined to judge
larger stimuli as longer, regardless of their actual duration: in CDs (first viewing condition) the
mean difference in error rates was 20% on average between incongruent and congruent trials, with
incongruent trials having higher error rates.

We then extended Xuan et al.’s work by using an HMD (second viewing condition) and
observed the same trend. We found a mean difference in error rates of 37.6% between congruent
and incongruent stimuli across the five participants, with higher error rates in incongruent trials,
consistent with the results trend that was found in the original work using CDs. These findings are
consistent with those of van der Ham et al. [392], indicating that similar results can be obtained
using HMDs and CDs. This, together with previous work, is indicative that the trend of the effect
of visual stimuli magnitude on time perception should hold between HMDs and CDs.

In the following, we tried to directly extend the same experimental design to interval timing.
However, our follow-up attempts to extend the work of Xuan et al. [421] to longer interval
durations (5s, 10s, and 30s) did not exhibit the same effect (the mean difference in error rates
between congruent and incongruent stimuli dropped to 5.2%). This trend was consistent with
the perceptual break between millisecond and interval duration magnitudes evidenced in previous
works [42]. Debriefing sessions also revealed participants’ loss of engagement while observing
simple stimuli for long periods, which might have contributed to the small differences observed in
error rates between congruent and incongruent stimuli. We proceeded to design a more realistic
scenario with 3D computer-generated models of real objects (specifically, lamps) instead of the
original 2D stimuli of simple, abstract patterns. In this extended experiment, we again observed
the same trends at millisecond intervals but did not find significant differences at longer durations
(6.4% mean difference in error rate). However, participants suggested on post-study free written
form questionnaires that they preferred the more realistic stimuli. This motivated us to design our
main experiment (Experiment 1) and subsequent studies leveraging more complex and realistic
stimuli (Fig 3.2 B) to maintain participant engagement throughout the experiments and attention
in the timing tasks.

3.2.2 Interval timing experiments

In the pre-studies, we found that the effects of the absolute visual magnitude (i.e., “big” vs “small”
stimuli in Xuan et al.’s experiments [421]) observed with millisecond timing did not seem to
replicate when extended to interval durations, possibly due to the aforementioned perceptual
break [42]. We thus design our interval timing experiments based on this knowledge, as well as
inspired by Montague’s theory of time perception [245]:
If [...] perceptual space and time magnitudes are essentially relative matters [...], the amount of objective
time or change which appears to be present at any one moment will be measured by its ratio to the subjective
change which accompanies it”. In other words, it is not the absolute visual value that affects time perception,
but rather the perceived changes across visual stimuli.

In our experiments, we study how changes in the magnitude of four different asemantic visual
features affect time perception, ranging from lower to higher levels of abstraction: luminance
contrast and temporal frequency (low-level), field of view (mid-level), and visual complexity
(high-level). Our stimuli of choice are quickly-varying frames (in the case of both static images
and short video sequences), the design choice motivated by our pre-studies suggesting that a
reasonable amount of variation was required to maintain user engagement, critical to obtaining a
reliable measure of time perception. Further, in potential application scenarios, it is likely that, at
the interval timing durations we are considering, variation in the visual input will naturally be
present.

Extending the notions of “big” and “small” from Xuan’s studies, in all our experiments we
similarly have two magnitude levels: high and low (see Fig 3.2). Regardless of the viewing conditions
(different display types or visual features being manipulated) throughout our experiments, the
high level is designed to exhibit a larger absolute value of the visual feature than the low level.
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Figure 3.2: A) Stimuli used in the pre-studies. Left: The 2D, grayscale stimuli we adapted from Xuan et
al [421]. Right: The 3D lamps used in our follow-up attempts to directly extend the procedure
of Xuan et al. to interval timing. B) Illustrative examples of the stimuli used in our experiments
depicting natural scenes. From left to right, in each column: high contrast (H-CON), low contrast
(L-CON), 360º panoramas (H-FOV), and their associated most salient crops (L-FOV). Fig 3.1 (Task
B) also shows an example of high and low visual complexity (H-VC and L-VC).
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Acronym Meaning

CD Conventional displays

HMD Head mounted displays

VR Virtual reality

FRQ Frequency

CON Contrast

FOV Field of view

H-CON High magnitude level of contrast

L-CON Low magnitude level of contrast

HFM Histogram flatness measure [383]

H-FRQ High magnitude level of frequency

L-FRQ Low magnitude level of frequency

H-FOV High magnitude level of FOV

L-FOV Low magnitude level of FOV

sp Sampling point

pover,45

Percentage of “more than half” responses

in the 45% sp (overestimation indicator)

punder,55

Percentage of “less than half” responses

in the 55% sp (underestimation indicator)

pcorr,XX
Percentage of correct answers

in the XX% sp (accuracy indicator)

VC Visual complexity

H-VC High magnitude level of visual complexity

L-VC Low magnitude level of visual complexity

Table 3.1: List of acronyms used through this chapter.

The changes elicited by the visual feature will also be generally perceived as larger in the high
level than in the low level. We define visual changes as spatiotemporal per-pixel variations. In
this sense, we assume that a sequence of stimuli with higher luminance contrast (larger per-pixel
variations), temporal frequency (faster variations), field of view and visual complexity (both with
more numerous variations) will all cause larger visual changes than their lower-level counterparts.

In the following, we explain each of the experiments in detail. Our results can be found in Figs
3.3-3.6 and Tables 3.2 and 3.3. Table 3.1 presents a list of the acronyms used through this chapter
in order of occurrence. Our main experiment (Experiment 1) explores how different magnitudes
of luminance contrast, temporal frequency and field of view affect half-duration judgements
under a fixed viewing condition (static panoramas viewed in HMDs). We conducted a follow-up
replication in conventional displays which show the same trend found in the work of Van der Ham
et al. [392]. Experiment 2 extends the studies from 30s to up to five minutes. Finally, Experiment
3 uses a different task design (duration judgements) to give an estimate of the extent to which
temporal perception gets distorted with changes in the visual complexity of the stimuli.

3.2.2.1 Experiment 1 – Frequency, contrast, and field of view in HMDs

In Experiment 1 we study how variations in the magnitude of the asemantic visual features temporal
frequency (FRQ), luminance contrast (CON), and field of view (FoV) affect time perception while
watching static panoramic imagery in head-mounted displays (HMDs). All the trials tested in
this experiment had a duration of 30s. We denote as a trial any separable part of an experiment
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associated with an answer from the participant. Experiment 1 was carried out using the study
design we labeled Task A, which evaluates how changes in the magnitude of asemantic visual
features affect time estimation, for a fixed viewing condition. Participants were first exposed
to a sample trial duration to set the expectations. On each subsequent trial, participants were
interrupted approximately halfway through the duration and asked to make a judgement about
whether more or less than half of the full trial duration had elapsed [411]. We term these binary
temporal judgements half-duration judgements. The binary task design has two advantages: first, we
wanted participants to give us quick, intuitive answers. Second, compared to asking participants
to directly estimate magnitudes (i.e., how much time has passed) binary judgements are less
noisy and variable, at the expense of less information. The goal of Task A is different from the
millisecond timing experiment design presented in the pre-studies where participants compared
the duration of big vs small stimuli in a single trial. Our goal with the pre-studies was to replicate
previous work in a different viewing condition (in this case, an HMD). For Task A we have tried
to avoid memory-related confounding factors by presenting one single manipulation of a given
visual feature in each trial.

Participants and apparatus. The stimuli were presented on an HTC Vive Focus, a portable
HMD (2880x1600 spatial resolution, 75Hz, 110 visual degrees FoV). A total of 89 participants took
part in Experiment 1. To avoid excessively large numbers of trials per participant leading to fatigue
or learning effects, we split the visual features tested and participants into two groups. Group 1.1
consisted of 45 participants (20 female, mean age 28.7 years) who experienced temporal frequency x
luminance contrast (low-level visual features) changes. Group 1.2 consisted of a different set of 44

participants (18 female, mean age 26.8 years) who experienced FoV (mid-level property) changes.
All participants had normal or corrected-to-normal vision. All were naive to the purpose and
hypothesis of the study. These two affirmations hold for all the presented experiments.

Stimuli. We gathered a set of 420 panoramas from open-source web databases (Flickr, Unsplash,
and Pixexid), all of them depicting natural indoor or outdoor scenes (see Fig 2). They were manually
selected, excluding synthetic, cartoon, high-emotional valence (violence, parties, dramatic pictures,
etc.) and written content. The stimuli were randomly arranged in sequences of 30 panoramas
to compose each 30s experiment trial. Each image was shown for a total of 1.2s-1.8s, with a
fade-in/fade-out effect of 0.5s between images, during which the images overlapped in order to
create smooth transitions. Both the fading effect and variable image presentation durations were
implemented to avoid the kind of predictable regularity that may facilitate counting. Instead of
being presented for 1 second each, images in the sequence cycled through the following duration
pattern: 0.4s, 0.2s, 0.4s, 0.6s, 0.8s, 0.6s. Including the additional 0.5s transition between images, a
group of six images had a total duration of 6 seconds. Five of these groups were sequenced to
create the 30s trials.

Luminance contrast. Images or video sequences with a high magnitude level of contrast (H-CON)
produce larger visual changes than those with a low magnitude level of contrast (L-CON). A
representative sample of these stimuli can be found in Fig 3.2. We calculated the contrast of our
420 panoramas taking into consideration their most salient 2D crop spanning 45 by 65 degrees of
visual angle [353], and using the histogram flatness measure (HFM) [383]. The computed contrast
range of our full stimuli set was [0.17, 0.72]. We selected the 120 panoramas with least contrast with
an L-CON in the range [0.17, 0.60], and 120 panoramas with the highest contrast with an H-CON
in the range [0.60, 0.72]. The remaining 180 panoramas were used for the temporal frequency
conditions.

Temporal frequency. We created the high and low temporal frequency conditions (H-FRQ and
L-FRQ, respectively) out of the same stimulus set, to manipulate temporal frequency without
changing the amount of visual information presented. Specifically, starting with the stimuli in the
L-FRQ condition, we inserted three black frames per second to the entire image sequence to create
a flickering effect in the H-FRQ condition.

Field of view. To reduce the differences in conditions to only the main factor under investigation,
we similarly used the same stimulus set for both high and low FoV conditions (H-FOV and L-FOV,
respectively). In this case, we used panorama images that were either shown in full size in the
H-FOV condition, or were reduced to their most salient [353] crops (2D re-projected regions of 45
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x 65 degrees of visual angle, Fig 3.2) in the L-FOV condition. H-FOV was designed to show visual
changes in a larger portion of the visual field compared with L-FOV. Note that the entirety of
Experiment 1 was carried out in HMDs to take advantage of the expanded field of view available.

Procedure. The experimental procedure was the same for both Groups 1.1 and 1.2, using
half-duration judgements for measuring the perception of time (Task A, Fig 1). Before beginning
Experiment 1, participants were explicitly told not to count to estimate time passage. At the
beginning of the experiment, they were informed of the duration of each of the trials (30s), and
provided with a 30s sample trial, which was interrupted with on-screen message to denote when
half of the duration (15s) had elapsed. After the sample trial, the experiment proceeded with a set
of consecutive 30s trials. Within each trial, participants would be prompted to make a half-duration
judgement at a given (unknown to participants) sampling point (sp) of 45% or 55% of the total
trial duration (i.e., at 13.5s or 16.5s in a 30s interval): Has more or less than half of the time
elapsed? Participants answered using the HMD controllers. They were instructed to answer as fast
as possible, and the trial continued automatically after their response. At the end of each trial, an
additional binary question appeared: Do you think your previous answer was correct? Participants
again answered using the HMD controllers. Participants in Group 1.1 completed a total of 32 trials,
for a total experiment duration of approximately 20 minutes. Participants were asked to make a
half-duration judgement at a sampling point of 45% for half the trials, and at a sampling point of
55% for the other half. The trials were randomly ordered for each participant. Across trials for a
given participant the magnitude level (high vs low) and the feature chosen (contrast vs frequency)
could vary. However, within any particular trial, all the stimuli were consistent in magnitude
and feature manipulation. As a reminder, the goal was to accumulate the effects of a particular
manipulation over the full duration of a trial (in this case 30s) to evaluate how the manipulation
affects time perception at 30s intervals. Similar to Group 1.1, participants in Group 1.2 completed
a total of 8 trials, for a total experiment duration of approximately 5 minutes with the difference
being a manipulation in the sampling point and magnitude of the FoV condition for this group.

Statistical Analysis. A 2 magnitude levels (high vs low)x2 visual features (contrast vs fre-
quency)x2 sampling points (45% vs 55%) ANOVA was used to check for significant differences
for the 45 participants (Group 1.1) who experienced luminance contrast and temporal frequency
manipulations. A 2 (FOV levels: high vs low) x2 (sampling points) ANOVA was used to check for
significant differences for the 44 participants (Group 1.2) who experienced the FoV manipulation.
The answer variable was binary (“more than half” or “less than half” of the time elapsed) in both
analyses. Post hoc analyses for this experiment can be found in the Appendix 3.A. All statistical
analyses were carried out using Matlab. ANOVA post-hoc power was calculated with additional
scripts [384]. Effect sizes were calculated using Harald’s Toolbox for Matlab [132] (partial eta
squared for ANOVA). Additionally, we analyzed Groups 1.1 and 1.2 together (89 participants)
with a GLMM to check for interactions of the different visual features for completeness. The
information of the GLMM analysis can be found in the Appendix 3.B.

Results. We measure and analyze: (i) the percentage of “less than half” responses in the 55% sp
with respect to the total number of responses for this sampling point, which is an indicator that
time felt shorter (or was underestimated) according to the half-duration judgement (punder,55); and
(ii) the percentage of “more than half” responses in the 45% sp with respect to the total number of
responses for such sp (pover,45), an indicator that time felt longer (or was overestimated). These two
values are complementary to the percentage of correct responses (pcorr,45 and pcorr,55) with respect
to the total number of responses, such that, for any given condition, pcorr,45 + pover,45 = 100%
and pcorr,55 + punder,55 = 100%. In Experiment 1, underestimation was more common for H-CON
while overestimation was more common for L-CON. Analogously, underestimation was more
common for H-FRQ and H-FOV and overestimation was more common for L-FRQ and L-FOV
(see Table 3.1 and Fig 3.3). With a significance level established at p=0.05 and power of 0.895 and
0.894, both ANOVAs revealed that magnitude had a significant effect on the answers (F=45.03,
p<0.001, partial η2 = 0.580 for the three-way ANOVA, F=12.39, p<0.001, partial η2 = 0.228 for the
two-way ANOVA), while the sampling point (F=0.91, p=0.340, partial η2 = 0.012 for the three-way
ANOVA; F=0.49, p=0.482, partial η2 = 0.009 for the two-way ANOVA) and visual features (F<0.01,
p=0.964, partial η2 < 0.001 only tested in the three-way ANOVA for frequency and contrast)
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Factor Sp
% of correct L/H

(pcorr,45 or pcorr,55)

% of underestimated

L/H (punder,55)

% of overestimated

L/H (pover,45)

CON
45 (13.5s) 60.5(L)/65.8(H) - 39.5(L)/34.2(H)

55 (16.5s) 57.9(L)/42.8(H) 42.1(L)/57.2(H) -

FRQ
45 (13.5s) 52.6(L)/73.7(H) - 47.4(L)/26.3(H)

55 (16.5s) 58.2(L)/48(H) 41.8(L)/52(H) -

FOV
45 (13.5s) 62.8(L)/68.5(H) - 37.2(L)/31.5(H)

55 (16.5s) 73.7(L)/63.2(H) 26.3(L)/36.8(H) -

Table 3.2: Results of Experiment 1. Accuracy (% of correct answers) is higher for high magnitude levels
of contrast, frequency and FoV at 45% sp (“less than half” answers), while at 55% (“more than
half” answers) it is always higher for low magnitude levels of contrast and frequency. At 45%
sp, overestimation (incorrect responses, “more than half” answers) occurs more frequently for
low magnitude levels. At 55% sp, underestimation (incorrect responses, “less than half” answers)
occurs more frequently at high magnitude levels.

did not. The additional GLMM analysis yielded consistent results with the separated ANOVAs,
with only the magnitude factor having a significant effect on the response variable (t=-3.7641, CI
{-1.142, -0.360}, p<0.001). We observe a similar effect for high magnitude levels across the three
visual features: H-CON, H-FRQ, and H-FOV all make time seem shorter compared to their low
magnitude counterparts. Moreover, participants were fairly confident in their answers, as inferred
from the binary responses at the end of each trial, where participants indicated if they agreed
with their half-duration judgement in retrospect, after the whole interval had elapsed. We define a
trial as rectified if participants believe at the end of a trial that their previous answer was wrong.
Experiment 1 had a rectification percentage of less than 5%.

3.2.2.2 Follow-up replication in Conventional Displays

The work of Van der Ham et al. [392] suggests that similar half-duration judgements can be elicited
with HMDs and conventional displays (CDs) if viewing conditions are similar. Our pre-studies
follow the same trend. In Experiment 1, we addressed interval timing, with experiments done
on HMDs only. Thus, we ran a follow-up study to replicate part of Experiment 1 on CDs. We
replicated Experiment 1, but focused our attention on the two low-level visual features that should
ideally generalize across display types: luminance contrast (CON) and temporal frequency (FRQ).

Participants and Apparatus. The stimuli were presented on a Samsung display (S24F350FHU,
1920x1080 spatial resolution, 60Hz) at a distance of 60cm from the viewer. Seven participants
completed the follow-up study (3 female, mean age 22.4 years).

Stimuli. The stimuli used in this study consisted of a set of 420 images of natural indoor and
outdoor scenes from open-source web databases with a CC license (Flickr, Unsplash, and Pixexid)
depicting natural indoor and outdoor scenes. These were selected following the same exclusion
criteria as in Experiment 1. The presentation of the images, duration, fade-in/fade-out effects, etc.,
were the same as in Experiment 1, yielding test trials that included 30 images and were 30s long.
Participants completed a total of 16 trials. The duration of the experiment was 10 minutes.

Luminance contrast and temporal frequency. The different magnitude levels of CON and FRQ were
achieved following the same procedure as in Experiment 1. The computed contrast range (HFM) of
our full stimuli set was [0.55, 0.84]. We selected the 120 images with least contrast with an L-CON
in the range [0.55, 0.64], and 120 images with the highest contrast with an H-CON in the range
[0.71, 0.84]. The remaining 180 images were used for the temporal frequency conditions.

Procedure. This study was carried out following the same procedure described in Experiment
1, where participants indicated whether more or less than half of the time had elapsed, with the
sole difference that instead of wearing an HMD and using its controllers as the input device, in
this version of the study participants were entering their responses on a keyboard while looking

38



3.2 methods

Figure 3.3: Results for Experiment 1. From left to right: aggregation of trials by luminance contrast, temporal
frequency and field of view conditions. Y axis: % of answers. X axis: 45% and 55% sampling
points (sp). The displayed bars of each graph correspond to pover,45 at the 45% sp (overestimation)
and to punder,55 at the 55% sp (underestimation). The percentage of correct answers for each case
is complementary to the displayed value in the graph (pcorr,45 + pover,45 = 100% and pcorr,55 +
punder,55 = 100%). Note that overestimation is always more frequent in low magnitude levels and
underestimation in high magnitude levels, regardless of the visual feature.

at the CD. In this study, each participant experienced 8 conditions: 2 magnitude levels (high vs
low)x2 visual features (contrast vs frequency)x2 sampling points (45% vs 55%).

Statistical Analysis. A 2x2x2 ANOVA was used to check for significant effects (with visual
feature, magnitude and sampling point as factors). The answer variable was binary (“more than half”
or “less than half” of the time elapsed).Post hoc analyses for this experiment can be found in the
Appendix 3.A.

Results. Using the same measures described in Experiment 1, we found similar tendencies in
time perception between HMDs and CDs. Table 3.3 and Fig 3.4 show the results of this study.
The underestimation and overestimation trends follow those found in Experiment 1: H-CON and
H-FRQ elicited higher underestimation rates while overestimation was more frequent for L-CON
and L-FRQ. However, while the trend observed is the same, no significant effect was found for
any of the tested factors (magnitude F=0.56, p=0.454; visual feature F=0.56, p=0.454; sampling point
F=1.27, p=0.263).

3.2.2.3 Experiment 2 – Extended durations up to five minutes

To further analyze the stability of the observed time compression effect over extended periods, we
tested temporal frequency (FRQ) effects at trials of longer duration. We only considered temporal
frequency as a visual feature in Experiment 2 to keep the size of the experiment tractable, since
we found no significant differences between the tested visual features in Experiment 1. To maintain
participant engagement and for ecological validity at longer durations, Experiment 2 employed
sequences of short video clips arranged into “movies”, instead of static images. The trials tested in
Experiment 2 varied in duration, including: 30s, one minute, three minutes, and five minutes.

Participants and apparatus. In the follow-up replication study we verified that similar results
could be found both in HMDs and CDs when using analogous experimental set ups. Given that
Experiment 2 deals with longer temporal durations, to avoid a potential confounding effect of
fatigue caused by prolonged exposure [49] in HMDs, we use CDs. The stimuli were presented on
a Samsung display (S24F350FHU, 1920x1080 spatial resolution, 60Hz), at a distance of 60cm from
the viewer. 51 participants took part in Experiment 2 (20 female, mean age 22.9 years).
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Factor Sp
% of correct L/H

(pcorr,45 or pcorr,55)

% of underestimated

L/H (punder,55)

% of overestimated

L/H (pover,45)

CON
45 (13.5s) 58.3(L)/66.6(H) - 41.7(L)/33.4(H)

55 (16.5s) 62.9(L)/42.7(H) 37.1(L)/57.3(H) -

FRQ
45 (13.5s) 52.9(L)/67.8(H) - 47.1(L)/32.2(H)

55 (16.5s) 61.7(L)/32.6(H) 38.3(L)/67.4(H) -

Table 3.3: Results of the follow-up replication study with conventional displays. Accuracy (% of correct
answers) is higher for high magnitude levels of contrast and frequency at 45% sp (“less than half”
answers), while at 55% (“more than half” answers) it is always higher for low magnitude levels of
contrast and frequency. At 45% sp, overestimation (incorrect responses, “more than half” answers)
occurs more frequently for low magnitude levels. At 55% sp, underestimation (incorrect responses,
“less than half” answers) occurs more frequently at high magnitude levels.

Figure 3.4: Results for the follow-up replication study with conventional displays. Left: Luminance contrast
trials. Right: Temporal frequency trials. Y axis: % of answers. X axis: 45% and 55% sampling
points (sp). The displayed bars of each graph correspond to pover,45 at the 45% sp (overestimation)
and to punder,55 at the 55% sp (underestimation). The percentage of correct answers for each case
is complementary to the displayed value in the graph (pcorr,45 + pover,45 = 100% and pcorr,55 +
punder,55 = 100%). Like in Experiment 1, overestimation is always more frequent in low magnitude
levels and underestimation in high magnitude levels, regardless of the visual feature.
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Figure 3.5: Results for Experiment 2. Y axis: % of answers. X axis: Temporal duration of the trials (30s,
1min, 3min, 5min). The displayed bars correspond to punder,55 at the 55% sp (underestimation).
The percentage of correct answers for each case is complementary to the displayed value in the
graph (pcorr,55 + punder,55 = 100%). Like in Experiment 1, underestimation is more frequent in
high magnitude levels, in this case in trials with a duration of up to 3minutes.

Stimuli. The videos used in Experiment 2 consisted of 700 three-second video clips from the
Moments dataset [244]. The set of videos was manually curated to exclude high arousal actions,
synthetic content, text, or manipulated playback speed. Randomly ordered sequences of videos
were arranged to form each trial. Since video clips had a fixed duration of 3s, the number of video
clips per trial was a function of the length of the trial (10 clips for 30s trials, 20 clips for one minute
trials, 60 clips for three minute trials and 100 clips for five minute trials). No transition effects were
applied between different clips inside a given trial. Videos were played as continuous “movies”
composed of back-to-back 3s clips.

Temporal frequency. To induce a high temporal frequency in sequences of videos, we subdivided
each 3s clip into 1s cuts that were then reshuffled, effectively increasing temporal changes in visual
content without changing the totality of visual information presented.

Procedure. Experiment 2 was carried out using half-duration judgements for measuring the
perception of time, following the procedure outlined in Experiment 1. Participants were randomly
assigned to one of the four possible duration conditions, and completed all the trials with the
same presentation duration to avoid bias effects due to differences in trial durations. For simplicity,
we only used the 55% sampling point (prompting participants to make temporal judgements
after 16.5s elapsed within 30s trials, after 33s for one minute trials, 99s for three minute trials
and 165s for five minute trials), which means each duration had only two possible conditions (2
magnitude levels x 1 sampling point x 1 visual feature). Each participant completed 6 trials, for a
total duration between 3 minutes (in the case of 30s trials) and 30 minutes (for five minute trials).

Statistical Analysis. Each of the sampled trial durations was analyzed separately, testing for
significant differences in high vs low magnitude levels of FRQ with Chi-square proportions tests.
The answer variable was binary, as in Experiment 1.

Results. With a significance level established at p=0.05 the duration of H-FRQ stimuli was
significantly underestimated for trial durations up to three minutes (higher punder,55 for H-FRQ,
see Fig 3.5): 16.3% of trials in L-FRQ condition vs. 38.9% in H-FRQ at 30s (χ2=13.27, p=0.001, post
hoc power=0.83, ES=0.586); 18.7% L-FRQ vs 68.7% H-FRQ at one-minute (χ2=50.99, p=0.001, post
hoc power=0.99, ES=0.635); 25% L-FRQ vs. 52% H-FRQ at three-minute trials (χ2=15.39, p=0.001,
post hoc power=0.88, ES=0.579). At five-minute trials, however, the effect was no longer present:
16.6% L-FRQ vs. 16.6% H-FRQ (χ2=0, p=1).
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3.2.2.4 Experiment 3 – Quantification of the perceived temporal distortion

All the previous experiments in this work used half-duration judgements, collected as binary
responses (Task A study design) to evaluate the effects of changes to visual features on the
perception of time. Experiments 1-2 confirm that the perception of time can indeed be distorted
by manipulating the magnitude of a visual feature (e.g., high vs low contrast, frequency, etc.).
Experiment 3 was then designed to give an estimate of the extent to which temporal perception
gets distorted, by using traditional duration judgements. In this case, rather than making a binary
half-duration judgement, participants produce a numerical estimate of the elapsed duration. In
Experiment 1 we found that only differences in magnitude of the different visual features had a
significant effect on time perception. However, we did not find any significant difference between
the three tested visual features: frequency, contrast and field of view. Since all the features were
equally effective, for Experiment 3 we focused on a fourth, more abstract, feature: visual complexity.
We define visual complexity as the number of distinct sources of visual content inside a given
scene. Visual complexity was chosen as a proxy of real-world tasks that require simultaneous
attention to multiple screens or sources of content. Visual complexity uses the principle common
to all the previously tested features, whereby high magnitude levels of the feature trigger larger
spatiotemporal per-pixel variations than their lower magnitude counterpart. In summary, in
Experiment 3 we estimate how much magnitude variations of visual complexity (VC) affect time
perception. All the trials tested in this experiment had a target duration of 30s.

Participants and Apparatus. The stimuli were presented on an Oculus Rift CV1 HMD
(2160x1200 spatial resolution, 90Hz, 110 visual degrees FoV). Eleven participants took part in
Experiment 3 (5 female, mean age 25.2 years).

Stimuli. The same set of videos described in Experiment 2 were used in this experiment. In
the low visual complexity (L-VC) condition, four screens inside the virtual scene displayed the
same identical video simultaneously. In the high visual complexity (H-VC) condition, each screen
displayed a different video, effectively augmenting the sources of visual information inside the
scene, as well as the spatial changes of the visual stimuli.

Procedure. Experiment 3 was carried out using Task B: a double production task [6]. Task B
was designed to study the magnitude of time estimation errors under larger visual changes (Fig
3.1). At the beginning of the experiment, participants were explicitly instructed not to count to
get a feeling of time passing, like in Task A. Participants were first exposed to an empty virtual
scene for 30s: a gray background and a fixation cross surrounded by a lighter gray circle of two
degrees of visual angle situated in the middle. During these 30s, an auxiliary task was performed
in order to prevent participants from counting. Auxiliary tasks help maintain engagement without
significantly increasing cognitive load. The letters “A” and “L” would appear at a fixed position to
the left or right of the fixation cross, respectively. When participants saw one of those letters in the
scene, they had to press the corresponding key on a keyboard as fast as possible. A/L appeared
at random intervals of 0.5-2s, 1.5º visual angle to the left or right of the fixation cross, and with
a vertical size of 100 pixels. When the 30s had elapsed, and after a three-second gap, the circle
around the fixation cross turned green and the empty production subtask started: participants
had to press a key to indicate when 30 more seconds had elapsed, while continuing with the
auxiliary task. After completing the empty production task, participants moved on to the next task
after a keypress. Empty production tasks were used to measure individual baseline estimation
in the absence of a stimulus. Participants were then shown a virtual empty room with four flat
screens displaying videos on one of its walls. The visual complexity production subtask started:
across both H-VC and L-VC conditions, participants had to indicate when 30s had elapsed by
pressing a key. At the same time, they had to complete a new auxiliary task: pressing a key when
something red appeared in any of the videos. Like in the first auxiliary task, the red detection task
was designed with the intention of increasing engagement through the experiment and preventing
users from explicitly counting. Immediately after the visual complexity production, participants
completed a NASA-TLX questionnaire [126] to measure the cognitive load elicited by the visual
complexity production subtask. We used a within-subjects design: each participant completed this
experimental sequence twice, once with H-VC, once with L-VC, but with a different set of stimuli.
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Figure 3.6: Experiment 3 results. A: Participants take longer to realize 30s have passed in H-VC, which
suggests that time is compressed in the presence of larger perceived visual changes. B: NASA-TLX
score (workload measure) for the visual complexity production tasks of each level. Right violin
plot (“diff”) shows individual differences in NASA-TLX score (L-VC MINUS H-VC). Note that
the negative values in the diff violin plot mean that for some users L-VC was experienced as more
demanding than H-VC. Significant differences are marked with an asterisk.

The order of the conditions (H-VC and L-VC) was randomized to avoid ordering effects. Finally,
each participant completed an additional empty production subtask, for a total of three empty
productions, from which a robust individual measure of production accuracy was obtained by
averaging.

Statistical analysis. An ANOVA was carried out to compare differences in magnitude for H-VC
and L-VC levels. NASA-TLX questionnaire differences were tested with a t-test. The answer
variables were continuous (for the produced durations) or discrete (for the NASA-TLX scores).
The independent variable was binary (for low and high magnitude levels of visual complexity).
Post hoc analyses for this experiment can be found in the Appendix 3.A.

Results. The mean ratio of empty productions to ground truth duration (target duration of
30s) was 1.12, which suggests a small overestimation of time in the baseline condition. To account
for individual differences in time estimation, we computed a ratio between the visual complexity
production and the empty production on a per-participant basis. We fixed the empty productions
as the baselines for each participant. Mean accuracy in the auxiliary task associated with the empty
production (A/L detection) was 99.43%. Mean accuracy (correct keypresses divided by the total
number of keypresses) in the second auxiliary task (red detection) was 99.13% (true positive rate)
with only 4.15% of detection failures (false positive rate, i.e., cases in which a red object appeared
on screen but there was no keypress). The mean response time was 0.416s for the auxiliary tasks.
Participants took more time to indicate that 30s had passed in the H-VC condition, suggesting
that time was perceived as significantly shorter under higher visual complexity (ratio of 1.38 for
H-VC vs 1.10 for L-VC, power=0.407, F=4.98, p=0.0372, partial η2=0.24, normality of distribution
checked with Anderson-Darling tests). In other words, participants took, on average, 25.4% longer
to perceive that 30s had passed in H-VC than in L-VC. Fig 6 illustrates this difference.

Additionally, participants completed a NASA-TLX questionnaire after each visual complexity
production to provide a measure of cognitive load differences between the H-VC and L-VC
condition levels. There were no significant differences in perceived workload between H-VC and
L-VC productions (54.85 mean score for H-VC, 48.83 for L-VC, normal distribution checked with
Anderson-Darling tests, t-test t(10)=0.8857 p=0.397, Fig 3.6).
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3.3 discussion

Our series of experiments reveal consistent trends in how asemantic visual features directly alter
half-duration judgements on prospective interval timing paradigms. Our results suggest that the
perception of time is compressed in the presence of larger spatiotemporal visual changes (elicited
in high magnitude levels of each visual feature) and dilated when smaller spatiotemporal visual
changes are perceived. Moreover, participants felt confident about their half-duration judgements,
as evidenced by the fact that they did not change their answers at the end of each trial (less than
5% rectification rates on average). Our findings hold true for different types of visual changes, and
different timing intervals, up to and including 3 minutes. Debriefing sessions with participants in
Experiment 2 indicated that confounding factors like fatigue effects might be masking the main
effect of visual features in the longer five-minute trials, requiring further investigation.

Experiments 1 and 2 relied on a binary task (Task A) to investigate the existence of a relationship
between the magnitude of visual features and half-duration judgements. In Experiment 3, we
used duration judgements to estimate how much time perception could be compressed or dilated
using a double production task (Task B) and the more abstract feature of visual complexity. In
Experiment 3 the ratio of the empty productions (those done in the absence of visual stimuli) to
the target 30s duration was 1.12. This ratio was consistent with previous literature [42], which
estimated a mean 10% deviation from actual time in interval timing judgements. Following this
same trend, both H-VC and L-VC made time be perceived as shorter when compared to the empty
production (participants took longer to indicate 30s had passed) since both conditions contain
more visual changes than an empty scene. Despite the change in task design, we observed the
same trend as in Task A, where larger visual changes perceptually compressed time. The high
accuracy achieved on the auxiliary tasks in Experiment 3 suggest that participants were engaged
throughout the experiment and concentrated on task completion when 30s trials were presented.
It would be highly unlikely for participants to accurately complete these tasks while also counting,
since their working memory capacity is limited [17]. Participants also self-reported, in a post-study
questionnaire, that they were not counting, so we have good reason to believe that we are indeed
measuring perceived estimates of time. However, Experiment 3 had a low power (0.407, below
the commonly accepted threshold of 0.8). This means that the interpretation of Experiment 3
results, while interesting, is limited due to a small sample size. Further experiments should be
carried out to confirm the preliminary effects found in this work. The fact that we found no
significant differences between the perceived workload of the different conditions (H-VC vs L-VC)
in Experiment 3 suggests that participants did not experience more cognitive demand in either
condition. We believe our findings through Experiments 1-3 cannot be simply attributed to an
increase in cognitive load due to the larger per-pixel variations (spatiotemporal visual changes)
that participants have to process in the high magnitude levels of each visual feature. Instead, our
results could be explained by demands on attentional resources as discussed below.

In retrospective judgments, participants are not informed in advance that a temporal judgement
will be made [411], and as a result have to rely on memory in estimating the passage of time, which
may result in confounds. Instead, we focused on the real-time perspective with stimuli that more
closely approximate real-world applications and prospective judgements where people are aware
of the passage of time. Contrary to findings for millisecond timing [42, 421], we found that larger
asemantic visual changes actually shorten perceived interval time perception in a prospective
setting. Our experiments suggest that all of the following visual features affect time perception:
spatiotemporal visual changes (luminance contrast and temporal frequency), field of view, and
the number of distinct sources of visual information (visual complexity, which in our case was
the number of unique video streams). This apparent inversion of the effect when compared with
millisecond timing might be explained by the fact that different timing mechanisms may guide
the perception of different temporal magnitudes [42].

The perceived compression of time under large visual changes is the inverse of the well-known
oddball effect [269]. In the oddball effect, no visual changes (a repetition of the same stimuli)
cause time to be perceived as shorter when compared with a visual change (a different stimulus).
However, this might be more related to prior expectations than to visual changes. In the oddball

44



3.3 discussion

effect, users get used to watching the same stimulus repeatedly. The appearance of an unexpected,
different stimulus contradicts the users’ expectations, potentially capturing their attention [386]. In
contrast, our experiments are designed to prevent participants from becoming accustomed to a
particular duration or condition, for several reasons: first, the order in which trials from different
magnitudes or visual features are presented to the participants is randomized. Second, we evaluate
the answer of our participants at two possible sampling points of which they are unaware during
the experiment, to prevent them from learning the moment at which the question presented in
each trial will appear. Third, we make use of realistic, distinct stimuli for each trial in order to
maintain participant engagement, which we believe prevents participants from forming specific
expectations.

The stimulus information processing load is a contextual factor that can inversely affect duration
judgements in prospective paradigms [427]. Although low-level visual processing might involve
autonomous processes that do not need the support of cognitive resources, high order cognitive
processes and early perceptual processing may not be completely independent [195]. In that sense,
an increase in visual processing due to larger visual changes could be affecting timing interval
mechanisms, either via an increased use of cognitive resources, which are limited, or by a shift
in attention from the temporal task to the observation of the scene around the participant. A
possible explanation for our findings could be found in the attentional resources theory [40]. In
this work, Brown studied how non-temporal tasks affected a concurrent temporal task. The main
findings showed a classic interference effect: “the concurrent nontemporal tasks caused temporal
productions to become longer (longer productions represent a shortening of perceived time)
and/or more variable than did timing-only conditions”. Under the attentional resources theory,
a limited amount of attentional resources are split between the tasks being carried out at each
moment. Nontemporal tasks thus take resources away from the attention that would be otherwise
allocated to the feeling of time passing. In our case, the higher volume of visual information
(larger perceived visual changes) may distract attention from the passage of time, resulting in time
distortions. This change in the focus of attention from temporal to non-temporal tasks is known
to have a major influence on timing behavior according to the attentional-gate model [427] and
related empirical studies [278]. In the attentional-gate model, allocation of attention to time acts
like a gate that regulates how often or how much of the pulses produced by a temporal pacemaker
are then cognitively processed. In our case, the high levels of the different visual features might
elicit a shift of attention from temporal to visual processing, causing fewer temporal pulses to
be processed and effectively shortening the perceived time. Conversely, low levels of our visual
features might require less processing (thus attention could be shifted to temporal processing).
This low attentional demand could even cause a feeling of boredom in comparison [426], which
would in turn lengthen the perceived time. In fact, this feeling of boredom might be one of the
reasons why we could not directly extend the experiment of Xuan et al. [421] from millisecond to
interval timing in our prestudies: our participants did not have enough information to process
and the different conditions were not making up for that lack of stimulation.

Limitations. Throughout our experiments, due to circumstances beyond our control, we had to
adapt to a change in HMD hardware between Experiments 1 and 3, and a limited participant pool
in the follow-up study to Experiment 1 (Section 2.2) and in Experiment 3. While the hardware
(the HMDs) used in Experiment 1 (HTC Vive Focus) and Experiment 3 (Oculus HMD CV1) was
different, we were careful to ensure that both HMDs shared the same key characteristics: both
HMDs have spatial (6DoF) tracking, the same FOV (110 visual degrees) with a very similar refresh
rate (75Hz for the Focus and 80 for the Oculus). Besides, the resolution of the stimuli displayed in
both Experiments was the same, regardless of the native HMD resolution. We thus believe that this
change did not have an effect on the answers of our participants. For this work, we derive our main
conclusions mostly from the analyses of Experiment 1, which was run on 89 participants and had
sufficient statistical power. For completeness, we chose to nevertheless report the results from the
follow-up study to Experiment 1 and Experiment 3, despite those experiments having low power.
While we do not base our conclusions on these experiments, they do provide further validation
that our observed trends from Experiment 1 continue to hold under changing conditions.
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Future directions. It has also been reported that aging affects time perception [59], with older
adults experiencing perceptual time compression. To study how our reported effects generalize
across demographic variables such as age, it would be necessary to expand the current participant
pool (with an average age of 25.31 years; SD: 4.49). Moreover, we designed the experiments to
ensure that higher magnitude levels of each visual feature induced larger visual changes across
time. However, high magnitude levels also implied higher absolute values of each studied visual
feature. Evidenced by Montague’s theory [245] and the perceptual break we found in our pilot
studies when trying to directly extend an experiment with simple, fixed stimuli to interval timing,
we believe that the changes in time perception are caused by larger visual changes being perceived,
instead of by the absolute visual value. Nevertheless, a full isolation of the magnitude change
from its absolute value could help confirm this in future work. Furthermore, we only sampled
two sparse levels (low and high) for the magnitude of each visual feature. A more fine-grained
sampling strategy with an increased number of magnitude levels could further illuminate the
observed effects in an analytical manner. Another interesting question for future investigation is
the minimum required change in visual stimuli to observe differences in time perception. Our
low and high levels for each visual feature were selected based on preliminary tests, but different
variations between these levels might result in differently sized effects.

Conclusion. In summary, we suggest that real-world, interval-scale time perception can be
compressed or dilated through asemantic and realistic visual changes. These findings imply that
we can alter time perception without affecting the semantic content, making these results practical
for application purposes. When designing applications where time judgements are relevant, our
findings could be applied as general design guidelines: i.e., use a high contrast color palette, show
changes in a larger portion of the field of view, or make faster camera cuts in a movie scene to
make time seem shorter. Related to HMDs, compressing perceived time might also be helpful
when controlling fatigue [49]. These findings have the potential for profound impact on practical
applications, such as reducing perceived discomfort during medical treatment with virtual reality
immersion [318], improving response time in highly dynamic tasks such as vehicle driving with
heads-up displays, or lowering fatigue in professional training [83].

appendices

3.a anova post hoc tests

In the following, we report the post hoc tests of our ANOVAs, including a visualization of the
multiple comparison of population marginal means.

Experiment 1. Statistical Analysis. A 2x2x2 ANOVA was used to check for significant effects
(with magnitude, visual feature (frequency and contrast), and sampling point as factors) for Group
1.1 (45 participants). A 2x2 ANOVA was used to check for significant effects (with magnitude
differences in the FoV and sampling point as factors) for Group 1.2 (44 participants). The answer
variable was binary (“more than half” or “less than half” of the time elapsed) in both analyses. With
a significance level established at p=0.05 and power of 0.895 and 0.894, both ANOVAs revealed that
magnitude had a significant effect on the answers (F=45.03, p<0.001, partial η2=0.580 for the three-
way ANOVA, F=12.39, p<0.001, partial η2=0.228 for the two-way ANOVA), while the sampling
point (F=0.91, p=0.340, partial η2=0.012 for the three-way ANOVA; F=0.49, p=0.482, partial
η2=0.009 for the two-way ANOVA) and visual features (F<0.01, p=0.964, partial η2<0.001 only
tested in the three-way ANOVA for frequency and contrast) did not. No significant interactions
between the fixed factors were found. Tables 3.4 and 3.5 show each ANOVA in detail, while
Figures 3.7 and 3.8 show the post-hoc visualization: each pairwise comparison between the
possible different conditions where only groups with different magnitude were significantly
different.

Follow-up replication of Experiment 1. Statistical Analysis. A 2x2x2 ANOVA was used to
check for significant differences (with visual feature, magnitude and sampling point as factors).
The answer variable was binary (“more than half” or “less than half” of the time elapsed). While
the trend observed is the same as in Experiment 1, no significant difference was found for any
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3.A anova post hoc tests

Source Sum Sq. D.F. Mean Sq. F P-value

Magnitude 10.936 1 10.936 45.029 <0.001

Sampling point 0.221 1 0.221 0.992 0.340

Visual Feature <0.001 1 <0.001 0.002 0.964

userID 7.542 44 0.1714 0.706 0.927

magnitude*sp 0.003 1 0.003 0.013 0.908

magnitude*visFeat 0.059 1 0.059 0.241 0.624

sp*visFeat 0.001 1 0.001 0.005 0.943

magnitude*sp*visFeat 0.089 1 0.089 0.368 0.544

Error 338.059 1392 0.243 - -

Total 356.996 1443 - - -

Table 3.4: 2x2x2 ANOVA of Experiment 1 (Group 1.1), with fixed factors: magnitude, sampling point and
visual feature. The effect of each participant was considered as a random variable (userID, un-
derlined). First and second order interactions between the fixed variables were considered. Only
magnitude had a significant effect in the response variable.

Source Sum Sq. D.F. Mean Sq. F P-value

Magnitude 2.774 1 2.774 12.390 <0.001

Sampling point 0.111 1 0.111 0.496 0.482

userID 9.275 43 0.216 0.963 0.541

magnitude*sp 0.392 1 0.392 1.752 0.187

Error 68.293 305 0.224 - -

Total 80.845 351 - - -

Table 3.5: 2x2 ANOVA of Experiment 1 (Group 1.2), with fixed factors: magnitude and sampling point. The
effect of each participant was considered as a random variable (userID, underlined). First order
interactions between the fixed variables were considered. Only magnitude had a significant effect
in the response variable.
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3.A anova post hoc tests

Figure 3.7: Post hoc analysis of the three-way ANOVA (Contrast and Frequency conditions). Significant
differences were found only between groups with different magnitude levels. Figure A1 shows
the 95% confidence interval of the mean difference between each multiple comparison, as well as
the p-value for each comparison.
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3.A anova post hoc tests

Figure 3.8: Post hoc analysis of the two-way ANOVA (FoV conditions). Significant differences were found
only between groups with different magnitude levels. Figure A1 shows the 95% confidence
interval of the mean difference between each multiple comparison, as well as the p-value for each
comparison. Groups 1 and 3 present H-FOV conditions while Groups 2 and 4 present L-FOV
conditions.
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3.B glmm analysis of experiment 1

Source Sum Sq. D.F. Mean Sq. F P-value

Magnitude 0.143 1 0.143 0.572 0.451

Sampling point 0.321 1 0.321 1.288 0.259

Visual Feature 0.143 1 0.143 0.572 0.451

userID 1.964 6 0.327 1.311 0.259

magnitude*sp 0.571 1 0.571 2.289 0.134

magnitude*visFeat 0.036 1 0.036 0.143 0.706

sp*visFeat 0 1 0 0 1

magnitude*sp*visFeat 0.321 1 0.321 1.288 0.259

Error 24.464 98 0.250 - -

Total 27.964 111 - - -

Table 3.6: 2x2x2 ANOVA of the follow-up replication of Experiment 1 in CDs, with fixed factors: magnitude,
sampling point and visual feature. The effect of each participant was considered as a random
variable (userID, underlined). First and second order interactions between the fixed variables were
considered. No significant effects were found

Source Sum Sq. D.F. Mean Sq. F P-value

Magnitude 0.420 1 0.420 4.980 0.037

Error 1.685 20 0.084 - -

Total 2.104 21 - - -

Table 3.7: ANOVA of Experiment 3 (high and low visual complexity are the two levels of the single factor
-magnitude- that is tested). This factor had a significant effect on the answers of the participants.

of the tested factors (magnitude F=0.56, p=0.454; visual feature F=0.56, p=0.454; sampling point
F=1.27, p=0.263) probably due to the small sample size (7 participants). Table 3.6 shows the
ANOVA in detail, while Figure 3.9 shows each post-hoc pairwise comparison between the possible
different conditions.

Experiment 3. Statistical analysis. An ANOVA was carried out to compare differences in
magnitude for H-VC and L-VC levels. NASA-TLX questionnaire differences were tested with a
t-test. The answer variables were continuous (for the produced durations) or discrete (for the
NASA-TLX scores). The independent variable was binary (for low and high magnitude levels
of visual complexity). Participants took more time to indicate that 30s had passed in the H-
VC condition, suggesting that time was perceived as significantly shorter under higher visual
complexity (ratio of 1.38 for H-VC vs 1.10 for L-VC, power=0.407, F=4.98, p=0.0372, partial η2=0.24,
normality of distribution checked with Anderson-Darling tests). The complete information about
the ANOVA can be found in Table 3.7. The mean difference between groups H-VC and L-VC was
-0.276 (CI [-0.534 -0.018], p=0.0372).

3.b glmm analysis of experiment 1

In the following, we report an additional statistical analysis for Experiment 1. In this GLMM
we analyze together participant Groups 1.1 and 1.2 (89 participants) to check for significant
interactions of the visual features (luminance contrast, temporal frequency and field of view)
for completeness. We find consistent results with the previous separated ANOVA analyses: only
magnitude has a significant effect on time perception.

The answer variable was binary, and the significance level was established at p=0.05. The
information about the GLMM can be found in Table B1. Following standard Matlab nomenclature,
this is the model we tested:
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3.B glmm analysis of experiment 1

Figure 3.9: Post hoc analysis of the three-way ANOVA (Contrast and Frequency conditions). No significant
differences were found. Figure A3 shows the 95% confidence interval of the mean difference
between each multiple comparison, as well as the p-value for each comparison.

51



3.B glmm analysis of experiment 1

Estimate SE T-stat p-value CI

(Intercept) 0.775 0.151 5.121 <0.001 {0.478, 1.071}

Sampling point -0.175 0.201 -0.868 0.385 {-0.570, 0.220}

Magnitude -0.751 0.199 -3.764 <0.001 {-1.142, -0.360}

Visual Feature -0.222 0.141 -1.582 0.114 {-0.498, 0.053}

userID -0.006 0.003 -1.946 0.059 {-0.011, 0.001}

magnitude*sp 0.144 0.282 0.512 0.609 {-0.408, 0.697}

sp*visFeat 0.152 0.182 0.837 0.403 {-0.205, 0.510}

magnitude*visFeat 0.121 0.183 0.660 0.509 {-0.238, 0.480}

magnitude*sp*visFeat -0.344 0.261 -1.320 0.187 {-0.856, 0.167}

Table 3.8: GLMM of Experiment 1, considering Groups 1.1 and 1.2, with fixed factors: sampling point,
magnitude and visual feature. The effect of each participant was considered as a random variable
(userID, underlined).

answers = 1 + (1|userID) + samplingPoint ∗ level+

samplingPoint ∗ f req + level ∗ f req + samplingPoint : level : f req
(3.1)

χ2 − statistic vs. constantmodel : 81.2, p − value = 2.84e − 14 (3.2)
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Part III

M U LT I M O D A L P E R C E P T I O N I N I M M E R S I V E
E N V I R O N M E N T S

In this part we focus on how multimodal perception affects user experience in im-
mersive environments. We focus on the interplay between visual and other sensory
modalities. First we present an in-depth state-of-the-art review of the different modal-
ities and the existing hardware to provide sensory feedback, their effects on several
aspects of user experience and advantages of the use of several sensory modalities
in virtual reality. We then focus on how a mismatch between visual and auditory
modalities can result in a suppressive effect or illusion which significantly degrades
visual performance. Finally we reflect on how a correctly synchronized audio source
can modulate the perception of visual appearance.





4
Multimodality in Virtual Reality

Here we describe an in-depth state-of-the-art review of the potential of the use of several sensory
modalities in immersive environments. We include examples of the benefits of multimodality in
key aspects of user experience (including realism, presence and user performance), as well as a
set of applications that have already benefited from the use of multimodality, from medicine to
training and simulation.

This work has been published in ACM Computing Surveys.

D. Martin*, S. Malpica*, D. Gutierrez, B. Masia & A. Serrano
Multimodality in VR: A survey

ACM Computing Surveys 2022, 54(10s)
∗ Joint first authors

4.1 introduction

Virtual Reality (VR) is inherently different from traditional media since it introduces additional
degrees of freedom, a wider field of view, more sophisticated sound spatialization, or even gives
users control of the camera. VR immersive setups (such as head-mounted displays (HMDs) or
CAVE-like systems) thus have the potential to change the way in which content is consumed,
increasing realism, immersion, and engagement. This has impacted many application areas such as
education and training [52], rehabilitation and neuroscience [418, 313], or virtual cinematography
[334]. One of the key aspects of these systems lies in their ability to reproduce sensory information
from different modalities (mainly visual and auditory, but also haptic, olfactory, gustatory, or
proprioceptive), giving them unprecedented potential. Although visual stimuli tend to be the
predominant source of information for humans [361, 43], additional sensory information helps
to increase our understanding of the world. Our brain integrates different sources of sensory
feedback including both external stimuli (visual, auditory, or haptic information) and internal
stimuli (vestibular or proprioceptive cues), thus creating a coherent, stable perception of objects,
events, and oneself. The unified experience of the world as we perceive it therefore emerges
from these multimodal cues [285, 338]. These different sources of information must be correctly
synchronized to be perceived as belonging together [257, 281], and synchronization sensitivity
varies depending on the context, task and individual [84]. In general, different modalities will be
perceived as coming from a single event or object as long as their temporal incongruency is shorter
than their corresponding window of integration [212] (for more information see Chapter 6).

When exploring virtual environments, the presence of stimuli from multiple sources and senses
(i.e., multimodality) and their potential overlaps (i.e., crossmodality), may also enhance the final
experience [238]. Many works have described techniques to integrate some of these stimuli to
produce more engaging VR experiences, or to analyze the rich interplay of the different senses.
For instance, leveraging the window of integration mentioned above may alleviate hardware
limitations and lag time, producing the illusion of real-time performance; this is particularly useful
when different modalities are reproduced at different refresh rates [55]. Moreover, VR is also
inherently well suited to systematically study the integration process of multimodal stimuli [18],
and analyze the complex interactions that occur when combining different stimuli [212] (see
Figure 4.1 and Chapter 6).
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4.1 introduction

Figure 4.1: VR can be used to systematically analyze the interactions of multimodal information. In this
example, we studied the influence of auditory signals in the perception of visual motion [212]
(see Chapter 6 for further information). We found that different temporal synchronization profiles
affected how the stimuli were perceived: When the visual (red balls moving) and auditory (an
impact sound) stimuli were correctly synchronized, users perceived a unified event, in particular
a collision between both balls.

In this survey we provide an in-depth review of multimodality in VR. Sensory modalities
include information from the five senses: visual for sight, auditory for hearing, olfactory for
smell, gustatory for taste, and haptic and thermal for touch. Apart from the five senses, we also
consider proprioception, which can be defined as the sense of self-movement and body position,
and has been defined as the sixth sense [60, 387]. We synthesize the existing body of knowledge
with a particular focus on the interaction between sensory modalities focusing on visual, auditory,
haptic and proprioceptive feedback; in addition, we offer an extensive overview of existing VR
applications that directly take multimodality into account.

4.1.1 The five senses

The way we perceive the world is defined by the five senses: sight, hearing, smell, taste, and
touch. Vision is the dominant sense when retrieving information of our surroundings [295]. We
are capable of understanding complex scenes with varying visual patterns, we can detect moving
objects in our peripheral view, and we are highly sensitive to light [381]. However, we tend to focus
our visual attention in a narrow region of frontal space [361]. In that sense, we rely on hearing to
retrieve information from unseen locations. Auditory stimuli can grab our attention irrespective
of our orientation, and we are good at filtering out particular sounds in a noisy environment
(e.g., the cocktail party phenomenon [15]). The sense of touch includes different aspects: haptic,
kinesthetic (related with proprioception), temperature, pressure, and pain sensing. Touch occurs
across the whole body, although our hands are our primary interface for this sense. Finally, the
senses of smell and taste are closely related. They are often linked to emotions or memories, and
can even trigger aversive reactions [243]. Most importantly, besides the particularities of each
different sense, and as we will see through this review, our multiple senses influence each other.

4.1.2 Proprioception

Proprioception arises from static (position) and dynamic (motion) information [43]. It plays a key
role in the concept of self, and has been more traditionally defined as "awareness of the spatial
and mechanical status of the musculoskeletal framework" [388]. Proprioceptive information comes
mainly from mechanosensory neurons next to muscles, tendons and joints, although other senses
can induce proprioceptive sensations as well. A well-known example are visual cues inducing the
phantom limb illusion [286].
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4.1 introduction

Manufacturer and model Resolution per eye
Positional

tracking

Max. refresh

rate (Hz)

Field of view

(degrees)
Display type Integrated audio Price

FOVE 1280 x 1440 Yes 70 100 OLED No - Jack 3.5mm $600

HP Reverb - Pro 2160 x 2160 Inside-out 90 114 LCD Built-in headphones $649

HTC VIVE Pro 1440 x 1600 Yes 90 110 AMOLED Built-in headphones $799

HTC VIVE Pro 2 2448 x 2448 Yes 120 120 LCD Built-in headphones $800

Oculus Rift S 1280 x 1440 Inside-out 80 110 LCD In-line speakers $399

Oculus Quest 2 1832 x 1920 Inside-out 120 104 LCD Stereo speakers $399

Samsung Odyssey 1440 x 1600 Inside-out 90 110 AMOLED Built-in headphones $500

PlayStation VR 960 x 1080 Outside-in 120 100 OLED No - Jack 3.5mm $299

Valve Index 1440 x 1600 Yes 144 130 LCD No - Jack 3.5mm $999

Varjo VR-3 2880 x 2720 Yes 90 115 uOLED Off-ear speakers $3195

Table 4.1: Overview of predominant current HMD devices. For each of them, we include the resolution per
eye, whether they provide positional tracking, their maximum refresh rate (in Hz), their field of
view (FoV, in degrees), the type of display, and a current estimate of the final consumer price. The
better specs (in terms of refresh rate and FoV) offered by Valve Index come at a higher cost, while
other manufacturers opt for cheaper HMDs, potentially more affordable to consumers.

Proprioception plays an important role in VR as well. On the one hand, it helps provide
the subjective sensation of being there [356, 307]. On the other hand, proprioception is tied to
cybersickness, since simulator sickness is strongly related to the consistency between visual,
vestibular, and proprioceptive information; significant conflicts between them could potentially
lead to discomfort [184, 235].

4.1.3 Reproducing sensory modalities in VR

Important efforts have been made in VR so that all the modalities previously mentioned can be
integrated. Visual and auditory feedback are the most commonly used, and almost all consumer-
level devices integrate these modalities. There is currently a wide variety of manufacturers
providing different HMD systems to enjoy VR at consumer level. Each of them offers devices with
different capabilities and specifications, at different costs. Table 4.1 compiles an overview of the
most relevant devices currently in the market. An open issue in VR is latency [85]: newer HMD
models feature higher refresh rates, as well as significantly increased spatial resolution.

Usually, those displays feature a field-of-view (FoV) slightly smaller than that allowed by human
peripheral vision. However, new stereoscopic rendering techniques allow to present content in 3D,
and therefore perception of materials, depth, or many other cues can be achieved through visual
cues [13]. Auditory feedback, which is often integrated in the HMD as a built-in feature (Table
4.1), is generally enabled by speakers or headphones, and spatial audio rendering techniques also
support our perception of space in virtual environments [11], even enhancing perceived visual
properties [212]. Haptic feedback is still in an exploratory phase, and can be achieved through a
variety of sensors, including wearables [277, 309], physical accessories [366], ultrasounds [217],
controller devices [367, 414], rotary components [155], or electric muscle stimulation [198]. Other
resources like fans, hear lamps, or even spray bottles have been used to provide additional tactile
stimuli in VR [415]. Recently, advances in ultrasound sensor technology have resulted in the
creation of a novel haptic device that will allow for mid-air force around virtual objects and
interactions [197]; this device is about to reach the consumer market [86]. Olfactory stimuli can
be provided through smell cartridges or specific hardware [133], and electric stimulation of taste
buds has been tested to generate flavors [288]. How all these different feedback modalities can
be integrated depends on the particular context, with some algorithms and techniques already
proposed for the most common sensory combinations, including audiovisual or audiohaptic
stimuli [206].
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4.1 introduction

Figure 4.2: Structure of this state-of-the-art report. We divide it into different areas of the VR experience in
which multimodality can play a key role: user immersion, presence, and realism of the experience
(Section 4.3); user attention when exploring the virtual environment (Section 4.4); user performance
when completing tasks (Section 4.5); multimodal perceptual illusions that can be leveraged in
VR (Section 4.6); and navigational effects of multimodality in virtual environments (Section 4.7).
Finally, we review different applications where multimodality has been shown to improve the
end goal (Section 4.8), and finalize with a discussion on the need for multimodality, and open
avenues of research (Section 4.9).

4.1.4 Related surveys

Our perception of the world depends on the integration of information from multiple senses.
Several works have reviewed the influence of individual senses in isolation, including sight [293],
sound [329], or touch [186], which are the three key modalities in VR (see Table 4.5). Several
surveys exist focusing on particular aspects of VR. Rubio et al. [303] systematically reviewed
advances in communication, interaction, and simulation in VR, pointing out that the key factors to
generate appealing virtual experiences include good interactivity, representation, gameplay, and
narrative. The latter, narrative, has been explored in depth from a cinematic perspective [299] since
content creators no longer have the same level of control over how viewer attention is directed: to
find new ways of guiding viewer’s attention, the authors reviewed current attention techniques
in virtual environments, either unimodal or multimodal, emphasizing how auditory cues can be
critical, and the still unexploited potential of haptic devices (see Section 4.8.3)

Other surveys target specific applications of VR, such as education or medicine [296]. For the
specific case of clinical medicine, Li et al. [191] found that most of the works in the literature
leverage the capabilities of haptic devices to simulate real, clinical tasks, in line with our insights
(see Section 4.8.1). Freina et al. [103] reviewed works focused on using VR in education, concluding
that it increases the learner’s involvement and motivation, which are enhanced with multimodality
(Section 4.8.2).

Some works are concerned particularly with cognitive aspects in multimodal environments.
Hecht et al. [131] briefly studied how integrating multiple sources can increase presence, enhance
attention and improve response time. Koelewijn et al. [169] focused on surveying works related to
low-level, audiovisual interactions, concluding that both multisensory integration and attentional
processes take place and can interact at multiple stages in the brain. However, multisensory
overload can sometimes lead to a preference for simpler environments if not handled correctly; we
delve deeper into this in Section 4.3. Other surveys have studied multimodality in traditional media,
including cognition [362], interaction [153], human-computer interfaces [81, 122], or fusion and
integration techniques [16]. Closer to the present work, Melo et al. [238] systematically studied the
impact of multisensory stimuli on virtual experiences. Their study suggests that 85% of works
tackling multimodality in VR report positive impacts, with only 1% of them reporting negative
impacts. They also reported how multisensory experiences in VR are mainly applied in the health
domain, science and engineering, teaching, or machinery; which is in line with our reports in
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4.2 scope and organization of this survey

Section 4.8. While they report that these are the more common applications among the 105 studies
they surveyed, we provide a discussion on how multimodality is impacting each of these fields.

However, and different from all these works, in this survey we focus on the integration of
multimodal information and the benefits and experiences that can be achieved that way, and
compile a large body of works studying not only those positive effects, but also their applicability
into different disciplines.

4.1.5 The challenges of multimodality

One of the main challenges when considering a fully multimodal immersive experience is the
gaps of empirical knowledge that exist in this field. As stated before, in this survey our main focus
lies in the visual, auditory, haptic and proprioceptive modalities.

This is partly related to the fact that many modalities and their interactions remain unexplored,
and there is still much to learn about them. Moreover, the available data on multimodality in
VR (both referring to multimodal stimuli and to user data while experiencing multimodal VR)
is scarce at best. It is also important to consider the window of integration. The necessity of
synchronizing different modalities implies the need for real-time, high fidelity computation.
Hardware processing limitations might also imply a constraint in what multimodal techniques
should be used in different scenarios. Moreover, not all VR headsets are equally prepared to
support multimodality: although most of them can give audiovisual feedback, proprioception and
haptic feedback are sometimes limited, while olfactory and gustatory feedback are usually not
found at all in consumer-level headsets. For example, most smartphone-based VR headsets do not
include controllers, hindering the possibility of including haptic feedback. Many other basic VR
systems are not able to track translations either (i.e., only have three degrees of rotatory freedom),
which limits proprioceptive feedback. However, one of the most critical risks with multimodality is
its definition itself. Although multimodality has the potential to improve user experience, increase
immersion, or even improve performance in certain tasks, multimodal applications have to be
very carefully designed, making sure that each modality has its function or purpose. This is not a
trivial task, since the dimensionality of the problem grows with each added modality. Otherwise,
additional modalities might distract and overload the final user, hampering the experience, and
diminishing user satisfaction.

4.2 scope and organization of this survey

In this survey we provide an in-depth review of the most significant works devoted to explore
the role and effects of multimodality in virtual reality. We gather knowledge about how multiple
sensory modalities interact and affect the perception, the creation, and the interaction with the
virtual experience.

The structure of this survey can be seen in Figure 4.2. Since our focus is not on any specific
part of the VR pipeline, but rather on the VR experience for the user, we have identified several
areas of the VR experience in which multimodality plays a key role. First, Section 4.3 is devoted
to the realism of the VR experience, which is tied to immersion and the sense of presence that
the user experiences. Second, Section 4.4 looks into how multimodality can affect the attentive
process of the user in the virtual environment, determining how they explore the environment
and what drives their attention within it. Third, Section 4.5 delves into works that demonstrate
how multimodality can help the user in completing certain tasks, essentially improving user
performance in the virtual environment.

Additionally, there are a number of works devoted to analyzing multimodal perceptual illusions
and their perception in VR environments. These, which we compile in Section 4.6, can be leveraged
by future techniques to improve any of the aforementioned areas of the VR experience. Some
other works have tackled the problem of navigation in VR, which is another integral part of the
virtual experience, and Section 4.7 encompasses them. A complete perspective of all these sections
is also included in Table 4.5. Finally, we devote Section 4.8 to reviewing application areas that
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have benefited from the use of multimodal virtual experiences, and conclude (Section 4.9) with a
discussion of the potential of multimodality in VR, and interesting avenues of future research.

4.3 the effects of multimodality in perceived realism

Perceived realism elicits realistic responses in immersive virtual environments [355] , and is tied
to the overall perception of the experience. There are two key factors that can lead to users
responding in a realistic manner: the place illusion and the plausibility illusion [354]. The former,
also called “presence” , defines the sensation of “being there”, and is dependent on sensorimotor
information, whilst the latter refers to the illusion that the scenario that is apparently happening
is actually taking place, and is determined by the ability of the system to produce events that
relate to the user, i.e., the overall credibility of the scenario being depicted in comparison with the
user’s expectations. Slater [354] argued that participants respond realistically to an immersive VR
environment when these two factors are present. Similar observations were made in telepresence
systems [364], where sensorially-rich mediated environments were proved to actually elicit more
realistic responses.

Increasing the feeling of presence can therefore enhance the experience by eliciting more realistic
responses from the users, and as aforementioned, increasing the perceived realism has a positive
impact in the feeling of presence. This actually depends on both the virtual environment where the
user is placed, and its own representation in there. As happens in the real world [116], all human
modalities play a fundamental role, and must be correctly integrated, to construct a coherent
notion of the both the virtual environment, and the self. In this section, we will therefore focus
on how multimodal cues can affect perceived realism, by affecting both the perception of the
environment, and the perception of the self.

4.3.1 Perception of the environment

The perceived realism of virtual environments is a key concern when designing virtual experiences,
therefore many works have been devoted to investigate how multimodality and crossmodality
can indeed help achieve sensorially-rich experiences. While multimodality refers to the binding of
different inputs from multiple sensory modalities, crossmodality involves interactions between
different sensory modalities that influence the perception of one another [179, 363]. Chalmers et
al. [48] discussed how crossmodal effects in human multisensory perception can be exploited to
selectively deliver high-fidelity virtual environments, for instance, rendering with higher visual
quality those items related to the current auditory information of the scene, allowing to reduce
computational costs in unattended regions of the virtual environment. This work also reports that
humans perceive sensory information with more or less attention depending on the task they are
executing (i.e., some task require more attention to particular types of stimuli), or if they have
already been preconditioned to that kind of virtual environment (e.g., they are used to it).

Traditionally, sound has proven to facilitate visual perception, including enabling a better
understanding of the environment, yielding a more comfortable experience, or even increasing
performance of visual-related tasks [148, 340]. Seitz et al. [325] conducted a ten-day experiment
where two groups of people were trained for auditory-visual motion-detection tasks, one with
only visual, and the other with audiovisual stimuli.

Although all of them improved their performance over time, those trained with multimodal
stimuli showed significantly better performances. Various works have been thus devoted to this
audiovisual integration: Morgado et al. [246] presented a system that generates ambisonic audio
for 360º panoramas, so that auditory information is represented in a spherical, smoother way
(see Figure 4.3, left). Similarly, Huang et al. [146] proposed a system that automatically adds
spatialized sounds to create more realistic environments (see Figure 4.3, right), validating by
means of user studies the overall preference of this solution in terms of realism. Indeed, different
soundscapes (a sound or combination of sounds created from an immersive environment) are
able to increase the sense of presence in VR [328], and as Liao et al. [192] studied, combining
visual and auditory zeitgebers (periodically occurring natural phenomena which act as cues
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4.3 the effects of multimodality in perceived realism

Figure 4.3: Including correct and coherent auditory information in the virtual environment has been proved to
increase realism and immersion. Left: A system that automatically generates ambisonic information
that creates a smoother acoustic experience for the scene [246]. Right: A framework to include
auditory information into 360º panoramas depending on the elements in the scene [146]. In both
cases, their validation experiments yield users’ preference when auditory information is included,
and an overall increase in the perceived realism and immersion.

in the regulation of biological rhythms), which act like synchronizers, could actually enhance
presence, even influencing time perception. All these previous works suggest that using auditory
information, either spatialized or not, enhances the realism of the experience, although some of
them warn about the potential backfire of increasing the cognitive load, which can negatively
impact users’ confidence [157].

However, multimodal integration can also present some drawbacks: Akhtar and Falk [3] sur-
veyed current audiovisual quality assessment and found that auditory information may cause
discomfort and decrease the quality of the virtual experience [305]. To avoid negative effects during
multimodal integration, different sensory cues should be not only realistic, but also coherent to the
environment and between them. Proprioception also plays an important role in eliciting realism,
as it contributes to the feeling of the user being there.

Although some works have demonstrated that some manipulations in virtual movement di-
rections and distances can be unnoticeably performed (either by manipulating the environment
itself through the game engine or by modifying the real-to-virtual mapping of users’ move-
ment) [333, 180], users tend to expect their virtual movements to match their real ones, to maintain
a coherent experience.

In this line, Mast and Oman [226] studied the so-called visual reorientation illusions: When the
environment is rotated above a given noticeable threshold in any axis, users can perceive that the
expected vertical axis does not match the virtual one, and conflicts between visual and vestibular
cues may arise, potentially causing motion sickness. Although the effect of this illusion is stronger
for elder users [142], an incoherent spatial estimation in VR can potentially diminish the perceived
realism.

Including additional modalities can also enhance environment realism. In particular, giving
realistic feedback with respect to what users expect to happen actually increases plausibility.
Normand et al. [265] showed that it is possible to induce a body distortion illusion by synchronous
visual-tactile and visual-motor correlations (see Figure 4.4). In a similar fashion, Hoffman compared
the realism of virtually touching an object with that of touching it physically at the same time [138],
yielding a significant increase in perceived realism when the object was physically touched too.
Similar results were obtained with taste and olfactory cues [140]: They found a preference on
smelling and physically biting a chocolate bar in contrast to only virtually biting it. The level of
presence achieved depends on the different combinations of sensory feedback, and multi-sensory
systems have been proved to be superior to traditional audio-visual virtual systems in terms of
the sense of presence and user preference [157]. Similar conclusions were obtained by Hecht et
al. [131], who reported that multimodality led to a faster start of the cognitive process, which
ultimately contributed to an enhanced sense of presence. However, and even if the benefits of
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multimodal integration are widely known and shared between researchers and practitioners, there
is still much to learn about the limits and drawbacks of multisensory integration, and studying
up to what point multimodal interaction can be safely applied to increase perceived realism in
different scenarios remains an interesting future avenue.

4.3.2 Perception of the self

Virtual experiences are designed for humans, and in many occasions, users are provided with a
virtual representation of themselves. This is a very effective way of establishing their presence in
the virtual environment, hence contributing to the place illusion [354]. This representation does
not need to be visually realistic, but it has to be coherent enough with the users’ actions and
expectations to maintain the consistency of the experience. In the following, we review different
works that have leveraged multimodality in virtual reality to achieve consciousness of the self and
embodiment, and therefore to create realistic representations of the users.

Having the feeling of being in control of oneself is possibly one of the main characteristics that
VR offers [354]. The feeling of presence is possible without being in control; however, being able
to control a virtual body highly increases this illusion [320]. The sense of embodiment gathers
the feeling of owning, controlling, and being inside a body. As Kilteni et al. [165] reported, this
depends on various subcomponents, namely the sense of self-location (a determined volume in
space where one feels to be located), the sense of agency (having the subjective experience of
action, control, intention, motor selection and the conscious experience of will), and the sense of
body ownership (having one’s self-attribution of a body, implying that the body is the source of the
experienced sensations). Other factors like the proximity of virtual objects to the body also have
an effect on the sense of embodiment [324]. All these concepts (such as presence or embodiment)
are intrinsic characteristics that VR can achieve, and they yield the self-consciousness feeling that
makes VR so different from other media.

Multimodality has been largely studied as a means to enhance those sensations. Particularly,
presence is tied to the integration of multiple modalities, and many works have demonstrated
how it is increased when multiple sensory information is combined [312], as opposed to unimodal
(i.e., only visual) systems [157]. For instance, Gonçalves et al. [116] designed an experiment
where three groups of people were exposed to virtual environments including different amount
of modalities in the presented stimuli; and reported how users experiencing more modalities
reported a higher involvement. Moreover, they remark the positive impact of including haptic
feedback in an experience. Blanke et al. [33] discussed the relevance of a series of principles to
achieve a correct sensation of bodily self-consciousness, requiring body-centered perception (hand,
face, and trunk), and integrating proprioceptive, vestibular, and visual bodily inputs, along with
spatio-temporal multisensory information. Sakhardande et al. [308] presented a systematic study
to compare the effect of tactile, visual, visual-motor, and olfactory stimuli on body association in
VR, with the latter having the strongest effect on body association. Similar insights were proposed
by Pozeg et al. [283], who demonstrated the importance of first-person visual-spatial viewpoints
for the integration of visual-tactile stimuli, in this case for the sense of leg ownership. The main
factors to build embodiment and body-ownership in VR have been widely studied [223]. Spanlang
et al. [358] presented technical guidelines to create a core virtual embodiment system, defining
three key aspects: (i) a VR module to handle creation, management, and rendering of all virtual
entities, (ii) a head-tracking module to map real movements to the virtual environment, and (iii) a
display module to present the whole environment. However, designing experiences that are too
realistic can have negative aspects and be a drawback in certain specific cases: for example, group
pressure of alien virtual avatars can result in users performing potentially harmful actions towards
others that they would not normally carry out [254].

The sense of moving (which depends on agency and body ownership, as previously mentioned)
is also key to achieve self-consciousness. Kruijff et al. [173] presented a work showing that adding
walking-related auditory, visual, and vibrotactile cues could all enhance the participants’ sensation
of self-motion and presence. Various works have been presented in this line, e.g., investigating the
integration of tendon vibrations to give standing users the impression of physically walking [170].

62



4.4 the effects of multimodality in users’ attention

Figure 4.4: Left: Synchronizing different modalities increases the feeling of presence and the perception of the
self. Moreover, multimodality can even create a distortion of that perception: Normand et al. [265]
presented a study where a body distortion illusion is achieved by synchronous visual-tactile and
visual-motor correlations. Right: Some works have studied how different physical and behavioral
factors can directly affect, and even manipulate, embodiment [254], and therefore, the perception
of the self.

Sometimes locomotion is not possible, and it has to be externally generated, e.g., by means of a
virtual walking system for sitting observers using only passive sensations such as optic flow and
foot vibrations [228]. However, these techniques are akin to creating the well-known self-motion
illusion: although users are not actually moving, their brain unconsciously assumes they are
moving, and their body sometimes generates postural responses [77] to control their stability.
Meyer et al. [240] studied the impact of having multimodal (visual, auditory, and haptic) anchor
points in the virtual environment in users’ postural sway. They report how incongruent cues
diminish perceived realism. However, they also remark on the complexity of providing dynamic
tactile signals in VR, which leaves an interesting research line in how to exploit tactile cues to
increase presence. Some other works have also explored alternatives for cases when locomotion is
not feasible, for instance proposing and evaluating a virtual walking system for sitting observers
using only passive sensations such as optic flow and foot vibrations [228].

Other modalities may also play an important role in users’ self-consciousness: several works
have shown that multimodality can dramatically increase the sense of presence [107], although
confidence levels for certain tasks are higher in traditional (i.e., audio-visual) virtual environments,
due to a higher cognitive load [157]. Besides additional modalities, other factors such as immersion
and emotion have been analyzed and argued to have a clear impact on the sense of presence [24]. In
particular, audiovisual content eliciting emotional responses (like sadness) can increase engagement
and presence, somehow bypassing the immersive effects of specific displays.

As reported in some of the aforementioned works, multimodality presents some challenges and
limitations: Gallace et al. [107] focused on the ones associated with the simultaneous stimulation of
multiple senses, including the senses of touch, smell, taste, and even nioceptive (i.e., painful) sense,
given the cognitive limitations in the human sensory perception bandwidth when users have
to divide their attention between multiple sensory modalities. Moreover, situations where some
modalities violate interpersonal space may also lead to diminishing presence and comfort [416].
Ultimately, achieving user’s self-consciousness depends on finding the right balance between
different multimodal cues, and the users’ comfort, confidence, and capacity to integrate them.
Establishing guidelines towards this balance remains one of the most interesting avenues in
multimodal interaction.

4.4 the effects of multimodality in users’ attention

When users are exploring or interacting with a virtual environment, different elements or events
can draw their attention. Visual attention influences the processing of visual information, since it
induces gaze to be directed to the regions that are considered more interesting or relevant (salient
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Figure 4.5: Saliency maps show the likelihood of users directing their attention to each part of the scene.
Most of the current literature has been devoted to estimating saliency in unimodal, visual stimuli.
This image shows the recent visual saliency estimation method proposed by Martin et al. [220]
(Left: Input panorama. Right: Estimated saliency). It has been shown that each sensory modality
has the potential of influencing users’ attentional behavior, therefore, there is a need for further
exploration of multimodal saliency in VR.

regions). The saliency of different regions results from a combination of top-down attentional
modulation mechanisms (task-based) and the bottom-up multisensory information these regions
provide (feature-based), creating an integrated saliency map of the environment [382]. As discussed
in the previous section, VR setups may produce realistic responses and interactions, which can
be different from traditional media due to the differences in perceived realism and interaction
methods. Therefore, some works have been devoted to understanding saliency and users’ attention
in VR, offering some key insights about head-gaze coordination and users’ exploratory behavior
in VR. For example, Sitzmann et al. [353] detected the equator bias when users are freely exploring
omnistereo panoramas: They observed a bias towards gazing at the central latitude of the scene
(equator bias), which often corresponds to the horizon plane.

Saliency has been widely studied, both inside and outside the VR field [420]. Users are more
likely to turn their attention and interact with those regions of the scene that provide more sensory
information. Therefore, knowing a priori which parts of the scene are more salient may help
anticipate how users will behave. So far, most of the works on saliency in VR have been carried out
following a unimodal perspective [429, 220]: although several senses can be considered to create a
saliency map, they all leverage users’ head position and gaze orientation to create probabilistic
maps indicating the chances of a user looking at each part of the virtual scene (see Figure 4.5).
Based on the study of visual cues, various works have presented systems able to predict users’
gaze, depending on the environment and also on user’s previous behavior [144, 219].

Multimodality in saliency estimation has been only tackled in traditional media: the integration
of visual and auditory information for saliency prediction in videos has been widely explored [69,
242]. All these approaches work under the assumption of audiovisual correlation: moving elements
are the source of the auditory cues. In a different approach, Evangelopoulos et al. [87] proposed
the addition of text information in the form of subtitles when speech was present in the auditory
stream. In their work, saliency was considered as a top-down process, since the interpretation
of the subtitles, a complex cognitive task, can distract viewer’s attention from other parts of the
scene.

Multimodality in saliency prediction for VR still remains in early phases, and only very few
works have been devoted to it. Chao et al. [50] proposed the first work that studies user behavior
(including saliency corresponding to sound source locations, viewing navigation congruence
between observers, and the distribution of gaze behavior) in virtual environments containing both
visual and auditory cues (including both monaural and ambisonic sounds). However, there are
still many open avenues for future research: Visual saliency and gaze prediction in VR is still
in an early phase, and the effects of auditory cues in saliency on virtual scenarios remain to be
further explored. Auditory cues in VR may produce more complex effects and interactions than in
traditional scenarios, since sound sources are not always in the user’s field of view, and there might
be several competing audiovisual cues. Additionally, investigating how other senses interact and
predominate in saliency and attention can be useful for many applications, specially for content
creation. Furthermore, with the proliferation of data-driven methods, it is also crucial to elaborate
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Figure 4.6: Examples of visual guidance methods in VR, adapted from Rothe et al.’s review on users’ guidance
for cinematic content [299]. Three visual guidance techniques are presented in this image: Arrows
pointing regions of interest, picture-in-picture techniques that show information of rear regions,
and the position of a point of interest marked with red bars. Most of these techniques are intrusive,
hence they may break immersion and realism. With the addition of multimodal cues, guidance
can be facilitated while maintaining a positive user experience.

datasets that encompass enough variety of multimodal stimuli to support the formulation of new
multimodal attentional models.

Although there is still much to learn about how multimodal cues compete and alter users’
behavior, it is well known that multimodality itself has consequences on how users behave in
immersive environments [385, 50] . One of the main difficulties when designing and creating
content for VR lies in the fact that users typically have control over the camera, and therefore each
user may pay attention to different regions of the scene and create a different experience [334, 215].
Therefore, it is usually hard to make assumptions about users’ behavior and attention. To support
the creation of engaging experiences that convey the creators’ intentions, multimodality can be
exploited, so that cues from different modalities can induce specific behaviors and even guide
users’ attention.

For the case of attention, understanding and guiding users attention in VR has been a hot topic
during the last years. Various works have explored the use of visual guiding mechanisms, such
as central arrows and peripheral flicker to guide attention in panoramic videos [317]. The recent
work of Wallgrun et al. [406] compares different visual guiding mechanisms to guide attention in
360º environments [406]. Lin et al. [194] proposed a picture-in-picture method that includes insets
of regions of interest that are not in the current field of view, so users are aware of all the elements
that surround them. Inducing the users to direct their attention to a specific part of the scene has
also been explored, for example, using focus assistance techniques [193], such as indicating the
direction of the relevant part, or automatically orienting the world so that users do not miss that
part of the experience. Following this line, Gugenheimer et al. [121] presented a motorized swivel
chair to rotate users until they were focusing on the relevant part of the scene, while Nielsen et
al. [258] forced virtual body orientation to guide users attention to the most relevant region. Other
techniques directly let the viewer press a button to immediately reorient the scene to the part
containing the relevant information [271]. It is worth mentioning that these kind of techniques
have to be taken into consideration with caution, since they can cause dizziness or discomfort due
to visual-vestibular conflicts. We refer the reader to Rothe et al.’s work [299] for a complete survey
about guidance in VR (see Figure 4.6).

However, guidance techniques are not necessarily constrained to visual manipulations. Mul-
timodality can be also exploited to guide, focus and redirect attention in VR, in many cases
achieving more subtle, less intrusive methods. This is important to maintain the users experience,
as intrusive methods can alter the sense of presence, immersion, or suspension of disbelief (the
temporary acceptance as believable of events or places that would ordinarily be seen as incredible).
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As shown in previous sections, sound can help enhance the virtual experience. Besides, it can also
be used to manipulate or guide users attention. Rothe et al. [301] demonstrated that the attention
of the viewer could be effectively directed by sound and movements, and later [300] investigated
and compared three methods for implicitly guiding attention: Lights, movements, and sounds,
showing that sounds elicit users’ exploratory behavior, while moving lights can also easily draw
attention. Other works have explored various unobtrusive techniques combining auditory and
visual information, showing that auditory cues indeed reinforce users’ attention being drawn
towards specific parts of the environment [39]. Similar insights were obtained by Masia et al. [224],
who investigated the impact of directional sound during cinematic cuts in VR, finding that in
the presence of directional sound cues, users converge much faster to the main action after a cut,
even if the sound is misaligned with the region of interest. Given the importance of including
sound in VR experiences, Bala et al. [20] presented a software for adding sound to panoramic
videos, and studied how sound helped people direct their attention. Later, they examined the use
of sound spatialization for orientation purposes [21]. In particular, they found that full spatial
manipulation of sound (e.g., locating music in a visual region of interest) helped guide attention.
In a similar fashion, some works have studied how to design sound to influence attention in
VR [310], and how decision making processes are affected by auditory and visual cues of diegetic
(i.e., sounds emanating from the virtual environment itself) and non-diegetic (i.e., sounds that do
not originate from the virtual environment itself) origins [44]. However, non-diegetic cues need
to be analyzed and presented carefully: the work by Peck et al. [273] showed that a distractor
audio can be successful at fostering users’ head rotations (and thus redirection); however, users
considered this method as unnatural. It has been also suggested that too many sound sources
in a VR cinematic video can produce clutter, and therefore hinder the identification of relevant
sound sources in the movie [299]. How to use multimodality for guiding users’ attention has many
open possibilities for further investigation. In this context, establishing guidelines regarding which
senses to use, how to combine them, and up to what extent each of them can surpass the others
remains for now a complex, unresolved task.

4.5 multimodality in users’ performance

Understanding how users perform different tasks in VR is key for developing better interfaces and
experiences. Although in many cases task performance highly depends on the users’ skills and
experience, there are many scenarios where multimodality can play an important role in this aspect:
By integrating multiple sensory information we can mimic better the real world, and this can lead
to higher performance in different scenarios, comparable to real life. Additionally, multimodal VR
technologies are becoming a very powerful tool for training and education, specially in scenarios
that can be expensive, or even dangerous, in real life. In those cases, multimodality can help
complete some tasks in a shorter period, or with a higher accuracy [131].

The effects of multimodality in task performance have been largely studied in traditional
media. Lovelace et al. [199] demonstrated how the presence of a task-irrelevant light enhances
the detectability of a brief, low-intensity sound. This behavior also holds in the inverse direction:
Concurrent auditory stimuli could enhance the ability to detect brief visual events [262]. Therefore,
integrating audiovisual cues may diminish the risk of users losing some relevant information. In a
similar line, Van der Burg et al. [390] reported that a simple auditory pip drastically decreased
detection time for a synchronized visual stimuli. These effects are not only present in audiovisual
stimuli: tactile-visual interactions also affect search times for visual stimuli [391]. In most of
these works, the experiments were carried out in laboratory conditions with simple stimuli, and
therefore studying their applicability and limitations in more complex scenarios remains an
interesting avenue. Furthermore, Maggioni et al. [207] studied the potential of smell for conveying
and recalling information. They compared the effectiveness of visual and olfactory cues, and their
combination in this task, and demonstrated that olfactory cues indeed improved users’ confidence
and performance. Therefore, the integration of multiple cues has been widely proven to be effective
in terms of detectability and efficiency.
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Figure 4.7: Multimodality illusions can change the way users perceive both themselves and the environment.
For instance, Petkova et al. [276] studied how proprioceptive and haptic cues could lead to body
ownership illusions.

As Hecht et al. [131] studied, this improvement in terms of performance also holds for mul-
timodal VR: When there are multiple senses involved, users start their cognitive process faster,
thus they can pay attention to more cues and details, resulting in a richer, more complete and
coherent experience. Performance in spatial tasks can be greatly benefited from multimodal-
ity [109, 9]. Auditory cues are extremely useful in spatial tasks in VR, and therefore have been
widely explored: The effect of sound beacons in navigation performance when no visual cues
are available has been explored [405], with some works proving that navigation when no visual
information is available is possible using only auditory cues [120]. Other works have exploited
this, proposing a novel technique to visualize sounds, similar to how echolocation would work
in animals, which improved the space perception in VR thanks to the integration of auditory
and visual information [297], or combining the spatial information contained in echoes to benefit
visual tasks requiring spatial reasoning [109]. Other senses have also been explored with the goal
of enhancing spatial search tasks: Ammi and Katz [9] proposed a method coupling auditory and
haptic information to enhance spatial reasoning, and thus improving performance in search tasks.
Direct interaction tasks can be also enhanced by multimodality: auditory stimuli has been proven
to facilitate touching a virtual object outside a user’s field of view, hence creating a more natural
interaction [167]. Egocentric interaction is also likely to happen, and proprioception plays an
important role in those cases. Poupyrev et al. [280] presented a formal study comparing virtual
hand and virtual pointer as interaction metaphors, in object selection and positioning experiments,
yielding that indeed both techniques were suitable for different interaction scenarios.

As aforementioned, when developing VR experiences requiring users to complete some tasks,
the integration of multiple modalities can increase their performance and spatial reasoning, leading
to better, more consistent results. Furthermore, adding certain modalities (e.g., olfactory or haptic
information) is not always easy, especially at the consumer level. Enabling these modalities within
current consumer-level devices (Table 4.1) remains a future avenue that would not only greatly
benefit multimodality in terms of performance, but it would also improve the whole experience.
In spite of that, in some cases, combining several modalities can lead to the opposite effect,
suppressing or diminishing some abilities [213], hence special care must be paid when designing
multimodal experiences (Section 4.1.5).

4.6 multimodal illusions in vr

Multimodality can be leveraged to trick the self perception of the users, or to alter how they
perceive the world around them, by means of facilitatory or inhibitory (suppressive) effects,
which can have direct implications on how users behave in the virtual environment. Being able to
manipulate the experience can be very useful in certain contexts and applications: for instance,
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sometimes it can be useful to guide the user towards a particular aspect of the virtual environment
without disrupting the experience (e.g., in cinematography or videogames). A forced guidance
could lead to a reduced immersion feeling, or even rupture of the suspension of disbelief. In other
cases, physical space is constrained, and manipulating users’ movement may allow to reduce the
necessary physical space to complete a task [333]. Manipulating the experience can be also useful
to reduce simulator sickness, for instance, by means of manipulating camera control depending
on some characteristics such as velocity, acceleration, or scene depth [143]. Although this can be
done using a single modality, the use of multimodal cues can improve the effectiveness of these
techniques.

Illusion refers to an incorrect perception or interpretation of a real, external stimulus. It can
lead to interpreting reality in several ways. Any healthy person can experience illusions without
experiencing any pathological condition. However, not every person is affected in the same
way by an illusion. Illusions can have physiological (e.g., an after-image caused by a strong
light [152]) or cognitive (e.g., the Rubin vase [272]) components. They have been widely studied,
as understanding illusions yields valuable information about the limitations of human senses,
and helps understand the underlying neural mechanisms that help create the perception of the
outside world. Moreover, illusions can allow the altering of users responses to certain tasks, even
increasing performance. For instance, Chauvel et al. [51] conducted some experiments where
non-golfers practiced putting golf balls, some of them with manipulated holes to enhance their
visual acuity. Those who trained under these conditions showed a more effective learning outcome,
and a better performance when trying in real-life scenarios. In this subsection we will focus on
multimodal illusions or effects, or how illusions in other senses can affect visual perception. For
visual only illusions, we refer the reader to The Oxford Compendium of Visual Illusions [342].

Multimodal illusions can be useful for boosting accuracy in certain tasks. For example, multi-
sensory cues can improve depth perception when using handheld devices by simulating tactile
responses when holding, or interacting with a virtual object with a force feedback system [38, 372].
Using a small number of worn haptic devices, Glyn et al. [185] improved spatial awareness in vir-
tual environments without the need for creating physical prototypes. Instead of applying contact
(haptic feedback) at the exact physical point of the users body that was touching a virtual object,
they used a small, fixed set of haptic devices to convey the same information. Their work was
based on the funneling illusion [26], in which the perceived point of contact can be manipulated
by adjusting relative intensities of adjacent tactile devices. Visuo-haptic illusions allow not only
to better perceive the virtual space, but also to feel certain virtual object properties, like weight,
that are not easy to simulate. Even further, these properties can be unnoticeably altered when
combining multiple sensory information. Carlon [46] showed that users’ perception of heaviness
can be unnoticeably altered when manipulating their movements in a virtual environment.

The rubber hand illusion is an illusion where users are induced to feel like a rubber hand is part
of their body. In VR, proprioceptive and haptic cues can lead to a similar feeling induced either
for an arm [424] or for the whole body [276] (see Figure 4.7). Similarly, proprioception can also be
altered by modifying the virtual avatar (i.e., distorting the position or length of the virtual arms
and hands) while retaining body ownership, allowing users to explore a bigger area of the virtual
environment with their body [93]. Regarding audiovisual illusions, the well known McGurk effect
has been replicated in VR. The McGurt effect happens when the audio of a syllable is paired
with visual stimuli of a second syllable, raising the perception of a third, different syllable. This
illusion has been used to study how audio spatialization affects speech perception, suggesting that
sounds can be located at different positions and still create a correct speech experience [349, 347].
It was also found that the spatial mismatch does not affect immersion levels, suggesting that
computational resources devoted to audio localization could be decreased without affecting the
overall user experience. Another interesting audiovisual illusion that appears both in conventional
media and VR is the ventriloquist effect, where auditory stimuli coming from a distant source
seem to emerge from an actors’ lips. The best located or dominant modality (usually vision)
overrides the spatial information of the weak modality giving raise to the apparent translation
of sound to the location of the visual stimulus [4]. In this sense, auditory stimuli are affected by
visual cues [314], with visual stimuli influencing the processing of binaural directional cues of
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sound localization. In a complementary way, auditory perception can also act as a support for
visual perception, orienting users to regions of interest outside the field of view [175]. Not every
audiovisual illusion has to do with speech. In the sound-induced flash illusion [339], a single
flash paired with two brief sounds was perceived as two separate flashes. The reverse illusion also
happened when two flashes were concurrent with a single beep, raising the perception of a single
flash.

In addition to illusions, in which new stimuli are sometimes created, there is also the phe-
nomenon of perceptual suppression, in which one stimulus is no longer (completely or partially)
perceived due to an external circumstance. For example, visual suppression is often present in the
human visual system. The human brain has evolved to discard visual information when needed
to maintain a coherent and stable image of the surrounding environment. Two good examples
of visual suppression are blinks and saccades [35, 369], which avoid the processing of blurry
information without causing perceptual breaks. Perceptual suppression has been demonstrated
and used both in conventional media and in VR [369], usually allowing for environmental changes
without the users awareness, which is useful in many applications, such as navigation in VR.
It has also been studied how stimuli of a given modality can alter or suppress information of
a different modality, usually visual. In particular, for traditional media, both auditory [135] or
haptic [150] stimuli can suppress visual stimuli. Functional imaging studies [183] suggest that
crossmodal suppression occurs at neural levels, involving sensory cortices of different modalities.
Crossmodal suppression has not been widely studied in VR. However, a recent study [213] shows
that auditory stimuli can degrade visual performance in VR using a specific spatiotemporal
layout (see Figure ?? and Chapter 5 for further information). Nonetheless, there is still much to
investigate about traditional illusions and whether they still hold in virtual environments. The
interaction between senses, and in particular the predominance of some of them against the rest,
may also diminish or enhance these phenomena, and therefore remains an interesting avenue for
future work. We thus believe that a deeper study of crossmodal interactions, both facilitatory and
inhibitory, could greatly benefit VR applications, as well as increase our knowledge on sensory
perceptual processing in humans.

4.7 multimodality in navigation

As discussed in previous sections, agency has an effect on the feeling of realism in a virtual
experience, and it is achieved when users feel that their avatar responses are coherent with
their real actions, which has a direct implication on body ownership (which also depends on
other factors [407]). One characteristic that makes VR intrinsically different from any other
traditional media, and that contributes to the users’ feeling of control of themselves, is its ability to
reproduce each movement of the user into the virtual world. Virtual environments naturally elicit
exploration, which usually requires the user to move across the virtual environment. In many cases,
movement is heavily constrained by the physical space available [333], and therefore a complete
1:1 reproduction of the movement is not feasible. Enabling full locomotion in a VR application
(i.e., allowing the user to freely move in the virtual space) would increase the possibilities of the
virtual experience.

However, designers and practitioners are aware of the limited size of physical spaces in which
users can consume VR. Redirected walking techniques (RDW) emerged in the pursuit of alleviating
this limitation: these techniques propose different ways to subtly or overtly manipulate either the
user or the environment during locomotion, in order to allow the exploration of virtual worlds
larger than the available physical space. Nilsson et al. [260] presented an overview of research
works in this field since redirected walking was first practically demonstrated. Nevertheless, most
of these works rely on visual manipulations: some of them exploit only visual cues or mechanisms,
such as saccades [369] or blinks [180] to perform inadvertent discrete manipulations, whereas
others exploit continuous manipulations that remain unnoticed by users [333, 229]. However, these
previous works do not exploit cues from other sensory modalities. As we have presented along
this work, integrating multiple senses can take these kind of techniques a step further.
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Rhythmic auditory stimuli affect how we move [205], and auditory stimuli can be therefore used
to actively manipulate our motion perception. Serafin et al. [330] described two psychophysical
experiments showing that humans can unknowingly be virtually turned about 20% more or 12%
less than their physical rotation by using auditory stimuli: with no visual information available,
and with an alarm sound as the only informative cue, users could not reliably discriminate
whether their physical rotations had been smaller or larger than the virtual ones. Nogalski and
Fohl [263] presented a similar experiment, aiming for detection thresholds for acoustic redirected
walking, in this case by means of wave field synthesis: by designing a scenario surrounded by
speakers, and with no visual information available, they demonstrated that some curvature gains
can be applied when users walk towards, or turn away from some sound source.

Their work yielded similar rotation detection thresholds of ±20%, which is additionally in line
with other works, proving the ability of acoustic signals to manipulate users’ movements [90] and
the potential benefits of using auditory stimuli in complex navigational tasks. Later, Rewkowski et
al. [291] confirmed that RDW with auditory distractors can be safely used in complex navigational
tasks such as crossing streets and avoiding obstacles. Nilsson et al. [261] revealed similar detection
thresholds for conditions involving moving or static correlated audio-visual stimuli. Additionally,
Nogalski and Fohl [264] summarized how users behavior significantly varies between audio-visual
and auditory only stimuli, with the latter yielding more pronounced and less constant curvatures
than with audio-visual information.

Many other sensory modalities can be used both to manipulate user’s virtual movement,
improving agency and therefore leading to a more natural navigation. Hayashi et al. [128]
presented a technique that allows to manipulate the mapping of the user’s physical jumping
distance and direction. Jumping is an action strongly correlated to proprioception, but it is
usually unfeasible due to the available physical space. Manipulating the virtual distance when
jumping can allow users to physically jump even when space is constrained, hence proprioceptive
cues and realism can be maintained in the experience. Campos et al. [45] also introduced an
integration of visual and proprioceptive cues for travelled distance perception, demonstrating
that body-based cues contributed to walked distance estimation, attributable to vestibular inputs.
Matsumoto et al. [230] presented a combination of redirected walking techniques with visuo-
haptic interaction and a path planning algorithm. Haptic feedback directly applied to feet can also
influence audiovisual self-motion illusions [259]. Exogenous cues (i.e., any external information
coming from the environment) can also play a role in these kind of manipulations. Feng et
al. [91] examined the effects, influence and interactions of multi-sensory cues during non-fatiguing
walking, including movement of directional wind, footstep vibrations, and footstep sounds,
yielding results that evidenced the improvement on user experience and realism when these cues
were available.

In some cases, motion is not possible at all, hence it is necessary to generate an external, visual
motion. This self-motion illusion is commonly known as vection, and sometimes leads to some
postural responses (pursuing a correct vestibular and proprioceptive integration of information).
It has been demonstrated that auditory cues increase vection strength in comparison with purely
visual cues [164], and that moving sounds enhance circular vection [294]. Moreover, vection may
also depend on the environment itself: Meyer et al. [240] explored which factors actually modulate
those postural responses, and showed that real and virtual foreground objects serve as static visual,
auditory and haptic reference points. Some of the experiments in these works were carried out
under rigidly controlled setups and in laboratory conditions, and therefore may not apply to free
viewing or other complex conditions. Exploring the effectiveness (or degrading effects) of these
insights in more complex scenarios can be an interesting future avenue for research. Finally, the
effects of other senses besides auditory and haptics in navigation remain unexplored.

4.8 applications

We have reviewed different aspects of multimodality in VR, as well as crossmodal interactions
between the different sensory modalities, together with different achievable effects. A summary of
all those benefits that multimodality can lead to in VR can be seen in Table 4.5.
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Figure 4.8: Two representative examples of different applications of multimodality in medicine. Left: Data
visualization and manipulation frameworks [284] are important in medical and surgical education
and training, and multimodality may enhance the realism and immersion, thus achieving better
learning transfer. Right: Multimodal VR is a key tool for phobia treatments, since it is able to create
realistic environments that face users against their fears, without actually exposing them [345].

Different disciplines have leveraged these benefits to enhance different VR applications, showing
that multimodality can indeed deliver more realistic and immersive VR experiences. While the
application scenarios range across many disciplines, here we focus on applications of multimodality
to three areas where VR has made a critical impact: medicine, training and education, and
entertainment.

4.8.1 Medicine

The potential uses of VR for medical applications have been studied for decades, and research in
this field has evolved together with the virtual technologies. Satava et al. [373] presented a review
about how VR has become an integral technology for medicine both for professionals and patients
alike: from medical image visualization and preoperative planning to teaching and simulation,
including teleinterventions and rehabilitation.

Other works focused more deeply on the use of VR in the areas of surgical planning, interopera-
tive navigation, and surgical simulations [296, 315]. The possibility of virtualizing a real human
body previously scanned and watching it from a far more realistic, immersive perspective than
through a conventional display is of great use for health professionals. This has been possible,
to a large extent, due to the increasingly photorealistic representation of the anatomy (both in
terms of physical tissue properties and of physiological parameters) that virtual environments are
achieving.

One of the most pervasive applications of VR in medicine is training, since it can provide a
realistic environment for training without the risks of its real counterpart. The enhanced realism
and immersion that multimodality provides can lead to improved training and education. Lu et
al. [201] presented an audio-visual platform for medical education purposes. One step further,
multimodal setups including haptics have been proposed for medical surgery training, where
the realism of the feedback significantly improved the learning effect, for both virtual [147] and
augmented [125] reality interfaces. In the area of medical visualization, Prange et al. [284] also
exploited virtual environments and presented a multimodal medical 3D image system where users
could walk freely inside a room and interact with the system by means of speech, and manipulate
patients’ information with gestures (see Figure 4.8).

Multimodal VR applications are however not constrained to medical training and visualization
areas: psychological research relying on VR has also experienced an unprecedented growth, as
Wilson and Soranzo reviewed [418], emphasizing both the advantages (e.g., greater control over
stimulus presentation, safe exposure to adverse conditions, etc.) and challenges (e.g., VR-induced
side effects) of VR in this area. Similarly, Bohil et al. studied the latest advances in VR technology
and their applications to neuroscience research [34], highlighting its high compatibility with
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Application Example work
Additional involved senses (other than vision)

Brief description

Audition Proprioception Haptics Other

Rehabilitation
Fordell et al. [100] ✗ ✓ ✓ ✗ Chronic neglect treatment, with a force feedback interface.

Sano et al. [313] ✓ ✓ ✓ ✗ Multimodal sensory feedback to reduce phantom limb.

Phobia treatment

Viaud et al. [401] ✓ ✗ ✗ ✗ Effects of auditory feedback in agoraphobic patients.

Mülberger et al. [250, 249] ✓ ✓ ✗ ✗ Multimodality short- and long-term effects on fear of flight.

Hoffman et al. [139] ✓ ✗ ✓ ✗ Illusions of touching to reduce fear of spiders.

OCD therapy Cipresso et al. [58] ✗ ✓ ✗ ✗ Different instructions to analyze behavioral syndromes.

Medical data visualization Prange et al. [284] ✓ ✓ ✓ ✗ Visualize and manipulate patients’ medical data in 3D.

Surgery training
Hutchins et al. [147] ✓ ✗ ✓ ✗ Medical training simulator with haptic feedback.

Harders et al. [125] ✗ ✗ ✓ ✗ Medical training simulator with AR features.

Medical education Lu et al. [201] ✓ ✗ ✗ ✗ Virtual platform to educate on medicine.

Table 4.2: Example works of different medical applications where multimodality plays an important role.
medical imaging technologies (such as functional magnetic resonance imaging - fMRI), which
allow for a high degree of ecological validity and control over the therapeutic experience.

Other areas that have leveraged the benefits of multimodality are rehabilitative medicine and
psychiatry, where significant progress has been made. Psychiatric therapies can benefit from
multimodality, since different aspects of behavioral syndromes can be extensively analyzed in
virtual environments: Given the suitability of VR to manipulate the virtual world and control
certain tasks, it has proven to be a fitting paradigm to treat diseases like OCD [58] or Parkinson’s
disease [57].

Phobia treatment is one of the main areas leveraging the benefits of multimodal environments:
The realism that multimodality offers over visual-only VR experiences enhances these experiences,
and increases the effectiveness of the treatment. In addition, VR allows exposing patients to their
fears in a safe and highly controlled way, minimizing any potential risks of exposure therapy.
Shiban et al. [345] studied the effect of multiple context exposure on renewal in spider phobia
(see Figure 4.8), suggesting that exposure in multiple contexts improves the generalizability of
exposure to a new context, therefore helping patients to reduce the chances of future relapses. The
work of Hoffman et al. [139] went a step further: they explored not only whether VR exposure
therapy reduces fear of spiders, but also concluded that giving patients the illusion of physically
touching the virtual spider increases treatment effectiveness. Muhlberger et al. [250] studied the
effect of VR in the treatment of fear of flying, exploiting not only visual and acoustic cues, but
also proprioceptive information, since motion simulation may increase realism and help induce
fear. Later, they studied the long-term effect of the exposure treatment [249], proving its efficacy
in treating the fear of flying. The effect of auditory feedback has been studied in other domains,
such as the particular case of agoraphobic patients [401], where multimodality increases patients’
immersion feeling, hence facilitating emotional responses. However, those techniques should
be applied with caution, since large exposures to VR scenarios may hinder patients’ ability to
distinguish between the real and the virtual world [149], leading to the disorder known as Chronic
Alternate-World Disorder (CAWD).

Rehabilitation has also leveraged advances in VR, yielding impressive results. Sano et al. [313]
demonstrated that phantom limb pain (which is the sensation of an amputated limb still attached)
was reliably reduced when multimodal sensory feedback was included in the VR therapy of
patients with brachial plexus avulsion or arm amputation. Fordell et al. [100] presented a treatment
method for chronic neglect, where a VR forced feedback interface provided sensorimotor activation
in the contra-lesional arm, which combined with visual scanning training, yielded improvements
in activities of daily life requiring spatial attention, and an improvement in transfer to real life.
Moreover, spatialized sound was also beneficial to improve rehabilitation of postural control
dysfunction [409].
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Table 4.2 compiles examples leveraging multimodal VR for medical applications. As for the
future, VR has the potential to serve medicine even in extreme situations. Virtual care has
become an option to foster personalized connections between doctors and patients when in-
person appointments are not possible, continuously adapting to the realities of the COVID-19

pandemic [216].

4.8.2 Education and training

Training and education are areas in which VR holds great promise, and in which it has already
begun to show its capabilities: Jensen and Konradsen presented a review on the use of VR headsets
for training and education, and showed that in many cases, better learning transfer can be achieved
in this medium compared to traditional media [156].

In education, VR has been widely studied as a new paradigm for teaching: Designing ad-hoc
environments helps create adequate scenarios for each learning purpose, hence facilitating the
transfer of knowledge to real life scenarios. Stojvsic et al. [365] reviewed the literature on VR
applications in education, and conducted a small study showing that teachers perceived benefits
in introducing immersive technologies, since students were more motivated and immersed in
the topic of interest. At the same time, childhood education processes have been shown to be
improved by leveraging multimodality in virtual environments, by means of human-computer
interaction methods including feedback and interaction from multiple modalities [56], or somatic
interaction (hand gestures and body movements) [92, 8].

Many frameworks regarding VR in teaching and education have been studied and evaluated,
demonstrating that using virtual manipulatives (i.e., virtual interaction paradigms) which provide
multimodal interactions actually yields richer perceptual experiences than classical methodologies
in the cases of e.g., mathematics learning [268] or chemistry education [5]. In the case of the latter, a
virtual multimodal laboratory was designed, where the user could perform chemistry experiments
like in the real world, through a 3D interaction interface with also audio-visual feedback, which
indeed improved the learning capabilities of students.

Similarly, Tang et al. [378] introduced an immersive multimodal virtual environment supporting
interactions with 3D deformable models through haptic devices, where not only gestures were
replicated but also touching forces were correctly simulated, hence generating realistic scenarios.
One step further, Richard et al. [292] surveyed existing works including haptic or olfactory
feedback in the field of education, and described a simulation VR platform that provides haptic,
olfactory, and auditory feedback, which they tested in various teaching scenarios, demonstrating
they affected student engagement and learning positively, and obtaining similar insights as other
reviews in educational scenarios, such as in STEAM (science, technology, engineering, arts and
mathematics) classrooms [376].

It is worth mentioning that multimodality can also help alleviate sensory impairments, since
environments can be designed to maximize the use of the non-affected senses. Following this
idea, Yu and Brewster [423] studied the strengths of a multimodal interface (i.e., with speech
interactions) against traditional tactile diagrams in conveying information to visually impaired
and blind people, showing benefits of this approach in terms of the accuracy obtained by users.

One widespread technique to enhance learning leverages the so-called serious games, which
enable learning by means of interactive, yet enriching video-games. Checa and Bustillo [52]
reviewed the use of immersive VR serious games in this context, and their positive effect on
learning processes and transfer. Multimodal VR can actually benefit the learning process of these
learning-based serious games [76], since multisensory feedback can enhance many of the cognitive
processes involved. Covaci et al. [63] presented a multisensory educational game to investigate
how olfactory stimuli could contribute to users’ learning experience: It made the experience more
enjoyable, but also led to an improvement in users’ performance and overall learning.

As aforementioned, multimodal VR has potential in the transfer of knowledge. Given this, it is
well suited for simulating and training complex and usually expensive real-life skills requiring
high cognitive loads. Gopher [118] highlighted how virtual multimodal training conditions give
better results when compared with traditional training conditions in many domains, including
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Application Example work
Additional involved senses (other than vision)

Brief description

Audition Proprioception Haptics Other

Education

Christopoulos and Gaitatzes [56] ✓ ✓ ✗ ✗ Children education on history

Alves et al. [8] ✗ ✓ ✗ ✗ Serious games for children education on history

Ali et al. [5] ✓ ✗ ✗ ✗ Children education on chemistry

Tang et al. [378] ✗ ✗ ✓ ✗ Education on deformable materials

Lu et al. [201] ✓ ✗ ✗ ✗ Education on medicine

Richard et al. [292] ✓ ✗ ✓ Olfactory Education on physics

Accessibility in education Yu and Brewster [423] ✓ ✗ ✓ ✗ Accessibility for blind people

Serious games Deng et al. [76] ✗ ✗ ✓ ✗ Review on multimodality for serious games

Skill training

Gopher [118] ✓ ✗ ✓ ✗ Review on multimodality for skill training

Boud et al. [37] ✗ ✗ ✓ ✗ Skill training for industrial processes

Crison et al. [65] ✓ ✗ ✓ ✗ Skill training for industrial processes

Ha et al. [124] ✗ ✗ ✓ ✗ Skill training for virtual prototyping

MacDonald et al. [204] ✓ ✗ ✗ ✗ Skill training for air traffic control

Table 4.3: Example works of different education and training applications where multimodality plays an
important role.

sports, rehabilitation, industry, or surgery; with the latter being the core of Van der Meijden et
al’s work [394], which reviewed the use of haptic feedback for surgery training, concluding how
the addition of this information yields positive assessments in the majority of the cases and even
reduce surgical errors. Transferring learning from training simulators to real life situations is one
of the most relevant parts of the learning process, and multimodality has been proved to enhance
it [182].

In the manufacturing industry, many processes require learning specific skills, and multimodal
virtual environments can offer new ways of training. Some works have studied the usability of VR
for a manufacturing application such as the assembly of components into a final product, where
proprioception and haptic manipulation was required [37]. Other works have proposed a virtual
system dedicated to train workers in the use and programming of milling machines, offering
visual, audio and haptic (force) feedback [65], also replacing the use of conventional mechanical
milling machines. Since fine motor skills can be transferred to the performance of manual tasks,
other studies have analyzed the effectiveness of virtual training in the specific case of industry in
contrast to real-life training [282]. At the end, the aforementioned works on virtual skill training
agree that virtual training could replace real training, since learning is correctly transferred, and
the virtual counterparts are usually less expensive and time-consuming. VR is also extremely
helpful for assembly and maintenance processes (e.g., virtual prototyping [71]), since it provides a
cheap method to directly inspect, interact with, and modify 3D prototypes without the need of a
physical industrial manufacturing process [335]. In this context, haptic feedback might be crucial
to provide feedback in assembly simulations [124].

Other complex tasks can also benefit from multimodal virtual training. MacDonald et al. [204]
focused on the air traffic control problem, and evaluated the relevant aspects of the auditory
modality to improve the detection of sonic warnings, including the best design patterns to
maximize performance, signal positioning, and optimal distances on the interaural axis depending
on the sound amplitudes. Real-time acoustic spatialized simulation can be also used in architecture,
when designing acoustic isolation, or studying how sound will be propagated through an indoor
environment [404].

All the works mentioned in this section concluded that multimodality offered higher user
engagement than unimodal or traditional environments, leading to a better experience and
learning transfer. Training in virtual environments has proven to be useful, especially in contexts
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Figure 4.9: Representative image of the work of Marañes et al. [215], where they analyze users’ gaze behavior
during visualization of VR cinematic content. One of the key open problems in VR is the generation
of engaging virtual experiences that meet users’ expectations. To that end, it is necessary to
understand users’ behavior in such virtual experiences.

that are hard or expensive to replicate in real life. On the other hand, and while VR training is
effective, the lack of a particular modality (e.g., haptic feedback when learning to manipulate
pumps [419]) could diminish the effectiveness of VR with regard to traditional hands-on experiences.
Hence, it is important to include all the useful sensory information that is needed for each
particular experience, and make it as realistic and reliable as possible. A list of some representative
applications of multimodal VR in training and education can be found in Table 4.3.

4.8.3 Entertainment

Entertainment is undergoing an important revolution with the re-emergence of VR as a new
medium: as VR devices become more affordable, their use at consumer level is rapidly increasing.
Leisure by means of VR videogames, cinematography, or narrative experiences is becoming
increasingly common, and creating realistic, engaging experiences is the main goal of content
creators. Multimodality can be instrumental in improving both realism and engagement.

Videogames allow users to interact with a virtual environment, controlling characters or avatars
that respond based on their actions. Traditional videogames have leveraged narrative characteristics
to connect with the player, to immerse them in the virtual world, so that the experience feels more
engaging. With the appearance of VR, immersive games are evolving: higher realism, and stronger
feelings of presence and agency can potentially be achieved now with this technology.

Nesbitt and Hoskens [253] hypothesized that integrating information from different senses
could assist players in their performance. They evaluated visual, auditory and haptic information
combinations, and although no significant performance improvement was achieved, players
reported improved immersion, confidence and satisfaction in the multisensory cases. Since haptic
devices may enhance the experience, some works have been devoted to developing different
toolkits to offer these interactions in VR (e.g., vibrotactile interactions [222]), whilst other works
have exploited somatic interactions, including not only haptic but whole proprioceptive cues. Alves
et al. [8] studied user experience in games which included hand gestures and body movements,
identifying problems and potential uses of gestural interaction devices in an integrated manner
Many narrative experiences may require the user to have the feeling of walking, and it may be
one of the hardest scenarios to get a realistic response, since multiple sensory information is
combined. In this scope, some works investigated the addition of multisensory walking-related
cues in locomotion [173], showing that adding auditory cues (i.e., footstep sounds), visual cues (i.e.,
head motions during walking), and vibrotactile cues (under participants’ feet) could all enhance
participants’ sensation of self-motion (vection) and presence. Sometimes, full locomotion is not
permitted, however realism can still be achieved: Colley et al. [61] went a step further in exploiting
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Application Example work
Additional involved senses (other than vision)

Brief description

Audition Proprioception Haptics Other

Videogames

Nesbitt et al. [253] ✓ ✗ ✓ ✗ Multimodality to assist players’ performance

Martinez et al. [222] ✗ ✗ ✓ ✗ Vibrotactile toolkit for immersive videogames

Alves et al. [8] ✗ ✓ ✗ ✗ Serious games for children education on history

Physical activity simulation
Kruijff et al. [173] ✓ ✓ ✓ ✗ Walking simulation for leisure applications

Colley et al. [61] ✗ ✓ ✗ ✗ Proprioceptive cues to simulate skiing

Cognitive and emotional effects
Kruijff et al. [174] ✓ ✗ ✓ Olfactory Study of emotional responses in virtual experiences

Deng et al. [76] ✓ ✗ ✓ ✗ Cognitive load and processes in serious games

Narrative experiences
Rothe et al.. [301, 300] ✓ ✗ ✗ ✗ Attention guidance in narrative experiences

Ranasinghe et al. [289] ✓ ✗ ✓ Olfactory Enhancing engagement in narrative experiences

Table 4.4: Example works of different applications in entertainment where multimodality plays an important
role.

body proprioception, presenting a work that proposed using an HMD in skiing and snowboarding
training while the user was on a real slope, so that proprioceptive cues were completely realistic.

Although many of the current VR videogames exploit audiovisual and somatic cues (which are
the easiest to provide with current technology), some have tried to work with additional cues. As
in previously mentioned learning processes, some works have explored the use of olfactory cues
to investigate how enabling olfaction can contribute to users’ learning performance, engagement,
and quality of experience [63], although this modality still remains in an early exploratory phase.

In a similar manner, gustatory cues have been studied in several works. Arnold et al. [14]
presented a game involving eating real food to survive, which combined with the capture and
reproduction of chewing sounds increased the realism of the experience. Following this line,
Mueller et al. [248] highlighted the potential technologies and designs to support eating as a form
of play.

Multisensory feedback can enhance many of the high and complex cognitive processes involved
in VR [76]. Particularly, multimodality can trigger different emotional responses in immersive
games: Kruijff et al. [174] investigated those emotional effects and proposed guidelines that can be
applied to reproduce diverse emotional responses in multimodal games. Within the wide area of
entertainment, cinematographic and narrative experiences in VR have been emerging during the
last years.

As explored in Section 4.4, guiding users’ attention is specially challenging in virtual environ-
ments, where users cannot see the whole scenario at once. Although some traditional continuity
editing rules may still apply [334], and visual cuts may impact users’ behavior [215], the presence
of directional sounds can also influence how users explore immersive environments [224], thus
special attention must be paid to sound design when considering narrative experiences in VR [119].

To explore how different cues may actually define how users drive their attention in cinematic
VR, Rothe et al. [300] investigated implicitly guiding the attention of the viewer by means of lights,
movements, and sounds, integrating auditory and visual modalities, while Ranasinghe et al. [289]
proposed adding olfactory and haptic (thermal and wind) stimuli to virtual narrative experiences,
in order to achieve enhanced sensory engagement. A compilation of representative applications of
multimodal VR in entertainment can be found in Table 4.4.

4.9 conclusions

Virtual reality can dramatically change the way we create and consume content in many aspects of
our everyday life, including entertainment, training, design and manufacturing, communication,
or advertising. In the last years, it has been rapidly growing and evolving as a field, with the
thrust of impressive technical innovations in both acquisition and visualization hardware and
software. However, if this new medium is going to succeed, it will be based on its ability to create
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compelling user experiences. The interaction between different sensory modalities (such as the five
senses, or proprioception) has always been of interest to content creators, but in a VR setting, in
which the user is immersed in an alternative reality, the importance of multimodal sensory input
plays a more relevant role, since the feedback either from any modality, or from the combination
of multiple of them, affects the final experience. In fact, it becomes both a possible liability, if not
handled properly, and a potential strength, that if adequately leveraged can boost realism, help
direct user attention, or improve user performance. Throughout this survey, we have summarized
not only the main lines of research in these areas, but also outlined relevant insights for future
directions in each of them.

While making use of multimodal setups can provide benefits to the experience, it also increases
costs and complexity. From the point of view of the hardware, however, audiovisual integration is
almost always present in current systems (see Table 4.1), and this is also the case for proprioception
(except for smartphone-based and related headsets). Most controllers also include some kind
of haptic feedback, although in this case it is quite simple and rudimentary, with ample room
for improvement and sophistication in consumer-level systems. While research-level technology
in haptics is quite advanced, transforming it into consumer-level solutions has been and still
is a challenge, due to systems complexity, durability, or cost. We are currently witnessing the
first attempts at providing more sophisticated haptic interactions with simpler, consumer-level
hardware by using ultrasound; and certainly more advances are to be expected in this area, given
the importance of haptics to the multimodal experience. Taste and smell are almost untapped in
terms of hardware. Unlike the case of touch, where haptics is abundantly explored at research
level, these senses are in their infancy from a research standpoint as well. Thus, special effort
should be made towards developing hardware that is able to simulate compelling stimuli for these
underexplored senses. From the point of view of the software, inclusion of multimodal input
increases the bandwidth and computational resources needed, both current stumbling blocks of
VR experiences, particularly collaborative ones. Thus, compression techniques and computational
optimizations (both hardware and software-based) are two of the most active areas of research
in VR that would also help an increased use of multimodal input. At the same time, works have
shown that multimodal input can help maintain realism and immersion with lower quality visual
input, so it can also be an advantage in these areas. Additionally, even if it implies an increase
in cost and complexity, and depending on the final application scenario, these increased costs
may still be more than advantageous if the alternative is setting up a similar, real scenario, in, e.g.,
emergency or medical training.

The inherent increased complexity resulting from the interaction between sources also poses
a challenge for researchers in this area. We have reviewed a number of studies analyzing the
interaction of two sensory modalities. Most of them were based on constrained experiments under
laboratory conditions. However, the final goal of VR is to be present at consumer level, where
more complex phenomena and interactions are likely to happen. Thus, lifting constraints on the
experimental conditions, and exploring to what extent the insights found generalize and hold in
free-viewing scenarios with more confounding factors, remains a critical avenue of future work,
which undoubtedly needs to be built on the findings from controlled, constrained experiments.
Works exploring three or more modalities are more rare. The integration of input from multiple
senses has been an open area of research for over a century, partly because of the curse of
dimensionality into which one runs when tackling this problem: the size of the parameter space
grows exponentially and soon becomes intractable. Even when the data was available, deriving
models to explain it has been a challenge, and analytical models often failed short to explain
phenomena outside the particular scenario and parameter space explored, partly because of their
lack of generality, partly because the type of data gathered can be very sensitive to the particular
experimental setup. Current data-driven approaches certainly provide a new tool to address the
problem, and some works have already started to rely on them, as is the case with audiovisual
attention modeling. For this to be a solid path forward, however, we need public, carefully-crafted
datasets that can be used by the community and in benchmarks, and we need reproducible
experimental setups. Incidentally, VR is in itself a great experimental scenario for reproducibility,
as opposed to physical, real-world setups.
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4.9 conclusions

Being aware of how the different sensory inputs interact thus helps researchers and practitioners
in the field in two ways: in a first level, it aids them to create believable, successful experiences
with the limited hardware and software resources available to them.

At the next level, they can leverage the way the different sensory inputs will interact to overcome
some of the limitations imposed by the hardware and software available, and even to improve
the design of such hardware and software. As multimodal interactions become known and well
understood, they can then be leveraged for algorithm design, content generation, or even hardware
development, essentially contributing to create better virtual experiences for users, and helping
unleash the true potential of this medium.
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5
E�ects of Spatially Incongruent Auditory

Stimuli on Visual Perception

We have seen the potential benefits of multimodality in immersive environments in Chapter
4. However, in Chapter 4 Section 4.6 we have also seen how multimodality can be used to
alter how the users perceive themselves or their surroundings through multimodal illusions.
Multimodal illusions can be leveraged to increase the quality of user experience and also allow
us to better understand underlying cognitive processes. In this Chapter we present an inhibitory
audiovisual illusion. When a series of visual targets are presented in a temporally congruent,
spatially incongruent manner with a set of auditory cues, visual performance is significantly
degraded at detection (is the target perceived, binary response) and recognition (which shape is the
target, categorical response) levels. Additional eye tracking data analysis shows the suppressive
effect occurs even in the absence of saccades towards the sound source, which suggests the
underlying cause must be neural and not oculomotor. This work has been published in Scientific
Reports (2020) and presented as a poster in ACM SIGGRAPH 2022.

S. Malpica, A. Serrano, D. Gutierrez, & B. Masia
Auditory stimuli degrade visual performance in virtual reality

Scientific Reports, 2020, vol. 10

5.1 introduction

The two most used sensory modalities that help humans perceive extrapersonal space are sight
and hearing [396]. While sight is the dominant sensory modality when perceiving the outside
world, we rely on hearing to retrieve information for regions of space that we cannot see (i.e.,
rear space or occluded objects) [361]. The human brain processes the visual information to yield
a coherent image. As part of this processing, it has evolved to discard or suppress some of this
visual information in order to maintain a stable and congruent vision. This suppression happens
consistently: during blinks it usually goes unnoticed thanks to a neural inhibitory mechanism in
the brain [403]. For saccades (a quick, simultaneous movement of both eyes between two phases of
fixation), our vision remains clear since the blurry images produced by high-speed eye movements
are suppressed by the brain [227]. In addition to blinks and saccades, other visual suppression
effects exist, triggered by different neural mechanisms [298].

Sensory cortices of different modalities (visual, auditory, etc.) are anatomically separated.
However, several studies show that a multimodal interplay exists even between primary sensory
cortices [379]. In particular, crossmodal inhibitory interactions have been found in humans for
auditory and visual modalities [135], and for tactile and visual modalities [136, 150]. Several brain
imaging studies have also shown crossmodal inhibitory or modulatory cortical responses [183,
158, 239, 151] in what were previously considered unimodal processing areas. The areas where
neural suppression occurs are also identified, including parts of the sensory cortices. A deep and
comprehensive understanding of crossmodal effects can be leveraged for applications beyond
vision science, such as visual computing, immersive environments, or the design of novel display
hardware.

In this work, we focus on how sound can degrade visual performance in VR. Despite the recent
success of this emerging technology, the viewing behavior and mechanisms triggered by this new
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medium are not yet well understood [353]. Specifically, we investigate whether the presence of
an auditory stimulus can degrade the detection and recognition of visual stimuli that appear in
a temporally congruent manner with the auditory stimulus, as compared to the performance in
the presence of the visual stimuli only (i.e., without an associated, temporally congruent auditory
stimulus). Facilitating effects with spatially congruent modalities have been assessed in several
studies [187, 233, 396]. We thus choose to present sounds in a spatially incongruent manner with
the visual stimuli. Moreover, previous work has shown that crossmodal interactions taking place
in rear space are often different from those in frontal space, since in rear space we have to rely on
sounds to obtain information that cannot be retrieved visually [361]. Hidaka and Ide [135] showed
that white noise bursts can degrade visual performance significantly in laboratory conditions;
they used a fixed-head experiment setup in which the visual stimuli were tilted Gabor patches
displayed on a conventional monitor. We differ from this previous work in several aspects, which
aim to increase our knowledge of the phenomenon, generalize the findings, and bring them closer
to their potential application scenarios.

First, we extend the analysis from low-level Gabor patches to realistic environments, including
a task of higher cognitive load: We broaden the task from binary recognition in previous work,
to detection and recognition of five possible visual targets. Crossmodal effects are still present
in such higher cognitive load conditions. For example, it has been demonstrated that auditory
spatialization can facilitate speech recognition [304]. When stimuli of different modalities are
presented in a temporally congruent manner, it has also been shown that attention can be
selectively diverted from a target to a secondary speaker [117]. Crossmodal effects in VR can even
help creating illusions of different sensory modalities [348]. Second, we explore a wider range
of different sounds with varying complexity. While previous work used only white noise, we
also analyze pure frequencies, pink and brown noise, and two different sounds with semantic
content for a total of six different sound types. Beyond their characteristics (i.e., frequency content),
these sounds have been chosen due to how they affect perceptual processes; more details on
this can be found in the Methods section. In addition, we explore the influence of the type and
spatial location of sound, as well as its interaction with the shape and spatial location of the
visual target. Further, instead of using a regular monitor, we conduct our experiments in an
immersive VR setting. The reason for this is three-fold: First, VR offers a greater control over the
conditions of the experiment, increasing reproducibility and repeatability; second, it allows for a
more natural exploratory behavior of the subject, including walking around the scene, in contrast
with previous approaches that required a fixed head position; and third, auditory-triggered visual
performance degradation can find key applications in VR, where control of the user’s attention
is a fundamental challenge [299]. Moreover, it has been assumed in the literature that the visual
performance degradation is caused by neural inhibitory interactions between the auditory and
visual sensory pathways. However, it remains unknown if saccades towards the sound source
(and hence saccadic suppression) are related to this effect. To explore this, we record gaze data by
means of an eye tracker built into the head mounted display (HMD) and analyze gaze behavior
during the experiment. We will make the data and stimuli available for reproducibility and further
analyses.

Our main findings include:

• We find that the visual performance degradation effect is robust even for viewing conditions
that impose a higher cognitive load, including natural exploratory behavior. This is important
since these factors could potentially affect or mask the inhibitory effects reported in the
literature.

• We find a consistent and significant degradation of both detection and recognition of the
visual targets regardless of both sound location and the location or shape of the visual target.

• Our gaze data reveals that gaze behavior does not change even in conditions where visual
performance decreases significantly, suggesting that the effect is not caused by oculomotor
phenomena.
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Our experiments were designed with a two-level task. Participants explored an indoor scene in
VR. They had to detect (binary response, a visual target was seen) and recognize (categorical
response, after detection the shape of the visual target was identify) a set of white and plain simple
geometrical shapes. A visual only baseline experiment (Experiment 0) indicates that the visual
targets can be perceived in the absence of sound. When sounds are introduced (Experiment 1)
there is a significant drop in the performance of the detection and recognition tasks.

Participants and apparatus. Fifty-six participants took part in the experiments described in this
work. Seven of them in the baseline experiment (Exp. 0), and 49 in the main experiment (Exp.
1). The mean age was 24 years (±3.21). Twenty of them were women. All of them had normal
or corrected-to-normal vision and did not report hearing problems. Participants were not aware
of the experiment’s goal. The visual and auditory stimuli were presented through an HTC Vive
Pro VR headset with built-in headphones and a nominal field of view of 110 degrees (1440×1600

pixels resolution per eye and a framerate of 90fps). A single computer was used, with an Intel
i7-7700 processor at 3.6GHz and 16GB of RAM. The graphics card was an Nvidia 1060GTX (6GB
of dedicated DDR5 memory). All the scenes were created using Unity 3D (2018 version) with the
Vive VR plug-in on Windows 10. The VR headset included a Pupil-Labs eye tracker. This add-on
eye tracker was used to record the participant’s gaze behavior through the experiment at 120Hz,
with accuracy of one degree of visual angle.

Participants in Exp. 1 were presented with 18 audiovisual (biCond) stimuli, 18 visual-only
(visCond) stimuli and 18 auditory-only stimuli. Participants in the baseline experiment (Exp. 0)
were presented with 50 visual-only stimuli. Visual-only stimuli were the same for all participants
in their respective experiments, while auditory-only stimuli were randomly chosen in Exp. 1.
The auditory part of biCond stimuli was the same for all participants: Six different sounds in
three possible locations each. The presentation of the different stimuli was randomized across
participants to avoid order effects both in Exp. 0 and Exp. 1. We follow a conservative approach
and consider for the analysis those participants with good detection and recognition percentages
in visCond stimuli, setting a minimum detection and recognition threshold of 33% and 20%,
respectively. As a result, only five participants were rejected from Exp. 1; their data was not
considered for the analysis presented in the Results section.

Visual stimuli (targets). The visual targets consisted of five simple geometric white shapes with
a gray outline, as shown in Figure 5.1. In order of increasing complexity: circle, square, rhombus,
pentagon and star. They were chosen not to have any semantic meaning compared to the visual
background scene. The target size is one degree of visual angle. Visual targets remain for 24ms in
the participant’s FOV. Both the target size and its duration had been fixed following Hidaka and
Ide’s work [135]. In our experiment, the target could appear randomly at one of three different
locations, always at the same latitude (FOV equator line): FOV center, four degrees of visual angle
to the left or four degrees of visual angle to the right of it. These stimuli were used both in Exp. 1

and in the baseline experiment, where their visibility was assessed. Visual-only (visCond) stimuli
were maintained in Exp. 1 as sentinels.

Auditory stimuli. Auditory stimuli included six different sounds inspired by previous literature.
Pure frequency: We are not used to pure frequency sounds in nature [361]. Being less common, this
sound could deviate the participant’s attention from the visual stimuli. White noise: This is the
sound used by Hidaka and Ide [135]. It has proven to degrade performance in visual recognition
tasks in traditional displays. Brown noise: Random changes between tones can stand out from
uniform noises [361]. Pink noise: Pink noise is known to trigger an acoustic reflex response that
protects the eardrum from loud noises [64]. Given the relationship between visual and auditory
neural processing, we hypothesized that pink noise could also have an inhibitory effect on visual
stimuli. Survival sound: Critical sounds for our survival also stand out, especially if they come
from outside our FOV [361]. In particular we used a train horn in Exp. 1. Human voice: It has been
shown that human voices draw our attention powerfully [361]. The duration of each sound was
400ms, to allow for the more complex sounds to play completely. Sounds were spatially located at
random in one of three possible locations, always at 0.2m (Unity distance) from the head: directly
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behind the participant’s head, shifted to the right (50 degrees rotation from the center of the head’s
position) or to the left (also 50 degrees), always outside their FOV. Auditory-only stimuli served as
distractors, to avoid an association of the visual target appearance with the auditory stimuli onset.

Audiovisual stimuli. Audiovisual stimuli were created by presenting simultaneously an auditory
stimulus and a target. As shown in Figure 5.2 B, the auditory stimuli start playing 100ms before
the visual stimuli onset. Every participant was presented with the six possible sounds in the
three described locations, making a total of 18 different audiovisual stimuli. The visual part of
each stimuli was chosen pseudo-randomly (as close to a uniform distribution as possible) across
participants. Figure 5.2 A shows all the possible locations of the bimodal stimuli.

Procedure. The baseline experiment (Experiment 0) procedure was designed with visual stimuli
only. Its main purpose is establishing the performance of visual targets in the absence of auditory
stimuli. Meanwhile, Experiment 1 presents both visual and auditory stimuli to study how auditory
cues can affect visual perception. The participants were located inside a virtual scene that resembled
a living room, shown in Figure 5.1. They could freely move in a physical space of 4x1.5m with a
1:1 mapping between the real and virtual spaces. Before starting the experiment, the participants
were shown the same room without furniture so that they got used to the VR headset and the VE.
Participants were informed of their task until they declared they had understood. Simple geometric
shapes would appear and disappear in front of them randomly throughout the experiment; each
time they detected one such shape, they had to notify the experimenter. The experimenter would
then show them a question within the VE: What did you see? When the participant answered, the
experimenter would log the answer and the experiment resumed. No new stimuli appeared until
the participant had answered the question. This was an open-ended task, as the participants did
not know a priori what specific shapes could appear during the experiment. If the participant
detected the onset of a visual stimulus but did not recognize its specific shape they still had
to notify it. The participants were also told that they would hear several sounds through the
experiment, but that they had to stay focused on the appearance of the visual target. There was
an additional background sound played throughout the whole experiment: the sound of a park
through an open window and a news podcast that played through one of the speakers near the
TV. The intention of this background sound was to increase the scene complexity and realism, as
well as to avoid for the auditory stimuli being the only sounds in the scene.

Throughout the experiment, the three different types of stimuli (visual, auditory and audiovisual)
appeared in random order with a random in-between interval that varied from five to ten seconds.
The experiment took 15 to 20 minutes, including the initial explanation and the questionnaires
that the participants filled before and after the experiment. The participants were informed to
stop the experimenter if they felt any kind of sickness or discomfort during the experiment
(none did). Before they started to use the VR headset, participants filled a questionnaire with
sociodemographic questions including age, gender, and previous experience with VR. None of
the sociodemographic factors had an influence on the obtained results. After the experiment had
concluded, there was a short debriefing in which they filled a set of questions about the experiment
(Did you see or hear something remarkable?, Did you feel any discomfort?, Do you want to say something
else about the experiment?). None of the participants experienced sickness or discomfort after the
experiment. Six of them reported either the train horn or the human voice were surprising at least
the first time they appeared in the experiment. Nine found the task interesting or engaging.

Statistical analysis. A GLM assumes that the measured data samples are independent. In our
case, we cannot assume that the samples are independent, since each participant was measured
several times under different conditions. Using a GLMM we can account for mixed effects, and
therefore account at the same time for both the fixed effects of our variables and the random effect
corresponding to user variability. The dependent variable was binary (for detection) or categorical
(for recognition). The independent variables in both cases were the visual target shape, the visual
target location, the sound type, and the sound location; they were set as fixed effects. Different
participants (in particular, the recorded subject ID) were considered as random effects. We used
Matlab fitglme function with a logit link function.
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5.3.1 Experiment 0 (baseline): Visual detection and recognition in the absence of auditory stimuli

To ensure that the visual targets were detectable and recognizable we first ran an experiment in
the absence of concurrent auditory stimuli. The 360

◦ virtual environment (VE) displayed in the
VR headset showed a realistic living room as shown in Figure 5.1. The visual targets were five
different simple shapes (circle, square, rhombus, pentagon, and a five-pointed star), placed at one
of three possible locations inside the field of view (FOV) of the subject: center, four degrees to
the left, or four degrees to the right, always on the FOV equator (see Figure 5.2 A, green area).
All stimuli were white with a grey outline to help differentiate them from the VE. The subtended
visual angle of each visual target was one degree.

A background auditory context was added, consisting on diegetic, localized audio (sounds from
a park coming through the window, and a news podcast playing through one of the speakers near
the TV). Each visual target appeared for 24ms [135] and the interval between targets was randomly
chosen between five and ten seconds to prevent potential learning effects. The participants had to
verbally report each time they saw a visual target, and specify its shape. They were explicitly told
to notify the appearance of a target even if they could not recognize its shape. Each participant
saw a total of 50 targets. The mean percentage of target detection (binary response; the participant
was able to identify the appearance of a target) was 88.10% (±4.20%, 2*SEM). Wilcoxon tests were
used to check for differences between experiments or between conditions (pairwise comparisons),
while GLMM models were used to analyze the influence of the studied factors in the detection
and recognition tasks. More details can be found in the Methods Section. All the GLMM results
can be found in the supplementary material of our work [213]. We establish the significance
level at p = 0.05. Neither the shape nor the location of the target had a significant influence on
detection. The mean percentage of target recognition (one of five possible responses; the participant
could distinguish the shape of the stimulus) for detected stimuli is 71.96% (±12.36%). Recognition is
calculated relatively to the detection percentage. A percentage of 100% recognition means that
all detected visual targets have been correctly recognized. Different from detection, shape had
a significant influence (β = −0.311, t(293) = −3.324, p = 0.001) in recognition, with post-hoc
Wilcoxon pairwise tests revealing that star shapes where better recognized. This may be related
to the increased geometrical complexity of the star, which is the only non-convex shape in the
stimuli.

Figure 5.1: Left: 360
◦ panorama of the virtual environment used in the experiments, rendered from the central

point of view. Right: Representative close-up view of the VE. The inset shows the five different
visual targets (a 3.2x scale is used here for visualization purposes). Users could move freely in a
physical space of 4 × 1.5m. Scene by Barking Dog for Unity 3D.
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5.3.2 Experiment one: Visual detection and recognition in the presence of temporally coherent auditory
stimuli

In this experiment, each trial contained a single stimulus, which could be auditory-only, visual-
only or bimodal (audiovisual). The background noise used in the baseline experiment was always
present. A total of 54 stimuli were presented to each participant. Eighteen of them were visual-
only, and followed the characteristics of the baseline experiment (we term them visCond). These
stimuli also served as sentinels to make sure that all the participants had a good performance
on detection and recognition tasks in the absence of confounding auditory stimuli. Another 18

stimuli were auditory-only, acting as distractors to make sure that participants would not expect
a visual target to always appear in the presence of a sound. The last 18 stimuli were bimodal
(biCond); these stimuli included both a visual target as in the baseline experiment, and a sound.
Figure 5.2 illustrates the spatial and temporal layout of the experiment. No participant reported
target detections in the auditory-only condition; in the following, we thus analyze the visCond and
biCond conditions.

Figure 5.2: A: Spatial layout of the experiments. The three possible locations of the visual targets inside
the participant’s FOV: center, and four degrees of visual angle to the left and right. The targets
subtended a visual angle of one degree. Auditory stimuli were spatially located outside the FOV,
also in one of three possible locations, all of them 0.2m (Unity distance) from the user position:
behind the participant, 50 degrees left or 50 degrees right. Both the visual targets and the auditory
stimuli kept their positions fixed relative to the participant’s head. One possible combination for a
biCond stimuli is highlighted in blue. B: Temporal layout. Visual targets are shown 100ms after
the sound starts, for a duration of 24ms. The auditory stimulus lasts 400ms. Gaze behavior is
quantitatively analyzed in those 400ms to study the relationship between the presence of sound
and the visual performance degradation effect.

Influence of sound in detection and recognition. For the visual-only stimuli (visCond), the mean
percentage of detection is 82.07% (±4.81%), similar to the results from the baseline experiment.
Adding sound (biCond) results in a large drop, yielding a mean percentage of detection of just
20.02% (±4.86%). Similarly, recognition for visCond is 59.93% (±6.76%), decreasing to only to 7.93%
(±4.12%) for biCond. This is shown in Figure 5.3. A Wilcoxon signed rank test (z = 5.783, p < 0.001
for detection; z = 5.777, p < 0.001 for recognition) shows that both conditions are significantly
different both in stimuli detection and recognition. In particular, we find a decrease of both
detection and recognition for biCond stimuli in relation to visCond stimuli. A Wilcoxon rank
sum test shows a significant difference (z = 7.919, p < 0.001) between biCond and the baseline
experiment for both detection and recognition. Recognition drops from 71.96% to 59.93% for
visCond compared to the baseline results. We hypothesize that this may be due to the greater
cognitive load imposed on the participants, being exposed to three different stimuli conditions.

Effect of the different factors on detection and recognition. Here we analyze the influence
of the different factors of the experiment (target location, target shape, sound location, and type
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of sound) on the detection and recognition tasks. As in the baseline experiment, the location of
the visual target does not have a significant influence on detection nor recognition. The sound
location does not have any significant influence either. Target shape has a significant influence
(β = −0.249, t(787) = −4.266, p < 0.001) only for visCond during recognition tasks, but not for
biCond. The type of sound in the experiment has a significant influence (β = 0.658, t(613) = 1.481,
p = 0.048) on stimuli recognition (see Figure 5.3). We found anecdotal evidence that pink and
white noise had dominant effects in the degradation of visual performance, although these are
not significant. A deeper study about which types of sound or which particular features (e.g.,
frequency content [241]) may have a deeper impact on visual performance degradation would be
an interesting line for future work.

Analysis of gaze data. Auditory stimuli have the potential to trigger visual saccades [104].
Here we investigate saccades as a possible cause for the visual performance degradation effect. In
particular, even though participants were explicitly told to ignore the sounds and focus on the
visual targets, it is still possible that the auditory stimuli in the biCond condition were inducing
a saccadic suppression effect, preventing the visual target from being seen. To analyze this, we
leverage the data collected through the eye tracker and analyze gaze behavior around the visual
target onset, focusing on the differences between visCond and biCond stimuli. However, accurate
saccade detection is challenging, especially in our case where participants are allowed to move
while wearing the VR headset. We thus study the differences in fixation rates between visCond
and biCond stimuli as a more robust way of analyzing gaze behavior. We calculate fixation rates
using fixation detection by two-means clustering [134], which is robust in the presence of noise.
We take into account a two-second window centered around the visual target onset, and a region
of interest of ten visual degrees [27] around the position of the visual target (as shown in Figure
5.4). We find that each participant fixates in that region 50.24% of the time on average in the
visCond condition, and 49.13% in the biCond condition, with no significant difference between
conditions (z = 0.671, p = 0.502, Wilcoxon signed rank test). If we reduce this window to the
400ms around the visual target onset (the same 400ms where sound is present in the biCond
condition, as shown in Figure 5.2), there is no significant difference either (72.40% vs 72.38% of the
time on average, z = 0.933, p = 0.3507, Wilcoxon signed rank test). This suggests that the auditory
part of biCond stimuli does not cause a significant change in gaze behavior. In particular, if saccadic
suppression (a saccade triggered towards the sound source) was the underlying cause of the visual
performance degradation, we would have expected to find a change in gaze behavior between
visCond and biCond, with maybe a decrease of fixation time in the latter condition. In contrast,
participants fixate similarly regardless of the presence of sound, while their visual performance
varies significantly between visCond and biCond. This is confirmed by a qualitative analysis of gaze
behavior, an example of which can be seen in Figure 5.4. Visual performance degradation happens
even when gaze is fixated close to the target location at its onset. Therefore, we believe that the
degradation effect is not caused by oculomotor phenomena.

5.4 discussion

Interactions between the human visual and auditory systems are complex and not completely
understood yet. Frens et al. [105] showed that an auditory stimulus can improve performance
of visual search tasks. At the same time, stimuli of one modality can alter [74, 337] or even
suppress [135] the perception of stimuli of another modality. Inspired by these works, we have
investigated the auditory-triggered visual performance degradation effect under immersive and
realistic viewing conditions, including natural exploratory behavior. We have verified that this
crossmodal, sound-induced visual inhibitory effects exist in VR. In particular, we found that
the effect is robust to different sound types, sound locations, as well as varying visual target
shapes and locations along the FOV equator. The used VE also imposes a higher cognitive load
on participants when compared to previous work. Even then, the degradation effect is robust to
these potentially masking effects. Given that the visual degradation is robust to modifications
of the four factors studied in this work, we hypothesize that the mechanism responsible for the
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Figure 5.3: A: Mean detection and recognition for visCond and biCond conditions. Error bars show 2*SEM. Both
detection and recognition are significantly lower for biCond stimuli (marked with an asterisk).
Individual performance is shown as scattered points over the bars. B: Mean detection (top row) and
recognition (bottom row) histograms, by type of sound. Y-axes show the number of participants
with a given performance rate (X-axes, from 0 to 1, divided in 4 bins). Note that a 0 detection rate
for a given sound type implies a 0 recognition rate for the same sound type. TODO: increase font
sizes. Remove B part?

degradation effect does not depend on the particular characteristics of the sound or the visual
target to be inhibited, but rather encompasses a larger aspect of sensory perception.

We find a consistent and significant degradation of detection and recognition of visual targets in
the presence of temporally congruent auditory stimuli. Recognition further decreases for pink and
white noise. In their experiments about inhibitory audiovisual interactions, Hidaka and Ide[135]
used white noise bursts concurrent with the onset of their visual targets, under carefully controlled
laboratory conditions including a chin rest and a conventional display. The authors reported a
performance drop from 70.7% with visual-only stimuli to approximately 60% in the presence
of sound. Our results show the same trend, and further suggest that, in the presence of higher
cognitive loads, the degradation effect is more prominent, across a wide range of audiovisual
stimuli. There is an important difference in the magnitude of the effect observed between our
work and Hidaka and Ide’s. Possible reasons include the increased realism of our experiment, the
increased complexity of the task (which includes binary detection as well as an additional five-level
recognition task), and the fact that users were able to move during the experiment, all these may
lead to higher cognitive loads. Besides cognitive load, the fact that sound is spatialized inside the
virtual environment, and presented in rear space (in a spatially incongruent manner with respect
to the visual targets) might further influence the effect magnitude. Additionally, Hidaka and Ide
report a bigger effect when sounds were presented in an ipsilateral, spatially congruent manner.
We did not find this effect with binaural spatialized sounds. Hence, their findings might be related
with monoaural sounds rather than with the spatial congruency of visual and auditory stimuli.

We chose to use target stimuli that were not semantically related to the background scene, both
in its visual and auditory aspects. We took a conservative approach, and designed the target visual
stimuli as simple, white geometrical shapes that clearly stand out from the rest of the scene, to
minimize the risk of fortuitous oversights. More contextually integrated visual stimuli may have
lower detection percentages when compared to the visual targets used in this experiment.

Our analysis of gaze behavior shows that visual degradation occurs even in the presence of
fixations and with gaze near or at the location of the visual target. Traditionally, sound has
proven to increase performance of visual related tasks. For example, Corneil et al. [62] show
that saccades triggered by audiovisual stimuli have faster reaction times than those triggered by
visual-only stimuli. However, other studies have also reported both facilitatory and inhibitory
responses of audiovisual inputs, mostly depending on the spatiotemporal congruency of both
modalities [187, 141]. The more congruent the different modalities of the input stimuli presented
are, the easier a facilitative integration will occur. On the other hand, if the stimuli are spatially
or temporally incongruent, an inhibitory effect is more likely to occur. In our experiment, the
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Figure 5.4: A: Illustrative gaze behavior during presentation of a visual target that was not detected, corre-
sponding to a biCond stimulus. The colored points represent gaze position during a two-second
window centered around the visual target onset. Target onset thus occurs at time t = 1s, and its
spatial position is marked with a red point and associated red dashed lines. The blue-shaded area
represents a region of ten degrees of visual angle [27] centered around the target. Gaze positions
at the interval during which the target is present is marked with gray points and an associated
black dashed line. Note that, despite gaze being very close to the target location during its onset,
there is no detection. B: 1D visualization of gaze position (only x coordinate) over time during the
same trial presented in A. Gaze samples corresponding to fixations are shown as yellow points,
other gaze samples as blue points, the temporal interval during which the target is present is
marked in gray, and the target position in x is marked by a dashed red horizontal line.

visual and the auditory modalities of the stimuli (in biCond) were always presented in a temporally
congruent and spatially incongruent manner. As to what is the underlying cause of the visual
performance degradation effect, there are several possibilities, including oculomotor, neural and
attentional effects. Our analysis of gaze behavior suggests that this phenomenon does not seem to
be related to oculomotor effects. One possible explanation is that the auditory stimuli (a salient
exogenous cue presented slightly before the visual target) is causing an involuntary shift of
attention [359, 360]. This attentional shift, either spatial [203] or modal [362], might in turn result
in the degradation of visual performance or crossmodal deactivation of the visual input [247].
Note that in Hidaka and Ide’s work [135] crossmodal attentional effects could not fully explain
their findings, since the degradation effect was still present when the auditory stimuli were shown
after the visual target. The authors concluded that the effect occurred based on neural interactions
among auditory and visual modalities. One of the key differences in our experiment is that the
auditory part of biCond stimuli is always shown 100ms before the visual target onset, which may
cause auditory stimuli to compete with the processing of visual stimuli [158]. Further studies
are necessary in order to determine what is the exact cause behind the observed effect for both
experimental conditions.

Besides increasing knowledge about the human visual system, leveraging visual performance
degradation can also entail a direct benefit for several applications [375, 19, 12, 32]. In particular, VR
technology still faces challenging limitations that could be addressed with a deeper understanding
of multimodal human perception. For instance, visual suppression has been used in conjunction
with the change blindness phenomenon [351] to introduce changes in the virtual world that go
unnoticed by the users, allowing them to avoid obstacles in the physical world [369, 35]. In general,
a better understanding of the interplay of the different sensory modalities will lead to improved
user experiences [131]. Apart from novel applications, we hope that our work can also motivate
additional experiments to further study the scope of the visual performance degradation effect.
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We have shown how it affects both detection and recognition of a flashing visual target. Does it
also affect the perceived motion of a dynamic visual target? Can we integrate inhibitory effects
from different sensory modalities? It would also be interesting to analyze other sound properties:
can we make the sound barely (if at all) noticeable while still degrading visual performance?
Modeling and extending the parameter space of sounds that degrade visual perception might also
give us some additional insights on the underlying perceptual mechanisms at work.
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6
E�ects of Auditory Stimuli on Material

Perception

In this chapter we study how a correctly synchronized multimodal cue can increase perceived
realism and change how materials are perceived in immersive environments. First, we make sure
that crossmodal effects (interactions between two or more different sensory modalities) are correctly
perceived in VR. We do so with a series of experiments replicating in VR a well-known crossmodal
audiovisual effect. Then, in a context of material perception in virtual environments, we show how
the use of crossmodal audiovisual cues can increase perceived realism and disambiguate material
perception even when visual quality is degraded. This work has been published in Multimedia
Tools and Applications.

S. Malpica*, A. Serrano*, M. Allue, M. Bedia, & B. Masia
Crossmodal perception in virtual reality

Multimedia Tools and Applications 2020, 79(5)
∗ Joint first authors

6.1 introduction

During the last years, we are witnessing a reappearance of virtual reality (VR). New applications are
developed every day, going far beyond entertainment and gaming, and including advertising [368],
virtual tourism [123], prototyping [335], medicine [181], scientific visualization [171], or education
[336], to name a few. There are still important stumbling blocks that hinder the development of
more applications and reduce the visual quality of the results; examples include limited spatial
resolution, chromatic aberrations, tracking issues, limited processing capability leading to lag,
subsequent motion sickness, or content generation [397]. A relevant area which has received quite
some interest but remains full of unanswered questions and open problems is how our perception
is modified or altered when immersed in a virtual environment. Knowledge of human perception
in virtual environments can help overcome the aforementioned current limitations. In the past,
perception has been leveraged in many computer graphics-related areas such as rendering [287],
material modeling and acquisition [350], or display [225]; a good review of applied perception in
graphics can be found in the course by McNamara and colleagues [237].

In this work, within the much-studied area of perception in virtual environments, we chose
to look into the less explored area of crossmodal perception in HMDs, that is, the interaction of
different senses when perceiving a virtual environment through a headset. HMDs are different
from traditional displays in that they provide a more realistic and immersive experience, as well as
introducing additional degrees of freedom (the user now controls the camera), spatialized sound,
increased field of view, and more visual cues (e.g., motion parallax). Specifically, we looked at the
influence of sound on visual perception in a virtual reality scenario.

Crossmodal perception, and in particular the interaction between visual and auditory stimuli,
has been studied before in real scenes and on conventional displays. The crossmodal effect between
these two sensory inputs has been assessed and documented in different works [327, 346, 341],
which state, among other conclusions, that the presence of sound can alter the visual perception.

This work is an extension of our previous work [7], where we replicated a well-known cross-
modal perception experiment [327]. We found that crossmodal interaction was indeed present in
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VR, and that its effects persisted even in the presence of more complex stimuli. These experiments
are described in Section 6.2. We further extend this initial work by, once we have asserted the
presence of a visual-auditory crossmodal effect, analyzing the effects of sound in the visual
perception of materials, in order to find practical applications for VR. This new experiment is
described in Section 6.3 and constitutes the main contribution of the present work. Generating
content for VR headsets requires rendering complex scenes in real time, at high resolution and,
ideally, at least 60 fps, which comes at a large computational cost, specially if the aim is to obtain
a realistic appearance. Different works have investigated how visual perception is affected in
VR, partly with the aim of reducing this rendering cost [31, 270]; conversely, other works have
analyzed the effect of sound in material perception, but not in an immersive environment [36, 221].
In this work we have taken the first steps towards analyzing the influence of a visual-auditory
effect on material perception in VR (Section 6.3), providing insights that can be used in the future
to reduce computational costs, or improve the quality when rendering complex appearances. In
particular, the research questions we investigate in this work are the following:

• Manifestation of the crossmodal effect in VR environments with increasing complexity.

• Influence of crossmodal interactions in material perception in immersible VR environments.

6.2 crossmodal interaction

We have first performed two experiments in order to determine how much an immersive en-
vironment interferes with the crossmodal interaction between the visual and auditive systems.
Our experiments are based in the work of Sekuler et al. [327], where they explore the perceptual
consequences of sound altering visual motion perception. In their experiments, they showed two
identical disks that moved steadily towards each other, coincided, and then continued in the same
direction. This scenario is consistent with two different interpretations: either the two spheres did
not collide and continued in their original directions (they streamed), or they collided and bounced,
changing their traveling direction. The goal of the experiment is to analyze whether a sound at the
moment of the impact can affect the interpretation of the scenario.

We build upon Sekuler et al.’s work, and extend their experiment to virtual reality, aiming to
explore the consequences on crossmodal interactions of introducing the user inside a more realistic
and complex environment presented with a head mounted display (HMD).

6.2.1 Experiment 1

Goal. We first reproduce the experiment described in Sekuler et al.’s work both in a regular screen
and in a HMD (Oculus Rift DK2). The goal of this experiment was to test whether the effect of
sound altering visual motion perception as reported in the experiments carried out by Sekuler et
al. is also observed when reproduced in a virtual environment with an HMD.

Stimuli. The visual stimuli were rendered with Unity. They consisted of two spheres with
radius 0.5 degrees, placed over a white plane. The material of the spheres was brown and very
diffuse to avoid introducing additional visual cues. The two spheres were initially separated by a
distance of 4.2 degrees, and moved towards each other at a constant speed of 6 degrees per second.
After they coincided, they continued moving without changing their original direction. We show
in Figure 6.1 the initial layout of the scene. In this scenario we presented three different visual
conditions: the spheres moved continuously, paused one frame at the point of their coincidence, or
paused two frames at the point of their coincidence. The original experiment [327] reported frames
in a regular analog screen whose typical framerate is 25 frames per second. Since the framerate
of our screen and the HMD (Oculus Rift) were very different, we adjusted the pause to last 1/25
seconds. Therefore, throughout this work the terminology is as follows: one frame is equivalent to
1/25 seconds, and two frames are equivalent to 2/25 seconds.

These three visual conditions were presented together with one of the four following auditory
conditions: no sound, accompanied by a brief click sound (frequency of 2000 Hz, duration of 3
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Figure 6.1: Initial layout of the scene for Experiment 1.

milliseconds) triggered 150 milliseconds before or after the coincidence, or accompanied by a brief
click sound at the point of coincidence.

Participants. Thirteen participants took part in the experiment (three female, ten male), with
ages ranging from 18 to 28 years. All the participants volunteered to perform our experiments, and
they were not aware of the purpose of each experiment. They were requested to fill a questionnaire
about visual health, and we conducted a stereoscopic vision test to discard those participants with
defective depth perception. They all had normal or corrected-to-normal vision.

Procedure. During the experiment we presented a total of twelve different conditions to each
participant, three visual (continuous movement, pause one or two frames at the coincidence) and
four auditory (no sound, sound at, before, or after the coincidence). Each of these conditions was
presented ten times, making a total of 120 trials that appeared in a random order. We performed
two blocks of the same experiment ordered randomly: one displayed on a regular screen (Acer
AL2216W TFT 22"), and the other one displayed on an HMD (Oculus Rift DK2).

Before the HMD block, the lenses of the Oculus Rift DK2 were adjusted to the participant eyes.
We additionally introduced a training session before this block, where we showed two spheres at
different depths and the participant had to choose which one was closer. We presented ten trials
of the training with spheres at random depths. With this training the user gets used to the device,
setup, and answering procedure.

We guided the participants through the test by showing several slides with descriptions of each
phase of the experiment. After each trial, a slide was displayed with the question "Did the spheres
bounce or stream?", and a visual aid indicating the participant to answer with a mouse click (right
or left).

Analysis and results. We use repeated measures ANOVA to test the influence of each of
the conditions independently in the observed responses. For every participant, we take into
account the answer (bounce or stream) in each of the ten trials. We need the repeated measures
scheme because we measure the same independent variables (e.g., frames paused) under different
conditions performed by the same subjects. We fix a significance value (p-value) of 0.05 in all the
tests, and in those cases in which results from Mauchly’s test of sphericity indicate that variances
and covariances are not uniform, we report the results with the corresponding correction applied
to the degrees of freedom (Greenhouse Geisser correction [66]). Prior to the analysis, we perform
outlier rejection as detailed in the Appendix. We have three factors or variables of influence: (i)
the overall influence of the display (2D scene presented on a screen, or 3D environment presented
on an HMD); (ii) the influence of the sound when the spheres collide; and (iii) the influence of
the length of the pause at the point of coincidence between the spheres. Results are presented in
Table 6.1.
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Table 6.1: Results (F-test and significance) of the analysis of the data with repeated measures ANOVA for
Experiment 1. We test the influence of three factors in the perceived percentages of bounce
responses.

F Sig.

Sound vs percent. bounce 83.664 0.000

Pause vs percent. bounce 63.528 0.000

Display vs percent. bounce 13.176 0.000

Figure 6.2: Aggregated percentages of bounce responses and corresponding error bars (standard error of the
mean) for the Experiment 1. From left to right: Percentages for two display conditions (screen or
HMD), percentages for four auditory conditions (no sound, sound at, before, or after the moment
of coincidence of the spheres), and percentages for three visual conditions (continuous movement,
pause one, or two frames at the point of coincidence of the spheres).

We can conclude that all three factors have a significant effect in the percentage of bounce
responses, since all the p-values are below 0.05. We show in Figure 6.2 the mean percentages of
bounce responses for the tested factors (error bars represent the standard error of the mean). We
observe that the percentage of bounce responses decreases when using the HMD display. However,
the main findings of Sekuler et al.’s work hold: a sound at the moment of coincidence, and a
pause of two frames at the point of coincidence promote the perception of bouncing. We believe
that the decrease in perceived bouncing in the tests with the HMD comes from the increase in the
amount of visual cues due to the stereoscopic view. Sound promotes perception of bouncing when
compared with the absence of sound; however, it has significantly less effect when reproduced
after the point of coincidence. Still, there is a high tolerance for asynchrony between the sound and
the visual input: even when the sound is delayed, the percentage of bounce responses increases.
Also, as reported previously by Sekuler and others [327, 30, 326], the overall percentage of bounce
responses increases with the duration of the pause.

6.2.2 Experiment 2

Goal. The goal of this experiment was to test whether a more complex scene could influence
the crossmodal effect of sound altering visual motion perception. In order to do this, we increase
the realism of the scene in three different ways (we term them three blocks) while keeping the
proportions between distances and speed of the spheres of the original experiment.

Stimuli. The visual stimuli were rendered once again with Unity. We designed a new scene
where the spheres are placed on a white table, inside a furnished room, and with a more realistic
illumination. With respect to the first experiment we also increased the size of the spheres to
1 degree of radius, and the distance between them to 8.4 degrees, to make them more visible. A
screenshot of the initial layout of the scene for the first block of the experiment is shown in
Figure 6.3, left. For the second block of the experiment, starting from the scene in the first block,
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Figure 6.3: Initial layout of the scene for the three different blocks in Experiment 2. Left: increased radius of
the spheres (block 1), middle: increased radius of the spheres and additional visual cues (block 2),
and right: increased radius of the spheres and rotated plane of the collision (block 3)

Table 6.2: Results (F-test and significance) of the analysis of the data with repeated measures ANOVA for
Experiment 2. We test the influence of three factors in the perceived percentages of bounces.

F Sig.

Sound vs percent. bounce 124.137 0.000

Pause vs percent. bounce 845.386 0.000

Scene vs percent. bounce 0.022 0.979

we additionally introduced two more visual cues to the spheres. First, we increased the glossiness
of the material of the spheres, and second, we slightly lifted the spheres over the table in order to
have more visible shadows (see Figure 6.3 middle). Finally, for the third block of the experiment,
starting from the scene in the first block, we also rotated the plane of the collision between the
spheres. We show a screenshot of the initial layout for this block in Figure 6.3 right.

Participants. Twenty seven participants took part in the experiment (two female, twenty-
five male) with ages ranging from 19 to 32 years. As in the previous experiment, participants
volunteered and took a questionnaire about visual health, and a stereoscopic depth test to assure
that they all had correct depth vision. They all had normal or corrected-to-normal vision.

Procedure. During the experiment we presented a total of six different conditions, two visual
(continuous movement, pause two frames at the coincidence), and three auditory (no sound,
click sound at, or after the coincidence). Based on the results of the first experiment we removed
the visual condition with a pause of one frame because the percentage of bouncing perceived
was similar to the one perceived with the pause of two frames, and the auditory condition
corresponding to the sound before the coincidence, also because of its similarity with the sound
after the coincidence. Each of these conditions was presented ten times, making a total of 60 trials
that appeared in a random order. All the blocks of the experiment were presented in the HMD,
and each participant performed three randomly ordered blocks that corresponded to the three
scenes described in the Stimuli section, totaling 180 trials per subject. Before starting the test, the
participants performed the same training described in Experiment 1. Finally, in this experiment
the slides with instructions about the test were shown on a frame on the back of the room striving
to preserve as much as possible the realism of the environment.

Analysis and results. Again, we wanted to test three factors: the influence of each of the three
scenes (three blocks), the influence of the sound when the spheres collide, and the influence of the
pause at the point of coincidence between the spheres. Similarly to Experiment 1, we perform a
repeated measures ANOVA; results are presented in Table 6.2. In Figure 6.4 we show the mean
percentages of bounce responses for the tested factors, and the associated error bars representing
the standard error of the mean. The analysis with the ANOVA reveals that, as before, there is a
significant effect of the sound, and the pause in the perceived percentage of bounces. However, the
p-value for the test with different scenes is very high, therefore we cannot draw any significant
conclusion about the relationship between the three different scenes and the observed percentage
of bouncing. When comparing Experiments 1 and 2 we can see that even when increasing the
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Figure 6.4: Aggregated percentages and error bars (standard error of the mean) for the Experiment 2. From
left to right: Percentages for the three different scenes or blocks (increase in the size of the spheres,
additional visual cues in the spheres, or rotated plane of the movement); percentages for three
auditory conditions (no sound, sound at, or after the moment of coincidence of the spheres); and
percentages for two visual conditions (continuous movement, or pause two frames at the point of
coincidence of the spheres).

level of realism of the scene, the crossmodal effect of the sound altering the perceived motion still
holds, although there is a general shift downwards of the percentage of bounce responses which
can be observed by comparing the corresponding percentages of Figures 6.2 and 6.4. This shift
downwards is possibly due to the presence of additional cues; however the high p-value of the
scene factor, further indicates that there is no significant difference on the effect on crossmodal
interaction between the three scenes (blocks) tested (i.e., no cue has proven to be significantly
stronger or weaker in the detection of bouncing).

6.3 crossmodal material perception

Once we’ve proven that crossmodal interactions hold in VR we aim to analyze whether these
interactions influence material perception. We have performed an experiment in order to determine
how much the perception of material appearance is affected in virtual environments when a
crossmodal interaction (visual and auditory stimuli) is presented in comparison with unimodal
stimuli (only visual stimuli).

Goal. Our goal is twofold: we want to increase once more the stimuli complexity (not just a
single sound with equal spheres, but different sounds paired with different visual stimuli), as
well as determine if the presence of sound could help improve the immersion experience in VR
environments, or even reduce its rendering costs.

Stimuli. We use Unity to render a set of spheres of different materials, including a phenolic
sphere, metallic sphere, plastic sphere and fabric-like sphere. All the spheres are rendered with
low and high visual resolution. The visual stimuli were rendered with the default material model
(GGX). In the visual-only stimuli, they consisted on a sphere placed in front of the camera. In
the audiovisual stimuli, the same sphere was presented, but this time with a wooden drumstick
hitting it periodically from behind. Figure 6.5 shows an example of an audiovisual stimulus. The
auditory stimuli were recorded mono sounds from the MIT hit sounds dataset [267], that were
synchronized to play when the drumstick hits the sphere (in the MIT hit sounds database, it is
also a wooden drumstick that is used to produce the sounds). We virtually placed sound sources
in the 3D scene, effectively spatializing the mono sound regarding the participant and the sphere’s
relative position. Note that this is different from using stereo sound tracks, since participants
actually perceive a 3D audio effect (i.e., they perceive effects such as head-shadowing). The same
sound was always presented for the same material, regardless of its rendering quality. We used
four different materials for the sphere. The materials were modeled in Unity and chosen to cover
a range of material categories, which are chosen based on the types of materials present in the
MERL database. In particular, we have: metal, fabric, plastic, and a phenolic material, (a specular
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Figure 6.5: Left: The panel with the attributes that the participants had to rate. With the controller’s joystick
they could set the rating value and move between the attributes and the "next" button. Right:
Presentation of a stimulus in the scene, showing both a sample sphere and the wooden drumstick.

Figure 6.6: Each column shows one of the four possible materials used in the experiment. From left to right:
Phenolic, metal, plastic, and fabric. Each row shows the material on high resolution (top) and low
resolution (bottom).

material typically used as coating and to which we associated a ceramic-like sound). Each of the
materials was presented twice: one with Unity’s light-probe default rendering illumination quality
(high resolution, 128 samples) and another with a reduced quality (low resolution, 32 samples).
Figure 6.6 shows these eight combinations. The illumination in all cases was the environment
map St. Peters, from the Light Probe Image Gallery [72], since real-world illumination, and that
environment map in particular, facilitates material discrimination tasks [98].

Participants. The participants wore isolating headphones (Vic Firth SIH1) during the experi-
ment and they provided answers to the rating questions with an Xbox controller. Thirteen new
participants took part in the experiment (two female, eleven male), with ages ranging from 19

to 29 years. They all had normal or corrected-to-normal vision. Similarly to the two previous
experiments, all participants took part in a questionnaire and a stereoscopic depth test.

Procedure. We use an HMD to determine if the presence of a collision sound can alter the
perceived appearance of a material in a virtual environment. We presented different materials
and asked the participants to rate a set of perceptual attributes. This attributes included low-level
perceptual traits (soft/hard, glossy/matte, and rough/smooth), and high-level descriptors of appearance
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Table 6.3: Conditions in our experiment.

Low res. High res.

Visual only C0 C1

Audiovisual C2 C3

(realistic, metallic-like, plastic-like, fabric-like, and ceramic-like). We chose these attributes because they
are discriminatory [332], and they have also been used previously for assessing the interactions of
sound and visual stimuli [221]. During the experiment we presented a total of 24 different stimuli
to the participants (4 (materials) × 2 (quality levels) × 2 (modalities) + 3 (control materials) × 2

(modalities) + 2 (training stimuli)). Each of the stimuli was shown once. First, a brief explanation
of the procedure and the attributes to be used was made. Then, the participants underwent a
training with two different stimuli to make sure they understood what they were being asked
to do and to learn how the controller worked. This training helped the user to get used to the
device, setup, and answering procedure. The experiment was divided in two different blocks, with
a total of four conditions (see Table 6.3): visual-only stimuli ({C0, C1} for the low and high quality
rendering, respectively) and audiovisual stimuli ({C2, C3} corresponding to the low and high
quality rendering, respectively).

The order of these two blocks was randomized: half the participants started with visual-only
stimuli and the other half with audiovisual stimuli. Each of the blocks had 11 different stimuli
(the four materials were presented in low and high quality, and there were 2 control materials).
The presentation order of the stimuli within a block was also randomized, although ensuring that
two qualities of the same material did not appear successively. To the left of the stimuli, a panel
with the questions of the experiment was presented (Figure 6.5, left). Each stimulus, together with
the questions, was displayed for 60 seconds. At the end of the 60 seconds, only the questions
panel remained. A counter showing the remaining time before the stimulus disappeared was also
displayed to make the user aware of the remaining time. Each question pertained to an attribute
and a 7-point scale was used to provide the rating answer.

If the participant had rated all the attributes before the 60 seconds had passed, she could move
forward to the next stimulus. Between each pair of stimuli, a gray screen with a red cube appeared
so that the participants could take a rest if needed before continuing the experiment. The next
stimulus appeared when the participants aligned a visual target with the red cube; in this way we
also ensured that they were all looking at the same point of the scene when each stimulus is first
presented.

Analysis and results. For the analysis we first performed outlier rejection by using our control
materials: subjects were discarded when they did not provide a reasonable answer to the attribute
glossiness in our control materials (see Figure 6.7). We discarded two subjects with this procedure,
leaving a total of eleven users to analyze. We tested our data for normality using the Shaphiro-Wilk
test, which is well suited for small samples. The ratings for all our attributes did not present a
normal distribution (p < 0.05), we therefore turned to non-parametric methods to carry out the
analysis of our four conditions. For each material and for each attribute we perform pairwise
comparisons between the four conditions ({C0, C1, C2, C3}) by using the Wilcoxon Signed-Rank test.
This test is a nonparametric equivalent to the dependent t-test, and can be used to investigate
changes in ratings when subjects are presented with several conditions. Following Kerr and
Pellacini [163] we consider significant p-values below 0.1, which indicates a 90% confidence that
the means of the two different conditions differ. Our main insights are summarized in Table 6.4,
and described in detail in the following.

Influence of resolution. The resolution of the light-probe plays an important role in the
perceived glossiness of the material, as can be seen in Figure 6.8. This resolution affects the specular
reflections (see Figure 6.6), therefore it is particularly noticeable in very specular materials, i.e.,
there is a significant difference between the high and low resolution stimuli for the metallic material
while for the fabric material this difference is barely noticeable. We found a significant interaction
in the metallic material between the resolution and the perceived glossiness (p = 0.041 for {C0, C1}).
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Figure 6.7: Control materials used to discard outliers. We discarded a subject if her rating for the attribute
glossiness was above 2 for a very diffuse material (left), or below 6 for a very specular material
(right), on a 7-point scale.

Table 6.4: Summary of the results (significance) of the analysis of the data with Wilcoxon Signed-Rank tests for
Experiment 3. We compare the mean value of the attribute assigned to the material for the specified
conditions.

Mat. Att. Cond. Sig.

Influence

of resolution
Metallic Glossy C0 < C1 0.041

Influence

of sound

Metallic Plastic C0 > C2 0.041

Metallic Metallic C0 < C2 0.048

Phenolic Plastic
C0 > C2 0.027

C1 > C3 0.017

Phenolic Ceramic
C0 < C2 0.027

C1 < C3 0.017

The same trend can be observed for the conditions {C2, C3}. For the other three materials,
interestingly, we observe no significant difference in the perception of glossiness regardless of
resolution. These findings could be useful to save rendering costs by adjusting the resolution of
light-probes according to the material, since the resolution of the light-probe has little effect in the
perception of diffuse materials.

Influence of sound. We have found several interactions describing a significant effect of the
presence of sound in the ratings for the high-level attributes. For the metallic material the ratings
for the plastic attribute are significantly lower when the stimuli is presented together with sound
(p = 0.041 for {C0, C2}). Conversely, the ratings for the metallic attribute are significantly higher
(p = 0.048 for {C0, C2}). This effect is significant when we compare the low resolution conditions
{C0, C2}, but not when we compare the high resolution conditions {C1, C3}. We believe this can
be due to the high resolution visual stimuli better conveying the visual traits of the material; this
undermines the effect of the auditory stimuli, since the user recognizes the material well enough
just with the visual stimuli. This suggests that the effect of sound in material identification tasks
may be more relevant when the visual stimuli has a low quality. For the phenolic material the mean
of the plastic attribute significantly decreases when the user is presented with the multimodal
stimuli. In this case, the effect is noticeable both for the low resolution (p = 0.027 for {C0, C2}) and
high resolution (p = 0.017 for {C1, C3}) conditions. For this same material, the mean of the ceramic
attribute increases (p = 0.078 for {C0, C2} and p = 0.077 for {C1, C3}), which indicates that the
sound effectively helps the users identifying the material. We did not find significant interactions
for the fabric and the plastic materials, however, a similar trend can be seen in Figure 6.9: for every
material there is an increase in the mean rating of its corresponding attribute (bars outlined in
orange in Figure 6.9) when the user is presented with the audiovisual stimuli. These findings agree
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Figure 6.8: Mean ratings for the glossy attribute when the user is presented with the low resolution (yellow)
and the high resolution visual stimuli (orange) for our four materials analyzed. Error bars show
±1 SEM. There is a trend indicating that the perceived glossiness increases in the high resolution
stimuli.

with those of Giordano and McAdams [113], which supported that impact sounds were good
descriptors for material identification tasks, and they suggest that the sound also benefits material
discrimination tasks in VR, particularly when such materials are not easily recognizable only by
its visual traits. Our findings indicate that a high resolution is required for material identification
when its representation consists on visual stimuli only, however if additional auditory stimuli are
introduced, the resolution could be lowered while keeping the perceived appearance, thus saving
rendering costs.

6.4 conclusions

In this work, we have performed an exploration of crossmodal perception in virtual reality
scenarios. We have studied the influence of auditory signals in the perception of visual motion. To
do so, we first replicated an existing experiment which demonstrated the existence of a crossmodal
interaction between both senses with simple stimuli on a 2D conventional display. We were able to
successfully replicate it, obtaining the same trends in the results, and then extended it to virtual
reality with a HMD. We found that the same trends hold on a HMD (i.e., the factors explored
had the same influence on the crossmodal effect), but that there is a reduction in the crossmodal
effect. This reduction essentially means that there is a shift in the results towards a better accuracy
of subjects in performing the tasks assigned in the HMD setup. This can be due to the presence
of additional cues, in particular depth cues including binocular disparity and possibly motion
parallax. A similar conclusion can be drawn in our second experiment: We repeated the first
experiment (only on the HMD), with new subjects, and with more complex stimuli (we had three
different variations of the initial stimulus) to see whether the effect would still hold with more
realistic scenery. We observed a further reduction of the crossmodal effect (subjects were better
at detecting the correct behavior of the stimuli), which we hypothesize is due to the presence of
additional cues, in this case pictorial cues (shading, perspective, texture).

We then move on to the particular case of material appearance perception, with the aim of laying
the foundation for future practical applications. When analyzing crossmodal effects in a VR setup,
we have observed that findings previously reported for conventional displays hold: the presence
of sound improves material recognition. We have also included two different rendering qualities
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Figure 6.9: Mean ratings for the high-level attributes when the user is presented with the visual only stimuli
(blue) and the audiovisual stimuli (green) for our four materials. Error bars show ±1 SEM. For
every material, there is an increase in the mean rating of its corresponding attribute (marked by
an orange outline) when the visual stimuli is accompanied by sound.

for the material, and observed two main findings: First, that the influence of the rendering quality
on the perception of low-level attributes such as glossiness varies between material categories.
Second, that the effect of sound in the recognition of materials is more relevant for the low
quality-rendering case than for the high quality one.

In summary, regarding the research questions posed in Section 6.1, we can conclude that:

• The crossmodal effect holds in VR environments, even when increasing the complexity of
scenes.

• Crossmodal interactions influence the perception of material traits in VR environments.
More research is necessary to be able to quantify this effect and further understand it.

As in all studies of similar nature, some of our findings may not generalize to conditions outside
our study. We have focused on simple sounds and scenes with a controlled increase of complexity.
This allows us to isolate the effects of each condition, and perform a systematic analysis. We
believe these are just a few steps in the exploration of crossmodal perception in virtual reality. In
the future, we would like to expand these experiments by including other potentially influencing
factors or effects, and by further increasing the complexity of the stimuli. An interesting avenue for
future research would be to use different sound types and qualities in addition to the rendering
qualities. In the area of material perception, we hope this work serves as the foundation for future
explorations. Here we have employed representative materials of four main categories, future
works should further delve into the problem, analyzing a larger variety of materials, especially
among specular ones where there is more to be gained from exploitation of this crossmodal
interaction. This could result in the development of quantitative prediction models to enable
further practical applications of crossmodal perception in VR environments.
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7
Conclusion and Future Work

In this thesis we have used VR as a tool to better understand cognitive processes, establishing
behavioral guidelines (improving the knowledge of how humans behave in immersive environ-
ments and helping practitioners to create better experiences) or modeling user behavior. This
knowledge is key to improve user experience. Through this thesis we have focused on visual
perception and its interaction with other modalities considering embodiment as a key component
to understand human behavior. We have learned how to use behavioral data, both subjective and
objective in order to build useful information on a variety of topics, from appearance similarity
metrics to audiovisual suppressive effects in immersive environments. Thanks to the use of VR
we can better control the sensory information that users receive and safely research in a complex,
natural and reproducible environment. In the future we may see VR systems integrated with
wearable biosensors, which would allow us to collect additional quantitative data in complex
virtual environments.

Visual perception of realistic stimuli. In this part we have presented two different lines of
work. The first one is devoted to appearance similarity metrics. We have learned how to integrate
human perception information with a deep learning model. We have been able to gather enough
data for the model to learn a similar enough behavior thanks to our rendered dataset and the
large-scale, crowdsourced user studies. The applications we propose suggest the potential of
this combination in a variety of fields. This work has exciting potential avenues for future work.
For example, we have only gathered human judgements based on static images, with a single
geometry and illumination. These factors have been further explored by other subsequent works
[331, 178] yielding more robust models with a better generalization capability. For future work, the
model could also be trained with real data instead of synthetic data only to allow for richer, more
realistic learning and the latent space of the network could be studied for a better understanding
of how perceptual appearance similarity is derived from visual input.

In the second line of work of this part, we have focused on the interplay between visual and
time perception in immersive environments. We have studied how the manipulation of low-level
visual factors affect perceived time, finding that larger visual changes compress perceived time in
intervals of up to three minutes. A possible explanation for this effect lies in the attentional gate
model, which suggests that attention has to be divided between visual and temporal perception.
When there are more (or larger) visual changes, our attention is focused on the visual domain.
The limited remaining attention that can be devoted to the temporal domain in such situations
results in a perceived shortening of the experienced time interval. It is possible that how attention
is divided between modalities also has an effect on the findings described in the second part of
this thesis, being an important factor in contexts of high cognitive load.

As for future avenues of work, we would like to further explore this relationship by means
of additional user studies to validate and consolidate our findings. Besides, there are works
that show how a perceived shortening of time can be useful in several applications like medical
treatment [318]. We believe that our findings could be used as guidelines to modify the visual
aspect of VR applications in order to trigger different temporal alterations: for example, a more
vivid contrast palette may help increase the shortening of perceived time while using VR; faster
cuts in 360 movies could increase the perceived pacing of the story, etc. Before directly using our
findings in these applications, a thorough study of the effects of confounding factors (including
other high-level cognitive processes like cognitive load, emotional valence, arousal, boredom and
tiredness, etc.) in the observed behavior should be carried out. Finally, since time perception is
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affected by subjective experience (with age affecting how we perceive time) we would like to
repeat our studies with a more diverse set of participants.

Multimodal perception in immersive environments. In this part we have focused on how
different modalities can affect user experience in virtual reality. We first provide a thorough,
up-to-date overview of the uses of multimodality in immersive environments. We focus on the
main improvements that multimodality has shown so far: an increase of realism, contributions on
guiding attention, increasing user performance, improving navigation in virtual environments,
etc. In applications ranging from medicine to education, training and entertainment the inclusion
of different modalities is key for a complete and improved user experience. Our survey reveals
several gaps in multimodality research which make up for promising future research. The research
on the interplay between three or more modalities is scarce. This kind of research is a challenge for
several reasons: the space to explore grows exponentially with each modality added, the interplay
between different modalities is complex and difficult to measure directly, the environment has
to be carefully designed to avoid the sensory overload of the users which would hinder the
experience and the existing hardware for multimodal feedback should be improved. However,
we believe that a sound and scalable user study methodology similar to that shown through
this work, together with a parametric derivation of models and metrics correlated with human
cognitive processes can push forward the understanding of multimodal perception in immersive
environments.

Then we show how visual and auditory cues presented in a temporally congruent, spatially
incongruent manner can significantly degrade visual performance when compared to a baseline
visual-only condition. We devise a user study to explore and record this effect in which we move
on from tight laboratory conditions to a realistic, complex virtual environment in which users can
freely move. This elicits higher cognitive loads, as well as a more natural behavior. In the future,
we would like to implement a redirected walking algorithm which applies crossmodal suppressive
effects orthogonally to unimodal suppressive effects [369] which could potentially lead to better
virtual to real compression maps. Further studies are needed to identify the underlying cause of
the suppressive effect.

Finally, we delve into the importance of temporal synchronization between sensory modalities.
In particular, we study how auditory and visual cues need to be correctly synchronized in order
to be perceived as a single, multimodal event. In the context of material appearance perception,
participants can better identify materials in a virtual environment if accompanied by sound.
Moreover, the realism of the stimuli is judged as better in the presence of sound even if the visual
quality is degraded. Backtracking to appearance similarity distance metrics, it would be really
interesting to study how perceived similarity of different materials is affected by an immersive
environment.

Personal conclusions. I started my thesis after graduating from a computer engineering degree
and a biomedical engineering Master, following my own personal interests: I was fascinated
by how the human brain works. During this thesis we have tried to bring the knowledge of
cognitive sciences to computer science, with the firm belief that this union can only enhance the
scope of what we can achieve with new technologies. Throughout this thesis we have worked
on a variety of seemingly different topics. However, always inspired by the same motivation and
with the invaluable guidance of my supervisors and colleagues we have been able to establish a
common methodological approach to extract behavioral data (regardless of the specific topic to
work on) and turn it into useful information and models. Not only have I improved and polished
my technical skills, I have also grown over the years a series of soft skills that now I believe
are essential for any researcher. I have had the amazing luck of working in interdisciplinary,
international teams learning how to integrate diverse ideas and knowledge into coherent works. I
will always cherish the time I spent in my research internships, where I could meet researchers of
every possible background, each of them working on different projects. It helped me get out of
my comfort zone and grow as a person. Supervising other students has also made me improve:
having a better understanding of the high-level picture, being organized, identifying potential
bottlenecks and planning in advance. I started to better integrate these skills into my workflow
when I saw how in need my students were of them. Through the last few years I have also learned
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to fail. Not all of our projects have been successful and that is ok. Not all of our publications have
been accepted in the first submission but they did improve with each rejection. I also know now
that sometimes we have to prioritize: the moment or the circumstances may not be the best, or the
idea may simply not be good enough. All in all, I have spent the last years of my life learning
about topics I am excited about, meeting amazing people, growing as a person and doing all the
things I love in my work. I did not know what to expect when I started this thesis, but could not
be happier to have chosen this path. I only hope that what the future holds for me will be just as
good.
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Conclusiones y trabajo futuro

En esta tesis hemos utilizado la VR como herramienta para comprender mejor los procesos
cognitivos, creando guías con información de alto nivel (mejorando el conocimiento de cómo
se comportan los seres humanos en entornos inmersivos y ayudando a los profesionales a crear
mejores experiencias) o modelando el comportamiento cuando es posible. Este conocimiento es
clave para mejorar la experiencia del usuario. En esta tesis nos hemos centrado en la percepción
visual y su interacción con otras modalidades considerando la propriocepción como un com-
ponente clave para entender el comportamiento humano. Hemos aprendido a utilizar datos de
comportamiento tanto subjetivos como objetivos para construir información útil, desde métricas
de similitud de apariencia hasta efectos de supresión audiovisual en entornos inmersivos. Gracias
al uso de la VR podemos controlar mejor la información sensorial que reciben los usuarios e
investigar con seguridad en un entorno complejo, natural y reproducible. En el futuro podríamos
ver sistemas de VR integrados con biosensores, lo que nos permitiría recoger datos cuantitativos
adicionales en entornos virtuales complejos.

Percepción visual de estímulos realistas. En esta parte hemos presentado dos líneas de trabajo
diferentes. La primera está dedicada a las métricas de similitud de apariencia. Hemos aprendido a
integrar la información de la percepción humana con un modelo de deep learning. Hemos sido
capaces de recopilar suficientes datos para que el modelo aprenda un comportamiento similar
al humano gracias a nuestro conjunto de datos renderizados y a los estudios de usuarios a gran
escala. Las aplicaciones que proponemos sugieren el potencial de esta combinación en diversos
campos. Este trabajo tiene interesantes posibilidades para el futuro. Por ejemplo, sólo hemos
recogido juicios humanos basados en imágenes estáticas, con una única geometría e iluminación.
Estos factores han sido explorados más a fondo por otros trabajos posteriores [331, 178] dando
lugar a modelos más robustos con una mejor capacidad de generalización. En el futuro el modelo
también podría ser entrenado con datos reales en lugar de sólo con datos sintéticos para permitir
un aprendizaje más rico y realista, y el espacio latente de la red podría ser estudiado para una
mejor comprensión de cómo la similitud de apariencia perceptual se deriva de la entrada visual.

En la segunda línea de trabajo de esta parte, nos hemos centrado en la interacción entre la
percepción visual y del tiempo en entornos inmersivos. Hemos estudiado cómo la manipulación
de factores visuales de bajo nivel afecta a la percepción del tiempo, descubriendo que los cambios
visuales más grandes comprimen el tiempo percibido en intervalos de hasta tres minutos. Una
posible explicación de este efecto reside en el modelo de la puerta atencional, que sugiere que la
atención tiene que dividirse entre la percepción visual y la temporal. Cuando hay más cambios
visuales (o cambios mayores), nuestra atención se centra en el ámbito visual. La limitada atención
restante que puede dedicarse al dominio temporal en tales situaciones da lugar a un acortamiento
percibido del intervalo de tiempo experimentado. En cuanto a futuras vías de trabajo, nos
gustaría seguir explorando esta relación mediante estudios adicionales con usuarios para validar y
consolidar nuestros hallazgos. Además, hay trabajos que muestran cómo la compresión percibida
del tiempo puede ser útil en varias aplicaciones como el tratamiento médico [318]. Creemos que
nuestros hallazgos podrían servir como guía para modificar el aspecto visual de las aplicaciones
de VR con el fin de desencadenar diferentes alteraciones temporales: por ejemplo, una paleta de
contrastes más viva podría ayudar acortar más el tiempo percibido mientras se utiliza la VR; unos
cortes más rápidos en las películas de 360 podrían aumentar el ritmo percibido de la historia,
etc. Antes de utilizar directamente nuestros hallazgos en estas aplicaciones, debería realizarse un
estudio exhaustivo de los efectos de los factores de confusión (incluidos otros procesos cognitivos
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de alto nivel como la carga cognitiva, la valencia emocional, el nivel de emoción, el aburrimiento
y el cansancio, etc.) en el comportamiento observado. Por último, dado que la percepción del
tiempo se ve afectada por la experiencia subjetiva (y la edad afecta a la forma en que percibimos
el tiempo), nos gustaría repetir nuestros estudios con un conjunto más diverso de participantes.

Percepción multimodal en entornos inmersivos. En esta parte nos hemos centrado en cómo
las diferentes modalidades pueden afectar a la experiencia del usuario en la realidad virtual. En
primer lugar, ofrecemos una visión general y actualizada de los usos de la multimodalidad en los
entornos inmersivos. Nos centramos en las principales mejoras que la multimodalidad ha mostrado
hasta el momento: aumento del realismo, contribución a la orientación de la atención, aumento
del rendimiento del usuario, mejora de la navegación en entornos virtuales, etc. En aplicaciones
que van desde la medicina hasta la educación, pasando por la formación y el entretenimiento,
la inclusión de diferentes modalidades es clave para una experiencia de usuario completa y
mejorada. Nuestro estudio del estado del arte revela varias lagunas en la investigación sobre la
multimodalidad que constituyen una prometedora investigación futura. La investigación sobre
la interacción entre tres o más modalidades es escasa. Este tipo de investigación supone un reto
por varias razones: el espacio a explorar crece exponencialmente con cada modalidad añadida,
la interacción entre las diferentes modalidades es compleja y difícil de medir directamente, el
entorno tiene que diseñarse cuidadosamente para evitar la sobrecarga sensorial de los usuarios (lo
que empeoraría la experiencia), y el hardware existente para la información sensorial multimodal
debería mejorarse. Sin embargo, creemos que una metodología de estudio de usuarios sólida y
escalable, similar a la mostrada en esta tesis, junto con una derivación paramétrica de modelos y
métricas correlacionadas con los procesos cognitivos humanos, puede impulsar la comprensión de
la percepción multimodal en entornos inmersivos.

A continuación, mostramos cómo las señales visuales y auditivas presentadas de forma tem-
poralmente congruente y espacialmente incongruente pueden degradar significativamente el
rendimiento visual en comparación con una condición de base sólo visual. Diseñamos un estudio
con usuarios para explorar y registrar este efecto, en el que pasamos de condiciones estrictas
de laboratorio a un entorno virtual realista y complejo en el que los usuarios pueden moverse
libremente. Esto provoca una mayor carga cognitiva, así como un comportamiento más natural.
En el futuro, nos gustaría implementar un algoritmo de marcha redirigida (redirected walking) que
aplique los efectos de supresión que hemos encontrado ortogonalmente a los efectos de supresión
unimodal [369], lo que podría potencialmente conducir a mejores mapas de compresión virtual a
real. Además, se necesitan más estudios para identificar la causa subyacente del efecto supresivo.

Por último, se profundiza en la importancia de la sincronización temporal entre las modalidades
sensoriales. En concreto, se estudia cómo las señales auditivas y visuales deben estar correcta-
mente sincronizadas para ser percibidas como un único evento multimodal. En el contexto de la
percepción del aspecto de los materiales, los participantes pueden identificar mejor los materiales
en un entorno virtual si van acompañados de un sonido correctamente sincronizado. Además,
el realismo de los estímulos se juzga mejor en presencia del sonido aunque la calidad visual se
vea degradada. Volviendo a las métricas de distancia de similitud de apariencia, sería realmente
interesante estudiar cómo la similitud percibida de los diferentes materiales se ve afectada por un
entorno inmersivo.

Conclusiones personales. Empecé mi tesis después de graduarme en un grado de ingeniería
informática y un máster de ingeniería biomédica, siguiendo mis propios intereses personales:
me fascinaba el funcionamiento del cerebro humano. A lo largo de esta tesis hemos tratado de
acercar los conocimientos de las ciencias cognitivas a la informática, con la firme convicción de
que esta unión no puede sino potenciar el alcance de lo que podemos conseguir con las nuevas
tecnologías. A lo largo de esta tesis hemos trabajado en una variedad de temas aparentemente
diferentes. Sin embargo, siempre inspirados por la misma motivación y con la inestimable guía
de mis supervisores y compañeros, hemos sido capaces de establecer un enfoque metodológico
común para extraer datos de comportamiento (independientemente del tema específico a trabajar)
y convertirlos en información y modelos útiles. No sólo he mejorado y pulido mis habilidades
técnicas, sino que también he cultivado a lo largo de los años una serie de habilidades transversales
que ahora creo que son esenciales para cualquier investigador. He tenido la increíble suerte de tra-

110



conclusiones y trabajo futuro

bajar en equipos interdisciplinarios e internacionales aprendiendo a integrar ideas y conocimientos
diversos en trabajos comunes. Siempre apreciaré el tiempo que pasé en mis prácticas de investi-
gación, donde pude conocer a investigadores de distintas procedencias trabajando en proyectos
variados. Encontrarme en ese entorno me ayudó a salir de mi zona de confort y a crecer como
persona. Supervisar a otros estudiantes también me ha hecho mejorar: comprender mejor la vista
a alto nivel de un proyecto, ser organizado, identificar con antelación posibles cuellos de botella y
planificar de forma acorde. Empecé a integrar mejor estas habilidades en mi trabajo cuando vi
que mis alumnos las necesitaban. En los últimos años también he aprendido a fracasar. No todos
nuestros proyectos han tenido éxito, lo que no tiene nada de malo. No todas nuestras publicaciones
han sido aceptadas a la primera pero han mejorado con cada rechazo. Ahora también sé que a
veces hay que priorizar: puede que el momento o las circunstancias no sean los mejores, o que la
idea simplemente no sea lo suficientemente buena. En definitiva, he pasado los últimos años de mi
vida aprendiendo sobre temas que me entusiasman, conociendo a gente increíble, creciendo como
persona y haciendo cosas que me gustan en mi trabajo. No sabía qué esperar cuando empecé esta
tesis, pero no podría estar más contenta de haber elegido este camino. Sólo espero que lo que me
depare el futuro sea igual de bueno.
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