
Scalable exploration of 3D massive models
Alberto Jaspe Villanueva

Doctor of Philosophy (Ph.D.) thesis 2018

Supervisors Dr. Enrico Gobbetti
Visual Computing Director, CRS4

Dr. Julián Dorado de la Calle
Full Professor, UDC

Tutor Dr. Julián Dorado de la Calle

PhD Programme in Information and Communications Technology

Scalable exploration of 3D massive models

Doctor of Philosophy (Ph.D.) thesis 2018

PhD Programme in Information and Communications Technology

Author: Alberto Jaspe Villanueva

Supervisors: Dr. Enrico Gobbetti (CRS4)

Dr. Julián Dorado de la Calle (University of A Coruña)

Tutor: Dr. Julián Dorado de la Calle (University of A Coruña)

Reviewers: Oliver Staadt (University of Rostock)

Rafael Ballester (University of Zürich)

University of A Coruña

Department of Computer Science

Faculty of Computer Science

Campus de Elviña, S//N

15071 – A Courña, Spain

Alberto Jaspe Villanueva Dr. Enrico Gobbetti Dr. Julián Dorado de la Calle

A Coruña (Spain) and Cagliari (Italy), September 2018.

Dr. D. Julián Dorado de la Calle,

Catedrático del Departamento de Tec-

nologías de la Información y las Co-

municaciones, Universidade da Coruña

(UDC), España.

Dr. D. Enrico Gobbetti, director del

grupo de Visual Computing en el Centro

de Estudios Avanzados, Investigación y

Desarrollo de Cerdeña (CRS4), Italia.

Dr. Mr. Julián Dorado de la Calle, Full Porfes-

sor of the Information Technologies Department,

University of A Coruña (UDC), Spain.

Dr. Mr. Enrico Gobbetti, director of the Visual

Computing Group at the Center for Advanced

Studies, Research and Development in Sardinia

(CRS4), Italy.

Atestan

Attest

Que la memoria titulada "Scalable Exploration of 3D Massive Models" presen-

tada por Alberto Jaspe Villanueva, ha sido realizada bajo nuestra dirección. Con-

siderando que el trabajo constituye tema de Tesis Doctoral, se autoriza su presentación

en la Universidade da Coruña.

That the dissertation entitled "Scalable Exploration of 3D massive models" presented by Alberto Jaspe

Villanueva, has been developed under our advising. Considering that the work is subject of Doctoral Thesis,

we authorize its presentation at the University of A Coruña.

Y para que así conste, se expide el presente certificado en A Coruña (España) y

Cagliari (Italia), en Septiembre del 2018.

And for the record, this certificate is issued in A Coruña (Spain) and Cagliari (Italy) in September 2018.

Fdo. Dr. D. Enrico Gobbetti Fdo. Dr. D. Julián Dorado de la Calle

iii

A mi familia, en vías de expansión

To my growing family

„It’s not the note you play that’s the wrong note;

it’s the note you play afterwards that makes it

right or wrong.

— Miles Davis

Acknowledgements

I would like to thank a number of people who supported me, both professionally and

personally, on my journey to complete this work.

In first place, I would like to thank Enrico Gobbetti, who has been my research mentor

during this time and the main supervisor of this thesis, as well as Julian Dorado de la

Calle for co-supervising, tutoring and mentoring me. Their wisdom, experience and

clarity of thought has always been a precious guide, and it will hopefully be for long

in the future.

I also want to specially thank to all the co-authors of the publications this work is

based on. Fabio Bettio, Jǐrí Bittner, Enrico Gobbetti, Fabio Marton, Oliver Mattausch,

Emilio Merella, Omar. A. Mures, Emilio J. Padrón, Renato Pajarola, Ruggero Pintus,

Juan R. Rabuñal, and Michael Wimmer. Also, during this period I had the chance to

work in other publications with Marco Agus, Marcos Balsa, Marco di Benedetto, Fabio

Ganovelli, Luis Hernández, Claudio Mura, Giovanni Pintore, Javier Taibo, Roberto

Scopigno, Antonio Seoane, and Antonio Zorcolo. I feel so fortunate to have had the

chance of learning from these great researchers from many institutions around the

world.

I am also very grateful for the great effort and willingness to help shown to me by the

reviewers of this thesis, Oliver Staadt and Rafael Ballester-Ripoll. Further, I would

like to thank also Renato Pajarola, not only for co-leading the Marie Curie DIVA ITN

together with Enrico, but also for hosting me at the VMML group at the University of

Zurich (UZH) which he directs.

All my gratitude and friendship to the present and past members of (or related to)

the Visual Computing Group of CRS4: Anto, Cinzia, Claudio, Emilio, Enrico, Fabio B.

Fabio M., Gianluigi, Gianni, Jalley, Jose, Katia, Luca, Magus, Marcos, Matteo, Robi,

vi

and Ru. You have always made me feel at home and taught me so much (and not just

about Computer Graphics). I also want to mention my former group, VideaLab where

I got very nice experiences developing Computer Graphics projects aside so talented

people, as well as RNASA lab, specially Fran Cedrón who has remotely assisted me

so much.

I am also so grateful for the many long scientific, tech and nerd discussions with

Taibo, Ryu and Jalley. Talking to you is always a motivational boost.

Many people have supported me during these years, some old, faraway friends and

other new and closer ones. You are a lot, and I feel very lucky to have you. I just want

to mention some who have specially pulled me in the most stormy times: RauPau,

Firinu, Maje, Franci, i compari Luca e Vale, Pierino, ViCs, Annalisa, Lili, Braisa, Javier

y Gabi, Ryu, Michi, Charli, Noe, Rubén, Ada, José and the whole Orthinat clan, Mari,

Cate, Vale, Eve, as well as so many others that I am probably forgetting. Thanks guys,

your friendship is a treasure.

I have nothing but love and gratitude to my entire family. Not only my parents, Jose

and Vicky, but my sister, brother, and the whole tribe, while far away they are always

so close to me. And also to the Pau-Massidda family, especially Cinzia and Antonello,

who have treated me like a son from the outset.

Finally and most important, Manu, thank you for being my favorite person and my

ultimate supporter. I love you and the alien growing inside of you. And to this little

guy, I never, ever would have found the energy to finish this work without your

arrival. You are not born yet, but you have already changed my life for the better.

Thanks and see you soon!

Graciñas, y gracias, e grazie, e gràtzias and thanks.

Cagliari, September 2018 Alberto Jaspe Villanueva

vii

Resumo

Esta tese presenta unha serie técnicas escalables que avanzan o estado da arte da

creación e exploración de grandes modelos tridimensionaies. No ámbito da xeración

destes modelos, preséntanse métodos para mellorar a adquisición e procesado de

escenas reais, grazas a unha implementación eficiente dun sistema out- of- core de

xestión de nubes de puntos, e unha nova metodoloxía escalable de fusión de datos

de xeometría e cor para adquisicións con oclusións. No ámbito da visualización de

grandes conxuntos de datos, que é o núcleo principal desta tese, preséntanse dous

novos métodos. O primeiro é unha técnica adaptabile out-of-core que aproveita o

hardware de rasterización da GPU e as occlusion queries para crear lotes coherentes

de traballo, que serán procesados por kernels de trazado de raios codificados en

shaders, permitindo out-of-core ray-tracing con sombreado e iluminación global. O se-

gundo é un método de compresión agresivo que aproveita a redundancia xeométrica

que se adoita atopar en grandes modelos 3D para comprimir os datos de forma

que caiban, nun formato totalmente renderizable, na memoria da GPU. O método

está deseñado para representacións voxelizadas de escenas 3D, que son amplamente

utilizadas para diversos cálculos como para acelerar as consultas de visibilidade na

GPU. A compresión lógrase fusionando subárbores idénticas a través dunha transfor-

mación de similitude, e aproveitando a distribución non homoxénea de referencias

a nodos compartidos para almacenar punteiros aos nodos fillo, e utilizando unha

codificación de bits variable. A capacidade e o rendemento de todos os métodos

avalíanse utilizando diversos casos de uso do mundo real de diversos ámbitos e

sectores, incluídos o patrimonio cultural, a enxeñería e os videoxogos.

Palabras crave: Gráficos por Computador, Síntese de Imaxen Escalable, Algoritmos

Out-of-core, Trazado de Raios, Voxels, Niveis de detalle.

viii

Resumen

En esta tesis se presentan una serie técnicas escalables que avanzan el estado del arte

de la creación y exploración de grandes modelos tridimensionales. En el ámbito de

la generación de estos modelos, se presentan métodos para mejorar la adquisición y

procesado de escenas reales, gracias a una implementación eficiente de un sistema

out-of-core de gestión de nubes de puntos, y una nueva metodología escalable de

fusión de datos de geometría y color para adquisiciones con oclusiones. Para la

visualización de grandes conjuntos de datos, que constituye el núcleo principal de

esta tesis, se presentan dos nuevos métodos. El primero de ellos es una técnica

adaptable out-of-core que aprovecha el hardware de rasterización de la GPU y las

occlusion queries, para crear lotes coherentes de trabajo, que serán procesados por

kernels de trazado de rayos codificados en shaders, permitiendo renders out-of-core

avanzados con sombreado e iluminación global. El segundo es un método de compre-

sión agresivo, que aprovecha la redundancia geométrica que se suele encontrar en

grandes modelos 3D para comprimir los datos de forma que quepan, en un formato

totalmente renderizable, en la memoria de la GPU. El método está diseñado para

representaciones voxelizadas de escenas 3D, que son ampliamente utilizadas para

diversos cálculos como la aceleración las consultas de visibilidad en la GPU o el

trazado de sombras. La compresión se logra fusionando subárboles idénticos a través

de una transformación de similitud, y aprovechando la distribución no homogénea de

referencias a nodos compartidos para almacenar punteros a los nodos hijo, utilizando

una codificación de bits variable. La capacidad y el rendimiento de todos los métodos

se evalúan utilizando diversos casos de uso del mundo real de diversos ámbitos y

sectores, incluidos el patrimonio cultural, la ingeniería y los videojuegos.

Palabras clave: Gráficos por Computador, Síntesis de Imagen Escalable, Algoritmos

Out-of-core, Trazado de Rayos, Voxels, Niveles de detalle.

ix

Abstract

This thesis introduces scalable techniques that advance the state-of-the-art in massive

model creation and exploration. Concerning model creation, we present methods for

improving reality-based scene acquisition and processing, introducing an efficient

implementation of scalable out-of-core point clouds and a data-fusion approach for

creating detailed colored models from cluttered scene acquisitions. The core of this

thesis concerns enabling technology for the exploration of general large datasets.

Two novel solutions are introduced. The first is an adaptive out-of-core technique

exploiting the GPU rasterization pipeline and hardware occlusion queries in order

to create coherent batches of work for localized shader-based ray tracing kernels,

opening the door to out-of-core ray tracing with shadowing and global illumination.

The second is an aggressive compression method that exploits redundancy in large

models to compress data so that it fits, in fully renderable format, in GPU memory.

The method is targeted to voxelized representations of 3D scenes, which are widely

used to accelerate visibility queries on the GPU. Compression is achieved by merging

subtrees that are identical through a similarity transform and by exploiting the skewed

distribution of references to shared nodes to store child pointers using a variable bit-

rate encoding The capability and performance of all methods are evaluated on many

very massive real-world scenes from several domains, including cultural heritage,

engineering, and gaming.

Keywords: Computer Graphics, Scalable Rendering, Out-of-core algorithms, Ray-

tracing, Voxels, Level-of-detail.

x

Preface

THIS thesis represents a partial summary of the work done between 2014

and 2018, mainly with the Visual Computing Group of the CRS4 (Center

for Advanced Studies, Research and Development in Sardinia, Italy) under

the direct supervision of its director Dr. Enrico Gobbetti, who I want to thank for

offering me the unique opportunity to be part of his research group. During this time

I also attended the Ph.D. Program in Information and Communications Technology

under the kind tutoring and also advising of Dr. Julián Dorado de la Calle, director of

SABIA group, and full professor at the University of A Coruña (Spain), who I thank

as well. Without both their dedication and guidance this work would not have been

possible.

I developed the main work of this Ph.D. thesis in the framework of the Data Inten-

sive Visualization and Analysis (DIVA) Project [1], an Initial Training Network (ITN)

funded by the EU (Marie Curie Actions of the European Union’s Seventh Framework

Programme). From 2012 to 2016 it brought together six full partner institutions,

namely, the University of Zurich (UZH), the CRS4, the University of Rostock, the

Chalmers University of Technology, Diginext, and Holografika, and eight associate

partners from 6 different EU countries. Associate partners include Eyescale Software

GmbH (EYE), Geomatics & Excellence (GEXCEL), Compagnia Generale di Riprese

aeree (BLOM CGR), Centre d’Essais et de Recherche de l’ENTENTE (CEREN), Fraun-

hofer IGD, AIRBUS, NVIDIA, AMD. The main goal of the network was to train the next

generation of researchers in the fields of 3D data presentation and understanding,

with a primary focus on data intensive application environments. I was honored with

a 3-years Early Stage Researcher grant to develop my research at CRS4. During those

years, I had the great chance to closely collaborate with some of the partners, as well

as show and discuss my work with all of them in the numerous meetings around

Europe. It has been a fantastic and enlightening experience.

xi

Following my three years withing DIVA, I completed my thesis while working at the

CRS4 Visual Computing Group on several interesting projects, mostly in the area of

cultural heritage computing.

xii

Contents

1 Introduction 1
1.1 Background and motivation . 1
1.2 Objectives . 7
1.3 Achievements . 8
1.4 Organization . 11

2 General requirements, work hypotheses, and means of verification 12
2.1 Basic definitions . 12
2.2 Research questions . 15
2.3 Hypotheses supporting the prospected solutions 16
2.4 Means of verification . 18

3 Improving reality-based massive model creation: scalable out-of-core
point-clouds and effective data-fusion methods 20
3.1 Contribution . 21
3.2 Related work . 22

3.2.1 Out-of-core point cloud management 22
3.2.2 Color acquisition and blending 24
3.2.3 Color and geometry masking 25

3.3 Out-of-core massive point cloud management 25
3.3.1 System architecture . 26
3.3.2 Interactive exploration . 30

3.4 Supporting shape and color digitization cluttered 3D artworks 31
3.4.1 Context and method overview 33
3.4.2 Data acquisition . 35
3.4.3 Semi-automatic geometry and color masking 37
3.4.4 Data consolidation and editing 39
3.4.5 Color correction, mapping, and inpainting 40
3.4.6 Inpainting . 43
3.4.7 Implementation and results 44

3.5 Discussion . 49
3.6 Bibliographical Notes . 51

xiii

4 Improving scalability through adaptive batching: Coherent Hierarchical
Culling for Ray Tracing 52
4.1 Contribution . 53
4.2 Related Work . 54

4.2.1 Ray tracing data structures and acceleration 54
4.2.2 Mixing ray tracing and rasterization 56
4.2.3 Out-of-core ray tracing . 57
4.2.4 Visibility and rasterization methods 57

4.3 Overview . 58
4.4 Hierarchical Occlusion Culling for Ray Tracing 59

4.4.1 Generalized Occlusion Queries 60
4.4.2 Shader-based Ray-Triangle Intersection 60
4.4.3 Hierarchical Occlusion Culling 61
4.4.4 Traversing the Query-Pair Hierarchy 62
4.4.5 Exploiting Temporal Coherence 63

4.5 CHC+RT Implementation . 63
4.5.1 Hierarchical Traversal . 63
4.5.2 Ray-Triangle Intersections . 66
4.5.3 Ray Generation and Scheduling 69
4.5.4 Out-of-Core Ray Tracing . 69

4.6 Analysis . 70
4.6.1 Problem-domain pruning . 70
4.6.2 GLSL rendering . 72
4.6.3 Limitations . 72

4.7 Results . 74
4.8 Discussion . 82
4.9 Bibliographical notes . 82

5 Improving scalability through compression: Symmetry-aware Sparse Voxel
DAG 84
5.1 Contribution . 86
5.2 Related Work . 87
5.3 Overview . 89
5.4 Construction and encoding . 91

5.4.1 Bottom-up construction process 91
5.4.2 Out-of-core implementation 94
5.4.3 Compact encoding . 96

5.5 Ray-tracing a SSVDAG . 97
5.5.1 Traversal . 98
5.5.2 Scene rendering . 102

5.6 Results . 103

xiv

5.6.1 Datasets . 103
5.6.2 DAG reduction speed . 104
5.6.3 Compression performance . 106
5.6.4 Rendering . 109

5.7 Discussion . 112
5.8 Bibliographical notes . 114

6 Summary and conclusions 115
6.1 Overview of achievements . 115
6.2 Discussion and future work . 117
6.3 Bibliographical results . 119

Bibliography 123

Appendix A Sinopsis (thesis summary in Spanish) 134
A.1 Contexto, motivación e hipótesis . 134
A.2 Objetivos . 139
A.3 Métodos escalables para la gestión out-of-core de nubes de puntos y

fusión de datos . 140
A.4 Exploración escalable mediante planificación adaptativa y algoritmos

out-of-core . 142
A.5 Exploración escalable mediante compresión y algoritmos in-core . . . 144
A.6 Logros y conclusiones . 146

Appendix B Curriculum Vitae 151

xv

List of Figures

1.1 Two massive 3D models at different scales 2

1.2 Large 3D models from different sectors and types 4

1.3 Trend of processing v.s. memory performance on time 5

3.1 Examples of different levels of point clouds 21

3.2 Architecture of the proposed system to manage large point clouds . . . 27

3.3 Layered point cloud structure example 28

3.4 Massive point clouds datasets explorated interactively with PCM 31

3.5 Reassembled Nuragic statue with supports and its virtual reconstruction 32

3.6 Mont’e Prama Statues on display at the CRCBC exhibition hall 33

3.7 Pipeline of our scalabel shape and color digitization method 34

3.8 Flash illumination distance-based scaling for color correction 36

3.9 Automatic masking by histogram-based classification 38

3.10 Color correction and relighting . 41

3.11 Geometry infilling and inpainting . 44

3.12 Reconstructed Status of the Mont’e Prama complex 45

3.13 Mont’e Prama complex and closeup renders 46

3.14 Effect of color mapping . 50

4.1 Sample images from our interactive raytracer using CHC+RT algorithm 55

4.2 Overview of the CHC+RT algorithm 58

4.3 Query-pair hierarchy . 61

4.4 Overview of the pipeline . 63

4.5 Occlusion-query overdraw . 65

4.6 Reduced spatial coherence using diffuse rays 65

4.7 Pseudo-code of the traversal algorithm 66

4.8 Visualization of the BVH subtress and screen subdivisions. 68

4.9 Intersection between object-space and ray-space subdivisions 71

4.10 Comparison of CHC+RT with GLSL and CUDA with AO rays 77

4.11 Traversal-time comparision . 79

4.12 Comparison between conservative and aggressive versions. 80

4.13 Visual effects of the random rotation for sampling 81

xvi

5.1 Compressed powerplant model zoom-in details 86

5.2 Example 2D scene transformed into different structures 90

5.3 2D canonical base of transformations 92

5.4 Clustering of nodes and invariants check 93

5.5 Histogram of reference to nodes in the last levels 96

5.6 Layout of inner nodes in the compact representation 98

5.7 Optimized Octree DDA traversal algorithm for SSVDAGs 100

5.8 Example of ray traversal through the SSVDAG structure 102

5.9 Different render layers and final frame 103

5.10 Captured frames of the scenes used in the experiments. 104

5.11 Detail view of the Boeing scene at different resolutions 109

5.12 Performance of a sequence of interactive render 110

5.13 Comparison of primary rays performance for the different structures . 111

xvii

List of Tables

3.1 Evaluation of automatic geometric masking 47

3.2 Evaluation of automatic color masking 48

4.1 Used models showing near-view and far-view. 75

4.2 Comparision of CHC+RT with other methods, for near views. 76

4.3 Comparision of CHC+RT with other methods, for far views. 76

4.4 Per-frame statistics for the out-of-core models. 79

4.5 Timings for the aggressive version of CHC+RT 80

4.6 Effect of the per-pixel random rotation of the diffuse sampling kernel . 81

5.1 Comparison of compression reduction timings 105

5.2 Comparison of bitrates at 64k3 . 106

5.3 Comparison of node reduction for various data structures 107

5.4 Comparison of compression performance for various data structures . . 108

xviii

1Introduction

The availability of highly detailed 3D data is continuing to grow at a fast pace
thanks to the rapid evolution of 3D sensing and 3D model creation techniques.
Many application domains do not simply study offline such data, but require
the interactive exploration of visually realistic 3D models. This imposes the
challenges of efficiently transform massive amounts of 3D data into renderable
representations, and to efficiently render those representations in a visually
realistic manner at high frame rates. In this thesis, we introduce novel scalable
methods for improving reality-based massive model creation and novel techniques
for improving scalability of advanced rendering through GPU-friendly adaptive
batching or compression of renderable representations. This chapter outlines
the motivation behind this research, summarizes research achievements, and
describes the organization of the thesis.

1.1 Background and motivation

HIGH-QUALITY, high-density, and large-scale 3D data is continuously gener-

ated at a growing rate from sensors, scanning systems, 3D modeling, or

numerical simulations in a large variety of application fields. These tech-

nologies, and the ever increasing digitization of work methodologies in all domains,

have resulted in very large and complex 3D models of various kinds. One of the

most commonly used information is in the form of 3D surface models which describe

the overall shape, and possibly of color, of a real, designed, or simulated object.

Several examples from very different domains are shown in Fig. 1.2. Such models

are generated from different sources or processes, depending on their function. An

informal characterization of the most common model kinds is the following:

• CAD models. Computed-Aided Design is used by engineers, architects, de-

signers, etc. to create, modify, analyze, and optimize any kind of object or

construction. This scenes often represent very large projects, and as they are

intended for technical purposes, usually contain big amounts of precise details.

Surface models are routinely used as a renderable representation for visual in-

spection. The most common renderable surface representation is an optimized

triangle mesh derived from the boundary representation of the original CAD

1

Fig. 1.1.: Two massive 3D models at different scales, rendered at interactive frame
rates with complex illumination. Top: Boeing 777 model (over 350M of trian-
gles), an example of complex real CAD scene. Bottom: City-200 model (200M
of triangles), an example of generated urban landscape scene. Even at different
scales, it is appreciable the hard and soft shadows, color bleeding and ambient
occlusion.

representation, be it solid or parametric. Typical models may be very large. For

instance, the Boeing 777 model in Fig. 1.1 contains over 350M of triangles.

• Acquired models. The use of scanners such as LIDAR (Light Detection and

Ranging, or Laser Imaging Detection and Ranging) or other techniques like

photogrammetry has been broadly extended in the last decade. They permit

to obtain fine-scale geometric, and often colorimetric information on the real

world. Their costs is continuing to drastically reduce, while at the same time

their resolution and precision is increasing. These technologies are used in

a wide variety of sectors and scales: from engineering purposes with aerial

scanning of vasts amounts of terrain or urban landscapes, to cultural heritage

field for capturing art objects such as statues, paintings or little pieces. Normally

1.1 Background and motivation 2

the resolution of those acquired models increases by getting more and more

samples, which also generates huge databases difficult to process and visually

explore. The most basic representation of such models is the point cloud, with

typical datasets now routinely containing from tens of millions to billions of

samples. For instance, the David model in Fig. 1.2 contains half a billion points.

• Computed models. Many 3D models are obtained as the result of numerical

processing which are used mostly in scientific sectors, such as chemistry, biology

or astrophysics. They can be also used as structures for secondary computations,

like global illumination, shadows or physical collisions, where algorithms

similar to the ones used for visualization, are intended to support specific

effects or behaviors. While computer simulation can generate models of many

kinds, e.g., volumetric scalar fields or vector fields, large surface models are

also common. One of the examples are large isosurfaces, which can easily reach

the billion of triangles.

• Designed mesh models, mostly used in simulators, interior design, virtual

reality environments, or by the entertainment industry like films or video-

games. This kind of models are usually generated by authoring tools software

by designers or artists. A wide variety of model sizes exist, from very small to

very large. It is also not uncommon to see, here, models of intricated geometry,

exhibiting large amounts of details, see, e.g., the examples in Fig. 1.2.

A large variety of fields, thus, produces what can be defined as a massive model. The

dictionary [2] defines massive as: (a) Consisting of or making up a large mass; bulky,

heavy, and solid; (b) Large or imposing, as in quantity, scope, degree, intensity, or

scale; (c) Large in comparison with the usual amount. As highlighted in the standard

reference on massive-model rendering [3], the digital 3D models addressed here

are massive in all three senses. In fact, just their surface representation requires

millions or billions of geometric primitives and can consume tens of gigabytes and

even terabytes of storage. Moreover, the digital datasets representing the models

describe high levels of detail that may not be visible to the human eye until magnified,

while the overall shape is only perceivable when moving very far. Finally, handling

the data on exceeds the usual capacity of conventional processing techniques.

While a variety of analyses can be made off-line on such models, many of their uses

require their interactive inspection by human operators. Interactive 3D visualization

of these datasets is, however, particularly challenging, given the inherent need of

generating visually rich images at high frequency and with low latency in response

to viewer motion.

1.1 Background and motivation 3

Fig. 1.2.: Large 3D models from different sectors and types. These are some examples of
massive models processed or rendered with the approaches proposed in this system.
From top-left to right-bottom: Mont’e Prama statue (cultural heritage, acquired
with laser scanning and digital photography); Boeing 777 cockpit (engineering,
CAD model); San Miguel (gaming, authoring software); Hairball (procedural
computer generated); David statue (cultural heritage, acquired with laser scanning
and colored with photo mapping); Pazo de Lourizán point cloud (architecture,
from laser scanning); A Coruña city (urbanism, from aereal LIDAR); Conference
room (gaming, authoring tool); 16x Power Plants (engineering, CAD model).

In fact, for a visualization application to be interactive it must, for one side, generate

images at a rate high enough to provide the illusion of animation to the human

perception system. This typically means to sustain at least 10Hz [3]. Moreover,

the application must respond with a latency low enough to provide the impression

of instantaneous feedback, which is required to support interactive controls. This

means, typically, to take just a few tens of seconds to respond to an action such as

a user click or a change in motion direction [3]. In addition, the images generated

at high frequency and with low-latency must be of a quality high enough to deliver

compelling visual information, which means, for many application, the need to

compute shadowing and non-local/global shading.

Despite the continued increase in computing and graphics processing power, it is

clear that one cannot just expect to use brute force techniques on more powerful

hardware to achieve the goal of interactive inspection for massive data in the general

case. This is not only because hardware improvements also leads to the generation

of more and more complex datasets, but also because memory bandwidth and data

1.1 Background and motivation 4

access speed grow at significantly slower rates than processing power and become

the major bottlenecks when dealing with massive datasets (see Fig. 1.3), especially

in the context of complex non-local illumination simulations, which must combine,

per pixel, the contribution of many parts of the scene that affect to shadows and/or

interreflections, dramatically increasing the bandwidth requirements.

Fig. 1.3.: Trend of processing v.s. memory performance on time. Hardware parallelism,
e.g., in the form of multi-core CPUs or multi-pipe GPUs, results in the performance
improvement, which tends to follow and even outpace Gordon Moore’s exponential
growth prediction. The CPU performance has increased 60% per year for the last
decades. On the other hand, the access time for main memory consisting of DRAM
only decreased by 7-10% per year during the same period. Actually, the problem
is not memory bandwidth, as it can be seen in the graph at right side, that follows
Moore’s law trend, but memory latency, as well as memory power consumption.
Even if processors get faster and faster, they cannot fetch information fast enough.
This relative gap between CPU performance and access time shows that a major
computational bottleneck is usually in data access rather than computation, and
we expect that this trend will continue in the near future. Source: Synopsis & Intel.

For these fundamental reasons, many research efforts have been focused on the

problem of devising clever methods to render massive models on graphics hardware

(see the classic survey by Yoon et al. [3]), and the more recent survey on ray-tracing

solutions by Deng et al. [4]). In general, the main techniques employed in all

solutions strive to reduce the amount of data that needs to be stored or processed at

any given time. They can be characterized as follows:

• Data filtering techniques. Since massive models are too large to be processed

and require too much computation, many methods try to quickly devise reduced

working sets on which to perform the rendering computation fast enough to

meet timing constraints while not reducing the quality. This goal is achieved

by employing appropriate data structures and algorithms for visibility or de-

tail culling that quickly eliminate portions of the scene that is proved not to

contribute to the final image (see also survey in Sec. 4.2).

• Adaptive out-of-core techniques. Since massive models in their entirety just

do not fit in graphics memory, and often even in main memory, massive-model

1.1 Background and motivation 5

rendering methods are designed to work on out-of-core structures, loading data

on demand. Given the high I/O costs, adaptive cache-coherent methods are

typically employed, with the goal to reduce the number of cache misses and,

thus, lower the data access time (see also survey in Sec. 3.2 and Sec. 4.2).

• Data compression techniques. Since the limited amount of memory imposes

size bounds on the largest model (or working set) that can be managed in-core,

and, at the same time, accessing large amounts of data is also very costly in

terms of time, many method lower data size requirements with compression

techniques. Since many complex algorithms, such as raytracing, require random

access to spatial data structures as well as scene data, the compressed format

is designed to support compression-domain rendering or fast and transient

random decompression (see also survey in Sec. 5.2).

Many solutions have been proposed that mix and match these ingredients into

complex and powerful rendering systems. However, the overall problem of massive-

model rendering is far from being solved, and many aspects need further research [5,

6, 7].

In particular, many of the preceding acceleration techniques have been designed and

implemented especially for GPU-accelerated rasterization methods using simple local

illumination. Computing non-local effects, such as shadows and inter-reflections

requires the implementation of approximated multi-pass methods, non trivial to

realize in the context of a real-time out-of-core renderer because of the need to

carefully schedule data access and processing passes based on complex dependencies

among disjoint scene portions. This has mostly limited the quality of the images in

real-time walkthroughs based on rasterization solutions [5]. By contrast, high-quality

rendering systems supporting advance illumination have been proposed based on

real-time raytracing [4], but fully out-of-core solutions have been realized only using

CPU acceleration. The complex access pattern of ray-tracing would benefit from

compression, for example to fully fit data in GPU memory for a low-latency rendering,

but state-of-the-art solutions for the compression of fully renderable spatial data

structures and of the associated scene data are either reducing too much the access

time to support real-time performance, or not compressing data enough to support

very large models [6, 8].

My work in this thesis is mainly motivated by the need of removing these limita-

tions.

1.1 Background and motivation 6

1.2 Objectives

I set as a goal of this thesis to contribute to the advancement of the state of the art

in the massive-model area, exploring the potential of novel technology that push

the boundary in terms of model complexity and rendering quality in an interactive

setting on current GPU-accelerated commodity platforms. In particular, I set up for

my work the following objectives:

• Improve massive model creation by extending data fusion processes to

scalable structures. While the main focus of my thesis is on devising and

developing techniques to interactively explore massive models, I set up as a

first objective to tackle the problem of the efficient handling and creation of

3D models from massive amounts of acquired data. Working on this topic will

permit to start work not only on already created models, but from the raw

data used to create them. Given the fact that current reality-based surveying

techniques, such as digital photography, photogrammetry and laser scanning,

are making it possible to quickly acquire very dense shape and color represen-

tations of objects and environments, I set as a goal the creation of scalable

methods and techniques for managing such large raw-data representation and

fuse them to produce clean, renderable, detailed colored shapes, to be used in

interactive rendering applications;

• Improve massive model exploration by an out-of-core work batching ap-

proach. Even though current GPUs support general programming models and

allow for running acceleration data structures and complex traversal algorithms,

efficient memory management and computation scheduling for ray tracing is

significantly harder than for rasterization, leading to performance problems

and/or complications when trying to integrate rasterization and ray tracing

within the same application, e.g., to compute complex global illumination.

In this thesis I will study how to use visibility and smart scheduling of work

batches to be able to directly process and render 3D models of massive size from

out-of-core memory, within a flexible rendering core that naturally supports

complex illumination. I set as a goal the creation of techniques that will enable

rendering of massive models of hundreds of millions of primitives with shadows

and inter-reflections.

• Improve massive model exploration by in-core compression approach.

Adaptive out-of-core methods do not have hard limits in the size of mod-

els they can handle, due to the fact that they work on batches of limited size,

1.2 Objectives 7

but inherently introduce some latency when adaptively loading data to GPU to

update the working set. In several applications, this latency, even if minimal,

is a limiting factor, and therefore, there is a need also for techniques that

can squeeze as much data in core as possible in a fully renderable format. In

particular, voxelized representations of complex 3D scenes have been widely

used recently for this purpose, as they offer a very rendering-friendly data rep-

resentation. However, these representation are currently too memory-hungry to

support massive-model rendering. In this thesis, I set as a goal to improve the

compression performance of voxelized representation while minimizing occu-

pancy while keeping similar traversal times to current state-of-the-art solutions,

and thus, making it possible to apply GPU raytracing to massive models.

• Validate the different approaches on real-world massive data. In this thesis

I focus on advancing the state-of-the-art in massive model creation and explo-

ration through the design and implementation of novel data structures and

algorithms. In order to really validate, in practice, all these approaches, one

of the objectives will be to realize really workable prototype implementations

capable to provide unparalleled performance on massive real-world data. Each

of the methods will thus need to be benchmarked on a large number of massive

data and compared with other existing solutions.

1.3 Achievements

The research work carried out during this thesis has led to the following achievements

and peer-reviewed publications.

• The introduction of a general multiresolution design for a scalable system to

create, colorize, analyze, and explore massive point clouds totally out-of-core.

A GPU-accelerated implementation able to process and render a billion points

dataset [9] and its application to fields like cultural heritage or engineering

[10, 11]. I personally fully designed all algorithms and data structures and

implemented the scalable point-cloud subsystem.

"Point Cloud Manager: Applications of a Middleware for Managing Huge
Point Clouds". O. A. Mures,A. Jaspe Villanueva, E.J-Padrón, J.R. Rabuñal.
Chapter 13 of “Effective Big Data Management and Opportunities for Imple-
mentation” book. Pub. IGI Global (2016)

1.3 Achievements 8

"Virtual Reality and Point-based Rendering in Architecture and Heritage".
O. A. Mures, A. Jaspe Villanueva, E.J- Padrón, J.R. Rabuñal.Chapter 4 of
“Handbook of Research on Visual Computing and Emerging Geometrical Design
Tools” book. Pub. IGI Global(2016)

• An easy-to-apply acquisition protocol based on laser scanning and flash pho-

tography to generate colored point clouds [12], which introduces a novel

semi-automatic method for clutter removal and photo masking to generate

clean point clouds without clutter using minimal manual intervention. The

multiresolution design previously introduced allows that the entire masking,

editing, infilling, color-correction, and color-blending pipeline to work fully

out-of-core without limits on model size and photo count. I contributed to

the overal design of the approach and of its implementation. In particular, I

especially focused on the camera calibration and color correction for mapping,

I designed and implemented the infilling process working on scalable point

clouds, and designed and performed large parts of the extensive evaluation. In

terms of system, I personally implemented processing methods on top of the

scalable point-cloud subsystem.

"Mont’e Scan: effective shape and color digitalization of cluttered 3D art-
works". F. Bettio, A. Jaspe Villanueva, E. Merella, F. Marton, E. Gobbetti, R.
Pintus. ACM Journal on Computing and Cultural Heritage, Vol 8, Num 1 (2015)

• A novel approach to exploit the rasterization pipeline and hardware occlusion

queries in order to create coherent batches of work for localized shader-based

ray tracing kernels [5]. By combining hierarchies in both ray-space and object-

space, the method is able to share intermediate traversal results among multiple

rays. Then, temporal coherence is exploited among similar ray sets between

frames and also within the given frame. This scheduling architecture naturally

allows for out-of-core ray tracing, with the possibility of rendering potentially

unbounded scenes. This technique was presented in a joint Eurographics 2015

paper [5]. As for the distribution of work, I contributed to the design of the

method, fully designed and implemented the ray-tracing subsytem, and devised

and implemented the majority of the evaluation.

1.3 Achievements 9

"CHC+RT: Coherent Hierarchical Culling for Ray Tracing". O. Mattausch, J.
Bittner, A. Jaspe Villanueva, E. Gobbetti, M. Wimmer, and R. Pajarola. Computer
Graphics Forum Journal Vol 32, Num 2. Presented at Eurographics’15 (2015)

• A novel compression method called SSVDAG (Symmetry-aware Sparse Voxel

DAG) [6, 7], which can losslessly represent a voxelized geometry of many

real-world scenes, aside with an out-of-core algorithm to construct such repre-

sentation from a SVO or a SVDAG, as well as a clean modification of standard

GPU raycasting algorithm to traverse and render this representation with a

small overhead. This technique has proven to compress up to a 1M3 voxel grid

to fit completely in-core and render it in realtime. I consider SSVDAGs the main

contribution of this thesis, since I co-designed the method and the techniques

for its efficient implementation, fully implemented all the system components,

and performed the full evaluation. The resulting system has also been released

as open source together with the Journal of Computer Graphics Techniques

publication.

"SSVDAGs: Symmetry-aware Sparse Voxel DAGs". A. Jaspe Villanueva, F.
Marton, and E. Gobbetti- ACM SIGGRAPH i3D full paper (2016).

"Symmetry-aware Sparse Voxel DAGs (SSVDAGs) for compression-domain
tracing of high-resolution geometric scenes". A. Jaspe Villanueva, F. Marton,
E. Gobbetti. Journal of Computer Graphics Techniques Vol 2 Num 6 (2017).

"Voxel DAGs and Multiresolution Hierarchies: From Large-Scale Scenes to
Pre-computed Shadows". U. Assarsson, M. Billeter, D. Dolonius, E. Eisemann,
A. Jaspe Villanueva, L. Scandolo, E. Sintorn. Eurographics Tutorials (2018).

• The evaluation of all the previous methods on very large scale data. In particular,

as described in Chapters 3.4.7, 5.6, and 4.7, all methods have been tested with

models exceeding the hundreds of millions primitives.

As described in the survey of related work on data fusion (Sec. 3.2), dynamic work

batching for real-time out-of-core rendering (Sec. 4.2), compressed representations

(Sec.. 5.2), the work included in this thesis clearly advanced the state-of-the-art in

each of the targeted domains.

1.3 Achievements 10

1.4 Organization

This thesis is organized in order to show in a natural and coherent order all the

results obtained. Many readers would prefer to skip parts of the text and go back

and forth through the different chapters. In this section, the reader can find a brief

overview of what can be found in each chapter.

In this chapter I covered the background and motivation for this Ph.D. dissertation,

described my objectives, and summarized my results. The next chapter provides more

details on the generals framework under which this thesis was developed, including

a list of definitions of the main concepts, the general assumptions under which I have

worked, an explicit list of the hypotheses that had to be verified by this thesis, as well

as the means I intended to use for the verification.

The following three chapters are the core of this thesis, as they present my main

achievements in the area of massive model creation and exploration. These three

chapters have a similar structure: they first establish the goal and contributions

described in the chapter, then describes the state-of-the-art works related with the

proposed approach, and then explain the proposed solution itself, before evaluating

the results obtained on very large massive models. Every one of them finishes with

a discussion of advantages and drawbacks, and some bibliographical notes of their

content, in which I refer to the original publications, explain the differences with

respect to the published articles, and point to interesting follow-up works by myself

or other authors.

The final chapter provides a short summary of the achievements, as well as other

related works and publications carried out during the period of the Ph.D. program.

Finally, there is a critical discussion of the results obtained and of how they advance

the state-of-the-art, as well as some reflections on future lines of work.

1.4 Organization 11

2General requirements, work

hypotheses, and means of

verification

Before presenting in details my research work, I summarize here the general
framework under which this thesis was developed. In particular, I provide a
list of definitions of the main concepts, I summarize the general assumptions
under which I have worked, and provide an explicit list of the hypotheses that
had to be verified by this thesis, as well as the means I intended to use for the
verification.

2.1 Basic definitions

The following is a list of important definitions for the main concepts that appear in

this thesis:

• Massive model. Three dimensional scene or set of objects which require are

extremely large in comparison to those usually found in similar application and

pose scalability problems. This can mean that their representation is massive,

e.g., they require millions or billions of geometric primitives and can consume

tens of gigabytes and even terabytes of storage, or that the digital datasets

representing the models describe high levels of detail that may not be visible to

the human eye until magnified, while the overall shape is only perceivable when

moving very far, or that handling the data for a particular graphics application

exceeds the usual capacity of conventional processing or rendering technique.

• Surface model. In contrast to the solid nature of reality, surface models

describe only the superficial matter of the objects, by represent only the external

boundary of the objects using geometric surface entities and defining how they

interact with light. This kind of models are the most used in a variety of

domains (see Sec. 1.1), as they are normally used to explore the visual aspect

of the scenes, without a need of their solid properties.

12

• Point cloud representation. This is the most elementary of the surface repre-

sentations, it consists of set of point samples over the surface. Its simplicity as

dataset lies on its lack of topology. It is mostly used for acquired models, e.g.,

with techniques like LIDAR or photogrammetry. Beyond its spatial coordinates,

every point can store properties like reflectance or color. It can be directly

rendered by many techniques (see Sec. 3.2), but usually the point cloud repre-

sentation is used as a starting step to produce more complex representations

(e.g., triangle meshes).

• Triangle mesh representation. This is probably the most popular represen-

tation, as many rendering algorithms and graphic hardware have specialized

in its format. It is a special case of a polygonal mesh, and defines an explicit

surface representation topologically composed of a set of vertices and of trian-

gles connecting them. The geometric component is specified by associating a

3D position at each vertex. Vertices can also have properties, which represent

geometrical aspects of the surface, such as the normal, or of its material, such

as albedo, reflection index, roughness, etc. This representation are widely used

by CAD software, interactive applications, design, films, video-games, etc. (see

Sec. 1.1).

• Voxelized representation. A voxel represents the minimal cubical subdivision

on a regular grid in a three-dimensional space. A surface model can be repre-

sented by voxels by rasterizing the surface in the grid, i.e., by marking a voxel

full if it intersects the surface (eventually also storing the surface attributes

at that location), or empty if no intersection is found. The advantage of this

representation is that it is very efficient to trace, i.e., provides quick methods for

computing whether a given ray segment intersects a non-empty voxel. Thus, it

can be used to accelerate rendering computations, not only for direct render but

as support structures for secondary computations, such as visibility. A voxelized

representation at high resolution is potentially very large, and thus requires an

implementation based on compression methods. Normally these grids have a

high degree of sparsity and redundancy, and thus are highly compressible.

• Local illumination. Also known as direct illumination, is a lighting model of

3D surfaces that only takes into account the radiation coming directly from the

light source to the faces of the object, without any interaction with the rest of

the scene. This constraint makes it very simple to apply, but its lacks visual

realism and details (shadows, interreflections, occlusions). It is very fast as it

only needs a streaming memory access pattern. It is directly implemented in

the graphic processing units using rasterization algorithm.

2.1 Basic definitions 13

• Shadows. Darkening of areas of the scenes caused by objects between the light

source and the illuminated area. The objects are caused blockers. Computing

shadows increases rendering complexity as it requires computing visibility

not only from the camera point of view but also from point of view of each

contributing light.

• Ambient occlusion. It is a particular kind of shadow, in which the darkening

of each point in a scene depends on how exposed it is to ambient lighting.

Ambient occlusion can thus be seen as an accessibility value that is calculated

for each surface point. The result is a diffuse, non-directional shading effect

that casts no clear shadows but provides a low-frequency darkening.

• Global illumination. A lighting model for 3D surfaces that takes into account

not only the light that comes directly from a light source (direct illumination),

but also subsequent cases in which light rays from the same source are reflected

by other surfaces in the scene, whether reflective or not (indirect illumination).

Theoretically, reflections, refractions, and shadows are all examples of global

illumination. Often, however, only the simulation of diffuse inter-reflection or

caustics is called global illumination. In this theses, we consider the expanded

definition.

• Rasterization. Used widely in interactive graphics, is implemented in all

Graphics Processing Units (GPUs) of modern video boards. It is an object-

order rendering algorithm, thus, primitives are sequentially projected to image

plane, where they are converted to pixels and shaded. For resolving visibility,

It is used in combination with a z-buffer, which stores for each pixel the

distance to the observer. A rasterization pipeline can potentially process an

arbitrary number of primitives in stream-like manner. This can be useful

for large scenes that do not fit in memory. While this algorithm has linear

complexity with the number of objects to process, it can be converted to

logarithmic by using spatial index structures. Moreover, as the gap between

performance and bandwidth throughout the memory hierarchy is growing,

appropriate techniques must be employed to manage large working sets, and

ensure coherent access patterns. Basic rasterization, however, supports only

local illumination, and implementation of complex non-local effects is non

trivial, typically requiring multi-pass methods.

• Ray-tracing. In contrast to rasterization, ray-tracing is an image-order ren-

dering approach. It tries to model physical light transport as straight paths

across the space. In their classical form, it starts shooting primary rays from

the observer trough the pixels of the image plane, towards the 3D scene. Then,

2.1 Basic definitions 14

secondary rays can be casted for compute many light effects, such as shadows,

ambient occlusion, diffuse interreflection, etc. The methods is embarrassingly

parallel and very elegant, but also very costly in terms of computation and

memory optimization.

• Interactive exploration. An reactive software which allows users to see a

given model from different points of views by continuously controlling a virtual

camera using an interaction device. The main kinds of interactive exploration

are interactive walkhtroughs, in which the users simulate moving inside an

environment, and object inspection, in which the user moves an object to

see different portions of it from different angles and at different scales. All

interactive exploration applications will need to (loosely) meet frequency and

latency constraints with massive models. This will translate to support a refresh

rate of at least 5-10Hz and a latency in responding to user actions of just a few

frames (see Sec. 1.1).

2.2 Research questions

I set as a goal of this thesis to contribute to the advancement of the state of the art

in the massive-model area, exploring the potential of novel technology that push

the boundary in terms of model complexity and rendering quality in an interactive

setting on current GPU-accelerated commodity platforms. In particular, as mentioned

in Sec. 1.2, my main research objectives are to improve massive model creation

by extending data fusion processes to scalable structures, and to improve massive

model exploration by an out-of-core work batching approach, as well as by an in-core

compression approach. To reach these objectives, I will need to answer the following

specific research questions:

1. How to create a scalable data-fusion method to create consolidated 3D point

clouds and 3D meshes from large collections of photographs and range scans in

the difficult case of cluttered acquisition? The problem here will be to be able to

develop scalable algorithms and data structures capable to discriminate clutter

from object data and to consolidate them in a fused colored surface model

(point cloud or triangle mesh). The particular test case analyzed will need to

be that of stone statues with metal supports. The methods should be designed

to work on a potentially unbounded amount of input photographs and range

scans.

2.2 Research questions 15

2. How to exploit the hardware-supported rasterization hardware to support ray-

tracing of massive-models with non-local illumination? The problem here will be

to develop scalable algorithms and data structures to make it possible to natu-

rally use an adaptive approach for out-of-core rendering in a GPU-accelerated

ray-tracing framework. The resulting framework should be designed to enable

the easy inclusion of non-local illumination, and in particular shadows, ambient

occlusion, and diffuse inter-reflections for interactive exploration of massive

models.

3. How to compress voxelized representations, so as to make them usable as a main

geometric representation and not just as a secondary structure for low-frequency

shadows? The problem here will be to create a voxelized representation that

exploits sparseness and redundancy of scenes to compress very high resolution

voxelizations to a very compact GPU representation that can be traversed by a

GPU-accelerated ray-tracer at approximately the same speed of state-of-the-art

uncompressed representation. The creation process will need to be able to

work on a potentially unbounded amount of input voxels.

As a general requirement, all the proposed solutions will need to work on the

platforms that are typically used by end-users for construction and exploration in

the targeted domains (see Sec. 1.1). These are typically consumer-level PCs with

multicore CPUs with standard amounts of RAM (e.g. 16GB and above) and high-end

gaming graphics boards (e.g., NVIDIA GeForce).

2.3 Hypotheses supporting the prospected
solutions

My answers to the research questions, which will be detailed in the following chapters,

are based on the following hypotheses:

1. How to create a scalable data-fusion method to create consolidated 3D point

clouds and 3D meshes from large collections of photographs and range scans in

the difficult case of cluttered acquisition?

a) An acquisition pipeline based on flash photography and laser scanning

permits to easily acquire color and geometry. Since for cultural heritage

applications clutter and objects have different reflectance characteristics, it

will be possible to use a very small subset of the input range maps and color

2.3 Hypotheses supporting the prospected solutions 16

maps to produce a training dataset that will be sufficient for classification

algorithms to automatically mask unwanted colors and geometry.

b) Out-of-core point clouds managed in spatial structures such as kd-trees

can be able not only to render massive point datasets but also support

the different stages of a construction pipeline and make the results of the

processes permanent in the disk structure. In particular, it will be possible

to color consolidate all laser acquisitions into a single point cloud using a

single streaming pass over range maps, and to color the resulting point

cloud with an albedo by also streaming over the registered point clouds.

Since the location of the flash with respect to the camera is known, it

will be possible to exploit it to derive surface albedo from the measured

apparent color for each of the surface points.

2. How to exploit the hardware-supported rasterization hardware to support ray-

tracing of massive-models with non-local illumination?

a) A novel generalization of hierarchical occlusion culling in the style of the

CHC++ [13] will make it possible to exploit the rasterization pipeline and

hardware occlusion queries in order to create coherent batches of work

for localized shader-based ray tracing kernels. The main hypothesis is that

by extending CHC++ to jointly traverse hierarchies in both ray-space and

object-space, we will be able to generalize occlusion culling for arbitrary

packets of rays, opening the door to writing ray-tracing algorithms on top

of a rasterization framework.

b) An occlusion-based GPU raytracer working on coherent batches can natu-

rally support full out-of-core raytracing by scheduling together data I/O

and computation, and using a cache of most recently used objects to

reduce data transfer.

3. How to compress voxelized representations, so as to make them usable as a main

geometric representation and not just as a secondary structure for low-frequency

shadows?

a) Sparse Voxel DAGs [14] dramatically reduces the size of a sparse voxel

octree without impacting on voxel traversals by merging identical subtrees.

Our expectation is that it will be possible to further improve compression

by also considering similarity transforms in the matching process.

b) Among the many possible similarity transformations, reflective symmetries,

i.e. mirror transformations along the main grid planes, are very interesting

for our application, since the 8 possible reflections can be encoded using

only 3 bits (reflection X,Y,Z), the transformation ordering is not important,

2.3 Hypotheses supporting the prospected solutions 17

as transformations along one axis are independent from the others, and

efficient access to reflected subtrees, which requires application of the

direct transformation or of its inverse can be achieved by simple coordinate

(or index) reflection. Our expectation is that it will be easy to find a large

enough number of matches to compensate the overhead of symmetry

encoding, and that the traversal algorithm will be quick.

c) We expect that the distribution of references to shared nodes will be very

skewed, with a small number of nodes appearing a large number of times,

and a larger number of nodes appearing less times. We thus assume that it

will be possible to further improve compression by exploiting the skewed

distribution of references to shared nodes to store child pointers using a

variable bit-rate encoding.

d) Fully out-of-core transformation from a sparse voxel octree to a sparse

voxel DAG will be possible by a bottom-up external-memory algorithm

that reduces an SVO to a minimal SSVDAG by alternating matching and

merging at each level.

e) We expect that the cost of decoding and application of transformations

will be negligible, and that traversal costs will be similar to those of sparse

voxel octrees and sparse voxel DAGs.

2.4 Means of verification

In order to really validate, in practice, the proposed solutions, I will need to develop

working implementations capable to provide unparalleled performance on massive

real-world data. Each of the methods will thus need to be benchmarked on a large

number of massive data and compared with other existing solutions. The planned

benchmark results are the following:

1. We expect the point-cloud data structure to manage at least a billion-point

dataset (construction and rendering).

2. We expect to semi-automatically identify clutter by an automated classification

method based on a small manually marked working set, with a classification

error of less than 1%.

3. We expect to be able to render triangulated representations of models of the size

of the Boing 777 at interactive rates with non-local shading using a commodity

PC (NVIDIA GeForce class acceleration with 4GB memory).

2.4 Means of verification 18

4. We expect to significantly exceed (at least 30%) the compression rate of state-

of-the-art SVDAG solution for voxelized representation of scenes.

5. We expect to fit voxelized representations of models of the size of the Boing

777 at sub-millimetric precision fully in GPU memory (NVIDIA GeForce class

acceleration).

6. We expect to render voxelized representations in our compressed format at a

speed similar (less than 100% overhead) to sparse voxel octree solutions.

2.4 Means of verification 19

3Improving reality-based massive

model creation: scalable

out-of-core point-clouds and

effective data-fusion methods

Current reality-based surveying techniques, such as digital photography, pho-
togrammetry and laser scanning, are making it possible to quickly acquire, at
a low cost, and relatively simply, very dense shape and color representations
of objects and environments. Point clouds are a very natural representation of
such sampled models. However, current datasets acquired at a high-resolution
tend to be very massive. This large size makes handling these datasets very
complex, and requires scalable solutions at all processing stages. In this chapter,
after presenting a general design and implementation of a system for creating,
coloring, analyzing, and exploring very large point clouds, I will focus on the
solution of an important problem, especially in the cultural heritage area: the
effective shape and color digitization of cluttered 3D artworks. As a result, I
will show how complex reality-based models can be effectively created. The
forthcoming chapters will, instead, focus on solutions to the exploration problem.

THE increasing performance and proliferation of digital photography and

3D scanning devices is making it possible to acquire, at reasonable costs,

very dense and accurate sampling of both geometric and optical surface

properties of real objects. A wide variety of cultural heritage applications stand to

benefit particularly from this technological evolution. In fact, this progress in the

technology is leading to the possibility to construct accurate colored digital replicas

not only for single digital objects but at a large scale. Accurate reconstructions built

from objective measures have many applications, ranging from virtual restoration to

visual communication.

Point clouds are one of the most used data types to represent such models in fields

like engineering, environmental sciences, or cultural heritage. They are naturally

scalable as, the more samples the dataset has, the finer is the representation of the

real object or scene. However, current point cloud datasets may become untractable

20

Fig. 3.1.: Three large point clouds from different acquisition techniques. Examples of
large point clouds at different scales, rendered interactively with the described
system in the first part of this chapter. Left: aerial LIDAR data of A Coruña city.
Center: Pazo de Lourizán, with terrestrial LIDAR and digital photography. Right:
Ancient inscriptions on a dolmen, photogrammetry and digital photography.

on nowadays hardware, given that they can easily exceed the billions of samples.

Managing such large datasets requires scalable techniques. In this chapter, I will

consider the common case in which a very large point cloud must be optimized so

as to quickly allow for multiresolution exploration, analysis, and coloring. Common

examples of applications of these structures are:

• data fusion of point clouds with photographic data, e.g., for the creation of

photorealistic models from acquisitions done with lasers for the shape and

cameras for the color;

• extraction of geometric features such as planes, cylinders, etc. for engineering

purposes;

• real-time exploration of massive point cloud models on a variety of computers,

adapting the complexity of rendering to the capability of the platforms.

All these use cases require techniques capable to statically optimize a point cloud

to optimally transform it to a multiresolution structure maintained out-of-core from

which to extract at run-time levels of details for the various required operations. In

this chapter, I will present an implementation of an architecture based on a refinement

of the Layered Point Cloud approach. I will then focus on a particularly challenging

application of data fusion of points and images in cultural heritage: the effective

shape and color digitization of cluttered 3D artworks.

3.1 Contribution

The main contributions of this research are:

3.1 Contribution 21

• a general design for a scalable system for creating, coloring, analyzing, and

exploring massive point clouds totally out-of-core;

• an easy-to-apply acquisition protocol based on laser scanning and flash photo-

graph to generate colored point clouds;

• a simple and practical semi-automatic method for clutter removal and photo

masking to generate clean point clouds without clutter using minimal manual

intervention;

• a scalable implementation of the entire masking, editing, infilling, color-

correction, and color-blending pipeline, that works fully out-of-core without

limits on model size and photo number;

• the evaluation of the method and tools in a large-scale real-world application.

I personally fully designed and implemented the scalable point-cloud subsystem, also

described in [9, 15, 16]. As for the novel technique for scalable shape and color

digitalization of cluttered artwork, published in JOCCH [12], I contributed to the

design and implementation of color processing and mapping on point clouds, to the

infilling process, and to the extensive evaluation.

3.2 Related work

The use of points as rendering primitives has been introduced very early [17, 18], but

over the last decade they have reached the significance of fully established geometry

and graphics primitives [19, 20, 21]. Many techniques have since been proposed for

improving upon the display quality, levels-of-detail rendering, as well as for efficient

out-of-core managing of large point models. The approaches shown in this chapter

combines state-of-the-art results in a number of technological areas. In the following

text we only discuss the approaches most closely related to our novel contributions.

For more details, we refer the reader to the survey literature [21, 22, 23].

3.2.1 Out-of-core point cloud management

For many years, QSplat [24] has been the reference system in massive point rendering.

It consists in an out-of-core hierarchy of bounding spheres, traversed at run-time

to generate points. Nowadays, its main drawback is that the algorithm is CPU

bounded, as in the original technique computations are made per point, and CPU/GPU

3.2 Related work 22

communication requires a direct rendering interface, thus the graphic board is never

exploited at its maximum performance.

More recently, Grottel et al.[25] presented an approach for rendering of Molecular

Dynamics datasets represented by point glyphs, which also includes occlusion culling

and deferred splatting and shading. The method uses a regular grid rather than a

hierarchical data decomposition, and has thus limited adaptivity. Sequential Point

Trees [26] introduced a sequential adaptive high performance GPU oriented structure

for points limited to models that can fit on the graphics board. XSplat [27] and

Instant points [28] extend this approach for out-of-core rendering. XSplat is limited

in LOD adaptivity due to its sequential block building constraints, while Instant points

mostly focuses on rapid moderate quality rendering of raw point clouds. Both systems

suffer from a non-trivial implementation complexity. Layered point clouds [29] and

Wand et al.’s out-of core renderer [30] are prominent examples of high performance

GPU rendering systems based on hierarchical model decompositions into large sized

blocks maintained out-of-core. The layered point clouds are based on adaptive BSP

subdivision, and subsamples the point distribution at each level. In order to refine an

level-of-detail, it adds points from the next level at runtime. This composition model

and the pure subsampling approach limits the applicability to uniformly sampled

models and produces moderate quality simplification at coarse levels-of-details. In

Bettio et al.’s approach [31] these limitations are removed by making all BSP nodes

self-contained and using an iterative edge collapse simplification to produce node

representations. We propose here a faster high quality simplification method based

on adaptive clustering. Wand et al.’s approach [30] is based on an out-of-core octree

of grids, and deals primarily with grid based hierarchy generation and editing of the

point cloud. The limitation is in the quality of lower resolutions created by the grid

no matter how fine it is. All these previous block-based methods produce variable

sized point clouds allocated to each node. None of them support fully continuous

blending between nodes, potentially leading to popping artifacts.

All the mentioned pipelines for massive model rendering create coarser level-of-detail

nodes through a simplification process. Some systems, e.g., [29, 30], are inherently

forced to use fast but low-quality methods based on pure subsampling or grid-based

clustering. Others, e.g., [27, 31], can use higher quality simplification methods, as

those proposed by Pauly et al. [32]. Lastly, Goswami et al.[33] propose a fast high

quality technique which combines clustering, greedy selection, and delayed point

combination, with unstructured sets of points.

3.2 Related work 23

3.2.2 Color acquisition and blending

Most cultural heritage applications require the association of material properties

to geometric reconstructions of the sampled artifact. While many methods exist

for sampling Bidirectional Radiance Distribution Functions (BRDF) [34, 35] in

sophisticated environments with controlled lighting, the typical cultural heritage

applications impose fast on-site acquisition and the use of low-cost and easy to use

procedures and technologies. Color photography is the most common approach.

Since removing lighting artifacts requires knowledge of the lighting environment,

one approach is to employ specific techniques that use probes [36, 37]. However,

these techniques are hard to use in practice, in typical museum settings with local

lights. Dellepiane et al. [38, 39] proposed, instead, to use light from camera flashes.

They propose to use the Flash Lighting Space Sampling (FLiSS) – a correction

space where a correction matrix is associated to each point in the camera field of

view. Nevertheless, this method requires a laborious calibration step. Given that

medium- to high-end single-lens reflex (SLR) cameras support fairly uniform flash

illumination and RAW data acquisition modes that produce images where each

pixel value is proportional to incoming radiance [40], we take the simpler approach

of using a constant color balance correction for the entire set of photographs and

apply a per-pixel intensity correction based on geometric principles. This approach

effectively reduces calibration work. In this work, in addition to distance-based

correction, we employ a more complete correction that also takes into account

surface orientation. The method is similar to the one originally used by Levoy et

al. [41], without the need of special fiber optic illuminators and of per-pixel color

response calibration. Under our flash illumination, taken from relatively far from the

statues (2.5m), the flash can be approximated as a point source and energy deposition

on the statue is negligible compared to typical ambient lighting. In addition, while

previous color blending pipelines worked on large triangulated surfaces [41, 42]

or single-resolution point-clouds [43], we blend images directly on multiresolution

structures leading to increased scalability. The pipeline presented in our original

work [44] is also combined here with inpainting and infilling methods for constructing

seamless models. Our implementation is based on combining screened Poisson

reconstruction [45] with an anisotropic color diffusion process [46] implemented in

a multigrid framework.

3.2 Related work 24

3.2.3 Color and geometry masking

Editing and cleaning the acquired 3D model is often the most time-consuming re-

construction task [47]. While some techniques exist for semi-automatic 3D clutter

removal in 3D scans, they are typically limited to well-defined situations (e.g., walls

vs. furniture for interior scanning [48] or walls vs. organic models for exterior scan-

ning [49]). Manual editing is also typically employed in approaches that work on

images and range maps. For instance, Farouk et al. [50] embedded a simple im-

age editor into the scanning GUI. We also follow the approach of working on 2D

representations, but concentrate our efforts to reduce human interventions. Inter-

active 2D segmentation is a well-known research topic with several state-of-the-art

solutions that typically involve classification and/or editing of color image datasets

(see well-established surveys [51, 52]). In general, the aim of these techniques is

to efficiently cope with the foreground/background extraction problem with the

least possible user input. The simplest tool available is the Magic Wand in Adobe

Photoshop 7 [53]. The user selects a point and the software automatically computes

a connected set of pixels that belong to the same region. Unfortunately, an acceptable

segmentation is rarely achieved automatically since choosing the correct color or

intensity tolerance value is a difficult or even impossible task. Many classic meth-

ods, such as intelligent scissors [54], active contours [55] and Bayes matting [56],

require a considerable degree of user input in order to achieve satisfactory results.

More accurate approaches have been presented that solve the semi-automatic image

segmentation problem by using Graph Cuts [57]; here the user marks a small set of

background and/or foreground pixels as seeds and the algorithm propagates that

information to the remaining image regions. Among the large number of extensions

to the Graph Cuts methodology [58, 59], the GrabCut technique [60] combines a

very straightforward manual operation, with a color modeling and an extra layer of

(local) minimization to the Graph Cuts technique; this requires a small effort from

the user but proves to be very robust in different segmentation scenarios. In this

work we propose an adaptation of the GrabCut approach to the problems of editing

point cloud geometries and pre-processing images for texture blending.

3.3 Out-of-core massive point cloud management

Normally, the process of acquiring 3D scans generates sets of unsorted three-dimensional

samples with a number of attributes associated per point, such as color, refraction

index, normal, etc. The type of processes that usually run over this data have an

3.3 Out-of-core massive point cloud management 25

spatial nature, such as the measurement geometrical properties, computation of point

attributes, etc. Many of them also are adapted for a coarse-to-fine solutions, giving

an initial approximation which is refined as the computation time goes on. Actually,

interactive exploration, i.e. render algorithms, can be seen as one of this processes

where the result is a visual representation of the data given a point of view.

By the other side, it is desirable to take the most advantage possible of the hardware

that commodity computers (even including mobile ones) implement today. In partic-

ular, graphic hardware has been shown to be very efficient dealing with streams of

spatial data, not only for rendering but even for general purpose computations. How-

ever, its main memory is normally orders of magnitude smaller than these datasets.

The objective of the proposed system is to convert these theoretically unbounded,

unstructured point clouds into a multiresolution and memory friendly structure that

allows:

• scale its performance depending on the hardware;

• interactive output-sensitive exploration;

• solving spatial queries in fast access times;

• running non-interactive processes over the point cloud;

• level-of-details and recursive refinement of those processes;

• use not only CPU but GPU hardware to maximize the computing throughput;

• read/write access to the associated point data;

In the next pages I will briefly describe a design which is able to fulfill these requisites.

This system is not intended for editing the point cloud in geometrical terms (i.e.

changing the position of the points, or making small add/remove operations) but

take advantage of its static nature to allow very fast, spatial and multiresolution

read/write access to the associated data.

3.3.1 System architecture

The figure 3.2 shows a high-level diagram of the proposed architecture. As it was

established before, the main parts are the spatial structure, which arranges the points

in a efficient, multiresolution, layered way, and the memory hierarchy, in charge

of transfer the data through the system. In my proposed implementation, point

information is divided into same-sized chunks. The number of points contained in

3.3 Out-of-core massive point cloud management 26

D
at

a
ch

u
n

ks

PCM System

RAM

L2 (Chunk Arrays)

...

VRAM

L1 (Buffer Objects)

...

L2 Cache

(async)

L1 Cache
(sync)

HDD

re
q

ue
st

request
Point
Cloud

Tree
descriptor

Chunk files

......

q
ue

ry

Spatial Tree

Spatial Algorithm

re
q

ue
st

d
at

a
ID

s

Fig. 3.2.: Architecture of the proposed system to manage large point clouds. Point
cloud is divided into data chunks following an additive kd-tree. These data chunks
are transferred over a memory hierarchy, directed by the two levels of cache.

every chunk is fixed by the hardware capabilities and the operative system parameters.

Their size depends also on the amount of information (normal, color, etc.) associated

to every point. The memory hierarchy proposed, allows fast access to the points with

spatial requests, managing transparently the transfers between permanent storage

(HDD), main CPU memory (RAM) and main GPU memory (VRAM). This stack

of memories has pyramidal shape, as normally is size-decreasing. Between these

memory stages, two levels of cache manage the data transfers, using geometrical

criteria based on the tree structure to preload subdivisions of the scene at different

levels of resolution.

An algorithm that needs to operate with the point cloud, can access both at CPU

level or a GPU level. It requests to work on a region of the space at some particular

level of detail. It can also specify a time and memory budgets for its requests, so

the system can reserve resources for interactive processes or other computations.

The system also allows many instances with different point clouds sharing the same

virtual space.

The spatial tree structure. The system uses the structure proposed by Gobbetti and

Marton in their technique Layered Point Clouds [29, 61]. They construct a non-

redundant, additive kd-tree structure, where points do not lay only in the leaves,

but are sparse into the different node levels by an statistical, space-homogeneous

distribution. This concept is represented in the figure 3.3.

3.3 Out-of-core massive point cloud management 27

Fig. 3.3.: Layered point cloud structure example. This example from [29] illustrates the
kd-tree structure used in the proposed system, where points are homogeneously
distributed over the nodes statistically covering the most part of the region they
represent.

Every node is mapped to a persistent data chunk in disk, which encode not only the

position of the points, but also their associated information, that can variable for

every point cloud. The number of points per chunk, M , is the only parameter to

decide at building time. The construction of the kd-tree is done by an out-of-core

process that recursively partitions the space occupied by the points, that should be

uniformly distributed over the model. For every iteration we choose a partition axis,

and in only one pass over points, we both compute a pseudo-median and statistically

choose the candidate M points. At the end of the iteration, the chunk with the

candidates is written, as well as the node information (splitting plane, splitting axis,

chunk ID, etc.) and rest of the point cloud is divided in two by the splitting cut. The

process then is applied independently to the two resultant point clouds if its cardinal

its > M , otherwise a leaf node is written.

As the number of points can be theoretically unbounded, we need scalable techniques

for some of these steps. For on side, all the algorithms are applied in arrays that work

out-of-core, so that its length is not bounded by the system main memory. By the

other side, two of the processes, the computation of the median as well as the choose

of well-distributed samples, have to use statistical techniques with linear complexity.

In both cases, analytical solutions would have complexities such as O(n ∗ log) or even

O(n2), which are no affordable for the massive datasets the system pretends to deal

with. In the case of the median, a low-level algorithm takes advantage of the IEEE

float encoding, using a first pass with an histogram of the coordinates most-significant

bits to choose a high probability centered range, and a second pass generating a new

3.3 Out-of-core massive point cloud management 28

histogram pruning all the samples non coincident in their first bits with the selected

in the previous pass, and selecting the center one. The tests has proven to have a

very low error rates, even with massive amounts of coordinates [9]. Instead, the

choice of the points to belong to every node is done by a stratified russian-roulette

style algorithm, taking care of having a uniform distribution of the samples.

This structure fulfills the requisites of the system about being able to progressively

access to different levels of detail, by simply loading deeper nodes. Also, its organiza-

tion is very suitable for a cache when used with spatial coherency, which is the kind

of algorithms the system is intended for.

The L2 asynchronous cache. This cache is in charge of the data transfers between

persistent memory (HDD) and RAM (CPU), and it is used by a only-CPU algorithm or

by the L1 cache. They commit it request for points contained in regions of the space

up to certain level of detail. The cache uses the tree structure to continually load

nodes that fulfill those space constraints, making them available in main memory. For

caching, it uses a simple Less Recently Used (LRU) replacement policy as it has been

shown to have a good performance in this kind of systems. It works in a completely

asynchronous manner in its own process, so the request are attended parallel while

the CPU and/or GPU are processing the available chunks. The list of chunks to load

always sorted by the level of the nodes in the tree that they belong, from the root

to the leaves. This way a course representation is available as soon as possible, and

finer levels are loaded as time goes on. L2 cache is able also to write the data flagged

chunks by the L1 cache and keep consistency inside the memory hierarchy.

The L1 synchronous cache. This cache manages the data transfers between RAM

(CPU) and VRAM (GPU). It breaks the point chunks into buffer objects and upload

them synchronously to the GPU memory, making them available both for rendering

(with OpenGL) or per parallel computing (with OpenCL). Like L1 cache, it uses a

Less Recently Used (LRU) replacement policy and a hash table, which maps between

chunks and buffer objects IDs. In this case there are two types of requests:

• Restricted by time, where the cache will load all the possible nodes in the

given budget of time, and return the control to the calling process. These

request are used when computing in iterative or multiresolution mode, so the

solution can be progressively refined, such in rendering or when calculating an

spatial measure.

3.3 Out-of-core massive point cloud management 29

• Restricted by level, where it will load all the required nodes up to some level

of resolution (or up to fill the maximum allowed budget of memory for the

cache), no matter how long it takes. This is the option for precise computations

in selected regions of space, or when using algorithm not adapted for a coarse-

to-fine solution.

The L1 cache has also the ability to store changes made in the GPU (e.g. by an

OpenGL kernel) to be persistent. When a node is evicted from the cache, its changes

will be written to the L2 before its deletion, as well as flagged for persistent writing

in disk.

Both caches can also use a prediction technique when they are in idle state after

having loaded all their requests. It tries to anticipate which could be the next region

of interest analyzing the spatial patterns of the last requests, so it can fill the whole

memory budget, or even replace chunks of points that have not been demanded

lately.

3.3.2 Interactive exploration

The proposed architecture allows real-time visualization of the point clouds, as a

particular read-only spatial process. The render algorithms keeps a front cut of

the tree and creates a list of nodes every frame, given a center of detail. Different

techniques prune this list, such as:

• level of detail culling, computing the size of the projected nodes into the

screen, and dismissing those smaller than pixel, as their contribute would be

insignificant;

• view culling, to dismiss nodes outside the camera frustrum;

• backface culling, to dismiss nodes which do not face to the camera;

Then, the remaining list is sorted by two different criteria. First, by levels of detail, so

at least there is always a course representation of the model, and then by distance to

the camera. At this point, the query is sent to the system with a few milliseconds of

time budget, that can be also adapted on-the-fly by the desired frame rate. After this

lapse of time for loading, the render is implemented in OpenGL, and take advantage

of the programmable stages of the pipeline for using the splatting technique [24].

3.3 Out-of-core massive point cloud management 30

Fig. 3.4.: Three examples of massive point clouds datasets explorated interactively
with PCM. All these dataset has been processed and rendered at real-time frame
rates in different configurations of commodity hardware, equipped with dedicated
GPUs. Left: Calderas datasets, ∼ 200M points. Center: Lourizan dataset, ∼ 90M
points. Right: Castelo dataset, ∼ 1B points.

3.4 Supporting shape and color digitization
cluttered 3D artworks

Cultural heritage is one of the application areas in which digitization is most com-

monly applied. In this field, scalable point cloud architectures such as the one

described above are employed for a variety of needs. One of the most challenging is

the creation of realistic and detailed colored models from digitized data.

One of the digitization approaches most widely used is a combination of laser scan-

ning with digital photography. Using computational techniques, digital object surfaces

are reconstructed from the laser-scan-generated range maps, while the apparent

color value sampled in digital photos is transferred by registering the photos with

respect to the 3D model and mapping it to the 3D surface using the recovered inverse

projections. Since early demonstrations of the complete modeling pipeline (e.g.,

[62, 41]), most of its components have reached sufficient maturity for adoption in a

variety of application domains. This approach is particularly well suited to cultural

heritage digitization, since scanning and photographic acquisition campaigns can

be performed quickly and easily, without the need to move objects to specialized

acquisition labs. The most costly and time consuming part of 3D reconstruction is

thus moved to post-processing, which can be performed off-site. Thus, in recent years

research has focused on improving and automating the post-processing steps – for in-

stance, leading to (semi-)automated scalable solutions for range-map alignment [63],

surface reconstruction from point clouds [64, 65, 66, 67], photo registration [68,

69], and color mapping [42, 70, 43]. Even though passive image-based methods

have recently emerged as a viable (and low-cost) 3D reconstruction technology [71],

3.4 Supporting shape and color digitization cluttered 3D artworks 31

the standard pipeline based on laser scanning or other active sensors still remain a

widely used general-purpose approach, mainly because of the higher reliability for a

wider variety settings (e.g., featureless surfaces) [71, 72].

Fig. 3.5.: Reassembled Nuragic statue with supports and its virtual reconstruction. The
black support structure holds the fragments in the correct position, with minimal
contact surface, avoiding pins and holes in the original material. A 360-degree view
is possible, but color and shape capture is difficult because of clutter, occlusions,
and shadows. The rightmost image depicts our 3D reconstruction. Photo courtesy
of ArcheoCAOR.

In this section, we tackle the difficult problem of effectively adapting the 3D scanning

pipeline to the acquisition of color and shape of 3D artworks on-site, in a cluttered

environment. This case, arises, for instance, when scanning restored and reassembled

ancient statues in which (heavy) stone fragments are maintained in place by a custom

exostructure (see Fig. 3.5 for an example).

Digitizing statues without removing the supports allows one to perform scanning

directly on location and without moving the fragments, therefore enabling a com-

pletely contactless approach. On the other hand, the presence of the supporting

structure typically generates shadow-related color artifacts, holes due to occlusion

effects and extra geometry that must be removed. With the standard 3D scanning

pipeline these issues lead to laborious and mostly manual post-processing steps –

including cleaning the geometry and careful pixel masking (for more details see

Sec. 3.2 with an overview of the related work).

Motivated by these issues, in this work we present a practical approach for improving

the digitization of the shape and color of 3D artworks in a cluttered environment.

While our methods are generally applicable, the work was spurred by our involvement

3.4 Supporting shape and color digitization cluttered 3D artworks 32

in the Digital Mont’e Prama project (see Sec. 3.4.1), which included the fine-scale

acquisition of 37 large statues and therefore required robust and scalable methods.

3.4.1 Context and method overview

The design of our method, which is of general use, has taken into account require-

ments gathered from domain experts in the context of a large scale project. In this

subsection we provide a general overview of our approach, justifying the design

decisions in relation to the requirements.

Fig. 3.6.: Mont’e Prama Statues on display at the CRCBC exhibition hall. Scanning was
performed on-site.

Figure 3.7 outlines the approach used, which consists of a short on-site phase and

a subsequent, mostly automatic, off-site phase. The only on-site operations are the

acquisition of geometry and color, which are performed in a contact-less manner by

only sliding and rotating the statue while it is mounted on its support. The geometry

acquisition operation is performed with a triangulation laser scanner, which produces

range and reflectance maps that are incrementally coarsely aligned during scanning

in order to monitor 3D surface coverage. On the other hand, color is acquired

in a dark environment by taking a collection of photographs with an uncalibrated

camera while using the camera flash as the only source of light. A Macbeth color

checker, visible in at least one of the photographs, is used for post-process color

calibration. Analogously to the geometry acquisition step, coverage is (optionally)

checked on-site by coarsely aligning the photographs using a Structure-from-Motion

(SfM) pipeline.

3.4 Supporting shape and color digitization cluttered 3D artworks 33

Laser
Scanning

Flash
Photography

Virtual
Reconstruction

Training Automatic
Cleaning

Manual
Editing

Geometry
Consolidation

TrainingAutomatic
Masking

Manual
Editing

Photo
Mapping

On-site Coarse
Registration

Photos Range
Maps

Photos

Seamless
Colored
3D Model

Color correction
Photo Blending

On-site SfM
Registration

Infilling and
inpainting

Fig. 3.7.: Pipeline. We improve digitization of 3D artworks in a cluttered environment using
3D laser scanning and flash photography. Semi-automated methods are employed
to generate masks to segment the 2D range maps and the color photographs,
removing unwanted 3D and color data prior to 3D integration. Sharp shadows
generated by flash acquisition are handled by the masking process and color
deviations introduced by the flash light are corrected at color blending time
by taking into account object geometry. A final seamless model is created by
combining Poisson reconstruction with anisotropic color diffusion. User-guided
phases are highlighted in yellow.

The remainder of the work can be performed off-site using semi-automatic geometry

and color pipe-lines that communicate only at the final merging step. In order to

remove geometric clutter the user manually segments a very small subset of the input

range maps and produces a training dataset that is sufficient for the algorithm to

automatically mask unwanted geometry. This step exploits the reflectance channel of

the laser scanner. As commonly done for cultural heritage pipelines, the automatic

masking can be in principle revised by visually inspecting and optionally manually

improving the segmentation, using the same tools employed for creating the example

masks. Note that this step, in contrast to previous work [50], is entirely optional

(see Sec. 3.4.7 for an evaluation of the manual labor required). In order to create

a clean 3D model, the masks are applied to all range maps, which are then finely

registered with a global registration method and optionally edited manually for

the finishing touch. The geometry reconstruction is then performed using Poisson

reconstruction [64], which takes care of infilling small holes that appears in the

unscanned areas (i.e., where supports touch the surface of the scanned object) using

3.4 Supporting shape and color digitization cluttered 3D artworks 34

a smoothness prior on the indicator function. The effect is similar to volumetric

diffusion [73].

The color pipeline follows a similar work pattern. It begins from the photographs

in raw format. After the training performed by the user on a small subset of images

the algorithm automatically masks all the input photos removing clutter. The user

then optionally performs a visual check and a manual refinement, then the masked

photos – already coarsely aligned among themselves with SfM – are aligned with the

geometry using the method by Pintus et al. [74]. The photos are finally mapped to

the surface by color-blended projection [42, 43]. During the blending step colors

are calibrated using a data extracted from the color checker and the differences

in illumination caused by the flash used during photography are corrected using

geometric information. Finally, an anisotropic diffusion process [46] is employed to

perform a conservative inpainting of the areas left without colors due to occlusions.

It should be noted that the infilling and inpainting approaches employed in this

work are minimalist. We do not aim at reconstructing high frequency details in large

areas. Instead, we just smoothly extend color and geometry from the neighborhood

of holes to avoid the presence of confusing and unattractive holes for public display

applications.

Details on semi-automatic geometry and color masking, as well as scalable data

consolidation and color mapping are provided in the following sections. The corre-

sponding phases are highlighted in yellow in Fig. 3.7.

3.4.2 Data acquisition

While geometry acquisition is performed using the standard triangulation laser

scanning approach, color acquisition is performed using an uncalibrated flash camera.

n our context, flash illumination is a viable way to image the objects, as it provides us

with sharp shadows together with information on the image-specific direction of the

illumination. Since at color mapping-time the geometry of the image is known, we

can correct each projected pixel according to the position of the surface on which it

projects with respect to the camera and the flash’s light, thus obtaining a reasonable

approximation of the surface albedo (see Sec. 3.4.5). In addition, cluttering material

– e.g., the supporting exostructure – generates sharp shadows which can be easily

3.4 Supporting shape and color digitization cluttered 3D artworks 35

identified both by the masking process and by taking into account geometric occlusion

in the color mapping process (see Sec. 3.4.3).

In contrast to previous work [38, 39, 41], we handle images directly in RAW format,

which allows us to correct images without prior camera calibration. We experi-

mentally measured that on a medium/high end camera, such as the Nikon D200

employed in our work, acquisition in RAW format produces images with pixel values

proportional to the incoming radiance at medium illumination levels (as also verified

elsewhere [75, 40]), and that the flash emits a fairly uniform light within a reasonable

working space.

Fig. 3.8.: Flash illumination. Using RAW camera data distance-based scaling provides a
reasonable correction. Balance between color channels can then be ensured using
color-checker-based calibration.

Sensor near-linearity has been verified by taking images of a checkerboard in a dark

room with t = 1/250s f/11.0+0.0, ISO400. As shown in the graph in Fig. 3.8 values

(measured on the white checkerboard squares) are proportional to 1/d2, where d

is the distance from the flash light. Distance-based scaling can be thus exploited at

color mapping time to provide reasonable correction, while balance between color

channels can be ensured using color-checker-based calibration (see Sec. 3.4.5). The

characteristics of flash illumination have been verified by taking a photograph of a

white diffuse material at 2m using the same 50mm lens used for photographing the

statues. After correcting for lighting angle and distance the illumination varies only

by a maximum of 7.6% within the view frustum.

While more accurate results may be obtainable with calibration techniques, even

the most accurate ones performed off-site [41, 38, 39, 75] do not perfectly match

local shading and illumination settings since, in particular, indirect illumination is

not taken into account and the photographed materials are (obviously) not perfect

3.4 Supporting shape and color digitization cluttered 3D artworks 36

Lambertian scatterers. We thus consider this uncalibrated approach to be suitable for

practical use. It should be noted that whenever needed these alternate techniques

can be easily performed during post-processing using the same captured data. Indeed,

the availability of RAW images in the captured database grants the ability to perform

a variety of post-process enhancements [40].

3.4.3 Semi-automatic geometry and color masking

Our masking process aims to separate the foreground geometry (the object to be

modeled) from the cluttering data (in particular, occluding objects), under the

assumption of different appearances – as captured in the reflectance and color signals.

Starting from a manual segmentation of a small set of examples (see Sec. 3.4.3) we

train a histogram-based classifier of the materials (see Sec. 3.4.3), which is then

refined by finding an optimal labeling of pixels using graph cuts (see sec. 3.4.3).

Then, a final (optional) user-assisted revision can be performed using the same tool

used for manual segmentation.

Manual segmentation. To perform the initial training the user is provided with a

custom segmentation tool, with the same interface for range maps and color images.

The tool allows the user to visually browse images/scans in the acquisition database,

visually select a small subset (typically, less than 5%) and draw a segmentation in

the form of a binary mask – using white for foreground and black for background.

The mask layer is rendered on top of the image layer and the user can vary the

transparency of the mask to evaluate the masking results. In addition to using stan-

dard draw/erase brushes, our tool supports interactive grab-cut segmentation [60]

in which the user selects a bounding box of the foreground object to initialize the

segmentation method.

Histogram-based classification. The user-selected small subset of manually masked

images and range maps is used to learn a rough statistical distribution of pixel values

that characterize foreground objects. For artifacts made of fairly uniform materials –

e.g., stone sculptures – 3-4 range maps and 4-5 images are typically sufficient.

For the range maps we build a 1D histogram of reflectance values, quantized to 32

levels, by accumulating all pixels that were marked as foreground in the user-defined

mask. On the other hand, for the color images we use a 2D histogram based on hue

and saturation, both quantized to 32 levels. Ignoring the value component is more

3.4 Supporting shape and color digitization cluttered 3D artworks 37

Input Ground truth Histogram

Auto Mask Difference Difference Detail

Fig. 3.9.: Automatic masking. Geometry (top row) and color (bottom row) results for a
single image. From left to right: acquired reflectance/color image; user-generated
ground truth masking; mask generated by histogram-based classification; final
automatically generated mask; difference to ground truth; magnified region of
difference image. In the difference image, black and white pixels are perfect
matches, while yellow pixels are false positives, green pixels are false negative
points on this image, and red pixels are real false negative points considering the
entire dataset.

robust to shading variation due to flash illumination and variable surface orienta-

tion. The process is repeated for all manually masked images, thus accumulating

histogram values before a final normalization step. The histogram computed on

the training set can be used for a rough classification of range map/image pixels

based on reflectance/color information. This classification is simply obtained by

back-projecting each image pixel to the corresponding bin location and interpreting

the normalized histogram value as a foreground probability.

It is worth noting that whether the histogram is computed from foreground or clutter

data is not important; as long as the rest of the pipeline is consistent the only

3.4 Supporting shape and color digitization cluttered 3D artworks 38

constraint is the aforementioned assumption that the two appearances are reasonably

well separable.

Graph cut segmentation. As illustrated in Fig. 3.9, third column, the histogram-

based classification is very noisy but roughly succeeds in identifying the foreground

pixels, which are generally marked with high probabilities. This justifies our use of

histograms for the rough classification step rather than the more complex statistical

representations typically used in soft segmentation [76, 56].

Segmentation is improved by using the rough histogram-based classification as

starting point for an iterated graph cut process. We initially separate all pixels

in two regions: probably foreground for those with normalized histogram value

larger than 0.5, and probably background for the others. We then iteratively apply

the GrabCut [60] segmentation algorithm using a Gaussian Mixture Model with 5

components per region and estimating segmentation using min-cut. As illustrated

in Fig. 3.9, column 4, the process produces tight and well regularized segmentation

masks.

Morphological post-pass. Since masks must be conservative, especially at silhouette

boundaries where a small misalignment is likely to occur, we found it useful to post-

process the masks using morphological filters. After denoising the mask using a small

median filter (5x5 in this work) we perform an erosion of the mask using an octagon

kernel (4x4 in this case). This step has the effect of eliminating small isolated spots

and to avoid being too close to the silhouettes, and the removal does not create

problems given the large overlap of images that cover the model.

3.4.4 Data consolidation and editing

The final result of the automatic masking step is a mask image associated to each

range map and color image. These masks are used for pre-filtering the geometry

and color information before further processing. The remaining processing steps,

optionally including color mapping (see Sec. 3.4.5), are performed on the point cloud

structure.

The final colored point clouds can then be further elaborated to produce seamless

surface models. To produce consolidated models represented as colored triangle

meshes, the most common surface representation, there exist a number of state-of-

3.4 Supporting shape and color digitization cluttered 3D artworks 39

the-art approaches [66, 65, 64]. We have adopted the recent screened Poisson surface

reconstruction approach [45] which produces high-quality watertight reconstructions

by incorporating input points as interpolating constraints, while reasonably infilling

missing areas based on smoothness priors. Because the Poisson approach does

not handle colored surfaces we incorporate color in a post-processing phase (see

Sec. 3.4.5).

3.4.5 Color correction, mapping, and inpainting

The color attribute is obtained first by projecting masked photos onto the 3D model

reference frame and then performing seamless texture blending of those images onto

the surface [68, 43]. In contrast to previous work, we blend and map images directly

to the out-of-core structure and perform color correction starting from captured RAW

images during the mapping operation.

Streaming color mapping. Our streaming photo blending implementation closely

follows our previous work [68, 43], which we have extended to work on the multires-

olution point cloud structure. We associate a blending weight to each point, which

is initialized at zero. We then perform photo blending adding one image at a time.

For each image, we start rendering the point cloud from the camera point of view,

using a rendering method that performs a screen-space surface reconstruction and

adapting the point cloud resolution to 1 projected point/pixel. We then estimate a

per-pixel blending weight with screen-space GPU operations that take as input the

depth buffer as well as the stencil masks (see Pintus et al. [43] for details). In a

second pass on the point cloud, we update the point colors and weights contained

in the visible samples of the leafs of the multiresolution structure. Once all images

are updated we consolidate the structure recomputing bottom-up the colors and

weights of inner node samples using averaging operations. As a result, the colored

models are available in our out-of-core multiresolution point cloud structure for

further editing.

In order to apply this same process to triangulated surfaces, such as those coming out

of the Poisson reconstruction, we import the surface vertices in our octree, perform

the mapping, and then map the color back to the triangulated surface. In this manner

we can use the spatial partitioning structure for view-frustum and occlusion culling

during mapping operations.

3.4 Supporting shape and color digitization cluttered 3D artworks 40

Fig. 3.10.: Color correction and relighting. Top-left: original image under flash illumina-
tion; note the sharp shadows and uneven intensity. Top-right: projected color
with distance-based correction and no synthetic illumination; notice that the
flash highlight has been removed, but a darker shade is on the slanted surface.
Bottom-left: projected color with distance-based and orientation-based correction
and no synthetic illumination; note the even distribution and good approxima-
tion of surface albedo. Bottom-right: synthetically illuminated model based on
recovered albedo using a different lighting setup.

Flash color correction. Color correction happens at color blending time during color

mapping operations. At this phase of the processing the color mapping algorithm

knows the color stored in the corresponding pixel of the RAW image (the apparent

color C(raw)), the camera parameters (camera intrinsic and extrinsic parameters as

well as flash position), and the geometric information of the current sample (position

and normal stored in the corresponding pixel of the frame buffers used to compute

blending weights).

As we verified, the RAW data acquisition produces images where each pixel value is

proportional to incoming radiance and the flash light is fairly uniform (see Sec. 3.4.7).

Therefore, we apply a simple color correction method based of first principles, similar

to the original approach of Levoy et al. [41], but without per-pixel calibration of

flash illumination and camera response. The results presented in this section assume

3.4 Supporting shape and color digitization cluttered 3D artworks 41

that the imaged surface is a Lambertian scatterer so that the measured color, for a

sufficiently distant illumination, can be approximated for each color channel i by

C(i)
(raw) ≈ w

(i)
(balance)

I(flash)
d2 C(i)

(surface)(n · l)
+ (3.1)

where w(i)
(balance) is the channel’s scale factor used to achieve color balance, I(flash)

is flash intensity, C(i)
(surface) is the diffuse reflectance (albedo) of the colored surface

sample, n is the surface sample normal, l is the flash light direction, and d is the

distance of the surface sample from the flash light. As in standard settings, the color

balance factors are recovered by taking a single image of a calibration target (Macbeth

charts in our case) and using the same setting used for taking the photographs of the

artifacts.

Thus, to compute the color of the surface at color mapping time we consider a

user-provided desired object distance do, using equation 3.1 to find

C(i)
(mapped) = d2

w
(i)
(balance)d

2
0(ε+ (1− ε)ñ · l)

C(i)
(raw) (3.2)

where ε is a small non-null value (0.1 in our case) and ñ is the smoothed normal

(obtained in screen-space with a 5x5 averaging filter. Normal smoothing and dot

product offsetting are introduced to reduce the effect of possible over-corrections in

the presence of a small misalignment – particularly at grazing angles. It should be

noted that, since the Lambertian model does not take into account the roughness of

the surface, under flash illumination it tends to over-shadow at grazing angles. As

noted by Oren and Nayar [77], this effect is due to the fact that while the brightness

of a Lambertian surface is independent of viewing direction, the brightness of a rough

surface increases as the viewing direction approaches the light source direction. The

small angular weight correction thus also contributes to reduce the boosting of colors

near silhouettes.

Figure 3.10 shows how a single flash image introduces sharp shadows and uneven

intensity based on distance and angle of incidence. Shadows are removed by the

color masking process described in Sec. 3.4.3 as well as by shadow mapping during

color projection. Distance-based correction removes flash highlights but still produces

darker shades on slanted surfaces. On the other hand, combining distance-based and

orientation-based correction produces a reasonable approximation of surface albedo,

thereby enabling a seamless combination of multiple images without illumination-

3.4 Supporting shape and color digitization cluttered 3D artworks 42

dependent coloring. The resulting colored model can thus be used for synthetic

relighting.

3.4.6 Inpainting

Points of contacts between supports and status generate small holes in the geom-

etry, as well as missing colors due to occlusions and shadows (seen in white in

Fig. 3.11 left). In order to produce final colored watertight models – useful, e.g., for

public presentations – it is important to smoothly reconstruct these missing areas. We

took the conservative approach of only using smoothness priors to perform geometry

infilling and color inpainting, rather than applying more invasive reconstruction

methods based on – for instance – non-local cloning methods. This conservative

approach has the advantage of not introducing spurious details, while repairing

the surface enough to avoid the presence of distracting surface and color artifacts

during virtual exploration. Geometry infilling is simply achieved by applying a Pois-

son surface reconstruction method [45] to reasonably infill missing areas based on

smoothness priors (see Fig. 3.11 center).

On the other hand, color inpainting uses an anisotropic color diffusion process [46]

implemented in a multigrid framework. We employ a meshless approach that can be

applied either to the vertices of the triangle mesh produced by Poisson reconstruction,

or directly to a point cloud constructed from it. We assume that each color sample

stores the accumulated color and weight coming from color blending. We first extract

all points with a null weight, which are those requiring infilling. We then extract

a neighbor graph for this point cloud (by edge connectivity when operating on a

triangle mesh or by a k-nearest neighbor search, with k=8, when working on point

clouds), growing the graph by one layer in order to include colored points in the

neighborhood of holes. We then produce a hierarchy of simplified graphs using

sequence coarsening operations on the neighbor graph, so that each level has only

one quarter of the samples of the finer one. We stop simplification when the number

of nodes is small enough (less than 1000 in this workr) or no more simplification

edges exists. The graph is used to quickly compute anisotropic diffusion using a

multigrid solver based on V-Cycle iterations. Boundary conditions are computed

using the samples with non-zero weight that are included in the hierarchy. The

anisotropic diffusion equations are then successively transferred to coarser grids by

simple averaging and used in a coarse-to-fine error-correction scheme. Once the

coarser grid is reached the problem is solved through Gauss-Seidel iterations and the

3.4 Supporting shape and color digitization cluttered 3D artworks 43

coarse grid estimates of the residual error can be propagated down to the original grid

and used to refine the solution. The cycle is repeated a few times until convergence

(results in this work use 10 V-Cycle iterations). As illustrated in Fig 3.11 right, color

diffusion combined with watertight surface reconstruction successfully masks the

color and geometry artifacts due to occlusion and shadows. It is important to note

that the original colors and geometry are preserved in the database and that these

extra colors can be easily removed from presentation when desired.

Fig. 3.11.: Geometry infilling and inpainting. Left: the points of contact between the
support and the statue generate small holes in the geometry as well as missing
colors due to occlusions (in white). Middle: Poisson reconstruction smoothly
infills holes. Right: color is diffused anisotropically for conservative inpainting.

3.4.7 Implementation and results

We implemented the methods described in this work in a C++ software library and

system running on Linux. The out-of-core octree structure is implemented on top of

Berkeley DB 4.8.3, while OpenMP is used for parallelizing blending operations. The

automatic masking subsystem is implemented on top of OpenCV 2.4.3. RAW color

images from the camera are handled using the dcraw 9.10 library. The SfM software

used for image-to-image alignment is Bundler 0.4.1 [78]. All tests were run on a

PC with an 8-core Intel Core i7-3820 CPU (3.60GHz), 64GB RAM and an NVIDIA

GTX680 graphics board.

Acquisition. The scanning campaign covered 37 statues, which were scanned and

photographed directly in the museum. Fig. 3.12 summarizes the reconstruction

results. The geometry of all the statues was acquired at a resolution of 0.25mm using

a Minolta Vivid 9i in tele mode, resulting in over 6200 640x480 range scans. The

number or scans includes a few (wide) coarse scans which fully cover the statue, that

were acquired to help with global scan registration. The scanning campaign produced

over 1.3G valid position samples. Color was acquired with a Nikon D200 camera

mounting a 50mm lens. All photos were taken with a flash in a dark room, with a

shutter speed of 1/250s, aperture f/11.0+0.0, and ISO sensitivity 400. A total of

3.4 Supporting shape and color digitization cluttered 3D artworks 44

Fig. 3.12.: Reconstructed Status of the Mont’e Prama complex. Colored reconstructions
of the 37 reassembled statues.

3817 10Mpixel photographs were produced. The on-site scanning campaign required

620 hours to complete for a team of two people, one camera, and one scanner. In

practice, on-site time was reduced by parallelizing acquisition with two scanning

teams working on two statues at a time. The acquisition time includes scanning

sessions, flash photography sessions (in dark room), and coarse alignment of scans

using our point cloud editor. Photo alignment using the SfM pipeline was performed

after each flash acquisition session, and in parallel to the scanning session, in order

to verify whether sufficient coverage had been reached. Average bundle adjustment

time was of 2 hours/statue.

Automatic geometric masking. The quality and efficiency of our automatic geo-

metric masking process was extensively evaluated on a selected dataset, which was

also manually segmented to create a ground-truth result. The digital acquisition of

selected statue, named Guerriero3 and depicted in Fig. 3.5, is composed by 226 range

maps (54 of which containing clutter data).

3.4 Supporting shape and color digitization cluttered 3D artworks 45

Fig. 3.13.: Mont’e Prama complex. From top left to bottom right: the full set of recon-
structed statues; original image of the statue “warrior 3”; reconstructed model;
closeup on the head of the reconstructed model; closeup on eye of reconstructed
model.

Each ground-truth mask was created manually from the reflectance channel of the

acquired range map using our interactive mask editor. An experienced user took

about 330 minutes to complete the manual segmentation process for the entire statue.

For the sake of completeness, we also measured the time required to remove clutter

data from the 3D dataset by direct 3D point cloud editing, as done in typical scanning

pipelines. Using our out-of-core point cloud editor this operation was completed

by an experienced user in about 300 minutes, which is relatively similar to the

time required for the manual 2D segmentation approach. By taking into account

the relative complexity of the other statues, we can estimate a total time of about

130-150 man-hours for the manual cleaning of the entire collection of statues.

The automatic segmentation process was started by manually segmenting 5 re-

flectance images using the same editor used for manual segmentation. This training

set was used as input for the automatic classifier. The entire process took 9 minutes

for the creation of the training set and 6 minutes for the automatic computation of the

mask on an 8-core processor. The automatically generated masks were then manually

3.4 Supporting shape and color digitization cluttered 3D artworks 46

Samples (%)
Model points 51.4M
Clutter points 790K
False-Positives 240 (486) 0.03 (0.06)
False-Negatives 35757 (11219) 4.53 (1.42)
True False-Negatives 5639 (2746) 0.68 (0.35)

Tab. 3.1.: Evaluation of automatic geometric masking. Results of manual segmentation
of a single statue (Guerriero3) compared with the results produced by automatic
masking. We report the number of range map samples labeled as model (“Model
points”) and clutter (“Clutter points”) in the ground truth dataset, the samples
erroneously labeled as statue (“False-positives”) or clutter (“False-negatives”) in
the automatic method, as well as the number of false negative points that really
lead to missing data in the combined dataset (“True False-negatives”). Values
between parentheses compare the manually refined and the ground-truth datasets,
instead of the purely automatic method. Percentages are computed with respect
to the number of clutter points.

verified and retouched using our system. This additional step, which is optional, took

about 30 minutes. Applying the automatic process to the entire statue collection

only took 5 hours, excluding manual cleaning, and a total of 13.5 hours including

the manual post-process cleanup: this result is a more than ten-fold speed-up with

respect to the manual approaches.

The efficiency of the automatic masking method can be seen from the results pre-

sented in Fig. 3.1, which shows the results of the comparison tests between the

automatically segmented masks (with and without post-process manual cleaning)

and the ground-truth dataset.

More than 95.0% of the clutter samples are correctly labeled. False-positive samples

represent extra points which can be easily identified and removed from the automated

masks via 2D editing and they are only about 0.03% of the total clutter in the

ground-truth dataset. False-negative points represent statue samples that have been

erroneously masked; they are about 4.5% (1.4% in the clean-up dataset) of the total

clutter in the ground-truth dataset. Since overlapping range maps typically acquire

the geometry of same model region from multiple points of view, a false-negative

sample is not a problem if its value is correctly classified in at least one mask covering

the same area. By taking into account this fact, we verified that the points that were

completely missed by the acquisition (True false negative) are only 0.68% of the total

imaged clutter surface. This check was performed by searching in overlapping scans

for samples within a radius of 1mm from each missing sample. Therefore, we can

conclude that only a small portion of the surface is missed by the system. Further,

3.4 Supporting shape and color digitization cluttered 3D artworks 47

Fig. 3.9 illustrates the position of the missing points; from the images it is easy to see

that the points in question are often very sparse or represent small boundary area of

the model. Thus, their overall effect on dataset quality is quite limited.

Automatic color masking. The quality and efficiency of the color masking process

was evaluated in a manner analogous to the geometry masking procedure. The

selected statue –“Guerriero3”, depicted in Fig. 3.5 – was imaged by 68 photographs

(33 of which containing clutter data). Manually masking the images took 181 minutes,

while applying the automated process required 9 minutes to generate the training

set, 15 minutes to automatically compute the masks on 8 CPU cores, plus a final 30

minutes for the optional manual post-process cleanup. The speed-up provided by

our automated procedure is, again, substantial. The semi-automatic masking process

for the entire set of statues only required a total of 41 hours (17 hours without the

post-process cleaning). By taking into account the relative complexity of the other

statues, we can estimate a total time of about 145 man-hours for the manual cleaning

of the entire collection of statues.

Samples (%)
Model points 220.5M
Clutter points 12.1M
False-Positive 381K (334K) 3.16 (2.77)
False-Negative 263K (253K) 2.18 (2.09)
True False-Negative 8642 (7725) 0.07 (0.06)

Tab. 3.2.: Evaluation of automatic color masking. Results of manual segmentation of a
single statue (Guerriero3) compared with automatic masking results. We report
the number of colored samples labeled as model (“Model points”) and clutter
(“Clutter points”) in the ground truth dataset, the samples erroneously labeled as
statue (“False-positives”) or clutter (“False-negatives”) by the automatic method,
as well as the number of false negative points that really lead to missing data
in the combined dataset (“True False-negatives”). Values between parentheses
compare the manually refined and the ground-truth datasets, instead of the
purely automatic method. Percentages are computed with respect to the number
of clutter points.

As illustrated in the table in Fig. 3.2, the color masking procedures achieves results

similar to those obtained by geometry masking. Again, about 95.0% of the samples

are labeled correctly. In this case, false-positive samples are points where clutter color

could potentially leak to geometry areas. These represent about 3% of the clutter

area – i.e., below 0.2% of the model area. Instead, false-negative points are statue

samples that do not receive color by a given image since they have been erroneously

masked; they are about 2.2% (2.1% in the cleaned-up dataset) of the total clutter

in the ground-truth dataset, but reduce to negligible amounts when considering

3.4 Supporting shape and color digitization cluttered 3D artworks 48

overlapping photographs. This is because of the large overlap between photos and

the concentration of false negative in thin boundary areas covered from other angles.

Sampling redundancy, required for alignment purposes, is thus also very beneficial to

the automatic masking process.

Consolidation and coloring. The generated geometry and color masks were used to

create digital 3D models of the 37 statues (see Fig. 3.12). After cleaning, all models

were imported into our system based on forests of octrees, which was used for all

the 3D editing and color blending. We use lossless compression when storing our

hierarchical database, thus achieving an average cost of about 38B/sample, with per-

sample positions, normals, radii, colors, and blending weights (including database

overhead). Disk footprints for our multiresolution editable representation are thus

similar to storing single-resolution uncompressed data.

We compared the performance of our system to the state-of-the-art streaming color

blender [43]. Our pipeline required a total of 23 minutes for blending the Guer-

riero3 statue; as we already mentioned, the pipeline works directly on the editable

representation of the model and includes color correction for flash illumination. On

the other hand, the streaming color blender required 2.5 minutes for pre-computing

the Morton-ordered sample stream and the culling hierarchy, and 26 minutes for

color blending. Therefore, the increased flexibility of our system does not introduce

additional overhead in the form of processing time nor does it require additional

temporary storage – all while supporting fast turnaround times during iterative

editing sessions.

Flash color correction proved to be adequate in our evaluation. It produces visually

appealing results without unwanted color variation and/or visible seams between

acquisitions (see Fig. 3.10 for an example). It is important to note that, while

no painting results are currently visible on the statues, including natural color

considerably adds to the realism of the reconstruction, as demonstrated in Fig. 3.14.

3.5 Discussion

In this chapter, we have presented a general design for a scalable system for creating,

coloring, analyzing, and exploring massive point clouds totally out-of-core. The

structure presented is a variation of the Layered Point Clouds approach, which

exploits a special ordering of the original points to construct a multiresolution

3.5 Discussion 49

Fig. 3.14.: Effect of color mapping. From left to right: original photograph (boxer 16);
virtual reconstruction without color; virtual reconstruction with color.

structure, assuming that the original point cloud is uniformly sampled. This is a

reasonable assumption for typical scanning datasets. The presented implementation

uses a caching system and an optimized I/O layer to support out-of-core algorithms

in both CPUs and GPUs. The method, is, however, tuned only for static point clouds.

Operations can be performed on it, but just adding or modifying attributes, and

not moving or deleting points. This means that not all applications can be directly

implemented by modifying the structure on the fly. However, the operations that

just modify attributes can be implemented with maximum efficiency. This is an

incremental contribution over the state-of-the-art, which was meant to support

further research on scalable methods.

A very important example of operations that require enriching and consolidating

point clouds arises in cultural heritage, when mixing geometric data acquired with

laser scanners with color data acquired with digital photography. In this work, we

have introduced an easy-to-apply acquisition protocol based on laser scanning and

flash photograph to generate colored point clouds, as well as a novel and practical

semi-automatic method for clutter removal and photo masking to generate clean

point clouds without clutter using minimal manual intervention. In this approach,

geometry masking is applied to the original range scans. The consolidated model

is quickly regenerated in our multiresolution format after filtering. Color mapping,

instead, can be directly applied to the multiresolution point cloud by updating the

color attributed using a color blending approach. Our scalable implementation of

the entire masking, editing, infilling, color-correction, and color-blending works fully

out-of-core without limits on model size and photo number, as demonstrated on the

Mont´e Prama use case.

3.5 Discussion 50

This chapter has mostly focused on scalable ways to support model creation, with a

particular emphasis on point clouds mixed with photographic data. In the remainder

of this thesis, I will focus, instead, on ways to scalably render massive models, going

beyond those resulting from this pipeline based on real-world sampled data.

3.6 Bibliographical Notes

The point cloud structure presented here is more extensively described in [9, 15,

16]. The chapter of the book "Effective Big Data Management and Opportunities for

Implementation" [10] describes further applications of this structure to filter the point

cloud, as well as extract primary geometrical primitives to CAD models. Instead,

The chapter of the book "Handbook of Research on Visual Computing and Emerging

Geometrical Design Tools" [11] describes how the pipeline is applied to support VR

applications in architecture and engineering. The proposed system for exploring

point clouds was also shown to be able to run in a client-server configuration by

streaming the data chunks and explore remotely the models in a web browser using

WebGL [79].

The novel technique for scalable shape and color digitalization of cluttered artwork

was published in the ACM Journal on Computing and Cultural Heritage [12]. That

publication, in addition to the technique described here, also includes an analysis of

requirements gathered from end users.

3.6 Bibliographical Notes 51

4Improving scalability through

adaptive batching: Coherent

Hierarchical Culling for Ray

Tracing

The interactive exploration of very large models, including, but not limited to, the
high-density sampled models that can be created with the techniques presented in
the previous chapter, requires specialized techniques to meet timing constraints.
View-frustum and occlusion culling methods, in addition to multiresolution, are
commonly used to load and process only the visible part of the scene and thus to
make rendering output sensitive. These techniques are particularly effective with
object-order rasterization on the standard GPU-pipeline, tuned for object-order
streaming of primitive batches (in particular, triangles). In this chapter, we
extend this approach to the more flexible ray-tracing setting, proposing a novel
generalization of hierarchical occlusion culling in the style of the CHC++ method.
This novel approach exploits the rasterization pipeline and hardware occlusion
queries in order to create coherent batches of work for localized shader-based ray
tracing kernels. By combining hierarchies in both ray-space and object-space, the
method is able to share intermediate traversal results among multiple rays. Then,
temporal coherence is exploited among similar ray sets between frames and also
within the given frame. A suitable management of the current visibility state
makes it possible to benefit from occlusion culling for less coherent ray types like
diffuse reflections. Since large scenes are still a challenge for modern GPU ray
tracers, our method is most useful for scenes with medium to high complexity,
especially since it inherently supports ray tracing highly complex scenes that do
not fit in GPU memory. For in-core scenes our method is comparable to CUDA
ray tracing and performs up to sabout six times better than pure shader-based
ray tracing.

DEPTH-buffered rasterization and ray tracing are nowadays the two dominant

techniques in real-time rendering. In its basic form, rasterization is an

object-order approach that determines visible surfaces by going through

scene primitives, projecting them to screen and maintaining the nearest surface

for each pixel. Ray tracing, on the other hand, is an image-order approach that

determines visible surfaces by computing ray-primitive intersections for each pixel.

52

In principle, rasterization offers more code- and data-cache coherence, because

switching primitives and rendering attributes occurs much less frequently, and most

operations work on an object-by-object basis on data residing in local memory, with-

out the need to access the entire scene. This explains the success of massively parallel

GPU rasterization hardware based on streaming architectures. In contrast, for ray

tracing, in order to efficiently compute ray-primitive intersections, data is usually

organized in space-partitioning data structures, and the traversal of these data struc-

tures results in non-streaming access patterns to the scene geometry. Even though

current GPUs support general programming models and allow for programming

acceleration data structures and complex traversal algorithms, efficient memory man-

agement and computation scheduling is significantly harder than for rasterization,

leading to performance problems and/or complications when trying to integrate

rasterization and ray tracing within the same application, e.g., to compute complex

global illumination.

4.1 Contribution

We address these issues by proposing a ray-tracing technique that is designed to be

integrated into the streaming rasterization pipeline. The core idea of the method

is to exploit the rasterization pipeline together with occlusion queries in order to

create coherent batches of work for GPU ray tracing. By combining hierarchies

in both ray space and object space, and making use of temporal coherence, the

ray-traversal overhead is minimized, and the method can concentrate on computing

ray-object intersections for significantly reduced sets of rays and objects. This batched

computation and memory-management approach makes it possible to use the same

streaming schemes employed in current rasterization systems also for ray tracing.

This opens the door to a flexible integration of rasterization and ray tracing, both for

dynamic and out-of-core scenes. We show the efficiency of our method for several

ray types like soft-shadow rays and diffuse interreflections. The main contributions

of this work are:

• Occlusion culling for ray tracing using the rasterization pipeline, which is up to

6× faster than standalone OpenGL-based ray tracing.

• A means for scheduling visible parts of the scene hierarchy for ray-triangle

intersection on the GPU that allows a simple and natural extension to out-of

core ray tracing.

4.1 Contribution 53

Moreover, this chapter shows an efficient OpenGL implementation of the method,

with a number of benefits:

• a novel algorithm for automatically identify rays sets that can be intersected by

triangles;

• can be easily adapted for dynamic scenes (coarse and "approximate" hierarchy

is sufficient);

• performs an efficient parallelization done through the rasterization hardware

(so the scheduling and thus, the mapping to the stream cores if automatically

manage by he hardware);

• allows to use the method on "legacy" hardware and consoles.

This technique was presented in a joint Eurographics 2015 paper [5]. As for the

distribution of work, I contributed to the design of the method, fully designed and

implemented the ray-tracing subsytem, and devised and implemented the majority

of the evaluation.

4.2 Related Work

Our work generalizes hierarchical occlusion culling, a technique traditionally used

for accelerating rasterization, to incorporate ray-tracing effects. This allows to

schedule the intersection work in batches, reduces the traversal stack size needs,

achieve naturally out-of-core for massive models, and combine with am standard

graphic pipeline in GPU. These topics have been studied extensively in the past. In

the following, we discuss the most relevant work in these two well-studied fields,

particularly those targeting the acceleration of both ray-tracing and rasterization

techniques.

4.2.1 Ray tracing data structures and acceleration

Extensive research has been performed with the aim of accelerating the computa-

tion of intersections of rays with the scene. The commonly used acceleration data

structures include uniform grids, octrees, kd-trees, and bounding-volume hierarchies

(see established surveys for more details [80, 81]). One of the keys to efficiency is

the quality of the acceleration data structure, which, for the case of hierarchies, is

usually constructed according to the Surface Area Heuristics (SAH) [82]. Related to

4.2 Related Work 54

(a) City-200 (138M triangles, 7.89GB)

(b) Boeing 777 (350M triangles, 18.9GB)

(c) Powerplat ×16 (205M triangles, 11.4GB)

Fig. 4.1.: Massive 3D models frames rendered using our interactive OpenGL ray tracer
using the CHC+RT algorithm. Based on hierarchical occlusion culling allows a
simple scheduling scheme for managing out-of-core scenes and also significantly
accelerates OpenGL-based ray tracing in complex scenes.

our approach are the methods based on batched processing of rays, such as cone trac-

ing [83], beam tracing [84, 85], or more generally the stream-ray architecture [86].

Mora [87] proposed a method which avoids organizing the scene in a spatial data

structure, but instead sorts large groups of rays together with the scene geometry

on the fly. The method of Bolous et al. [88] uses coarse-grained visibility tests to

reduce the active ray set for CPU packet tracing, which have a similar purpose as the

hardware occlusion queries used by CHC+RT. While our method shares the idea of

packet tracing, it differs particularly in the fact that it is designed for integration with

GPU-based rasterization and does not use explicit ray bounding primitives or other

per-packet information.

4.2 Related Work 55

By the other side, with the recent development in graphics hardware, a number of

alternative methods directly implemented on the GPU have been proposed. Recent

advances make possible to do real-time ray tracing on the GPU [89, 90, 91, 92]. In

this scope, the traversal of spatial data structures becomes one of the most critical

algorithms to be optimized, as could be completely related to the performance. While

these methods are very fast, they usually require that the scene and the associated

acceleration data structure is fully available in GPU memory, which makes it difficult

to handle large scenes. Our technique, in contrast, naturally leads to more coherent

data access patterns and to batch-based memory management.

4.2.2 Mixing ray tracing and rasterization

Several algorithms have tried to use the limited features of rasterization-based

rendering for ray tracing. Most notably, Carr et al. [93] proposed the Ray Engine,

which achieves ray tracing effects by rendering a screen-sized quad and computing

ray intersections for each scene triangle. The brute-force version of this process is

inefficient and uses huge amounts of fill rate. Roger et al. [94] improves on this

method by building a hierarchy of cones over the rays and using them to reduce

the number of computed intersections. In our algorithm, we conservatively cull

those pairs of triangle batches and screen-space patches where the geometry is not

intersected with respect to the screen-space patch. Also, several techniques have

been proposed to compute approximate ray tracing effects on the GPU [95, 96].

Novak and Dachsbacher [97] use rasterization to construct a hierarchy containing

resampled scene geometry that can be processed by standard ray tracing methods.

Davidovic et al. [98] proposed a 3D rasterization method designed for coherent rays.

The authors show that there exists no fundamental difference between rasterization

and ray tracing of primary rays, but a continuum of approaches that blend seamlessly

between both paradigms. Our algorithm further explores the space between both

paradigms by using the fixed-function pipeline and the z-buffer for arbitrary rays.

Recently, Zirr et al. [99] proposed a method for ray tracing in a rasterization pipeline,

using a voxel scene approximation to accelerate the traversal. A voxel representation

is also used by Hu et al. [100], using the A-buffer to search ray-triangle intersections

in a shader. In contrast to these methods, we support casting arbitrary rays, compute

exact ray-scene intersections, and support out-of-core rendering.

4.2 Related Work 56

4.2.3 Out-of-core ray tracing

Most of the work on rendering large scenes has focused on combining CPU tech-

niques with out-of-core data-management methods (see a survey on massive-model

rendering [101]). Notable examples are methods using a scheduling grid for rays to

improve the coherence of scene accesses (e.g., [102, 103]) and methods exploiting

level-of-detail representations [104, 105, 106]. More recent work also combined

CPU/GPU computation using distributed computing 5approaches [107, 108]. In

this context, Pantaleoni et al. [109] proposed the PantaRay system, targeted at fast

relighting of complex scenes based on occlusion caching. Garanzha et al. [110] used

a complex data structure similar to PantaRay for CentiLeo, a commercial progressive

out-of-core path tracer based on CUDA. Instead, our method subdivides the scene

into adaptively sized batches of visible geometry by using occlusion culling, allow-

ing simpler and more flexible data management that yields a natural out-of-core

extension.

4.2.4 Visibility and rasterization methods

Numerous methods for the acceleration of rasterization using visibility have been

designed. Scene simplification techniques compute different levels of detail (LOD),

which allow limiting the complexity of the rendered scene, such as Adaptive Tetra-

Puzzles [111], GoLD [112], or Far Voxels [113]. View-frustum and occlusion culling

methods are commonly used to rasterize only the visible part of the scene and thus

to make rendering output sensitive. In particular, hardware occlusion queries can be

used to efficiently test the visibility of simple proxy objects, such as bounding boxes,

against the depth buffer before rendering the real geometry [114, 115, 113, 116,

13]. Specific methods have been designed for accelerating rasterized shadows, as

Bittner et al. [117] using occlusion culling to accelerate shadow-map rendering for

complex scenes. A general technique commonly used to compute complex effects in

the rasterization pipeline is deferred shading, proposed by Deering et al. [118] and

generalized by Saito and Takahashi [119], and used in several methods discussed

above. Recently, the concept of deferred shading has been improved by tiled and clus-

tered shading by Olsson et al. [120]. Our novel algorithm also exploits this technique

and generalizes the described culling methods by handling arbitrary primary and

secondary rays with occlusion queries.

4.2 Related Work 57

4.3 Overview

The diagram in Figure 4.2 provides an overview of our method. We first render

the scene either by rasterization or tracing primary rays. Then the method applies

a number of additional ray tracing-based shading passes, which add the required

illumination effects to the rendered image. In each pass, we first generate the rays to

be cast and store them in a (full-screen) ray texture with one ray per pixel. Thus, the

rays are directly associated with the pixels they should contribute to. We generate 3

ray types in this phase: soft-shadow rays, ambient-occlusion rays, and diffuse rays.

Note that while a ray is stored in the pixel it will finally contribute to, it could start

anywhere in the scene. Each pass uses one ray texture, and thus evaluates one ray

contributing to the pixel.

Per frame

 Per shading pass

 Until queue empty

Generate rays

Intersect previously visible pairs

Enqueue previously invisible pairs

Collect query result

Terminat.
criteria

Subdivide

Visible?

Schedule for
intersection

Screen
space

Object
space

Shading

Final frame composition

G
en

eralized
 o

cclu
sio

n
 q

u
e

ries

Yes

Yes

No

Hierarchical traversal

Cull
No

Fig. 4.2.: Overview of the proposed algorithm, CHC+RT.

The core part of our method is computing ray-triangle intersections in the raster-

ization pipeline using the given ray texture and a CPU-side scene hierarchy. The

hierarchy can be a Bounding Volume Hierarchy (BVH) used by the CPU to perform

view-frustum and occlusion culling. The basic operation that we use is determining

4.3 Overview 58

whether rays corresponding to a certain screen-space tile intersect the bounding

box of the given node of the BVH. We call this pair (the screen-space tile and the

BVH node) a query pair. The algorithm starts with the query pair given by the tile

representing the whole screen (all rays) and the bounding box corresponding to the

root of the BVH (all triangles). The potential intersection of rays and the bounding

box is evaluated in a shader that computes the nearest intersection of each ray with

the given box. This distance is passed as a z-value to be compared with the already

evaluated nearest distance using the hardware z-buffer. We detect the rays intersect-

ing the box by issuing an occlusion query that encapsulates the query pair processing.

If the result of the occlusion query indicates a non-zero number of intersections, we

either proceed by subdividing the screen-space tile or the BVH node and repeating

the process for the newly created query pairs. This hierarchical traversal is indicated

by the yellow box in Figure 4.2. The subdivision is terminated when reaching tiles of

a certain minimum size and when meeting a termination criterion of the BVH. Then

the actual ray-triangle intersections are computed.

We exploit temporal coherence by maintaining generalized visible and invisible fronts

for the current ray set (stored as previously visible pairs and previously invisible pairs,

as shown in Figure 4.2). Using this method we can reduce the number of intersection

tests and also eliminate stalls caused by the latency occlusion queries. One key to

the efficiency of our method is that the occlusion-culling phase computes a relatively

coarse-grained cut in the query-pair hierarchy. We chose to use GLSL shader-based

traversal to compute the fine-grained ray-triangle intersections of each visible subtree

of the BVH. GLSL is very efficient in rendering small subtrees due to the high cache

coherence of the traversal stack. The parts where query pairs are scheduled for

intersection are shown in red in Figure 4.2. While our method is conceptually similar

to hierarchical occlusion culling for rasterization, the main difference is that the

occlusion queries are generalized to arbitrary rays, and that we also maintain a

hierarchy over screen space to localize the ray contributions.

4.4 Hierarchical Occlusion Culling for Ray Tracing

This section describes algorithmic and implementation details of the proposed method.

We first describe the main components of the algorithm. Then we describe an

optimized version of the method using temporal coherence.

4.4 Hierarchical Occlusion Culling for Ray Tracing 59

4.4.1 Generalized Occlusion Queries

In our method, we use occlusion queries to cull those sets of rays and triangles

that cannot intersect. The occlusion queries used in our method can be seen as a

generalization of classical hardware occlusion queries [115]. Traditionally, occlusion

queries handle visibility from the camera, and thus they deal with a well-defined

set of primary rays enclosed in the viewing frustum. In ray tracing, we deal with

arbitrarily distributed rays, and thus we have to be able to determine which rays

intersect the given geometry using some other means than simple projection of the

geometry and its rasterization.

Similar to classical rasterization, we use a depth buffer to store the nearest inter-

section of each ray with the part of the scene processed so far (recall that rays are

associated with pixels). We subdivide the screen into tiles corresponding to packets of

rays. For each tile, we use an occlusion query to check if the bounding volume of an

object intersects the rays enclosed by the tile. If there is at least one intersection, the

query returns a non-zero value and we proceed by calculating the actual ray-triangle

intersections. This step can be easily evaluated using a fragment shader in which

we pass the bounding volume (axis-aligned box) as a shader parameter. The shader

evaluates the ray/box intersection and returns the distance of the intersection as the

depth value of the fragment. The query can thus count the number of fragments

having nearer intersections than those stored in the z-buffer so far. So the main

difference to classical occlusion queries is that the z-buffer values do not represent

camera depth values, but distances along rays. They are implemented for a partic-

ular query pair by rasterizing the screen-space quad and passing the AABB of the

associated BVH node as shader parameter. Since the depth buffer is initialized with

the intersection values of the previously visible geometry, occlusion culling can be

performed by enabling the depth test in OpenGL.

4.4.2 Shader-based Ray-Triangle Intersection

The visibility in the occlusion-query stage corresponds to a coarse cut in the BVH,

making the method less sensitive to spatially incoherent ray packets. Once we reach

the termination criteria based on the optimal height and number of triangles in a

subtree, it is subsequently (but not necessary immediately) a termination node in the

BVH, the subtree is subsequently scheduled for intersection. The actual ray-triangle

intersections are computed in a fragment shader executed for a given screen-space

4.4 Hierarchical Occlusion Culling for Ray Tracing 60

tile. The geometry (triangles) is stored in a texture buffer object and passed as a

shader parameter. A naive version of our method would render for each triangle in

the scene a full-screen quad covering all rays, which basically corresponds to the Ray

Engine algorithm [93]. The shader evaluates the intersection of the ray with the

triangle and passes the intersection distance as the depth value of the fragment. If

this intersection is closer to the ray origin than the one computed so far, the depth

buffer entry is automatically updated. The actual shading is deferred to the moment

when all scene geometry is processed and the final nearest intersections have been

determined.

4.4.3 Hierarchical Occlusion Culling

The two above-described principles (generalized occlusion queries and shader-based

ray triangle intersection) can be used together in an algorithm which processes both

the rays and the triangles hierarchically. The hierarchy of rays is defined implicitly

by a quadtree-based screen-space subdivision, the hierarchy of triangles is defined

by a bounding-volume hierarchy (BVH). We propose a generalization of hierarchical

occlusion culling, with the main difference that the query objects are not BVH nodes,

but query-pairs consisting of a BVH-node and a screen-space tile.

BVH
(triangles)

screen
(rays)

pair
hierarchy

invisible front

visible front

screen splits

BVH splits

Fig. 4.3.: Illustration of the query-pair hierarchy. The interior nodes of the hierarchy
correspond to either screen-space splits or object-space splits. The leaf nodes
belong to either the visible front (rays and triangles that can intersect) or the
invisible front (rays and triangles that cannot intersect).

The queries are always performed on query pairs defined by a screen-space tile and a

world-space bounding box.

4.4 Hierarchical Occlusion Culling for Ray Tracing 61

4.4.4 Traversing the Query-Pair Hierarchy

When the result of the query indicates an intersection, we have to subdivide the

query pair and construct new query pairs to refine the intersection results. Here, we

have to decide between two choices – subdividing in screen space, and creating 4

new query pairs, or subdividing in object space, and creating two new query pairs

(see Figure 4.3). This decision influences in how many steps a particular subtree of

the query-pair hierarchy can be culled as being invisible, and hence it is important

for the performance of the traversal algorithm. A split in object space can potentially

reduce the intersection cost, while a split in screen space can potentially reduce the

area and hence the query cost. Note that a split in object space can potentially double

the overdraw and thus the query cost since both child nodes have to be queried for

the same tile. The area also roughly corresponds to the probability that a BVH node

is intersected [82] and the query fails. Hence object space splits are preferred until

the BVH nodes are relatively small.

We found that the best performance can be achieved by comparing the areas of the

screen-space tile and the object-space node of a pair, which are connected to the

query cost and intersection probability, respectively [82]. The areas are normalized

by the area of the bounding box of the BVH root (Aroot) and the full screen extent

(Ascreen). They are also weighted by a hardware-dependent factor tq, which we set to

0.5 in all our comparisons (favoring object-space splits in the beginning). We always

split in the domain where the corresponding ratio is larger, i.e.:

Abvh

Aroot
> tq ∗

Atile

Ascreen

true: split in object space

false: split in screen space

This heuristic aims to keep a rough balance between the extents of the screen-space

and object-space domain within a query pair. Note that it would be more consistent

to compare both areas in world space, but until we compute the intersections we

do not know the world-space extent of the bounding volume of rays covered by a

screen-space tile.

4.4 Hierarchical Occlusion Culling for Ray Tracing 62

4.4.5 Exploiting Temporal Coherence

The hierarchical algorithm described above can be improved by exploiting tempo-

ral coherence among rendered frames. In particular, similar to occlusion-culling

algorithms, we can initialize the content of the depth buffer by first evaluating

intersections using all visible query pairs from the previous frame. Note that this

assumption does not invalidate the correctness of the results since the actual ray-

triangle intersections always use data for the current frame, i.e., rays generated for

the current frame and triangles at correct positions for the current frame.

sort compute
intersections

intersect previously visible pairs query previously invisible pairs

bind box
intersection

shader
sort issue

i-queries

query previously visible pairs

issue
v-queries

bind triangle
intersection

shader

intersect newly visible pairs

sort

update pairs

handle
i-queries

handle
v-queries

pull-up
front

do shading

generate
rays

bind triangle
intersection

shader

sort compute
intersections

Fig. 4.4.: Overview of the pipeline. Parts of the method computing and storing the actual
ray/triangle intersections are shown in red, while the steps dealing with ray
traversal and culling are shown in green.

After processing previously visible pairs, we issue queries on previously invisible

pairs to verify if they stay invisible. If any previously invisible pair becomes visible,

we process it hierarchically and collect all newly visible pairs for which ray-triangle

intersections should be computed. At the end of the frame, these new intersections

are evaluated, and finally the visibility front consisting of both visible and invisible

pairs is updated. An overview of the different steps of the coherence-based algorithm

is shown in Figure 4.4.

4.5 CHC+RT Implementation

In this section we address the details regarding the actual OpenGL implementation

of the method and its optimizations.

4.5.1 Hierarchical Traversal

The pseudo-code of our traversal algorithm is shown in Algorithm 4.7. In analogy

to occlusion culling [115, 13], we talk about visible/invisible nodes. For a node in

the query-pair hierarchy, this means that the occlusion-query result is either positive

4.5 CHC+RT Implementation 63

(there are potential intersections, hence visible) or zero (there are no intersections,

hence invisible). Most optimizations proposed in the CHC++ algorithm [13] can

also be used for CHC+RT for reducing the overhead of generalized occlusion queries.

Our algorithm starts from the previous cut of visible leaf nodes and invisible (leaf or

interior) nodes. It consists of three phases.

• Phase 1. All previously visible leaf nodes are scheduled for ray-triangle inter-

section. This initializes the z-buffer with the intersections from those query

pairs which have been visible in the previous frame and allows us to exploit ray

occlusions.

• Phase 2. The visibility status is queried for the previously visible and invisible

pairs. First, all the previously invisible nodes are queried (line 4) and enqueued

in the so-called query queue. Since the visibility status of the previously visible

nodes could have changed from the previous frame, we lazily query them and

update their visibility status at the end of the frame. Analogous to CHC++,

we use a stratified sampling scheme by randomizing the first frame where the

node is queried (between 1..n frames). Thereafter, the node is queried every n

frames. In our tests, we set n to 3.

• Phase 3. The actual hierarchical traversal is where newly visible pairs are

detected and the invisible front is updated for the next frame. It starts by

fetching the query results one at a time: If the visibility did not change from the

previous frame, we are finished. If a node turned visible, we further subdivide

the node and enqueue the child nodes, until either a node is found to be

invisible or a termination criterion is met (in which case we set it to visible).

During the traversal, whenever we have compiled more than m visible nodes

(where m = 16 in our tests), we compute the ray-triangle intersections of the

nodes found newly visible (line 22).

Each frame, invisibility information is pulled up in the hierarchy. This means, if all

child nodes are invisible, the parent node is set to invisible and the child nodes can

be deleted. This can be continued recursively until we encounter a visible child node,

but we restricted it to at most one level per frame to avoid fluctuations. Note that for

this purpose we maintain a query-pair hierarchy in order to recall the history of the

subdivision and quickly determine which pairs to merge during the pull-up phase.

A useful optimization for previously visible node queries (line 6) are the so called

multi-queries [13]. Their purpose is to reduce the overdraw caused by queries

overlapping in screen space, which we identified as the main source of performance

4.5 CHC+RT Implementation 64

Fig. 4.5.: Occlusion-query overdraw for primary rays, where reddish regions (those with
the highest geometric complexity) have high overdraw.

(a) Ray length: 1 (b) Ray length: 10 (c) Ray length: 1000

Fig. 4.6.: Reduced spatial coherence using diffuse rays. Illustration of the reduced
spatial coherence using different diffuse rays lengths, 1, 10 and 1000, respectively.
An opaque green screen-space tile means that its rays potentially intersect > 2M
triangles.

overhead (see Figure 4.5). Multi-queries compile many previously invisible pairs

projecting to the same screen-space tile into a single occlusion query over multiple

bounding boxes. If this query is successful and all nodes stay invisible, many nodes

have been handled in a single shader pass, which is more efficient than using a

separate pass for each individual node. Note that in case the query fails (line 14),

multi-queries have to be handled differently. In particular, all nodes have to be

queried individually, since we don’t know which of the nodes has become visible.

We also exploit the tighter-bounds optimization of CHC++ by always querying the

bounding boxes of the two children of a BVH node instead of the node itself.

4.5 CHC+RT Implementation 65

// Phase 1: intersect visible pairs
1 sort previously visible pairs by tile
2 for all previously visible pairs do
3 compute ray-triangle intersections;
4 end

// Phase 2: query pairs
5 sort previously invisible pairs by tile
6 for all previously invisible pairs do
7 compile (multi-)query and enqueue;
8 end
9 for previously visible leaves do

10 update visibility status every n frames;
11 end

// Phase 3: recursive traversal
12 while not query queue empty do
13 fetch next query result;
14 if query result == visible then
15 if terminationReached(query pair) then
16 add node to newly visible leaves;
17 if newly visible leaves > m then
18 for newly visible leaves do
19 compute ray-triangle intersections;
20 clear newly visible leaves;
21 end
22 end
23 end
24 else
25 subdivide(query pair);
26 for all children do
27 issue occlusion query and enqueue;
28 end
29 end
30 end
31 end

// intersect remaining visible leaves
32 for newly visible leaves do
33 compute ray-triangle intersections;
34 end

Fig. 4.7.: Pseudo-code of the traversal algorithm described in 4.5.1.

4.5.2 Ray-Triangle Intersections

The ray-triangle intersection is the last stage of our algorithm. As we compute ray-

triangle intersections for localized subsets of our scene geometry, we can achieve

good data-access coherence and can employ streamlined acceleration data structures.

The efficiency of the implementation of the proposed method greatly depends on

the CPU/GPU data management, i.e., the way in which we pass the shader data, the

actually used intersection algorithm, and how we organize the rendering calls of the

shader kernels.

4.5 CHC+RT Implementation 66

GLSL shader. We chose to use a GLSL shader-based traversal algorithm for the final

intersections of the termination nodes in the BVH. The shader uses the speculative

while-while ray traversal proposed by Aila and Laine [89] for CUDA-based ray tracing.

The traversal always fetches both child nodes and traverses the nearer child first

in order to exploit occlusion. We cache the intersected leaves for delayed coherent

ray-triangle intersection. We observed that the optimal value for this leaf cache was

2 on our hardware. The cache size is small but nevertheless crucial, as omitting the

cache causes a slowdown by approximately 30%.

In order to show the flexibility of our method, we selected for this paper the simplest

approach of performing the testing at the granularity of BVH leaves and to just stream

over the contained triangles for each ray. While this stage is comparable to the Ray

Engine algorithm [93], our algorithm has three important optimization steps:

1. we do not apply the method to the individual triangles, but we always query

batches of n triangles at once (n 200)

2. In the shader, we test the intersection of a ray against the bounding box

first before actually testing the triangles – this process is efficient since often

we can skip the fragment program before entering the loop and neighboring

rays usually have enough coherence to keep the thread divergence low. This

basic approach can be easily extended by coarsening the granularity of our

intersection queries (using small subtrees instead of leaves), and using flat

acceleration structures.

CPU-GPU transfer. We pass the geometry to the shader using texture buffer objects

in GLSL. For the in-core version, we simply allocate two texture buffers: one for

the BVH and one for the geometry. Since we currently only allow diffuse materials,

we store a diffuse color per triangle in the alpha channel of the RGBA texture used

for storing the geometry. Through the use of uniform buffer objects (UBOs), and

managing the UBOs as a cache, we can gracefully move from pure direct rendering

using a streaming model to a pure retained graphics model, in which all the geometry

is defined up-front in a set of UBOs.

Termination criteria. We use 3 different termination criteria for the traversal of

the query-pair hierarchy. One is connected to the termination in the screen-space

hierarchy, the other two to the termination in the BVH hierarchy. In our experiments,

the optimal size of a screen-space tile seemed independent of the chosen resolution

of the actual render target. In our case, we set the minimum tile size to 2002 pixels in

4.5 CHC+RT Implementation 67

Fig. 4.8.: Left: Visualization of the BVH subtrees that will be scheduled for intersection
in the fragment shader. Center: Visualization of the screen space subdivisions.
Right: Visualization of the number of subtrees compiled in each batch (1 (red) –
24 (white)) for per-tile based batching.

all experiments, meaning that each tile covers less than 2% of the screen at Full-HD

resolution. The key termination criterion in the BVH hierarchy turned out to be the

maximum subtree height (i.e., the number of traversal steps until the farthest of the

leaf nodes can be reached). The reason is that the GLSL shader-based traversal is

very sensitive to the maximum stack size, which has to be at least as large as the

maximum subtree height. The optimal granularity of the subtrees depends on various

factors like the presence of occlusion. In our experiments, we found that setting the

maximum subtree height to 24 levels works well in many cases. Figure 4.8 shows

the subtrees induced by our termination parameters. Another termination criterion

is the maximum number of triangles per subtree, which becomes important in the

out-of-core scenarios. We set it to 1M triangles in all our tests.

By-Tile sorting. In our experiments it turned out to be inefficient to schedule the

visible subtree nodes of the BVH separately for ray-triangle intersection. Instead, the

GPU is better utilized if the contribution of several subtrees to the same screen-space

tile is computed in a single shader call. For this purpose we sort the nodes scheduled

for intersection by screen-space tile (line 2 in Algorithm 4.7) and then pass an array

with the maximum number of 24 node ids to the shader, together with their bounding

boxes. The shader then tests the bounding boxes for intersection and starts the

traversal for all nodes that pass the intersection test. A visualization of this method

is shown in Figure 4.8. The right image visualizes the number of subtrees that can

be handled in a single shader pass, and how this number increases with distance.

Apart from the better shader utilization, another benefit of this approach is that we

can better exploit occlusion within the shader. For certain ray types like shadow or

primary rays, this approach can be optimized further by passing the nodes in an

approximate front-to-back order.

4.5 CHC+RT Implementation 68

4.5.3 Ray Generation and Scheduling

In each render pass we generate a single ray direction for primary rays as well

as shadow, ambient occlusion, and diffuse rays. The performance of our method

benefits from temporal coherence and to a lesser degree spatial coherence. Less spatial

coherence leads to less efficient pruning of invisible subtrees, as shown in Figure 4.5.

We take this into account already during ray generation. An alternative possibility

would have been to use ray sorting on the generated rays.

Spatial coherence. For both ambient occlusion (or diffuse rays, respectively) and

shadow rays, we generate the samples in a stratified fashion. Using a Halton sequence,

the same ray direction is generated for each pixel and perturbed with a random

per-pixel offset. The degree of randomization depends on the number of rays shot.

To achieve this for ambient occlusion and diffuse rays, we apply a random per-pixel

rotation to the ray in tangent space, as proposed by Mittrig et al. for SSAO [121].

The maximum angle is chosen so that the samples can cover the whole hemisphere.

Temporal coherence. For primary and shadow rays, ray directions are usually

sufficiently coherent so that we maintain a single visibility status for all shadow rays.

For ambient occlusion rays and diffuse rays, the ray directions exhibit more variation.

We can nevertheless enforce temporal coherence by using a separate visibility status

per ray direction, which contains all query pairs in the visibility front. Since we use a

coarse hierarchy in screen space and object space, it is easy to keep track of many

such cuts.

4.5.4 Out-of-Core Ray Tracing

The method naturally allows for out-of-core ray tracing, with the possibility of

rendering potentially unbounded scenes. This is difficult to achieve with current GPU

ray-tracing architectures. In the best case, we assume that (most of) the working set

required for computing a given frame fits in GPU memory, while the entire scene does

not. By using a cache of recently used termination nodes on the GPU, we can avoid

transferring to the GPU the geometry that is already in the cache. Note that this sort

of memory management requires only minor modifications to the method shown

in Algorithm 4.7, and can be managed inside the compute ray-triangle intersections

function. In our current implementation, we use a simple round-robin style cache

management for the BVH and geometry data of the visible subtrees. When caching

4.5 CHC+RT Implementation 69

an out-of-core node, the data is simply written in the next free slot in the texture

buffer. When the end of the buffer is reached, we start overwriting the data from

the beginning and mark the overwritten nodes as out-of-core. As the only extension

to the core algorithm shown in Algorithm 4.5.2, we sort geometry that is scheduled

for intersection by their out-of-core status, i.e., visible nodes that have their data

currently cached on the GPU are scheduled for intersection first. Note that we still

use per-tile sorting among cached nodes.

4.6 Analysis

At the core of our technique is a novel scheduler and memory manager for fine-

grained ray-tracing computations that exploits coarse-grained hierarchies in both

object space and screen space. The screen-space hierarchy significantly improves

scheduling and speeds up rendering. E.g., for the Powerplant scene it results in a

speedup by a factor of 3 for Full-HD. Moreover, a screen-space hierarchy makes the

method well suited to the current trend towards larger resolution displays (4K and

above). By working at a coarse grain, we can amortize the cost of taking decisions

over a large number of ray-primitive intersection queries, and use an efficient and

flexible adaptive-loading architecture working on optimized geometry batches.

4.6.1 Problem-domain pruning

A good insight into the principle of the method and its potential strengths and

weaknesses can be obtained by analyzing the coverage of the whole ray-triangle

intersection domain by the query pairs. For this analysis, we express this domain

using a matrix in which each ray corresponds to a row in the matrix, while each

triangle corresponds to a matrix column. When computing the nearest intersections

of rays and triangles, there will be a single unique intersection in each row of the

matrix, while there can be many intersections for each column (a triangle can define

a nearest intersection for many rays). Our query pairs need to be constructed in a

way that every potential intersection is correctly determined. In other words, the

query pairs have to fully cover the whole matrix. We can observe an example of such

a matrix and its coverage by query pairs in Figure 4.9. This matrix is generally very

sparse. The coverage of the matrix by query pairs depends on two main factors: (1)

the coherence of intersections and (2) on how densely the rays sample the scene.

The triangles are sorted in the BVH and therefore, for similar rays the intersections

4.6 Analysis 70

BVH

sc
re

en
 s

ub
di

vi
si

on

triangles

ra
ys

visible pairs

invisible pairs

intersections

intersection
batches

G1 G2 G3 G4 G5 G6 G7 G8

}
}

Fig. 4.9.: Intersection between object-space and ray-space subdivisions. Illustration of
the coverage of the whole domain of ray-triangle intersection by constructed pairs.
Pairs indicating potential ray-triangle intersections are shown in red, while the
pairs for which the geometry bounding boxes do not intersect the rays are shown
in green. The actual ray-triangle intersections are shown in blue. The figure shows
batches of visible pairs (G1-G8) used for computing ray-triangle intersections. Note
that the geometry G8 is not used in any batch, meaning that it is not intersected
by any ray and will not be scheduled for intersection. Note the two example
cuts in the hierarchies: the cut in the screen-space subdivision shows query pairs
corresponding to a BVH termination node, and the cut in the BVH shows query
pairs corresponding to a given screen-space tile.

should cluster around similar triangles, creating a compact intersection cluster which

can be covered by a few query pairs. However, if the rays are highly incoherent, the

coverage by query pairs will become more complex. Note that even then, the matrix

will be sparse, and at some point we will be able to prune most of the intersection

domain if enough query pairs are used.

Another interesting observation follows from the analysis of rows and columns of the

matrix. In particular, the number of query pairs covering a row of the matrix directly

corresponds to the overdraw of the corresponding screen pixel. The visible query

pairs (shown in red) will cause ray/triangle intersections to be executed for this

pixel and passed to the z-buffer, while the invisible query pairs (green) will execute

the ray/box intersection verifying the invisibility of the associated geometry by the

given ray. Looking at the columns of the matrix, we can observe the number of query

4.6 Analysis 71

pairs (screen-space tiles) needed to handle the given geometry (triangle batch). The

visible query pairs (red) are those for which the actual ray-triangle intersections

are computed, while the invisible query pairs show the occlusion queries issued for

rays which do not intersect the triangle batch. Note that the size of the rectangles

shown in the matrix depends on the depth of the corresponding query pair in the

two hierarchies. Thus the coverage of the matrix by query pairs also visualizes the

double-hierarchical cut on which our algorithm operates.

4.6.2 GLSL rendering

Our method is not necessarily bound to a specific implementation, and a CUDA

version of the algorithm is definitely possible. Nonetheless, focusing on GLSL in this

work provides specific advantages. First of all, by explicitly using a rasterization

platform, we better convey the underlying idea that there is a continuum between

rasterization and ray-tracing approaches. We aim to foster further research in the

area of hybrid rendering by showing how techniques from the rasterization world,

such as coherently scheduled visibility algorithms, batched computation and out-of-

core rendering, can successfully improve ray tracing. Second, GLSL simplifies the

implementation through features of the fixed-function pipeline. For instance, we

can use automated shader scheduling instead of implementing explicit schemes, and,

while Z-buffering and visibility queries can be realized in CUDA, using GLSL avoids

the need to craft efficient synchronization methods using atomic operations. Finally,

a GLSL implementation has the additional benefit to be less hardware dependent

with respect to CUDA and to simplify integration into classic OpenGL rendering

pipelines.

4.6.3 Limitations

Our framework currently only supports static scenes, but an extension to fully

dynamic scenes would be possible without changes to the core of the algorithm.

While different ray types are supported by our method and we present techniques

for enforcing more coherence, it is still true that the method becomes less efficient

for fully incoherent ray patterns. We focus on the overall method and its capability

of handling large scenes using single-bounce illumination. For simple multi-bounce

illumination, e.g., Whitted-style ray tracing, there is enough coherence even for

secondary bounces, and our method can use a separate hierarchy cut for each such

bounce. For a full path-tracing solution, our plan is to have a sorting step after

4.6 Analysis 72

each rendering pass that would reorder rays in a more coherent order using a space-

filling curve based on scene hit points, along the lines of Moon et al. [103]. Other

authors have already done this sorting on the GPU [122], so we are confident that

real-time performance is possible. This pass would generate a linear order, and our

screen-space hierarchy will become a ray-space hierarchy built on reordered rays.

Multiple Bounces. Each bounce (either refractive or reflective) is handled in a

separate deferred shading pass. The contribution of a pass is accumulated to the

overall illumination. The new ray-termination positions are then used to initialize

the ray textures in the next pass. We use a shared query-pair front for all bounces,

meaning that we assume certain coherence of the results of one bounce to the other.

An alternative would be to maintain a query-pair front for each bounce separately

and share it among different frames. This in most cases improves the coherence at

the cost of increased memory consumption.

Object-Order Scheduling. By using object-order scheduling, our method is capable

of increasing the coherence of data accesses. We can use concepts widely used

in the rasterization pipeline, such as binding large high resolution textures when

processing a particular geometry, or applying on-the-fly geometry tessellation. This

can be achieved while minimizing the memory consumption of the temporary data

and the number of state changes required for switching between rendering different

primitives. Such behavior is not possible to achieve with fully hierarchical ray

traversal methods, which lead to unpredictable accesses to the scene geometry and

materials including the methods using ray sorting and packeting.

Fully Dynamic Scenes. Applications like traffic simulation or games perform com-

plex simulations on the CPU and offload rendering to the GPU. Our method inherently

supports managing the scene data and the BVH on the CPU side. Only those parts

that were modified and are actually needed for rendering will be transferred to the

GPU.

Support for legacy hardware. Some current hardware architectures like game con-

soles or mobile devices do not allow to implement stack based ray traversal on

their GPU due to limited shader capabilities of these devices. When using a naive

intersection shader in the leaves of the query-pair hierarchy our method can be used

for implementing GPU ray tracing even on such devices. We consider the actual

porting of our method to this type of hardware as an interesting practical topic

4.6 Analysis 73

to be addressed in future work. While this opens the possibility of application on

architectures with limited shader capabilities such as game consoles, it hinders the

ray tracing performance on state of the art GPUs. It should be noted that a leaf-level

acceleration structure can be introduced to speed-up intersection queries without

any modification to the global architecture.

4.7 Results

For our experiments we use an Intel i7-3770 CPU with 3.5GHz (using one core),

8 GB RAM, a resolution of 1920 × 1080 and an NVidia Titan GPU with 6 GB of

video memory. However, as there seems to be a limitation at 4 GB for use with a

single thread, we are only able to allocate a maximum of 3.7 GB for the data (BVH,

geometry, materials) of our out-of-core scenes.

Table 4.1 shows the models used in our experiments. We use 3 scenes for in-core ray

tracing and 3 out-of-core scenes. City-10 and City-200 are a typical 2.5D city models,

generated with the City Engine [123] in two levels of detail. They offer a high degree

of occlusion for near views and a high degree of regularity. The Powerplant model is

considerably less regular, and the created BVH is deep. For out-of-core ray tracing,

we use 16 copies of the Powerplant. The complex 777 model is a standard scene for

testing out-of-core methods. We also extracted a section of the 777 model for in-core

use. Note that the 777 is a challenging scene for our method because many small

complex details are visible most of the time. For shading we use the diffuse materials

defined in the original scenes if available and a Preetham Skylight model [124]

for the City models. In order to keep the memory footprint as low as possible for

out-of-core rendering, we generate the face normals on the fly in the intersection

shader.

We use a deferred shading approach to compute the shading contribution of each

ray in in a post-processing step. Tables 4.2 and 4.3 shows numerical results for our

benchmarks using the described technique. In each scene we provide 2 walkthroughs

roughly corresponding to a sequence of near-view points (e.g., on street level) and

far-view points (e.g., bird’s-eye view). We test the proposed method for primary

rays, 20 short ambient-occlusion rays (0.5 units long) which sample the hemisphere,

and 20 diffuse reflection rays where the maximum ray length is set to cover the full

scene extent. These ray types cover many cases typically encountered in ray-tracing

applications. Our method uses all optimizations described in Section 4.4.5 in order to

4.7 Results 74

Near view Far view

City-10
Num. Triangles: 11.7M
Geometry size: 537MB

BVH Size: 140MB
In-core: 100%

Powerplant
Num. Triangles: 12.8M
Geometry size: 584MB

BVH Size: 126MB
In-core: 100%

Boeing 777 section
Num Triangles: 21.5M
Geometry size: 984MB

BVH Size: 244MB
In-core: 100%

City-200
Num. Triangles: 139M
Geometry size: 6.35GB

BVH Size: 1.54GB
In-core: 47%

Powerplant x16
Num. Triangles: 205M
Geometry size: 9.34GB

BVH Size: 2.02GB
In-core: 32%

Boeing 777
Num. Triangles: 350M
Geometry size: 16.1GB

BVH Size: 2.80GB
In-core: 20%

Tab. 4.1.: Used models showing near-view and far-view.

4.7 Results 75

Scene Near-View (ms)
Ray type Primary AO Diffuse
GLSL 18.22 (1.00×) 186 (1.00×) 493 (1.00×)

City-10 CHC+RT 11.3 (1.61×) 153 (1.22×) 384 (1.28×)
CUDA 12.5 (1.46×) 311 (0.60×) 615 (0.80×)
GLSL 69.9 (1.00×) 772 (1.00×) 10064 (1.00×)

Powerplant CHC+RT 12.8 (5.46×) 173 (4.46×) 1700 (5.92×)
CUDA 11.8 (5.92×) 310 (2.49×) 1152 (8.74×)
GLSL 78.1 (1.00×) 516 (1.00×) 5464 (1.00×)

Boeing 777-Section CHC+RT 24.2 (3.23×) 236 (2.19×) 2729 (2.00×)
CUDA 12.5 (6.25×) 277 (1.86×) 1264 (4.32×)

City-200 CHC+RT 25.9 (-) 325.7 (-) 2720 (-)
Powerplant ×16 CHC+RT 18.7 (-) 232 (-) 1855 (-)

Boeing 777 CHC+RT 134 (-) 5175 (-) 30134 (-)

Tab. 4.2.: Comparison for near of our method (CHC+RT) with shader-based ray trac-
ing (GLSL) and CUDA-based raytracing [92] (CUDA) using a resolution of
1080p. We trace either primary rays or 20 samples per pixel of secondary rays.
The numbers in bold identify the best method in terms of the overall frame time.
The numbers in parenthesis show the speedup with respect to GLSL.

Scene Far-View (ms)
Ray type Primary AO Diffuse
GLSL 26.3 (1.00×) 277 (1.00×) 586 (1.00×)

City-10 CHC+RT 23.4 (1.12×) 286 (0.97×) 655 (0.89×)
CUDA 14.9 (1.77×) 278 (1.00×) 422 (1.39×)
GLSL 82.5 (1.00×) 588 (1.00×) 2722 (1.00×)

Powerplant CHC+RT 15.0 (5.50×) 154 (3.82×) 843 (3.23×)
CUDA 10.6 (7.78×) 246 (2.39×) 501 (5.43×)
GLSL 108 (1.00×) 781 (1.00×) 3752 (1.00×)

Boeing 777-Section CHC+RT 29.8 (3.62×) 270 (2.89×) 2382 (1.58×)
CUDA 16.4 (6.59×) 316 (2.47×) 809 (4.64×)

City-200 CHC+RT 87.8 (-) 766.7 (-) 2492 (-)
Powerplant ×16 CHC+RT 270 (-) 1559 (-) 25975 (-)

Boeing 777 CHC+RT 333 (-) 1961 (-) 16441 (-)

Tab. 4.3.: Comparison for far views of our method (CHC+RT) with shader-based ray
tracing (GLSL) and CUDA-based ray tracing [92] (CUDA) using a resolution
of 1080p. We trace either primary rays or 20 samples per pixel of secondary rays.
The numbers in bold identify the best method in terms of the overall frame time.
The numbers in parenthesis show the speedup with respect to GLSL.

4.7 Results 76

 250 FRAMES

CHC+RT

 100

 200

CUDA

 300

 400

 500

 600

 700

 800

 900
GLSL

 150 50 100 200

TIME (ms)

Fig. 4.10.: Comparison of CHC+RT with GLSL and CUDA This comparison was recorded
during a walk-through, near-view over the Powerplant model for ambient-
occlusion rays.

fully exploit temporal and spatial coherence. The BVH in our tests is constructed on

the CPU using SAH and optimized using the insertion-based BVH optimization [125].

As termination criteria for the traversal in CHC+RT, we set the maximum subtree

height to 24 and the maximum number of triangles to 1M.

We compare our method against standalone GLSL shading-based traversal without

occlusion culling (simply traversing the BVH from the root node) and the state-of-

the-art CUDA ray tracer of Aila et al. [92]. Note that we disabled ray sorting in CUDA

tracing since the overhead significantly outperformed the gain in traversal time, while

for our method the rays are already generated in a more coherent fashion.

CHC+RT usually works best for occluded walkthroughs (near views in City scenes

and Powerplant). For the City near view, it is faster than both GLSL and CUDA tracing

for all ray types. In the Powerplant model, CHC+RT is significantly faster than GLSL

and mostly comparable with CUDA. This can also be observed in the frame-by-frame

comparison shown in the plot of Figure 4.10. The sources of the speedup with respect

to GLSL are that occlusion can be efficiently exploited in Powerplant for both near

and far views, and that the deep BVH in Powerplant can be better handled by our

method.

In less occluded views, the overhead due to the occlusion queries can sometimes

outweigh the benefit for CHC+RT (e.g., City far view). The 777 model is a challenging

4.7 Results 77

case for any rendering algorithm, and the 777 Section exhibits similar properties.

Since parts of the hull have been removed, many complex details are visible most

of the time. This is a good case for the CUDA ray tracer, which is indeed the best

method for primary and diffuse rays. On the other hand, CHC+RT shows better

overall frame times for ambient-occlusion rays due to the smaller setup time. Also

note that CHC+RT is able to reduce the performance gap to CUDA in this scene by a

large margin.

The CUDA ray tracer is generally faster in terms of pure traversal times than both

GLSL and CHC+RT. But since a higher constant cost is involved in the setup of each

frame for CUDA, GLSL is competitive for scene configurations where the ray traversal

time is short (e.g., for AO rays and highly occluded scenes). We made the observation

that GLSL is much more sensitive to the stack size than CUDA, and this becomes a

bottleneck for deep hierarchies. On the other hand, CHC+RT does not suffer from

this problem. Indeed, the scheduled subtrees have a bounded traversal height and

hence the stack size can be bounded.

The method scales well to large, possibly out-of-core scenes if sufficient occlusion is

available. The performance of the near view in City-200 is comparable to the near

view in City-10 in spite of the over 12× larger scene and the out-of-core overhead,

and similar to the performance in the 777 Section. The same is true for the near

views in Powerplant and Powerplant×16. As can be observed for the far view of

Powerplant×16 and for 777, diffuse rays in open view-points in the large out-of-

core scenes are quite challenging for our method, but can be improved using the

aggressive version of our algorithm discussed below.

Figure 4.11 visualizes the timings of the different phases of the algorithm as listed

in Algorithm 4.7. Phase 1 corresponds to the intersection of previously visible

nodes, while Phase 2 and 3 correspond to the overhead caused by occlusion culling.

Phase 2 evaluates the current visibility status using queries for previously visible and

invisible nodes. Phase 3 traverses the hierarchy in response to a change in visibility.

Interestingly, the time spent in Phase 3 relative to the other phases increases for

the out-of-core scenes. The reason is that the overhead of Phase 3 corresponds to

changes in visibility. Even if the currently visible scene fits completely in-core and

there are no node fetches during Phase 1, nodes that become newly visible will

be uploaded to the GPU in this phase. Table 4.4 shows some interesting statistics

for the out-of-core models. For all models, the primary ray rendering can be done

4.7 Results 78

Fig. 4.11.: Traversal-time comparison of CHC+RT with GLSL split into the different
phases of the algorithm.

Scene Near-View Far-View
Ray type Prim AO Diff Prim AO Diff

Mrays/sec 80.1 127 15.2 23.6 54.1 16.6
Queries 822 13.6K 61.2K 2.46K 42.9K 117K

City-200 Trans. MB 0 5.85 383 0.61 0.11 1.73
BVH 0 3.00 94.9 1.96 0.30 2.04
Geom 0 2.85 288 2.58 0.41 3.77
Mrays/sec 111 179 22.4 7.68 26.6 1.60
Queries 793 13.2K 32.3K 3.63K 61.7K 312K

PP×16 Trans. MB 0.11 0.03 0.55 170 43.6 2310
BVH 0.04 0.01 0.13 85.8 34.7 663
Geom 0.07 0.02 0.42 83.8 8.85 1647
Mrays/sec 15.4 8.01 1.38 6.23 21.1 2.52
Queries 1.76K 123K 501K 6.31 85K 278K

777 Trans. MB 11.7 419 1442 355 96.7 1073
BVH 2.64 139 595 70.1 25.0 253
Geom 9.14 281 847 285 71.7 820

Tab. 4.4.: Per-frame statistics for the out-of-core models.

4.7 Results 79

predominantly in-core. Ambient occlusion and diffuse interreflections in particular

require significantly larger transfer rates between CPU and GPU memory.

City-200 Powerplant ×16 Boeing 777
Pixels %Tile Near Far Near Far Near Far
0 0.000 2720 2492 1855 25975 30134 16441
20 0.005 780 2019 1682 9651 11544 4807
100 0.025 738 1751 1553 4727 8081 2712
200 0.050 715 1611 1489 3578 6804 2028

Tab. 4.5.: Timings for the aggressive version of CHC+RT, using 20 diffuse reflection rays.
%Tile shows the error in % of the termination size of the screen-space tiles.
Visually the images look similar and the speedup is significant (x3.2).The mean
absolute error for the pixel colors is 9.04.

Fig. 4.12.: Comparison of the conservative (left) with the aggressive version of our method
(middle) allowing 20 pixels of error for diffuse rays. Right: Pixel differences are
mostly in the background.

The proposed algorithm is conservative because the occlusion-query result (the

number of visible pixels) is used for a binary decision. As an alternative, this number

can be used for a simple LOD mechanism that culls all nodes whose contribution to a

screen-space tile is less than a visible pixel threshold. As can be seen in Table 4.5, the

aggressive algorithm is especially useful for reducing the computational complexity

of diffuse reflections, where many nodes contribute to only a few pixels. As shown

in Figure 4.12, allowing for example an error of 20 pixels per query can reduce the

render time by a factor of 3 with only a minor decrease in accuracy, with a mean

absolute pixel error of 9.04. A detailed plot of one of the walkthrougs can be seen

in Figure 4.10 in terms of million rays per second and number of occlusion queries

issued in each frame.

Table 4.6 shows the influence of spatial coherence during ray generation on the

performance of our method. This is achieved by increasing the value for the maximum

angle for the random kernel rotation per-pixel. Diffuse reflections slow down by

4.7 Results 80

Fig. 4.13.: Examples of the effects of the random rotation on diffuse color bleeding
using 20 samples for 18◦ (left), 36◦ (middle), and full randomization (right)
(zoom in to see the differences).

Randomization
None 18◦ 36◦ Full

AO
City-10 Near (ms) 136 145 156 193
Powerplant Near (ms) 153 167 175 190

Diffuse
City-10 Near (ms) 228 323 384 805
Powerplant Near (ms) 664 1334 1700 4125

Tab. 4.6.: Effect of the per-pixel random rotation of the diffuse sampling kernel on the
coherence and frame time of 20 diffuse reflection rays in two selected models.

a factor of over 4–5× when going from no randomization to a fully randomized

rotation, whereas the frame times for AO rays are affected much less. Note that the

frame times using full randomization are still comparable to GLSL. The temporal

coherence can be maintained by storing the visibility status for each ray direction.

In our results we use a per-pixel rotation of 36◦ for 20 samples, which provides

good quality and maintains a sufficient degree of spatial coherence (as shown in

Figure 4.13). It also has the benefit to eliminate some temporal noise in moving

frames.

4.7 Results 81

4.8 Discussion

In this chapter I presented a novel use of hierarchical occlusion culling for accelerating

OpenGL-based ray tracing. Our method exploits the rasterization pipeline and

hardware occlusion queries in order to create coherent batches of work for the GPU

ray-tracing kernel. By generalizing occlusion culling to arbitrary rays through a

combined hierarchy in both ray space and object space, we are able to share the

intermediate traversal results among multiple rays, leading to a simple and efficient

implicit parallelization using rasterization hardware. Through novel means for

scheduling GLSL ray tracing kernels using the coarse-grained hierarchy over screen-

and object-space, we are able to support rendering of out-of-core ray tracing using

GPU memory as a cache. Our method narrows the gap between OpenGL-based ray

tracing and CUDA ray tracing by a significant amount and is able to outperform

CUDA ray tracing in some cases.

The current implementation is based on OpenGL, and, given the evolution of the

graphics APIs, it would be interesting to evaluate how the same concepts can be

efficiently implemented on other platforms, such as WebGL and Vulkan.

While the method fully exploits the hierarchy in object space, we could extend it

to better exploit the image-space hierarchy and thus to improve the algorithmic

efficiency. We implicitly assume that issuing occlusion queries is the dominant cost.

The cost of the queries depends, however, on the size of the active ray set (screen-

space rectangle area), since each ray is processed individually. An interesting future

work concerns devising methods for efficiently sorting and grouping rays to compute

queries in constant time.

Currently only single bounce rendering of diffuse reflections is supported, thus, one

of the most interesting evolutions concerns the extension to multiple bounces of

arbitrary rays in a complete path tracing application.

4.9 Bibliographical notes

Most of the content of this chapter was presented in our Eurographics 2015 contribu-

tion and published in the Computer Graphics Forum journal [5], describing the novel

CHC+RT algorithm, its implementation and results.

4.8 Discussion 82

A number of recent relevant publications have presented follow-ups of this work,

extending it in different directions. For instance, Wald et al. [126] use an adaptation

of the kd-tree for raytracing large amounts of particles from molecular dynamic

simulations, astrophysics, etc. Kostas et al. [127] presented in 2016 the DIRT system

for computing interactive image-space ray tracing, with the aim of improving our

ray coherence model. In 2017 Barringer et al. [128] presented Ray Accelerator, an

heterogeneous raytracing system which similarly to our approach subdivides the rays

in large packages and schedules their computation. They manage to distribute the

work between GPU (for visibility) and CPU (mostly for shading), using shared memory

for communication. Recently Kol et al. [129] have presented MegaViews, a scalable

architecture to render complex scenes from many viewpoints, with applications to

real-time computation of global illumination solutions and complex shadowing. They

use also a double scene-view hierarchy, updating every frame a queue of node-pairs to

compute. Also, very recently, Hynt et al. from Oculus Research [130] have proposed

the use of our approach as a future improvement of their Hierarchical Visibility for

Virtual Reality (HVVR) method.

4.9 Bibliographical notes 83

5Improving scalability through

compression: Symmetry-aware

Sparse Voxel DAG

In the previous chapter, I proposed a method to improve rendering performance
by subdividing work and data into small batches, dynamically selecting at run-
time, based on visibility considerations, what data to load and what computation
to perform. Such a method makes it possible to render very large scenes,
exceeding GPU memory, using adaptive loading. In this chapter, instead, I will
explore a fully orthogonal solution, which tackles the problem of massive model
rendering by aggressively compress data so that it fits, in fully renderable format,
on GPU memory. The presented method is targeted to improve performance
on voxelized representations of complex 3D scenes, which are widely used to
accelerate visibility queries in many GPU rendering techniques. Since GPU
memory is limited, it is important that these data structures can be kept within
a strict memory budget. Recently, directed acyclic graphs (DAGs) have been
successfully introduced to compress sparse voxel octrees (SVOs), but they are
limited to sharing identical regions of space. In this chapter, we show that a more
efficient lossless compression of geometry can be achieved while keeping the same
visibility-query performance. This is accomplished by merging subtrees that are
identical through a similarity transform and by exploiting the skewed distribution
of references to shared nodes to store child pointers using a variable bit-rate
encoding. We also describe how, by selecting plane reflections along the main
grid directions as symmetry transforms, we can construct highly compressed GPU-
friendly structures using a fully out-of-core method. Our results demonstrate
that state-of-the-art compression and real-time tracing performance can be
achieved on high resolution voxelized representations of real-world scenes of
very different characteristics, including large CAD models, 3D scans, and typical
gaming models, leading, for instance, to real-time GPU in-core visualization with
shading and shadows of the full Boeing 777 at sub-millimeter precision.

WITH the increase in performance and programmability of graphical pro-

cessing units (GPUs), GPU raycasting is emerging as an efficient solu-

tion for many real-time rendering problems. In order to handle large

detailed scenes, devising compact and efficient scene representation for acceler-

ating ray-geometry intersection queries becomes paramount, and many solutions

have been proposed (see Sec. 5.2). Among these, sparse voxel octrees (SVO) [131]

have provided impressive results, since they can be created from a variety of scene

84

representation, they efficiently carve out empty space, with benefits on ray trac-

ing performance and memory needs, and they implicitly provide a levels-of-detail

(LOD) mechanism. Given their still relatively high memory cost, and the associated

high memory bandwidth required, these voxelized approaches have, however, been

limited to moderate scene sizes and resolutions, or to effects that do not require

precise geometric details (e.g., soft shadows). While many extremely compact rep-

resentations for high-resolution volumetric models have been proposed, especially

in the area of volume rendering [132], the vast increase in compression rates of

these solutions is balanced by increased decompression and traversal costs, which

makes them hardly usable in general settings. This has triggered a search for simpler

scene representations that can provide compact representations within reasonable

memory footprints, while not requiring decompression overhead. Kämpe et al. [14]

have recently shown that, for typical video-gaming scenes, a binary voxel grid can

be represented orders of magnitude more efficiently than using a SVO by simply

merging together identical subtrees, generalizing the sparse voxel tree to a directed

acyclic graph (SVDAG). Such a representation is compact, as nodes are allowed to

share pointers to identical subtrees, and remains as fast as SVOs and simple octrees,

since the tracing routine is essentially unchanged.

In this work, we show that efficient lossless compression of geometry can be combined

with good tracing performance by merging subtrees that are identical up to a similarity

transform, using different granularity at inner and leaf nodes, and compacting node

pointers according to their occurrence frequency. The resulting structure, dubbed

Symmetry-aware Sparse Voxel DAG (SSVDAG) can be efficiently constructed by a

bottom-up external-memory algorithm that reduces an SVO to a minimal SSVDAG

by alternating different phases at each level. First, all nodes that represent similar

subtrees are clustered and replaced by a single representative. Then, pointers to those

nodes in the immediately higher level are replaced by tagged pointers to the single

representative, where the tag encodes the transformation that needs to be applied

to recover the original subtree from the representative. Finally, representatives

are sorted by their reference count, which allows for an efficient variable-bit-rate

encoding of pointers. We show that, by selecting planar reflections along the main

grid directions as symmetry transform, good building and tracing performance can

be achieved.

85

Fig. 5.1.: Compressed Power Plant model, zoom-in details. Our algorithm is able to
compress and render at full frame-rate this large CAD model, at 1M3 voxelization
resolution. It has 1.6 billion of full voxels, which compressed with SSVDAGs
occupies 3.2GB, fitting in nowadays GPUs memory. Thus, the compression rate is
of 0.017 bits/voxel.

5.1 Contribution

The main contribution of this research are:

• A compact representation of a Symmetry-aware Sparse Voxel DAG that can

losslessly represent a voxelized geometry of many real-world scenes within a

small footprint and can be efficiently traced;

• An out-of-core algorithm to construct such representation from a SVO or a

SVDAG; we describe, in particular, a simple multi-pass method based on re-

peated merging operations;

5.1 Contribution 86

• A clean modification of standard GPU raycasting algorithm to traverse and

render this representation with small overhead. We describe, in particular the

details of a GPU tracing method based on a multi-resolution Digital Differential

Analyzer (DDA), implemented with a full stack. This sort of approach has

been proven effective in previous work on SVOs and SVDAGs [131, 14], and is

extended here to handle graphs with reflective transformations.

Our reduction technique is based on the assumption that the original scene represen-

tations is geometrically redundant, in the sense that it contains a large amount of

subtrees which are similar with respect to a reflective transformation. Our results, see

Sec. 5.6, demonstrate that this assumption is valid for real-world scenes of very dif-

ferent characteristics, ranging from large CAD models, to 3D scans, to typical gaming

models. This makes it possible to represent very large scenes at high resolution on

GPUs, and to support precise geometric rendering and high-frequency phenomena,

such as sharp shadows, with a tracing overhead of less than 15%. Similarly to

other works on DAG compression [14, 133, 134], we focus in this chapter only on

geometry, and not on non-geometric properties of voxels (e.g., material or reflectance

properties), which should be handled by other means. A recent example on how to

associate attributes to the original SVDAGs has for instance been recently presented

by Dado et al. [135].

This technique was presented in joint papers at i3D conference [6] and in the

(JCGT) journal [7]. SSVDAGs is the main contribution of this thesis, since I co-

designed the method and its efficient implementation, fully implemented all the

system components, and performed the full evaluation.

5.2 Related Work

Describing geometry for particular applications and devising compressed representa-

tion of volumetric models are broad research fields. Providing a full overview of these

areas is beyond the scope of this thesis. We concentrate here on methods that employ

binary voxel grids to represent geometry to accelerate queries in GPU algorithms. We

refer the reader to a recent survey [132] for a more general overview in GPU-friendly

compressed representations for volumetric data.

Starting from more general bricked representations proved successful for semitrans-

parent GPU raycasting [136, 137], Laine and Karras [131] have introduced Efficient

5.2 Related Work 87

Sparse Voxel Octrees (ESVOs) for raytracing primary visibility. In their work, in

addition to employing the octree hierarchical structure to carve out empty space, they

prune entire subtrees if they determine that they are well represented by a planar

proxy called contour. Storing the proxy instead of subtrees achieves considerable

compression only in scenes with many planar faces, and introduces stitching problems

as in other discontinuous piecewise-planar approximations [138]. Crassin et al. [139]

have shown the interest of such approaches for secondary rays, computing ambient

occlusion and indirect lighting by cone tracing in a sparse voxel octree. Their bricked

structure, however, requires large amounts of memory, also due to data duplication

at brick boundaries.

A number of works have thus concentrated on trying to reduce memory consumption

of such voxelized structures while maintaining a high tracing performance. Crassin

et al. [137] mentioned the possibility of instancing, but rely on ad-hoc authoring

for fractal scenes, rather than algorithmic conversions. Compression methods based

on merging common subtrees have been originally employed in 2D for the lossless

compression of binary cartographic images [140], and extended to 3D by Parker and

Udeshi [141] to compress voxel data. These algorithms, however, are costly and

require fully incore representations of voxel grids. Moreover, since voxel content is

not separated from voxel attributes, only moderate compression is achieved. Recently,

Dado et al. [135] presented a compressed structure able to encode-decode voxels

attributes, such as color or normals in another auxiliary structure. This work is

orthogonal to ours. Hoetzlein [142] created GVDB, a hierarchy of grids of volumetric

models with dynamic topology, with the scope of fast decoding in GPU. The traversal

algorithm is similar to our DDA-based one.

High Resolution Sparse Voxel DAGs (SVDAG) [14] generalize the trees used in

Sparse Voxel Octrees (SVOs) to DAGs, allowing the sharing of common octrees.

They can be constructed using an efficient bottom-up algorithm that reduces an

SVO to a minimal SVDAG, which achieves significantly reduced node count even in

seemingly irregular scenes. The effectiveness of the method is demonstrated by ray-

tracing high-quality secondary-ray effects using GPU raycasting from GPU-resident

SVDAGs. This approach has later been extended to shadowing by voxelizing shadow

volumes instead of object geometry [133, 134], as well as for time-varying data

[143]. We improve over SVDAGs by merging subtrees that are identical up to a

similarity transform, and present an efficient encoding and building algorithm, with

an implementation using reflective transformations. The idea of using self-similarity

for compression has also found application in point cloud compression [144], where,

5.2 Related Work 88

however, the focus was on generating approximate representations instead of lossless

ones.

In addition to reducing the number of nodes, compression can be achieved by re-

ducing node size. As pointers are very costly in hierarchical structures, a number

of proposals have thus focused on reducing their overhead. While pointerless struc-

tures based on exploiting predefined node orderings have been proposed for offline

storage [145], they do not support efficient run-time traversal. The optimizations

used for trees, such as grouping children in pages and using relative indexing within

pages [131, 146] are not applicable to our DAGs, since children are scattered through-

out the structure due to sharing. By taking advantage of the fact that the reference

count distribution of shared nodes is highly skewed, we thus employ a simple variable

bit-rate encoding of pointers. A similar approach has been used by Dado et al. [135]

for compression of pointers in their auxiliary structures for storing voxel attributes.

That system has been independently developed in parallel to ours.

5.3 Overview

A 3D binary volumetric scene is a discretized space subdivided in N3 cells called

voxels, which can be empty or full. Since this structure grows cubically for every sub-

division, is is hard to achieve high resolutions. SVOs compactify these representation

using a hierarchical octree structures of nodes arranged in a number of levels (L),

with N = 2L, and most commonly represented using a children bitmask per node as

well as up to eight pointers to nodes in the next level. When one of those children

represents an empty area, no more nodes are stored under it, introducing sparsity

and thus efficiently encoding whole empty areas of the scenes. The structure can be

efficiently traversed on the GPU using stackless or short-stack algorithms [131, 147],

which exploit sparsity for efficient empty-space skipping.

SVOs and grids can be directly created from a surface representation of the scene

through a voxelization process, for which many optimized solutions have been pre-

sented (see, e.g., [148]). In this work, we use a straightforward CPU algorithm that

builds SVOs using a streaming pass over a triangle soup, inserting triangles in an

adaptive octree maintained out-of-core using memory-mapped arrays. Using other

more optimized solutions would be straightforward.

5.3 Overview 89

SVDAGs optimize SVOs by transforming the tree to a DAG, using an efficient bottom-

up process that iteratively merges identical nodes one level at a time and then updates

the pointers of the level above. The resulting structure is more compact than SVOs,

and can be traversed using the exact same ray-casting algorithm, since node sharing

is transparent to the traversal code.

T
x

T
xy

Scene SVO SVDAG SSVDAG

Fig. 5.2.: Example 2D scene transformed into different structure, with children are
ordered left-right, top-bottom. The Sparse Voxel Octree (SVO) contains 10 nodes.
The Sparse Voxel Directed Acyclic Graph (SVDAG) finds one match and then shares
a node, meaning 9 nodes. The presented Symmetry-aware Sparse Voxel Directed
Acyclic Graph (SSVDAG) finds reflective matches in two last levels, and reduces
the structure to 4 nodes.

The aim of this work is to obtain a more compact representation of the volume, while

keeping the efficiency in traversal and rendering. We do this by merging self-similar

subtrees (starting from an SVDAG or an SVO), and by reducing node size through an

adaptive encoding of children references.

Among the many possible similarity transformations, we have selected to look for

reflective symmetries, i.e. mirror transformations along the main grid planes. We thus

consider two subtrees similar (and therefore merge them) if their content is identical

when transformed by any combination of reflections along the principal planes

passing through the node center. Such a transformation Tx,y,z has the advantage that

the 8 possible reflections can be encoded using only 3 bits (reflection X,Y,Z), that

the transformation ordering is not important, as transformations along one axis are

independent from the others, and that efficient access to reflected subtrees, which

requires application of the direct transformation Tx,y,z or of its inverse T−1
x,y,z = Tx,y,z,

can be achieved by simple coordinate (or index) reflection. This leads to efficient

construction (see Sec. 5.4.1) and traversal (see Sec. 5.5). In addition, since the

transformation has a geometric meaning, the expectation, verified in practice, is to

frequently find mirrored content in real-world scenes (see a 2D example in Fig. 5.2).

The output of the merging process is a DAG in which non-empty nodes are referenced

by tagged pointers that encode the transformation Tx,y,z that needs to be applied

together with the child index. Further compression is achieved by taking advantage

of the observation that not all subtrees are uniformly shared, i.e., some subtrees are

significantly referenced more than others. We thus use a variable bit-rate encoding,

5.3 Overview 90

in which the most commonly shared subtrees are references with small indexes, while

less common subtrees are referenced with more bits. This is achieved through a

per-level node reordering process, followed by a replacement of child pointers by

indices. The encoding process, as well as the resulting final encoding is described in

Sec. 5.4.3.

5.4 Construction and encoding

A SSVDAG is constructed bottom-up starting from a voxelized representation (SVDAG

or SVO). We first explain how a minimal SSVDAG is constructed by merging similar

subtrees, and then explain how the resulting representation is compactly encoded in

a GPU-friendly structure. While the original work [6] described a fully out-of-core

implementation based on external-memory arrays, we propose in this version a

simpler approach that proceeds by repeated in-core reductions of subtrees.

5.4.1 Bottom-up construction process

Constructing the SSVDAG requires to efficiently find reflectively-similar subtrees.

Since explicitly checking similarity in subtrees would be prohibitively costly for large

datasets, we use a bottom-up process that iteratively merges similar nodes one level

at a time. This requires, however, some important modifications to the original

SVDAG construction method. In our technique, we use arrays encoding level-by-level

the existing nodes, with one array per level. For construction, each array element

contains an uncompressed node description containing for leaf nodes a bitmask while

for inner nodes 8 (possibly null) child pointers and a bitmask to take into account

invariance with respect to transformation during inner nodes clustering (see below).

We start the construction process from the finest level L− 1, and proceed up to the

root at level 0.

Our construction code is capable to perform a transformation into a DAG with or

without symmetries, and works, for compatibility with previous encoding methods,

using a leaf size of 23. Grouping into larger leaves is performed in post-processing

during our encoding phase (see Sec. 5.4.3). At each level, we first group the nodes

into clusters of self-similar nodes, then select one single representative per cluster

and associate to others the transformation that maps them to the representative.

The surviving nodes are reordered for compact encoding (see Sec. 5.4.3) and stored

5.4 Construction and encoding 91

in the final format. Child pointers of nodes at the previous level are then updated

to point to the representatives, and the process is repeated for all levels up to the

root.

–

–

Ty Tx|y TxTy

Ty

Tx

Tx

Ty

Ty

Tx

Tx

Canonical Base

Fig. 5.3.: 2D canonical base of transformations. Example of all the 2D canonical symme-
try transformations of a small voxel grid into a set of base representatives. The
transformation maps clusters of self-similar grids to a unique representative.

The matching process at the core of clustering is based on the concept of reordering

the nodes at a given level so that matching candidates are stored nearby. Clustering

and representative selection is then performed during a streaming pass. Leaf nodes

and inner nodes, must use, however, different methods to compute ordering and

perform matching.

Leaf nodes clustering In order to efficiently match leaf nodes in the tree, we must

discover which representation of small voxel grids remain the same when one of the

possible transformations is applied. Considering that each grid G can be represented

by a binary number B(G) by concatenating all the voxel occupancy bits in linear

order, we define a mapping of each possible grid G to another grid G? = T ?
x,y,z(G),

such that the canonical transformation T ?
x,y,z = arg maxTx,y,z B(Tx,y,z(G)). G? is the

canonical representation of G, and represents, among all possible reflections of G,

the one with the largest integer value. Geometrically, it is the one that attracts most

of the empty space to the origin (see Fig. 5.3). This transformation is precomputed

in a table of 256 entries that maps all the possible combinations of 23 voxels to the

bitcode representing the canonical transformation as well as to the unique canonical

representation (one of the 46 possible ones). Given this transformation, two nodes

are self-similar if their canonical representation is the same. Clustering can thus

be performed in a single streaming pass after sorting leaves using the canonical

representation as a key. Nearby nodes sharing the same canonical representation

are merged into a single representative, pointers at the upper level are then updated

to point to the representative, and pointer tags are computed so as to obtain the

original leaf from the representative.

5.4 Construction and encoding 92

T
x T

x

T
x

n
1

n
2

n
3

n
4

n
5 n

6
n
7 n

4
n
5

n
1

n
2

n
3

Invariant(T
x
)

Fig. 5.4.: Clustering of nodes and invariants check. On the left, during leaf clustering,
references to leaf node n6 are replaced by references to n5, which is identical, while
references to n7 are replaced with references to n4 transformed by transformation
Tx. On the right, inner node n3 is replaced with n2 through transformation Tx

since its left child n5 is invariant to transformation Tx and is identical to the right
child of n2, while its right child matches the left child of n2 through the same
transformation Tx.

Inner nodes clustering. While for leaf nodes we can detect symmetries by directly

looking at their bit representation, two inner nodes n1 and n2 must be merged if

they represent the exact same subtrees when a transformation T is applied. The first

trivial condition to be checked is that child pointers must be the same. We thus sort

the inner nodes using the lexicographically sorted set of pointers to children as key.

Since after sorting all self-similar nodes are positioned nearby, as they are among

those that share the same set of pointers, we perform merging by creating, during a

streaming pass, one representative per group of self-similar nodes. The self-similarity

condition must be verified without performing a full subtree comparison. Given the

properties of our reflective transformations, we have thus to verify that, when the

two nodes n1 and n2 are matched for similarity under a candidate transformation T ,

every tagged pointer (tag, p) of n1 is mapped to (T (tag), p) in n2 if p is not invariant

to the transformation T , or it is mapped to (T (tag)
∨
¬T (tag), p) if it is invariant

(see Fig. 5.4). This means, for instance, that, when looking for a match under a

left-right transformation Tx, the left and right pointers must be swapped in n2 with

respect to n1, and the pointed subtrees must be equal under a left-right mirroring,

The latter condition is verified if the pointed subtree has a left-right symmetry, or

if, for each matched pair of tagged child pointers, the left-right transformation bit

is inverted while the other bits are the same. This process does the clustering for

one particular transformation T , and is repeated for each of the 8 possible reflection

combinations, stopping at the first transformation that generates a match with one of

the currently selected representatives, or creating a new representative if all tests are

unsuccessful. In order to efficiently implement invariance checks, we thus associate

three invariant bits (one for each mirroring direction) at each of the leaves when

5.4 Construction and encoding 93

computing their canonical representations, and pull them up during construction at

inner nodes by suitably combining the invariant bits of pointed nodes at each merging

step. For instance, an inner node is considered invariant with respect to a left-right

transformation if all its children are invariant with respect to that transformation, or

the left children are the mirror of the right ones.

5.4.2 Out-of-core implementation

The construction process described above constructs an SSVDAG starting from a

voxelized representation (SVO or SVDAG), and must be made scalable to massive

models.

Our original work[6] used a direct implementation of the described method, which

performed the reduction in a single pass, using external memory structures to store,

by level, all the required data. These structures were per-level memory-mapped

arrays storing the voxel tree. Scalability was thus achieved by relying on operating

system features to handle virtual memory. This required, however large (out-of-core)

temporary storage space to store the fully constructed tree.

In this work. we employ, instead, a simpler solution based on building and merging

bottom-up portions of the dataset fully fitting in core memory.

It should be noted that, unlike what it has been seen before in this thesis, the goal of

the method shown in this chapter, the SSVDAG reduction, is to produce, even from

very massive inputs, an end results that needs to fit within GPU memory constraints.

A recursive merging solution, which reduces voxelized representations bottom-up

until they fit into memory thanks to partial reduction is therefore applicable. Even

if such a construction approach assumes that the final reduction can be performed

fully in-core, this is a safe assumption in our context, since the final reduced SSVDAG

produces a data structure that should be stored in GPU memory, which is typically

much smaller than available RAM.

When starting from a model whose representation exceeds the available memory

for construction, we therefore construct an SSVDAG of depth L using the following

process:

1. we estimate the level L0 < L of the octree structure at which all subtrees are

deemed small enough to fit into memory once transformed into SSVDAGs;

5.4 Construction and encoding 94

2. for each of the voxels at level L0, we perform a separate and independent

reduction process confined to their spatial regions by applying in sequence the

following steps:

a) we create, in-core, a voxelized representation of depth L − L0 of the

portion of the model contained within the voxel; if the representation

is already available, the relevant voxel data is just loaded from disk,

otherwise it is computed on-the-fly through a voxelization process; in

the latter case, for a mesh, this can be done by streaming over the input

model’s triangles, without the need to load the entire model in memory;

b) we reduce, in-core, the voxelized representation to an SSVDAG using the

process described in Sec. 5.4.1, and we store the resulting SSVDAG on

disk.

3. in order to compute the final DAG of depth L, we recursively merge bottom-

up the reduced representations computed in the previous phase. For each

reduction step, this is achieved by

a) we load all the SSVDAGS associated to the voxels of the relevant subtrees

in memory and construct a single DAG by creating octree nodes above

them until the common root is reached;

b) we apply the reduction process described in Sec. 5.4.1 to the union of

SSVDAGS instead of an octree, and we store the resulting SSVDAG on

disk;

4. we repeat the process bottom up, until we have reduced the root of the original

octree to a single SSVDAG; at this point, the stored SSVDAG is the final model.

Separately processing subtrees (or sub-DAGs) during the reduction phases performed

at a given octree level will reduce voxel counts by finding symmetries only in the

spatial region represented by each subtree, which are a subset of the total ones. It

is important to note that this is not a limitation, since the overall global reduction

will be obtained when the separately reduced subtrees are merged in subsequent

bottom-up reduction phases. This is because each subtree reduction always restarts

from the leaf level L of the merged subtrees (or sub-DAGS) and recurses up to their

root. We exploit this fact to parallelize the construction process, in order to perform

several reductions in paralell. On a machine with num_procs processors, we thus give

as maximum memory budget for subtree construction the maximum in-core memory

divided by num_procs, and then perform num_procs reductions in parallel.

5.4 Construction and encoding 95

5.4.3 Compact encoding

The outlined construction process produces a DAG where inner nodes point to

children through tagged pointers that reference a child and encode the transformation

that has to be applied to recover the original subtree. We encode such a structure

in a GPU friendly format aimed at reducing the pointer overhead, while supporting

fast tracing without decompression. We achieve this goal through leaf grouping,

frequency-based pointers compaction, and memory-aligned encoding.

0%..10% 10%..20% 20%..30% 30%..40% 40%..50% 50%..60% 60%..70% 70%..80% 80%...90%90%..100%
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Level 11
Level 12
Level 13
Level 14

Fig. 5.5.: Histograms of the references to nodes in the Powerplant dataset voxelized at 64K3

resolution, with nodes sorted by reference counts. As we can see, the distribution
is highly skewed, and the most popular 10% of the nodes account for most of the
references.

Leaf grouping. While 23 allow for an elegant construction method using table-

based clustering, such a level of granularity leads to a high structure overhead, since

rays have to traverse deep pointer structures to reach small 8-voxel grids, and the

advantage of clustering is offset by the need to encode pointers to these small nodes.

For final encoding, we have thus decided to coarsen the construction graph by one

level, encoding as simple grids all the 43 grids, and to store them in a single array of

bricks, each occupying 64 bits. Note that this decision does not require performing

new matches on 43 leaves, since we just coarsen the graph obtained with the bottom-

up process described in Sec. 5.4.1, which uses a table-based matching on 23 leaves at

level L− 1 to drive the construction of 43 inner nodes at level L− 2.

Frequency-based pointer compaction. We have verified that in our SSVDAG the

distributions of references to nodes is highly skewed. This means that there typically

is a small groups of node referenced by a lot of parents nodes, while many others are

referenced much less. Fig. 5.5, for instance, shows the histogram of the distribution

5.4 Construction and encoding 96

of reference counts in the Powerplant dataset of Fig. 5.1, where the most common

10% of the nodes is referenced by nearly 90% of pointers at level 14 (nearly 50% at

level 11). We have thus adopted an approach in which frequently used pointers are

represented with less bits than more frequent ones. In order to do that, for encoding,

we reorder nodes at each level using the number of references to it as a key, so that

most referenced nodes appear first in a level’s array. We then replace pointers with

offsets from the beginning of each level array, and chose for each offset the smallest

number of bits available in our encoded format (see below).

Memory aligned encoding. While leaf nodes are all of the same size (64 bits), the

resulting inner node encoding produces variable-sized records (which is true also for

other DAG formats with variable child count, e.g., SVDAG [14]). We have decided, in

order to simplify decoding, to use half-words (16 bits) as the basis for our encoding.

Our final encoding includes an indexing structure, an array of inner nodes, and an

array of leaf nodes. The indexing structure contains the maximum level L and three

32-bits offsets in the inner level array that indicate the start of each level. The layout

of inner-level nodes is depicted in Fig. 5.6. For each node, we store in a 16-bit header

a 2-bit code for each of the 8 potential children. Tag 00 is reserved to null pointers,

which are not stored, while the other tags indicate the format in which child pointers

are stored after the header. Children of type 01 use 16 bits, with the leftmost 3 bits

encoding the transformation, while the remaining 13 bits encode the offset in number

of level-words from the beginning of the next level, where a level-word is 2 bytes for

an inner level and 8 bytes for the leaf level. Thus, reflections and references to nodes

stored in the first 214 bytes of an inner level’s array or in the first 216 bytes of the leaf

level can be encoded with just two bytes. Less frequent children pointers, associated

to header tags 10 and 11, are both encoded using 32 bits, with the leftmost 3 bits

encoding the transformation, and the rightmost ones the lowest 29bits of the offset.

The highest bit of the offset is set to the rightmost bit of the header tag. We can thus

address more than 2GB into an inner level, and 8GB into leaves.

5.5 Ray-tracing a SSVDAG

The SSVDAG structure can be efficiently traversed using a GPU-based raytracer by

slightly adapting other octree-based approaches to apply the transformation upon

entering a subtree. In order to test several approaches within the same code base,

we have implemented a basic GPU-based raytracer to traverse both SVO, SVDAG,

and our SSVDAG. While the structure alone, similar to SVDAG [14], is mostly

5.5 Ray-tracing a SSVDAG 97

node

29 bits pointer

Inner nodes

00 01 00 10 00 11 00 00

children bitmask
00 No child

01 13 bits pointer child

10 29 bits pointer child

11 30 bits pointer child
13 bits pointerx y z

x y z

30 bits pointer
(1st bit = 1)

x y z

reflection bits

reflection bits

reflection bits

16-bits
alignment

Leaves nodes

64 bits

43 leaf

64 bits

43 leaf

Fig. 5.6.: Layout of inner nodes in the compact representation. Leaf nodes are binary
coded in a 4x4x4 grid. Inner nodes have a 16bits alignment with the first byte used
as a voxel mask, but also coding information about the size of the variable-length
pointers.

useful for visibility queries and/or secondary rays effects, in order to fully test the

structure in the simplest possible setting, we use the raytracer both from primary

rays (requiring closest intersections) and for hard shadows for the view samples of

a deferred rendering target. We focus on these effects, rather than soft shadows

and ambient occlusion, since they are the ones where voxelization artifacts are most

evident. In the following, we first explain how standard octree traversal code can

be minimally transformed to support reflections, and then discuss integration in our

sample raytracer to fully render geometric scenes.

5.5.1 Traversal

Many octree raycasting approaches can be adapted to trace SSVDAGs, which differ

from regular SVOs or SVDAGs only because they need to apply reflection trans-

formations every time a pointer is followed. As for all trees containing geometric

transformations, this can be achieved by one of the two complementary approaches of

applying the inverse transformation to the ray or the direct geometric transformation

to the voxel geometry.

Transforming the ray. The ray-transformation approach is extremely simple to

integrate in stackless traversal approaches [137], which cast rays against a regular

octree using kd-restart algorithm [149], and traverse encountered leaves as uniform

3D grids. In this case, once the tagged pointer to the child is traversed, the associated

5.5 Ray-tracing a SSVDAG 98

transformation is extracted, and ray reflection is obtained by conditionally performing,

for each axis in which the transformation is applied, a mirroring with respect to the

node’s center c of the ray’s current origin together with a sign change of the ray

direction. This conditional code can be concisely implemented as follows:

org = c + s * (org-c)

dir *= s;

where s ∈ R3 is equal to −1 in the coordinates in which a mirroring is applied, and

+1 otherwise. Since the node’s center is already maintained in kd-restart algorithms

during tree descent in order to locate leaves in the octree, the overhead of mirroring

is thus minimal. Traversal stops when-a non-empty voxel is found or the ray span is

terminated.

In more optimized implementations, such as pushdown or short-stack, which avoid

restarting from the root of the tree [150], in addition to applying this transformation

one would, however, store in the restart cache or stack the modified local ray together

with the restart node, which could put more pressure on registers or local memory

and reduce parallelization efficiency on GPUs. Moreover, handling changes of ray

directions during traversal due to the reflections would increase book-keeping costs

in methods not simply based, such as kd-restart, on repeated octree point location.

Transforming the geometry. Directly transforming the geometry allows the ray-

tracer to reduce book-keeping costs during traversal, and therefore leads to a more

optimized implementation. In this work, we thus discuss how one can traverse our

voxel structure using a depth-first visit of the SSVDAG based on a multi-resolution

Digital Differential Analyzer (DDA), implemented with a full stack. This kind of

DDA-based traversal approach has been proven effective in previous work on SVOs

and SVDAGs [131, 14]. All the rendering results in this work are obtained with this

implementation.

Listing 5.7 succintly describes our traversal algorithm, and shows the modifications to

the standard octree DDA traversal needed to navigate between nodes with symmetries,

using only three extra bits to encode reflections (variable mirror_mask in the code).

This 3-bit transformation status indicates which reflections must be applied to the

indices used to access child pointers in inner nodes or voxel contents in leaf nodes.

5.5 Ray-tracing a SSVDAG 99

1 vec3 t race_ ray (Ray r , f l o a t p r o j _ f a c t o r) {
2 t = ray . t_min ; mirror_mask = 0; l e v e l = 0; c e l l _ s i z e = 0 .5 ;
3 (voxidx , . . .) = DDA_init () ;
4 node_idx = 0; l e a f _da ta = 0;
5 inner_hdr = fe tch_ inner_hdr (node_idx) ;
6 mirrored_voxidx = mirror (mirror_mask , voxidx , l e v e l) ;
7 do {
8 bool i s _ f u l l _ v o x e l = (l eve l <MAX_LEVEL) ?
9 i n n e r _ v o x e l _ b i t (mirrored_voxidx , inner_hdr) :

10 l e a f _ v o x e l _ b i t (mirrored_voxidx , l e a f _ da ta) ;
11 i f (! i s _ f u l l _ v o x e l) {
12 // Empty -- try to move forward at current level
13 (voxidx , . . .) = DDA_next () ;
14 i f (! i s_ in_bounds (voxidx , l e v e l)) {
15 i f (s tack_ i s_empty ()) {
16 return NO_INTERSECTION ;
17 } else {
18 // Move up and forward at upper level
19 o l d _ l e v e l = l e v e l :
20 (node_idx , inner_hdr , mirror_mask , l e v e l) = stack_pop () ;
21 c e l l _ s i z e *= (1 << (o ld_ l eve l −l e v e l)) ;
22 (voxidx , . . .) = DDA_next () ;
23 } // if stack empty
24 } // if !in bounds
25 } else {
26 // Full - return intersection or refine
27 i f (l e v e l == MAX_LEVEL || re so lu t ion_ok (t , c e l l _ s i z e , p r o j _ f a c t o r)) {
28 return t ; // INTERSECTION FOUND
29 } else {
30 // Go down
31 i f (i s_ in_bounds (DDA_next ())) {
32 stack_push (node_idx , inner_hdr , mirror_mask , l e v e l) ;
33 }
34 (m, node_idx)=fe t ch_ tagged_p t r (inner_hdr , node_idx , mirrored_voxidx) ;
35
36 // Update DDA and fetch next node
37 ++l e v e l ;
38 c e l l _ s i z e *= 0 .5 ;
39 (voxidx , . . .) = DDA_down () ;
40 i f (l e v e l < MAX_LEVEL−1) {
41 inner_hdr = fe tch_ inner_hdr (node_idx) ;
42 } else {
43 // Leaves are 4x4 - must refine DDA
44 ++l e v e l ; c e l l _ s i z e *= 0 .5 ;
45 (voxidx , . . .) = DDA_down () ;
46 l e a f _da ta = f e t c h _ l e a f _ d a t a (node_idx) ;
47 }
48 }
49 }
50 mirrored_voxidx = mirror (mirror_mask , voxidx , l e v e l) ;
51 } while (t < ray . t_max) ;
52 return NO_INTERSECTION ;
53 }

Fig. 5.7.: Optimized Octree DDA traversal algorithm for SSVDAGs.

The transformation status is initialized at 0 (line 2), is updated each time we descend

in a child (line 40), and is pushed to the stack together with the current node to be

able to restore it upon moving up in the hierarchy (line 37).

When descending, as in SVDAG [14], we must access the i-th children pointer by

computing an offset within the header equal to the size of all pointers in the interval

5.5 Ray-tracing a SSVDAG 100

[0, i− 1], with the only difference that in SVDAG the only two size possibilities are

0 and 4, while in our case tagged pointers can be stored using 0, 2, and 4 bytes.

This computation is performed in our shader using a manually unrolled loop within

routine fetch_tagged_ptr in line 39. Once the tagged pointer to the child is found,

the associated transformation code is given by the 3 highest bits, and should be

applied to all the nodes in the subtree, which is achieved by xor-ing it with the

current mirror_mask.

In order to support SSVDAGs, index reflection has applied when accessing voxel

occupancy bit at inner and leaf nodes, as well as child pointers associated to a non-

empty inner node voxel (line 8) . This is done by transforming a local 3D index v

to a node’s voxel index that takes into account the current mirroring transformation

(function mirror in the pseudo-code). This can be obtained by computing the

mirrored coordinates as

((1, 1, 1)− 2 ·M) ∗ v +M · (S − 1)

where M is the 3-bits mirroring vector, v the child coordinates and S the cubical

size of the voxel, that is 2 for inner nodes, and 4 for the leaves. The difference in

size between inner and leaf nodes is also taken into account during the down phase,

executing two DDA_down() steps instead of one at the last level (lines 47-51).

It should be noted that, in order to minimize memory pressure, similarly to previous

work [131], we don’t push a node to the stack if the next DDA step would cause

the ray to exit from it. This makes it possible to skip useless steps when moving

back up in the hierarchy (lines 23-27), but forces us to also put the level in the stack.

Moreover, in order to avoid refetching a parent node’s header when going up from

the child, the header contents is also pushed. With this organization, data is fetched

from global memory only when going down, either to fetch the pointer to follow (line

39), or the data associated to inner node (line 46) or leaf node (line 51). Fig. 5.8

shows an example execution of the traversal algorithm, illustrating a full traversal

with conditional stack push.

During traversal, moreover, we maintain the voxel cell size, which is updated at the

initialization (line 2), when moving up (line 26), and when moving down (line 43

as well as line 49 for leaf nodes). Maintaining this size makes it possible to stop the

traversal when the projected size of a voxel goes below a threshold (line 32), which

makes it possible to effectively implement levels of detail.

5.5 Ray-tracing a SSVDAG 101

Level_DOWN

DDA_NEXT

Level_UP

TX

TY

0

1

2

3

4

5

6

7

init

hit

X 0000
Y 0000 0

1

2

1

0

1

1

2

mirror
maskstep

stack
sizeN.It.

2

1

X 0010
Y 0000

X 0010
Y 0010

X 0010
Y 0010

X 0010
Y 0000

X 0010
Y 0000

X 0000
Y 0000

X 0000
Y 0000
X 0000
Y 0000
X 0000
Y 00108

9

Fig. 5.8.: Example of ray traversal through the SSVDAG structure. At left, the example
tree, with mirror tags on some pointers. At center, the table of iteration with
main actions, current node mirror mask and stack size. At right, a representation
of same traversal, with the ray passing though the structure up to find the first
intersection.

5.5.2 Scene rendering

Our implementation uses OpenGL and GLSL. The dataset is fully stored in two texture

buffer objects, one for the inner nodes, and one for the leaves. For large datasets that

exceed texture buffer objects addressing limits, we use 3D textures.

Sparse voxel DAGs structures are typically used to accelerate tracing for secondary

rays, while camera rays are rendered using other structures capable to store normals

and material properties (see, e.g., [14], which uses rasterization for the camera

pass). The high compression factor makes it possible, however, to faithfully represent

geometry also for primary rays. We have thus implemented a simple deferred shading

renderer which uses only our compressed structure to navigate massive models.

In the first pass, the depth buffer is generated by tracing rays from the camera

using the algorithm in Listing 5.7, computing the proj_factor parameter of the

tracing routing from the camera perspective transformation in order to stop traversal

when projected voxel size fall below the prescribed tolerance (1 voxel/pixel in our

results). The normals required for shading are then obtained in a second pass by finite

differences in the depth buffer using a discontinuity preserving filter. Other shading

passes are then performed to compute hard shadows and/or ambient occlusion, as

shown in Fig.5.9. While in other settings other structures can be used for storing

normals and material properties (see, e.g., [14, 135]), this approach also shows

5.5 Ray-tracing a SSVDAG 102

Fig. 5.9.: Different render layers and final frame. In the left, from top to bottom: screen
space ambient occlusion layer, hard shadows layer, computed screen space normals.
In the right, the final frame, shaded using the previous frame buffers plus the
depth buffer.

a practical way to implement real-time navigation of very large purely geometric

scenes from a very compressed representation.

5.6 Results

An experimental software library, preprocessor and viewer application have been

implemented on Linux using C++, OpenGL and GLSL shading language. All the

processing and rendering tests have been performed on a Desktop Linux PC equipped

with an Intel Core i7-4790K, 32 GB of RAM and an NVIDIA GeForce 980 GTX with

4GB of video memory.

5.6.1 Datasets

We have extensively tested our system with a variety of high resolution surface models.

Here we present six models which have been selected to cover widely different fields:

CAD, 3D scans and video-gaming (see Fig. 5.10). The CAD models, the Powerplant

(12 MTriangles) and the extremely large and complex Boeing 777 (350M triangles)

have been chosen to prove the effectiveness of our method with extremely high

resolution datasets with connected interweaving detailed parts of complex topological

structure, thin and curved tubular structures, as well as badly tessellated models that

do not always create closed volumes. The 3D Scans represent, Lucy (28M triangles)

and Michelangelo’s David 1mm (56M triangles), are representatives of dense high

5.6 Results 103

(a) Powerplant (b) Boeing 777

(c) Lucy (d) David 1mm

(e) San Miguel (f) Crytek Sponza

Fig. 5.10.: The scenes used in our experiments. All images are interactively rendered
using our raytracer from fully GPU-resident data using deferred shading with
screen-space normal estimation and hard shadows.

resolution scans of man-made objects with small details and smooth surfaces. The

fourth and fifth model are the San Miguel dataset (7.8M triangles) and the Crytek

Sponza dataset (282K triangles)), which are similar to what can be found on a

video-game settings, and, together with Lucy, also provide a direct comparison point

with the work on SVDAGs [14] .

5.6.2 DAG reduction speed

The preprocessor transforms a 3D triangulation into a SVO stored on disk and then

compresses it using different strategies. In our out-of-core implementation, the SVO

5.6 Results 104

2K3 4K3 8K3 16K3 32K3 64K3

Powerplant MVoxels 4 17 72 310 1336 5827
SVDAG Time (s) 0.1 0.4 1.3 3.1 8.6 29.1

SSVDAG Time (s) 0.3 0.8 2.5 6.3 17.4 52.8
Boeing 777 MVoxels 12 57 268 1242 5699 24633

SVDAG Time (s) 0.3 1.6 7.2 29.6 121.5 495.71
SSVDAG Time (s) 1.3 6.0 25.4 107.5 447.1 1846.2

Lucy MVoxels 6 25 99 395 1580 6321
SVDAG Time (s) 0.2 0.6 2.3 9.3 37.7 131.7

SSVDAG Time (s) 0.6 2.1 8.8 37.8 146.2 472.9
David 1mm MVoxels 4 16 64 257 1029 4116

SVDAG Time (s) 0.1 0.4 1.7 6.7 25.8 91.2
SSVDAG Time (s) 0.4 1.5 5.9 25.5 101.2 342.7

San Miguel MVoxels 12 46 187 750 3007 12045
SVDAG Time (s) 0.1 0.4 1.6 6.0 19.4 70.4

SSVDAG Time (s) 0.4 1.4 5.3 19.1 65.8 232.8
Crytek Sponza MVoxels 40 160 641 2568 10276 41124

SVDAG Time (s) 0.2 0.7 2.5 10.0 33.5 116.0
SSVDAG Time (s) 0.6 1.9 6.5 22.5 73.8 226.6

Tab. 5.1.: Comparison of compression reduction timings. Resolutions are stated in the
top row. For each dataset, the first row is the count of non-empty voxels, the
second row is the time taken to reduce the SVO to SVDAG, and the third row is
the time taken to reduce the SVO to SSVDAG.

construction using an octree rasterizer can also be interleaved with DAG compression

using the multipass strategy.

Preprocessing statistics for the various datasets at different resolutions are reported in

Table 5.1, which indicates the time taken to compress datasets from SVO to SVDAG,

as well as to SSVDAG. These times do no include rasterization computation. The

compressor uses OpenMP to parallelize the code, and 8 parallel processes were active

in parallel to reduce subtrees. As one can see from the table, the SSVDAG code is

slower on factor ranging over 1.8× and 3.8×. with respect to SVDAG, which is due

to the overhead caused by computing self-similarity.

As a comparison, Crassin et al. [148] report for the Crytek Sponza dataset a building

time of 7.34ms for the resolution 5123 on an NVIDIA GTX680 GPU, and Kämpe et

al. [14] report 4.5s for building an SVDAG from a SVO at resolution 8K3 on an Intel

Core i7-3930, while the out-of-core scalable voxelizer of Pätzold and Kolb [151]

builds a 8K3 SVO for the Crytek Sponza dataset in 98s.

Our conversion times are thus similar to previous node reduction works, and are

in any case about faster than the first rasterization step required for creating an

5.6 Results 105

out-of-core SVO from the original dataset. In addition, about 4% of the time in our

conversion is due to the frequency-based pointer compaction step, which requires a

reordering of nodes.

Technique Bitrate (64K3)
Powerplant SSVDAG 0.123
(12 MTri) USSVDAG 0.188

ESVDAG 0.156
SVDAG 0.241
SVO 2.390

Boeing 777 SSVDAG 0.788
(350 MTri) USSVDAG 1.250

ESVDAG 1.467
SVDAG 0.241
SVO 2.365

Lucy SSVDAG 0.852
(28 MTri) USSVDAG 1.215

ESVDAG 1.190
SVDAG 1.608
SVO 2.666

David 1mm SSVDAG 0.992
(56 MTri) USSVDAG 1.459

ESVDAG 1.393
SVDAG 1.913
SVO 2.667

San Miguel SSVDAG 0.206
(7.8 MTri) USSVDAG 0.355

ESVDAG 0.260
SVDAG 0.433
SVO 2.660

Crytek Sponza SSVDAG 0.064
(282 KTri) USSVDAG 0.089

ESVDAG 0.085
SVDAG 0.115
SVO 2.665

Tab. 5.2.: Comparison of bitrates in bits/voxel for 64k3 resolutions: the proposed
Symmetry-aware Sparse Voxel DAG (SSVDAG) is compared with the original
sparse voxel DAG (SVDAG), and the pointerless SVO. In order to evaluate the
effects of the different optimizations, we also provide results for a version of
SSVDAG without pointer compression (USSVDAG) and without symmetry detec-
tion (ESVDAG).

5.6.3 Compression performance

Tables 5.3, 5.4 and 5.2 provide detailed information on processing statistics and

compression rates of all the test models. We compare our compression results to

SVDAG [14], as well as to the pointerless SVOs [145], where each node consumes

one byte, a structure that cannot be traversed in random order but useful for off-line

storage. For a comparison with ESVO [131], please refer to the original paper on

SVDAGs [14]. It should be noted that the slight differences in number of non-empty

5.6 Results 106

Total number of nodes in millions
Structure 2K3 4K3 8K3 16K3 32K3 64K3

Powerplant SSVDAG 0.1 0.2 0.4 1.0 2.3 5.4
(12 MTris) SVDAG 0.1 0.2 0.5 1.2 2.9 7.0

SVO 1.1 5.0 22.0 94.4 404.9 1741.0
Boeing 777 SSVDAG 0.3 0.9 3.2 11.3 40.0 140.0
(350 MTri) SVDAG 0.4 1.3 4.3 14.4 48.3 164.4

SVO 3.3 15.6 72.8 341.0 1582.8 7282.0
Lucy SSVDAG 0.1 0.4 1.4 4.8 14.4 40.3
(28 MTri) SVDAG 0.2 0.5 1.7 5.7 18.3 52.9

SVO 2.0 8.2 32.9 131.6 526.6 2106.8
David 1mm SSVDAG 0.1 0.3 1.1 3.6 11.2 31.8
(56 MTri) SVDAG 0.1 0.4 1.3 4.2 13.8 41.5

SVO 1.3 5.4 21.5 85.9 343.2 1372.4
San Miguel SSVDAG 0.1 0.3 0.9 2.6 7.7 21.6
(7.8 MTri) SVDAG 0.1 0.3 1.1 3.1 9.1 26.5

SVO 3.8 15.3 61.7 248.2 997.8 4004.4
Crytek Sponza SSVDAG 0.1 0.4 1.1 2.9 7.6 19.7
(282 KTri) SVDAG 0.2 0.5 1.4 3.7 9.8 25.5

SVO 12.8 52.6 212.6 853.9 3421.5 13697.4

Tab. 5.3.: Comparison of node reduction for various data structures: the proposed
Symmetry-aware Sparse Voxel DAG (SSVDAG) is compared with the original
sparse voxel DAG (SVDAG) and the SVO.

nodes in the SVO structure with respect to Kämpe et al. [14] is due to the different

voxelizers used in the conversion from triangle meshes.

Memory consumption obviously depends both on node size and node count. We

therefore include for our structure results using uncompressed nodes (USSVDAG in

Table 5.4), with the same encoding employed for SVDAGs [14], as well as results

using our optimized layout (SSVDAG in Table 5.4). SVDAGs cost 8 to 36 bytes per

node, depending on the number of child pointers. Our uncompressed SSVDAGs have

the same cost, since symmetry bits are stored in place of padding bytes. On the other

hand, our compressed SSVDAGs cost 4 to 34 bytes per node, depending both on

the number of child pointers and their size, computed according on the basis of a

frequency distribution. In order to assess the relative performance of our different

optimizations, we also include results obtained without including symmetry detection

but encoding data using our compact representations (ESVDAG).

As we can see, all the DAG techniques outperform the pointerless SVO consistently

at all but the lower resolutions, even though they offer in addition full traversal

capabilities. Moreover, our strategies for node count and node size reduction prove

successful. The USSVDAG structure, on average, occupies at 64K3 resolution only

79.6% of the storage required by the SVDAG structure, thanks to the equivalent

reduction in the number of nodes provided by our similarity matching strategy. An

5.6 Results 107

Memory consumption in MB
Technique 2K3 4K3 8K3 16K3 32K3 64K3

Powerplant SSVDAG 0.7 2.0 5.2 13.3 33.8 85.8
(12 MTri) USSVDAG 1.6 4.0 9.7 23.1 54.9 130.5

ESVDAG 0.8 2.4 6.3 16.2 41.9 108.6
SVDAG 1.9 4.9 11.8 28.7 69.9 167.3
SVO 1.1 4.8 20.9 90.05 386.2 1660.3

Boeing 777 SSVDAG 3.0 11.7 43.1 162.9 616.2 2314.4
(350 MTri) USSVDAG 6.9 24.8 83.8 295.0 1042.8 3671.5

ESVDAG 3.9 15.2 54.0 199.1 731.1 2740.7
SVDAG 9.2 33.8 112.9 376.7 1260.6 4307.9
SVO 3.1 14.9 69.4 325.2 1509.5 6944.6

Lucy SSVDAG 1.5 5.3 19.1 67.2 213.6 642.2
(28 MTri) USSVDAG 2.9 9.2 32.3 110.3 332.4 915.5

ESVDAG 2.1 6.8 24.0 86.5 295.1 896.5
SVDAG 4.0 11.3 36.8 127.3 419.0 1212.0
SVO 2.0 7.8 31.3 125.5 502.2 2009.2

David 1mm SSVDAG 1.1 3.9 13.6 48.1 159.2 486.7
(56 MTri) USSVDAG 2.2 7.0 23.3 79.7 252.7 716.1

ESVDAG 1.5 5.0 17.1 61.3 214.3 683.3
SVDAG 3.0 8.8 27.3 91.8 308.0 938.6
SVO 1.3 5.1 20.5 81.9 327.3 1308.8

San Miguel SSVDAG 1.0 3.3 10.3 31.9 98.7 295.9
(7.8 MTri) USSVDAG 2.1 6.9 21.3 61.8 181.1 509.8

ESVDAG 1.1 3.7 12.0 37.6 118.7 373.0
SVDAG 2.3 7.8 24.6 72.0 212.2 621.3
SVO 3.6 14.6 58.9 236.7 951.6 3818.9

Crytek Sponza SSVDAG 1.7 5.2 15.1 42.1 115.7 315.3
(282 KTri) USSVDAG 3.4 9.7 25.8 67.4 172.3 436.8

ESVDAG 2.1 6.4 18.8 53.6 151.3 417.3
SVDAG 4.2 11.9 31.8 83.6 218.3 563.5
SVO 12.21 50.2 202.7 814.3 3263.0 13062.9

Tab. 5.4.: Comparison of data compression performance for various data structures:
the proposed Symmetry-aware Sparse Voxel DAG (SSVDAG) is compared with the
original sparse voxel DAG (SVDAG), and the pointerless SVO. In order to evaluate
the effects of the different optimizations, we also provide results for a version
of SSVDAG without pointer compression (USSVDAG) and without symmetry
detection (ESVDAG).

average reduction in size to about 52.4% of the SVDAG encoding is obtained by also

applying the frequency-based tagged pointer compaction strategy. Such a strategy is

particularly successful since, by matching more pointers, increased opportunities for

referencing highly popular nodes arise. This is also proved by the results obtained by

the ESVDAG techniques, which uses our data structure but only matches sub-trees

if they are equal, as in the original SVDAG. The stronger compression of SSVDAGs

makes it possible, for instance, to easily fit all the Boeing model into a 4GB graphics

board (GeForce GTX 980) at 64K3 resolution. Since the Boeing 777 airplane has a

length of 63.7m and a wingspan of 60.9m, using a 64K3 grid permits to represent

details with sub-millimetric accuracy (see Fig. 5.11).

5.6 Results 108

(a) 8K3 - 43MB (b) 16K3 - 163MB

(c) 32K3 - 617MB (d) 64K3 - 2331MB

Fig. 5.11.: Detail view of the Boeing scene at different resolutions. The compression
performance of our method supports real-time rendering from GPU-resident data
even at 64K3 resolution, while SVDAG memory requirements exceed on-board
memory capacity on a 4GB board (see Table 5.4).

5.6.4 Rendering

Since our main contributions target compression, we have focused on verifying the

correctness of the different DAG structures, as well as on being able to compare

their relative traversal performances, rather than absolute speeds. We have thus

implemented a generic shader-based raytracer that shares general traversal code

based for the various DAG structures. The different structures are supported by simply

specializing the general code through structure-specific versions of the routines that

read a node structure, access a child by following a pointer, and applies reflections

to 3D indices (see Sec. 5.5 for details), The SVDAG and USSVDAG version access

nodes by fetching data from a GL_R32UI texture buffer object, while SSVDAG uses

a GL_R16UI buffer because of the different alignment requirements. 3D textures

are used in place of texture buffer objects when the data is so large to exceed buffer

addressing limits. This happens only for the Boeing at 64K3 resolution for the results

presented in this work. The code does not use any other acceleration or shading

structure, and normals required for shading are generated in screen space. This

simple setup also shows that it is possible to use such a terse structure to support

interactive navigation of very large models compressed to the GPU.

5.6 Results 109

We have introduced in the renderer two of the most used voxel-rendering opti-

mizations, i.e., level-of-detail and the beam optimization introded by Laine and

Karras [131]. For level-of-detail rendering, we simply stop traversal when the pro-

jected size of a voxel goes below a threshold (1 voxel/pixel in these results). This is

done by computing the proj_factor parameter from the camera perspective trans-

formation. For beam optimization, in a coarse rendering pass, we divide the image

into 8x8 pixel blocks and cast a distance ray for the corners of these blocks. Traversal

is stopped as soon as we encounter a voxel that is not large enough to certainly cover

at least one ray in the coarse grid. This is simply done by adapting the proj_factor

parameter to the coarse image. The subsequent depth pass then conservatively

estimates the starting point of each ray from the four neighboring depth values in

the coarse grid. Fig. 5.12 illustrates the results obtained during a real-time captured

exploration sequence of Crytek Sponza at 64K3 resolution. All images are capture at

720p resolution. As one can see, we can trace approximately 100M primary rays/s

on such a massive structure even without optimizations. LOD rendering proves

dramatically effective in the overall views (boosting the performance to close to

300M rays/s), but, given the fine-grained structure, also provide a non-negligible

performance boost even in the close-ups, where beam optimization also becomes

effective. Their combination approximately doubles performance in the walkthrough

of the inside of the model.

0

50

100

150

200

250

300

0 50 100 150 200 250

P
ri

m
a

ry
 M

R
a

y
s

/
se

c

Frames

None

LoD

LoD + Beam

Fig. 5.12.: Graph of the render performance with different optimizations during a real-
time captured exploration sequence of Crytek Sponza at 64K3 resolution, starting
from an overall fly-over (frames 1-80), quickly moving inside the model (frames
80-100), and then performing a walkthrough (frames 100-250).

We have obtained similar relative performances for all the models. For instance, for

the sample viewpoints in Fig. 5.1 of the Powerplant model at 1M3 resolution, the

views are rendered from farthest to closest (left to right) ranging from 92 to 45 fps

for SSVDAG, from 106 to 52 fps for USSVDAG, and from 107 to 53 fps for SVDAG.

5.6 Results 110

All images are rendered in HD (720p) with screen-space normal estimation and hard

shadows for one point light. Rendering performance is thus similar for the three

implementations, demonstrating that the reduction in memory consumption does

not come at the cost of much increased render times.

0

50

100

150

200

250

300

350

400

Boeing [61 fps] Powerplant [46 fps] Lucy [110 fps] David [124 fps] Crysponza [40 fps] San Miguel [32 fps]

P
ri

m
a

ry
 M

R
a

y
s

/
se

c

SSVDAG

USSVDAG

SVDAG

Fig. 5.13.: Comparison of primary rays performance for the different structures. Also
the frames per second for the final frame (secondary rays, shading, etc.) is shown
in each picture. Mirroring is not affecting traversal times, but encoding, even if
its performance is still enough for real-time rates.

Fig. 5.13 compares the performance obtained when tracing primary rays for the

different datasets at 64K3 resolution, for the reference images indicated below

the graph. The Boeing 777 dataset does not fit into GPU memory for the other

structures, and we does provide results only for SSVDAGs. As one can see, we can

trace from 80M to 300M primary rays/s depending on viewpoint complexity, and

the performance of the various structures, as for the Powerplant example discussed

above, is consistently similar. It should in particular be noted that reflections impose

a very little overhead, since USSVDAG is only 1%-2% slower than SVDAG, while

variable-rate pointer compression proves a little bit more costly, since SSVDAG has an

overhead of 14%-16% with respect to SVDAG. This is probably due to the fact that,

while the extra computation required for implementing reflections is well hidden by

memory latency, the more elaborate memory layout of pointer compression is more

costly. This aspect leaves room for optimization.

Even with our unoptimized shader-based implementation, our SSVDAG structure

supports real-time performance for very complex scenes. The Boeing 777 scene can

be explored at 64K3 resolution in HD (720p) with shading and shadows, at about

the same performance as the Powerplant model. Fig. 5.11 shows images taken from

the same closeup viewpoint rendered with various voxel resolutions. It is evident

how the small voxel dimensions enabled by our compression let appreciate important

details that are lost at lower resolutions. The highest resolution is only possible with

5.6 Results 111

our SSDAG and USSDAG methods, which are the only ones capable to fit the entire

model in-core in a 4GB board.

5.7 Discussion

We have shown that Symmetry-aware Sparse Voxel DAGs (SSDAGs), an evolution of

Sparse Voxel DAGs, allow for an efficient lossless encoding of voxelized geometry

representations, in which subtrees that are identical up to a similarity transformations

appear only once. Our results demonstrate that this sort of geometric redundancy is

common in all tested real-world scenes, ranging from complex CAD models to 3D

scans to gaming models, leading to state-of-the-art lossless compression performance.

The increased node size with respect to SVOs and SDAGs is quickly balanced by a

sizeable reduction in node count. Moreover, pointer overhead is reduced by using

fatter leaves and a simple entropy coding scheme. The resulting structure is compact

and GPU-friendly, which makes it possible to trace very large scenes while maintaining

the visibility acceleration structure fully resident in GPU memory. As the structure

can be efficiently constructed from external memory, the resulting method is fully

applicable to massive data sets, as demonstrated here on large scenes such as the

Boeing 777, whose original description exceeds 350M triangles.

As for many data structures and acceleration techniques, our SSVDAG approach has

also a number limitations. Handling these limitations indicates interesting areas for

future work.

First of all, despite the fact that our compression scheme is lossless, relying on a

voxelization scheme leads to a discretization of the original geometry, which, while

typically very effective in terms of traversal speed, is not guaranteed to be the most

effective in terms of compactness of representation, e.g., for low-poly scenes, or

image quality, e.g., for extreme close-up views. These problems are not unique to our

method, but typical of all pure voxelization techniques. By increasing compression

rates, we significantly improve quality vs. memory costs, allowing for much deeper

octrees, but do not eliminate blockiness, which may appear at extreme zoom levels.

A second current limitation of our method is that, while the concept of compression

using symmetric DAGs is general, our current implementation is limited to handling

only reflective symmetries, and some of the implementation choices explicitly take

into account the properties of mirroring transformation (e.g., order independence).

5.7 Discussion 112

While this approach simplifies implementation, it also likely reduces the compression

potential, and leaves room for improvement. While the current implementation uses

reflections only, an interesting avenue for future work would thus be to investigate

other symmetries. A particularly interesting approach would be, moreover, to evaluate

how the method could extend from lossless to lossy compression, by allowing for

partial matches of subtrees instead of exact identity up to a transformation. The

effect of the errors induced by such approximate techniques should be evaluated in

terms of quality/cost ratio depending on the actual usage, which ranges from primary

rays to hard and soft shadows).

Moreover, an additional limitation identified by our benchmarks is that, while the

gain in compression rates due to merging symmetric subtrees appear to come at

no rendering cost, a tracing overhead of up to 15% appears to be associated to the

pointer compaction scheme. This is likely due to the overhead of fetching non-aligned

data from GPU memory and to the need to perform bitwise operations for pointer

decoding. It should be evaluated whether better layout schemes, or improved shader

codes, could reduce this overhead. On the other hand, rearranging nodes based on

reference frequency, which is at the core of the pointer compression techniques, has

proven very effective, and it would be interesting to evaluate how such rearranging

techniques could be further expanded, for example to achieve a better encoding in

low-sharing areas.

Finally, similarly to other works on DAG compression [14, 133, 134], the scheme pre-

sented in this work only supports compression of geometry. While this is acceptable

to compute occlusions and for shadowing, general use of the structure would require

to map non-geometric properties to voxels (e.g., material or reflectance properties). A

promising approach in that respect has been recently presented by Dado et al. [135]

for graphs without symmetries and could be adapted to our technique. An alternative

solution would be to totally decouple geometry from material representations, using

compressed representations of volumetric textures to overlay a material layer on top

of a geometric scene. For maximum compression, it would also be interesting to

evaluate how shading normals could be evaluated by differentiating the geometry

not only in screen space, but also for secondary rays, expanding techniques used in

current volumetric renderers [147].

5.7 Discussion 113

5.8 Bibliographical notes

An early version of this work was presented in the ACM SIGGRAPH Symposium on

Interactive 3D Graphics 2015 (i3D) conference [6]. A revised version, introducing

a new construction methods and improved rendering techniques was published in

2017 in the Journal of Computing Graphics Techniques (JCGT) [7]. The work was also

discussed in a tutorial presented at Eurographics 2018 [8]. Much of the contents of

this chapter comes from the JCGT contribution. This chapter includes an extended

evaluation with additional very large examples.

Several authors have proposed follow-ups that extend our method in different direc-

tion or exploit some of its components. In particular, different work have proposed

to compress and encode also the attributes as colors or normals [135, 152], while

using similar methods to compress pointers. GVDB [142] shows an alternative DDA

algorithm to raytrace a hierarchy of grid containing volumetric scalar data. very

recently, Duan et al. [153] introduced Exclusive Grouped Spatial Hashing (EGSH) to

compresses repetitive data into tiny compact hash tables without while maintaining

simple random access to the GPUs, rather than maintaining hierarchical access as in

our case.

5.8 Bibliographical notes 114

6Summary and conclusions

This thesis has introduced scalable techniques that advance the state-of-the-art
in massive model creation and exploration. In a preliminary work, concerning
model creation, we have focused on methods for improving reality-based scene
acquisition, processing, and creation, introducing an implementation of scalable
out-of-core point clouds and a data fusion approach for creating detailed models
from cluttered data acquisition. The enabling technology for the exploration of
large datasets is the core of this thesis, which has introduced two orthogonal
techniques for the high-quality exploration of very large models. The first is an
adaptive out-of-core technique that supports non-local illumination using work-
batches and visibility queries. The second is an aggressive compression method
that exploits redundancy in large models to aggressively compress data so that it
fits, in fully renderable format, in GPU memory. This final chapter summarizes
the results obtained, and briefly discusses the most promising directions for
future work.

6.1 Overview of achievements

THE availability of highly detailed 3D content is growing at fast pace thanks

to the rapid evolution of 3D acquisition and 3D model creation techniques.

Such detailed 3D models are becoming increasingly common and represent

a very useful tool for many application domains, including ranging from architecture,

engineering, and cultural heritage to simulation and gaming. The massive size of

such models makes handling these datasets very complex, and requires scalable

solutions at all processing stages.

In this thesis, in a preliminary work, I have focused on the problem of improving the

creation of reality-based models, starting from massive amounts of data acquired

using digital photography and range scanning. In this respect, the research carried out

witin this thesis has led to the following achievements: have been the following:

• The introduction of a general and multiresolution design for a scalable system

to create, colorize, analyze, and explore massive point clouds totally out-of-core.

A GPU-accelerated implementation able to process and render a billion points

115

dataset [9] and its application to fields like cultural heritage or engineering

[10, 11].

• An easy-to-apply acquisition protocol based on laser scanning and flash photo-

graph to generate colored point clouds [12], which introduces a novel semi-

automatic method for clutter removal and photo masking to generate clean

point clouds without clutter using minimal manual intervention. The multires-

olution design previously introduced allows that the entire masking, editing,

infilling, color-correction, and color-blending pipeline to work fully out-of-core

without limits on model size and photo number.

This approach has been tested on several large world datasets, showing, in particular,

the capability to be applied at a very large scale. The example presented (see

Sec. 3.4.1) is an acquisition campaign that has covered 37 human-size statues

mounted on metallic supports, with color and shape acquired at a resolution of

0.25mm for over 1billion geometric and colorimetric samples.

Following this initial work, I focused mainly on the exploration problem, with the

goal of creating enabling technology to support real-time interactive exploration of

massive models. This research has been carried out by exploring two orthogonal

directions: smart work and data decomposition and extreme compression. In the first

direction, the goal was to devise techniques capable to smartly decompose a scene

into coherent batches, only loading and processing the minimum amount of data that

we judge contributing to the current image, with the goal of considering both direct

and indirect illumination. In the second direction, the goal, instead, was to exploit

data redundancy to aggressively compress data so that geometry and acceleration

structures fully fit, in fully renderable format, in GPU memory, thus making it possible

to perform ray-tracing at GPU speed without data loading delays. The research work

carried out on these subjects has led to the following achievements:

• A novel approach to exploit the rasterization pipeline and hardware occlusion

queries in order to create coherent batches of work for localized shader-based

ray tracing kernels [5]. By combining hierarchies in both ray-space and object-

space, the method is able to share intermediate traversal results among multiple

rays. Then, temporal coherence is exploited among similar ray sets between

frames and also within the given frame. This scheduling architecture naturally

allows for out-of-core ray tracing, with the possibility of rendering potentially

unbounded scenes.

6.1 Overview of achievements 116

• A novel compression method called SSVDAG (Symmetry-aware Sparse Voxel

DAG) [6, 7], which can losslessly represent a voxelized geometry of many

real-world scenes, aside with an out-of-core algorithm to construct such repre-

sentation from a SVO or a SVDAG, as well as a clean modification of standard

GPU raycasting algorithm to traverse and render this representation with a

small overhead. This technique has proven to compress up to a 1M3 voxel grid

to fit completely in-core and render it in realtime.

As demonstrated in Sec. 3.4.7, Sec. 4.7 and Sec. 5.6, the results obtained matched

the expected performance, as described in Sec. 2.4 for all the tested datasets.

6.2 Discussion and future work

The thesis has tackled both the problem of creation and exploration of massive models

using scalable techniques. While my contribution to point-clouds are mostly at the

practical level, showing a novel best-practice full-fledged implementation that solves

very practical problems, the approaches studied for improving real-time exploration

are more interesting in terms of potential for future work.

The batch-based technique presented a novel use of hierarchical occlusion culling

for accelerating OpenGL-based ray tracing, exploiting the rasterization pipeline and

hardware occlusion queries in order to create coherent batches of work for a GPU

ray-tracing kernel. This work fits well in the area of massive-model rendering, since

it makes it possible to exploit the visibility-driven adaptive-loading technique typical

of current out-of-core rasterization renderers in a more flexible ray-tracing setting,

opening the door to GPU-accelerated out-of-core rendering using shadows and global

illumination. This is achieved in a very simple context, using a technique that can be

easily integrated using current renderers. We have demonstrated non-local effects on

large models through shadows and first-bounce diffuse illumination. It is interesting

to note, as mentioned in Sec. 4.9 that the idea of visibility-driven acceleration using

a dual hierarchy is currently being exploited for very advanced global illumination

works, such as full global illumination using many-view rendering [129].

While the batch-based technique makes it possible to render very large scenes,

exceeding GPU memory, using adaptive loading, my compression contributions tackle

the problem by aggressively compressing data so that it fits, in fully renderable

format, on GPU memory. I consider this approach my main research contribution.

6.2 Discussion and future work 117

Such an approach, in fact, fits extremely well with the current trend of increased

memory budgets near the GPUs. Such memory budget, of several GBs, are still way

too low to allow for rendering of uncompressed large models, but are starting to

be non-negligible. With my work, I have proven that, by exploiting similarities and

clever encodings, sparse voxel octrees, a very GPU-friendly, but memory-hungry

representations, can be transformed to very compact Symmetry-aware Sparse Voxel

DAGs for a large variety of model kinds, including laser scans, CAD models, and

gaming models. Such very compact representations are hundreds of time smaller

than the original voxel data, and, thus, require little off-line and GPU storage, as

well as little bandwidth for the transmission up to the GPU. At the same time, the

GPU-friendly encoding supports ray tracing without performance loss.

In this thesis, similarly to other works on DAG compression [14, 133, 134], I have

mostly worked on compression of geometric data. Other authors have already shown

how to associate to such compressed geometric data attributes such as colors or

normals [135, 152]. Besides evaluating how these techniques can be improved by

also taking into account symmetries, several interesting areas for future work can be

identified.

First of all, the focus, so far, has been on lossless compression of voxelized repre-

sentation. It seems very promising, instead, to also consider lossy (or near-lossless)

approaches, while remaining in the same settings. Since voxelized representations

are already discretization of another geometry (e.g., triangles, point clouds, implicit

surfaces, higher order patches, ...) it seems reasonable to consider that it could be

slightly varied to improve chances of finding similarities. This could be implemented

using a prefiltering approach which reduces leaf-level variability (while conserving

some errors) to increase the number of similar subtrees. Such an approach, which

promises a much higher compression, has not been attempted so far.

A second very practical improvement would concern, instead, a system-level study of

incremental loading using the compressed structure. So far, aggressive compression

using a DAG representation has always been used for monolithic structures main-

tained in GPU. This is a very favorable situation, since full GPU residency supports

very efficient rendering. It would be interesting to study, especially in the context of

networked rendering, how these very compact representation could be used in an

incremental loading context. This would require, at the system level, to implement

a paging system, and at the compression level an improvement in data reordering

to better support data locality, so that spatially close data is likely to be stored in

6.2 Discussion and future work 118

the same page. Such locality is currently totally destroyed by the similarity-based

reordering performed at compression level. It seems reasonable that one could find

compromises to optimized at the same time for data and spatial similarity. Such an

implementation would permit, for instance, to achieve a very efficient ray-based ren-

derers on the Web (and, eventually, even on mobile devices), reducing data loading

latency.

6.3 Bibliographical results

The scientific results obtained during this PhD work also appeared in related publica-

tions, sorted by their introduction in this thesis, listed below:

• A Multiresolution System for Managing Massive Point Cloud Data Sets. A.

Jaspe Villanueva, Omar A. Mures, E. J. Padrón and J.R. Rabuñal. Tech Report

ToVIAS project, Universidade da Coruña (2014)

– This is the original work introducing my implementation of the point-cloud

subsystem.

• Point Cloud Manager: Applications of a Middleware for Managing Huge

Point Clouds. O. A. Mures, A. Jaspe Villanueva, E.J-Padrón, J.R. Rabuñal. Chap-

ter 13 of “Effective Big Data Management and Opportunities for Implementation”

book. Pub. IGI Global. ISBN: 9781522501824 (2016)

– This work details the design and use of the point cloud manager for off-line

and on-line operations.

• Virtual Reality and Point-based Rendering in Architecture and Heritage. O.

A. Mures, A. Jaspe Villanueva, E.J- Padrón, J.R. Rabuñal. Chapter 4 of “Handbook

of Research on Visual Computing and Emerging Geometrical Design Tools” book.

Pub. IGI Global. ISBN: 9781522500292 (2016)

– This work discusses the integration of the point cloud manager into a VR/AR

system and illustrates some test cases in architecture and cultural heritage.

• Mont’e Scan: effective shape and color digitalization of cluttered 3D art-

works. F. Bettio, A. Jaspe Villanueva, E. Merella, F. Marton, E. Gobbetti, R. Pintus.

ACM Journal on Computing and Cultural Heritage, Vol 8, Num 1 (2015)

– This work presents our acquisition protocol and processing method for cre-

ating seamless colored models from the fusion of photometric and range scan

data, in the complex case of cluttered models.

6.3 Bibliographical results 119

• CHC+RT: Coherent Hierarchical Culling for Ray Tracing. O. Mattausch, J.

Bittner, A. Jaspe Villanueva, E. Gobbetti, M. Wimmer, and R. Pajarola. Computer

Graphics Forum Journal Vol 32, Num 2. Presented at Eurographics’15 (2015)

– This is the work that introduced our method for exploiting the rasterization

pipeline and occlusion queries to efficiently implement out-of-core ray tracing.

• SSVDAGs: Symmetry-aware Sparse Voxel DAGs. A. Jaspe Villanueva, F. Mar-

ton, and E. Gobbetti. ACM SIGGRAPH i3D full paper (2016)

– This is the original work that introduced our technique to exploit symmetries

for data-reduction of voxel DAGs.

• Symmetry-aware Sparse Voxel DAGs (SSVDAGs) for compression-domain

tracing of high-resolution geometric scenes. A. Jaspe Villanueva, F. Marton, E.

Gobbetti. Journal of Computer Graphics Techniques, Vol 6 Num 2 ISSN: 2331-

7418 (2017)

– This is an extended version of the i3D contribution, which introduces improved

construction and rendering techniques and presents an expanded evaluation.

• Voxel DAGs and Multiresolution Hierarchies: From Large-Scale Scenes to

Pre-computed Shadows. U. Assarsson, M. Billeter, D. Dolonius, E. Eisemann, A.

Jaspe Villanueva, L. Scandolo, E. Sintorn. Eurographics Tutorials (2018)

– This is a tutorial on the state-of-the-art of Voxel DAGs. I prepared and delivered

the section on Advanced DAG Encoding and presented tests and evaluations on

very large models.

In addition, during the course of my thesis, I have also contributed to the following

related publications, which have not been included in this work:

• SOAR: Stochastic Optimization for Affine global point set Registration. M.

Agus, E. Gobbetti, A. Jaspe Villanueva, C. Mura, and R. Pajarola. International

Symposium on Vision, Modeling, and Visualization VMV’14 full paper (2014)

– This work introduce a stochastic algorithm for pairwise affine registration of

partially overlapping 3D point clouds with unknown point correspondences. It

is related to the problem of point-cloud data creation, but was not included here

since it does not target massive data. I contributed mainly in the evaluation of

the method using real-world and synthetic data.

• Practical line rasterization for multi-resolution textures. J. Taibo, A. Jaspe

Villanueva, A. Seoane, Marco Agus, and L. A. Hernandez. STAG’14 full paper

(2014)

– This work introduce a method for draping 2D vectorial information over

6.3 Bibliographical results 120

a multi-resolution 3D terrain elevation model using the OpenGL pipeline. I

co-designed the techniques and worked on their implementation.

• Robust Reconstruction of Interior Building Structures with Multiple Rooms

under Clutter and Occlusions. C. Mura, O. Mattausch, A. Jaspe Villanueva, E.

Gobbetti, and R. Pajarola. CAD/Graphics’13 full paper (2014)

– This work also focuses on point cloud data, but with the goal to recover

structural information. My contribution was mainly in the evaluation of the

method using generated ground-truth data through virtual scanning.

• Reconstructing Complex Indoor Environments with Arbitrary Wall Orienta-

tions. C. Mura, O. Mattausch, A. Jaspe Villanueva, E. Gobbetti, and R. Pajarola.

Eurographics Posters (2014)

– This is a follow-up work of the previous publication which introduced several

speed-ups.

• Automatic room detection and reconstruction in cluttered indoor environ-

ments with complex room layouts. C. Mura, O. Mattausch, A. Jaspe Villanueva,

E. Gobbetti, R. Pajarola. Computer & Graphics Journal Num 44 (2014)

– This is an extended journal version of the previous contributions.

• IsoCam: interactive visual exploration of massive cultural heritage models

on large projection setups. F. Marton, M. Balsa, F. Bettio, M. Agus, A. Jaspe

Villanueva, and E. Gobbetti. ACM Journal on Computing and Cultural Heritage,

Vol 7, Num 2 (2014)

– This work focuses on user interfaces for the exploration of large models. My

contribution was in the evaluation of the technique;

• ExploreMaps: Efficient Construction and Ubiquitous Exploration of Panoramic

View Graphs of Complex 3D Environments. M. Di Benedetto, F. Ganovelli, M.

Balsa, A. Jaspe Villanueva, R. Scopigno, and E. Gobbetti. Computer Graphics

Forum Journal, Vol 33, Num 2. Presented at EuroGraphics’14 (2014)

– This work focused on the exploration of large rendered models using image-

based methods. I contributed through the automatic generation of datasets and

setting up the rendering back-end.

• PEEP: Perceptually Enhanced Exploration of Pictures. M. Agus, A. Jaspe

Villanueva, G. Pintore, E. Gobbetti. International Workshop on Vision, Modeling

and Visualization (VMV) full paper (2016) – This work shows an interesting

approach to generate an illusion of depth from a single picturer, supporting

the illusion of 3D exploration. I co-invented the method and participated to its

implementation and evaluation.

6.3 Bibliographical results 121

• CRS4 Visual Computing. E. Gobbetti, M. Agus, F. Bettio, A. Jaspe Villanueva, F.

Marton, R. Pintus, and A. Zorcolo. Lab presentations STAG’16 (2016)

– This is an overview of the work done at CRS4/Visual Computing.

• Artworks in the Spotlight: Characterization with a Multispectral Dome. I.

Ciortan, T. Dulecha, A. Giachetti, R. Pintus, A. Jaspe Villanueva, and E. Gobbetti.

Materials Science and Engineering Journal (2018)

– This work focuses on acquisition of materials, instead of the large models

treated in this thesis;

6.3 Bibliographical results 122

Bibliography

[1] Marie Curie Actions. Data Intensive Visualization and Analaysis ITN. 2016. URL: http:
//www.diva-itn.eu (cit. on p. xi).

[2] “The American Heritage Dictionary of the English Language”. In: Houghton Mifflin
Company (2007) (cit. on p. 3).

[3] Sung-eui Yoon, Enrico Gobbetti, David Kasik, and Dinesh Manocha. Real-time Massive
Model Rendering. Vol. 2. Synthesis Lectures on Computer Graphics and Animation 1.
Morgan and Claypool, 2008 (cit. on pp. 3–5, 136, 137).

[4] Yangdong Deng, Yufei Ni, Zonghui Li, Shuai Mu, and Wenjun Zhang. “Toward Real-
Time Ray Tracing: A Survey on Hardware Acceleration and Microarchitecture Tech-
niques”. In: 50 (Aug. 2017), pp. 1–41 (cit. on pp. 5, 6, 137, 138).

[5] Oliver Mattausch, Jiri Bittner, Alberto Jaspe Villanueva, Enrico Gobbetti, Michael
Wimmer, and Renato Pajarola. “CHC+RT: Coherent Hierarchical Culling for Ray
Tracing”. In: Computer Graphics Forum 34.2 (2015). Proc. Eurographics 2015, pp. 537–
548 (cit. on pp. 6, 9, 54, 82, 116, 138, 147).

[6] Alberto Jaspe Villanueva, Fabio Marton, and Enrico Gobbetti. “SSVDAGs: Symmetry-
aware Sparse Voxel DAGs”. In: Proc. ACM i3D. Feb. 2016, pp. 7–14 (cit. on pp. 6, 10,
87, 91, 94, 114, 117, 138, 147).

[7] Alberto Jaspe Villanueva, Fabio Marton, and Enrico Gobbetti. “Symmetry-aware
Sparse Voxel DAGs (SSVDAGs) for compression-domain tracing of high-resolution
geometric scenes”. In: Journal of Computer Graphics Techniques 6.2 (2017), pp. 1–30.
ISSN: 2331-7418 (cit. on pp. 6, 10, 87, 114, 117, 138, 147).

[8] Ulf Assarsson, Markus Billeter, Dan Dolonius, Elmar Eisemann, Alberto Jaspe Vil-
lanueva, Leonardo Scandolo, and Erik Sintor. “Voxel DAGs and Multiresolution Hierar-
chies: From Large-Scale Scenes to Pre-computed Shadows”. In: Proc. EUROGRAPHICS
Tutorials. Ed. by Tobias Ritschel and Alexandru Telea. To appear. Apr. 2018 (cit. on
pp. 6, 114, 138).

[9] Alberto Jaspe Villanueva, Omar A. Mures, Emilio J. Padrón, and Juan R. Rabuñal.
A Multiresolution System for Managing Massive Point Cloud Data Sets. Tech. rep.
University of A Coruña, 2014 (cit. on pp. 8, 22, 29, 51, 116, 146).

[10] Omar A. Mures, Alberto Jaspe Villanueva, Emilio J. Padrón, and Juan R. Rabuñal.
“Point Cloud Manager: Applications of a Middleware for Managing Huge Point Clouds”.
In: Effective Big Data Management and Opportunities for Implementation. Ed. by
Manoj Kumar Singh and Dileep Kumar G. IGI Global, June 2016. Chap. 13. ISBN:
9781522501824 (cit. on pp. 8, 51, 116, 146).

123

http://www.diva-itn.eu
http://www.diva-itn.eu

[11] Omar A. Mures, Alberto Jaspe Villanueva, Emilio J. Padrón, and Juan R. Rabuñal.
“Virtual Reality and Point-based Rendering in Architecture and Heritage”. In: Hand-
book of Research on Visual Computing and Emerging Geometrical Design Tools. Ed. by
Giuseppe Amoruso. IGI Global, Apr. 2016. Chap. 4. ISBN: 9781522500292 (cit. on
pp. 8, 51, 116, 146).

[12] Fabio Bettio, Alberto Jaspe Villanueva, Emilio Merella, Fabio Marton, Enrico Gobbetti,
and Ruggero Pintus. “Mont’e Scan: Effective Shape and Color Digitization of Cluttered
3D Artworks”. In: ACM Journal on Computing and Cultural Heritage 8.1 (2015), 4:1–
4:23 (cit. on pp. 9, 22, 51, 116).

[13] Oliver Mattausch, Jǐrí Bittner, and Michael Wimmer. “CHC++: Coherent Hierarchical
Culling Revisited”. In: Computer Graphics Forum 27.3 (2008), pp. 221–230 (cit. on
pp. 17, 57, 63, 64).

[14] Viktor Kämpe, Erik Sintorn, and Ulf Assarsson. “High Resolution Sparse Voxel DAGs”.
In: ACM Trans. Graph. 32.4 (2013), 101:1–101:13 (cit. on pp. 17, 85, 87, 88, 97, 99,
100, 102, 104–107, 113, 118, 144, 149).

[15] Alberto Jaspe Villanueva and Supervisors: Emilio J. Padrón and Javier Taibo Pena.
“Point Cloud Manager: A multiresolution system for managing massive point cloud
datasets”. MA thesis. University of A Coruña, 2013 (cit. on pp. 22, 51).

[16] Omar A. Mures and Supervisors: Alberto Jaspe villanueva and Emilio J.Padrón. “Real-
time management tool for massive 3D point clouds”. MA thesis. University of A
Coruña, 2014 (cit. on pp. 22, 51).

[17] Marc Levoy and Turner Whitted. The Use of Points as Display Primitives. Tech. rep. TR
85-022. Department of Computer Science, University of North Carolina at Chapel Hill,
1985 (cit. on p. 22).

[18] J.P. Grossman and William J. Dally. “Point Sample Rendering”. In: Proceedings Eu-
rographics Workshop on Rendering. Eurographics. Eurographics, 1998, pp. 181–192
(cit. on p. 22).

[19] Hanspeter Pfister and Markus Gross. “Point-Based Computer Graphics”. In: IEEE
Computer Graphics and Applications 24.4 (July 2004), pp. 22–23 (cit. on p. 22).

[20] Markus H. Gross. “Getting to the Point...?” In: IEEE Computer Graphics and Applications
26.5 (Sept. 2006), pp. 96–99 (cit. on p. 22).

[21] Markus H. Gross and Hanspeter Pfister, eds. Point-Based Graphics. Series in Computer
Graphics. Morgan Kaufmann Publishers, 2007 (cit. on p. 22).

[22] Miguel Sainz and Renato Pajarola. “Point-Based Rendering Techniques”. In: Computers
& Graphics 28.6 (2004), pp. 869–879 (cit. on p. 22).

[23] Leif Kobbelt and Mario Botsch. “A Survey of Point-Based Techniques in Computer
Graphics”. In: Computers & Graphics 28.6 (2004), pp. 801–814 (cit. on p. 22).

[24] Szymon Rusinkiewicz and Marc Levoy. “QSplat: A Multiresolution Point Rendering
System for Large Meshes”. In: Proceedings ACM SIGGRAPH. Siggraph, 2000, pp. 343–
352 (cit. on pp. 22, 30).

[25] S. Grottel, G. Reina, C. Dachsbacher, and T. Ertl. “Coherent Culling and Shading for
Large Molecular Dynamics Visualization”. In: Computer Graphics Forum (Proceedings
of EUROVIS 2010). Vol. 29. 2010, pp. 953–962 (cit. on p. 23).

Bibliography 124

[26] Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger. “Sequential Point
Trees”. In: ACM Transactions on Graphics 22.3 (2003), pp. 657–662 (cit. on p. 23).

[27] Renato Pajarola, Miguel Sainz, and Roberto Lario. “XSplat: External Memory Mul-
tiresolution Point Visualization”. In: Proceedings IASTED International Conference on
Visualization, Imaging and Image Processing. VIIP, 2005, pp. 628–633 (cit. on p. 23).

[28] Michael Wimmer and Claus Scheiblauer. “Instant points: Fast rendering of unpro-
cessed point clouds”. In: Proc. SPBG. 2006, pp. 129–137 (cit. on p. 23).

[29] Enrico Gobbetti and Fabio Marton. “Layered Point Clouds”. In: Proceedings Eurograph-
ics/IEEE VGTC Symposium on Point-Based Graphics. Eurographics, 2004, pp. 113–120
(cit. on pp. 23, 27, 28).

[30] Michael Wand, Alexander Berner, Martin Bokeloh, Arno Fleck, Mark Hoffmann,
Philipp Jenke, Benjamin Maier, Dirk Staneker, and Andreas Schilling. “Interactive
Editing of Large Point Clouds”. In: Proceedings Eurographics/IEEE VGTC Symposium
on Point-Based Graphics. Eurographics, 2007, pp. 37–46 (cit. on p. 23).

[31] Fabio Bettio, Enrico Gobbetti, Fabio Martio, Alex Tinti, Emilio Merella, and Roberto
Combet. “A Point-based System for Local and Remote Exploration of Dense 3D
Scanned Models”. In: Proceedings Eurographics Symposium on Virtual Reality, Archae-
ology and Cultural Heritage. Eurographics, 2009, pp. 25–32 (cit. on p. 23).

[32] Mark Pauly, Markus Gross, and Leif P. Kobbelt. “Efficient Simplification of Point-
Sampled Surfaces”. In: Proceedings IEEE Visualization. Computer Society Press, 2002,
pp. 163–170 (cit. on p. 23).

[33] Prashant Goswami, Yanci Zhang, Renato Pajarola, and Enrico Gobbetti. “High Quality
Interactive Rendering of Massive Point Models using Multi-way kd-Trees”. In: 18th
Pacific Conference on Computer Graphics and Applications (PG). 2010, pp. 93–100.
ISBN: 978-1-4244-8288-7 (cit. on p. 23).

[34] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, Westley Sarokin, and
Mark Sagar. “Acquiring the reflectance field of a human face”. In: Proc. SIGGRAPH.
2000, pp. 145–156 (cit. on p. 24).

[35] Hendrik P. A. Lensch, Jan Kautz, Michael Goesele, Wolfgang Heidrich, and Hans-Peter
Seidel. “Image-based reconstruction of spatial appearance and geometric detail”. In:
ACM TOG 22.2 (2003), pp. 234–257 (cit. on p. 24).

[36] Paul Debevec. “Rendering synthetic objects into real scenes: bridging traditional and
image-based graphics with global illumination and high dynamic range photography”.
In: Proc. SIGGRAPH. 1998, pp. 189–198 (cit. on p. 24).

[37] Massimiliano Corsini, Marco Callieri, and Paolo Cignoni. “Stereo Light Probe”. In:
Computer Graphics Forum 27.2 (2008), pp. 291–300 (cit. on p. 24).

[38] Matteo Dellepiane, Marco Callieri, Massimiliano Corsini, Paolo Cignoni, and Roberto
Scopigno. “Flash Lighting Space Sampling”. In: Computer Vision/Computer Graphics
Collaboration Techniques. 2009, pp. 217–229 (cit. on pp. 24, 36).

[39] Matteo Dellepiane, Marco Callieri, Massimiliano Corsini, Paolo Cignoni, and Roberto
Scopigno. “Improved color acquisition and mapping on 3D models via flash-based
photography”. In: ACM JOCCH 2.4 (2010), Article 9 (cit. on pp. 24, 36).

Bibliography 125

[40] Seon Joo Kim, Hai Ting Lin, Zheng Lu, Sabine Suesstrunk, S. Lin, and M. S. Brown.
“A New In-Camera Imaging Model for Color Computer Vision and Its Application”. In:
IEEE Trans. PAMI 34.12 (2012), pp. 2289–2302 (cit. on pp. 24, 36, 37).

[41] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller, Lucas
Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg, et al. “The
digital Michelangelo project: 3D scanning of large statues”. In: Proc. SIGGRAPH. 2000,
pp. 131–144 (cit. on pp. 24, 31, 36, 41).

[42] Marco Callieri, Paolo Cignoni, Massimiliano Corsini, and Roberto Scopigno. “Masked
photo blending: Mapping dense photographic data set on high-resolution sampled 3D
models”. In: Computers & Graphics 32.4 (2008), pp. 464–473 (cit. on pp. 24, 31, 35).

[43] Ruggero Pintus, Enrico Gobbetti, and Marco Callieri. “Fast Low-Memory Seamless
Photo Blending on Massive Point Clouds using a Streaming Framework”. In: ACM
JOCCH 4.2 (2011), Article 6 (cit. on pp. 24, 31, 35, 40, 49).

[44] Fabio Bettio, Enrico Gobbetti, Emilio Merella, and Ruggero Pintus. “Improving the
digitization of shape and color of 3D artworks in a cluttered environment”. In: Proc.
Digital Heritage. Oct. 2013, pp. 23–30 (cit. on p. 24).

[45] Michael Kazhdan and Hugues Hoppe. “Screened Poisson surface reconstruction”. In:
ACM Trans. Graph 32.1 (2013) (cit. on pp. 24, 40, 43).

[46] Chunlin Wu, Jiansong Deng, and Falai Chen. “Diffusion equations over arbitrary
triangulated surfaces for filtering and texture applications”. In: Visualization and
Computer Graphics, IEEE Transactions on 14.3 (2008), pp. 666–679 (cit. on pp. 24, 35,
43).

[47] Marco Callieri, Matteo Dellepiane, Paolo Cignoni, and Roberto Scopigno. “Digital
Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction
of Ancient Artworks”. In: CRC Press, 2011. Chap. Processing sampled 3D data:
reconstruction and visualization technologies, pp. 69–99 (cit. on p. 25).

[48] Antonio Adan and Daniel Huber. “3D reconstruction of interior wall surfaces under
occlusion and clutter”. In: Proc. 3DIMPVT. 2011, pp. 275–281 (cit. on p. 25).

[49] Florent Lafarge and Clément Mallet. “Creating large-scale city models from 3D point
clouds: a robust approach with hybrid representation”. In: IJCV 99.1 (2012), pp. 69–
85 (cit. on p. 25).

[50] Mohamed Farouk, Ibrahim El-Rifai, Shady El-Tayar, Hisham El-Shishiny, Mohamed
Hosny, Mohamed El-Rayes, Jose Gomes, Frank Giordano, Holly E Rushmeier, Fausto
Bernardini, et al. “Scanning and Processing 3D Objects for Web Display”. In: 3DIM.
2003, pp. 310–317 (cit. on pp. 25, 34).

[51] Hui Zhang, Jason E Fritts, and Sally A Goldman. “Image segmentation evaluation: A
survey of unsupervised methods”. In: Computer Vision and Image Understanding 110.2
(2008), pp. 260–280 (cit. on p. 25).

[52] Kevin McGuinness and Noel E O’Connor. “A comparative evaluation of interactive
segmentation algorithms”. In: Pattern Recognition 43.2 (2010), pp. 434–444 (cit. on
p. 25).

[53] Adobe Systems Inc. Adobe Photoshop User Guide. 2002 (cit. on p. 25).

Bibliography 126

[54] Eric N Mortensen and William A Barrett. “Toboggan-based intelligent scissors with a
four-parameter edge model”. In: Proc. CVPR. Vol. 2. 1999 (cit. on p. 25).

[55] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. “Snakes: Active contour
models”. In: IJCV 1.4 (1988), pp. 321–331 (cit. on p. 25).

[56] Yung-Yu Chuang, Brian Curless, David H Salesin, and Richard Szeliski. “A Bayesian
approach to digital matting”. In: Proc. CVPR. 2001, pp. 264–271 (cit. on pp. 25, 39).

[57] Yuri Y Boykov and M-P Jolly. “Interactive graph cuts for optimal boundary & region
segmentation of objects in N–D images”. In: Proc. ICCV. Vol. 1. 2001, pp. 105–112
(cit. on p. 25).

[58] Yun Zeng, Dimitris Samaras, Wei Chen, and Qunsheng Peng. “Topology cuts: A novel
min-cut/max-flow algorithm for topology preserving segmentation in N–D images”.
In: Computer vision and image understanding 112.1 (2008), pp. 81–90 (cit. on p. 25).

[59] Ning Xu, Narendra Ahuja, and Ravi Bansal. “Object segmentation using graph cuts
based active contours”. In: Computer Vision and Image Understanding 107.3 (2007),
pp. 210–224 (cit. on p. 25).

[60] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. “Grabcut: Interactive
foreground extraction using iterated graph cuts”. In: ACM TOG. Vol. 23. 3. 2004,
pp. 309–314 (cit. on pp. 25, 37, 39).

[61] Enrico Gobbetti and Fabio Marton. “Layered Point Clouds: A Simple and Efficient
Multiresolution Structure for Distributing and Rendering Gigantic Point-Sampled
Models”. In: Computers & Graphics 28.1 (Feb. 2004), pp. 815–826 (cit. on p. 27).

[62] Fausto Bernardini and Holly Rushmeier. “The 3D model acquisition pipeline”. In:
Computer Graphics Forum. Vol. 21. 2. 2002, pp. 149–172 (cit. on p. 31).

[63] Paolo Pingi, Andrea Fasano, Paolo Cignoni, Claudio Montani, and Roberto Scopigno.
“Exploiting the scanning sequence for automatic registration of large sets of range
maps”. In: Computer Graphics Forum 24.3 (2005), pp. 517–526 (cit. on p. 31).

[64] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. “Poisson surface reconstruc-
tion”. In: Proc. SGP. 2006, pp. 61–70 (cit. on pp. 31, 34, 40).

[65] Josiah Manson, Guergana Petrova, and Scott Schaefer. “Streaming surface reconstruc-
tion using wavelets”. In: Computer Graphics Forum. Vol. 27. 5. 2008, pp. 1411–1420
(cit. on pp. 31, 40).

[66] Gianmauro Cuccuru, Enrico Gobbetti, Fabio Marton, Renato Pajarola, and Ruggero
Pintus. “Fast low-memory streaming MLS reconstruction of point-sampled surfaces”.
In: Graphics Interface. May 2009, pp. 15–22 (cit. on pp. 31, 40).

[67] Fatih Calakli and Gabriel Taubin. “SSD: Smooth signed distance surface reconstruc-
tion”. In: Computer Graphics Forum. Vol. 30. 7. 2011, pp. 1993–2002 (cit. on p. 31).

[68] Ruggero Pintus, Enrico Gobbetti, and Roberto Combet. “Fast and Robust Semi-
Automatic Registration of Photographs to 3D Geometry”. In: Proc. VAST. 2011, pp. 9–
16 (cit. on pp. 31, 40).

[69] M Corsini, M Dellepiane, F Ganovelli, R Gherardi, A Fusiello, and R Scopigno. “Fully
Automatic Registration of Image Sets on Approximate Geometry”. In: IJCV (2012),
pp. 1–21 (cit. on p. 31).

Bibliography 127

[70] Ruggero Pintus, Enrico Gobbetti, and Marco Callieri. “A Streaming Framework for
Seamless Detailed Photo Blending on Massive Point Clouds”. In: Proc. Eurographics
Area Papers. 2011, pp. 25–32 (cit. on p. 31).

[71] Fabio Remondino. “Heritage recording and 3D modeling with photogrammetry and
3D scanning”. In: Remote Sensing 3.6 (2011), pp. 1104–1138 (cit. on pp. 31, 32).

[72] Anestis Koutsoudis, Blaž Vidmar, George Ioannakis, Fotis Arnaoutoglou, George
Pavlidis, and Christodoulos Chamzas. “Multi-image 3D reconstruction data evalua-
tion”. In: Journal of Cultural Heritage 15.1 (2014), pp. 73 –79. ISSN: 1296-2074. DOI:
http://dx.doi.org/10.1016/j.culher.2012.12.003 (cit. on p. 32).

[73] James Davis, Stephen R Marschner, Matt Garr, and Marc Levoy. “Filling holes in
complex surfaces using volumetric diffusion”. In: Proc. 3DPVT. 2002, pp. 428–441
(cit. on p. 35).

[74] Ruggero Pintus and Enrico Gobbetti. “A Fast and Robust Framework for Semi-
Automatic and Automatic Registration of Photographs to 3D Geometry”. In: ACM
Journal on Computing and Cultural Heritage (2014). To appear (cit. on p. 35).

[75] David Friedrich, Johannes Brauers, André A Bell, and Til Aach. “Towards fully au-
tomated precise measurement of camera transfer functions”. In: IEEE Southwest
Symposium on Image Analysis & Interpretation. IEEE. 2010, pp. 149–152 (cit. on
p. 36).

[76] Mark A Ruzon and Carlo Tomasi. “Alpha estimation in natural images”. In: Proc. CVPR.
2000, pp. 18–25 (cit. on p. 39).

[77] Michael Oren and Shree K Nayar. “Generalization of Lambert’s reflectance model”. In:
Proc. SIGGRAPH. ACM. 1994, pp. 239–246 (cit. on p. 42).

[78] Noah Snavely, Steven M. Seitz, and Richard Szeliski. “Modeling the World from
Internet Photo Collections”. In: IJCV 80.2 (2008) (cit. on p. 44).

[79] Javier Rey Neira and Supervisors: Alberto Jaspe villanueva and Emilio J.Padrón.
“Sistema cliente-servidor para la visualización de nubes de puntos con WebGL”. MA
thesis. University of A Coruña, 2013 (cit. on p. 51).

[80] Ingo Wald, William R Mark, Johannes Günther, Solomon Boulos, Thiago Ize, Warren
Hunt, Steven G Parker, and Peter Shirley. “State of the Art in Ray Tracing Animated
Scenes”. In: Computer Graphics Forum 28.6 (2009), pp. 1691–1722 (cit. on p. 54).

[81] M. Hapala and V. Havran. “Review: Kd-tree Traversal Algorithms for Ray Tracing”. In:
Computer Graphics Forum 30.1 (2011), pp. 199–213 (cit. on p. 54).

[82] Jeffrey Goldsmith and John Salmon. “Automatic Creation of Object Hierarchies for
Ray Tracing”. In: IEEE Computer Graphics and Applications 7.5 (1987), pp. 14–20
(cit. on pp. 54, 62).

[83] John Amanatides. “Ray Tracing with Cones”. In: SIGGRAPH Computer Graphics 18.3
(1984), pp. 129–135 (cit. on p. 55).

[84] Paul S. Heckbert and Pat Hanrahan. “Beam Tracing Polygonal Objects”. In: SIGGRAPH
Computer Graphics 18.3 (1984), pp. 119–127. ISSN: 0097-8930 (cit. on p. 55).

[85] Samuli Laine, Samuel Siltanen, Tapio Lokki, and Lauri Savioja. “Accelerated Beam
Tracing Algorithm”. In: Applied Acoustics 70.1 (2009), pp. 172–181 (cit. on p. 55).

Bibliography 128

https://doi.org/http://dx.doi.org/10.1016/j.culher.2012.12.003

[86] Karthik Ramani, Christiaan P. Gribble, and Al Davis. “StreamRay: a stream filtering
architecture for coherent ray tracing”. In: ACM SIGPLAN Notices 44.3 (2009), pp. 325–
336 (cit. on p. 55).

[87] Benjamin Mora. “Naive ray-tracing: A divide-and-conquer approach”. In: Transactions
on Graphics 30.5 (2011), p. 117 (cit. on p. 55).

[88] Solomon Boulos, Ingo Wald, and Carsten Benthin. “Adaptive ray packet reordering”.
In: IEEE Symposium on Interactive Ray Tracing. 2008, pp. 131–138 (cit. on p. 55).

[89] Timo Aila and Samuli Laine. “Understanding the Efficiency of Ray Traversal on GPUs”.
In: Proc. High-Performance Graphics. 2009, pp. 145–149 (cit. on pp. 56, 67).

[90] Timo Aila and Tero Karras. “Architecture Considerations for Tracing Incoherent Rays”.
In: Proc. High-Performance Graphics. 2010, pp. 113–122 (cit. on p. 56).

[91] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
and Martin Stich. “OptiX: a general purpose ray tracing engine”. In: Transactions on
Graphics 29 (4 2010), 66:1–66:13. ISSN: 0730-0301 (cit. on p. 56).

[92] Timo Aila, Samuli Laine, and Tero Karras. Understanding the Efficiency of Ray Traversal
on GPUs – Kepler and Fermi Addendum. Tech. rep. NVR-2012-02. NVIDIA, June 2012
(cit. on pp. 56, 76, 77).

[93] Nathan A. Carr, Jesse D. Hall, and John C. Hart. “The Ray Engine”. In: Proc. ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. Saarbrucken, Germany,
2002, pp. 37–46. ISBN: 1-58113-580-7 (cit. on pp. 56, 61, 67).

[94] David Roger, Ulf Assarsson, and Nicolas Holzschuch. “Whitted Ray-Tracing for Dy-
namic Scenes using a Ray-Space Hierarchy on the GPU”. In: Proc. Eurographics
Symposium on Rendering. 2007, pp. 99–110 (cit. on p. 56).

[95] Laszlo Szirmay-Kalos, Barnabas Aszodi, Istvan Lazanyi, and Matyas Premecz. “Ap-
proximate Ray-Tracing on the GPU with Distance Impostors”. In: Computer Graphics
Forum 24.3 (2005), pp. 695–704 (cit. on p. 56).

[96] David Roger and Nicolas Holzschuch. “Accurate Specular Reflections in Real-Time”.
In: Computer Graphics Forum 25.3 (2006), pp. 293–302 (cit. on p. 56).

[97] Jan Novák and Carsten Dachsbacher. “Rasterized Bounding Volume Hierarchies”. In:
Computer Graphics Forum 31.2 (2012), pp. 403–412 (cit. on p. 56).

[98] Tomás Davidovic, Thomas Engelhardt, Iliyan Georgiev, Philipp Slusallek, and Carsten
Dachsbacher. “3D rasterization: a bridge between rasterization and ray casting”. In:
Proc. Graphics Interface. 2012, pp. 201–208 (cit. on p. 56).

[99] Tobias Zirr, Hauke Rehfeld, and Carsten Dachsbacher. “Object-order ray tracing for
fully dynamic scenes”. In: GPU Pro 5. A K Peters/CRC Press, 2014 (cit. on p. 56).

[100] Wei Hu, Yangyu Huang, Fan Zhang, Guodong Yuan, and Wei Li. “Ray Tracing via
GPU Rasterization”. In: Visual Computer 30.6-8 (June 2014), pp. 697–706. ISSN:
0178-2789 (cit. on p. 56).

[101] Enrico Gobbetti, Dave Kasik, and Sung-eui Yoon. “Technical strategies for massive
model visualization”. In: Proc. ACM Symposium on Solid and Physical Modeling. 2008,
pp. 405–415 (cit. on p. 57).

Bibliography 129

[102] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. “Rendering Complex
Scenes with Memory-Coherent Ray Tracing”. In: Proc. SIGGRAPH. 1997, pp. 101–108
(cit. on p. 57).

[103] Bochang Moon, Yongyoung Byun, Tae-Joon Kim, Pio Claudio, Hye-Sun Kim, Yun-Ji
Ban, Seung Woo Nam, and Sung-Eui Yoon. “Cache-oblivious ray reordering”. In:
Transactions on Graphics 29.3 (2010), pp. 1–10 (cit. on pp. 57, 73).

[104] Per H. Christensen, David M. Laur, Julia Fong, Wayne L. Wooten, and Dana Batali.
“Ray Differentials and Multiresolution Geometry Caching for Distribution Ray Tracing
in Complex Scenes”. In: Computer Graphics Forum 22.3 (2003), pp. 543–543 (cit. on
p. 57).

[105] Christian Lauterbach, Sung-eui Yoon, Ming Tang, and Dinesh Manocha. “ReduceM:
Interactive and Memory Efficient Ray Tracing of Large Models”. In: Computer Graphics
Forum 27.4 (2008), pp. 1313–1321 (cit. on p. 57).

[106] Attila T. Áfra. “Interactive Ray Tracing of Large Models Using Voxel Hierarchies”. In:
Computer Graphics Forum 31.1 (2012), pp. 75–88 (cit. on p. 57).

[107] Brian Budge, Tony Bernardin, Jeff A. Stuart, Shubhabrata Sengupta, Kenneth I. Joy,
and John D. Owens. “Out-of-Core Data Management for Path Tracing on Hybrid
Resources”. In: Computer Graphics Forum 28.2 (2009), pp. 385–396 (cit. on p. 57).

[108] Tae-Joon Kim, Xin Sun, and Sung-Eui Yoon. “T-ReX: Interactive Global Illumination
of Massive Models on Heterogeneous Computing Resources”. In: Transactions on
Visualization and Computer Graphics 20.3 (2014), pp. 481–494 (cit. on p. 57).

[109] Jacopo Pantaleoni, Luca Fascione, Martin Hill, and Timo Aila. “PantaRay: Fast Ray-
Traced Occlusion Caching of Massive Scenes”. In: Transactions on Graphics 29 (4
2010), 37:1–37:10. ISSN: 0730-0301 (cit. on p. 57).

[110] Kirill Garanzha, Alexander Bely, Simon Premoze, and Vladimir Galaktionov. “Out-
Of-Core GPU Ray Tracing of Complex Scenes”. In: SIGGRAPH Talks. 2011, 21:1–21:1
(cit. on p. 57).

[111] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Marton, Federico Ponchio,
and Roberto Scopigno. “Adaptive tetrapuzzles: efficient out-of-core construction
and visualization of gigantic multiresolution polygonal models”. In: Transactions on
Graphics 23.3 (Aug. 2004), pp. 796–803 (cit. on p. 57).

[112] Louis Borgeat, Guy Godin, François Blais, Philippe Massicotte, and Christian Lahanier.
“GoLD: interactive display of huge colored and textured models”. In: Transactions on
Graphics 24.3 (2005), pp. 869–877 (cit. on p. 57).

[113] Enrico Gobbetti and Fabio Marton. “Far Voxels – A Multiresolution Framework for In-
teractive Rendering of Huge Complex 3D Models on Commodity Graphics Platforms”.
In: ACM Trans. Graph. 24.3 (2005), pp. 878–885 (cit. on p. 57).

[114] Dirk Staneker, Dirk Bartz, and Michael Meissner. “Improving Occlusion Query Ef-
ficiency with Occupancy Maps”. In: Proc. Symposium on Parallel and Large-Data
Visualization and Graphics. 2003, pp. 15– (cit. on p. 57).

[115] Jǐrí Bittner, Michael Wimmer, Harald Piringer, and Werner Purgathofer. “Coherent Hi-
erarchical Culling: Hardware Occlusion Queries Made Useful”. In: Computer Graphics
Forum 23.3 (2004), pp. 615–624. ISSN: 0167-7055 (cit. on pp. 57, 60, 63).

Bibliography 130

[116] M. Guthe, Á. Balázs, and R. Klein. “Near Optimal Hierarchical Culling: Performance
Driven Use of Hardware Occlusion Queries”. In: Proc. Eurographics Symposium on
Rendering. 2006 (cit. on p. 57).

[117] Jǐrí Bittner, Oliver Mattausch, Ari Silvennoinen, and Michael Wimmer. “Shadow
Caster Culling for Efficient Shadow Mapping”. In: Proc. Symposium on Interactive 3D
Graphics and Games. San Francisco, Feb. 2011, pp. 81–88 (cit. on p. 57).

[118] Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, and Neil Hunt. “The
Triangle Processor and Normal Vector Shader: A VLSI System for High Performance
Graphics”. In: SIGGRAPH ’88 Proceedings 22.4 (Aug. 1988), pp. 21–30 (cit. on p. 57).

[119] Takafumi Saito and Tokiichiro Takahashi. “Comprehensible Rendering of 3-D Shapes”.
In: Computer Graphics 24.4 (1990), pp. 197–206 (cit. on p. 57).

[120] Ola Olsson, Markus Billeter, and Ulf Assarsson. “Clustered Deferred and Forward
Shading”. In: Proc. Conference on High Performance Graphics. Paris, France, 2012
(cit. on p. 57).

[121] Martin Mittring. “Finding next gen: Cryengine 2”. In: SIGGRAPH Courses. ACM. 2007,
pp. 97–121 (cit. on p. 69).

[122] Kirill Garanzha and Charles Loop. “Fast Ray Sorting and Breadth-First Packet Traversal
for GPU Ray Tracing”. In: Computer Graphics Forum 29.2 (2010), pp. 289–298 (cit. on
p. 73).

[123] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.
“Procedural Modeling of Buildings”. In: Transactions on Graphics 25.3 (July 2006),
pp. 614–623 (cit. on p. 74).

[124] Arcot J Preetham, Peter Shirley, and Brian Smits. “A practical analytic model for
daylight”. In: Proc. Conference on Computer graphics and Interactive Techniques. 1999,
pp. 91–100 (cit. on p. 74).

[125] Jirí Bittner, Michal Hapala, and Vlastimil Havran. “Fast Insertion-Based Optimization
of Bounding Volume Hierarchies”. In: Computer Graphics Forum 32.1 (2013), pp. 85–
100 (cit. on p. 77).

[126] Ingo Wald, Aaron Knoll, Gregory P Johnson, Will Usher, Valerio Pascucci, and Michael
E Papka. “CPU ray tracing large particle data with balanced Pkd trees”. In: 2015 IEEE
Scientific Visualization Conference (SciVis). IEEE. 2015, pp. 57–64 (cit. on p. 83).

[127] Kostas Vardis, Andreas-Alexandros Vasilakis, and Georgios Papaioannou. “DIRT: de-
ferred image-based ray tracing”. In: High Performance Graphics. 2016, pp. 63–73
(cit. on p. 83).

[128] Rasmus Barringer, Magnus Andersson, and Tomas Akenine-Möller. “Ray Accelerator:
Efficient and Flexible Ray Tracing on a Heterogeneous Architecture”. In: Computer
Graphics Forum 36.8 (2017), pp. 166–177 (cit. on p. 83).

[129] Timothy R Kol, Pablo Bauszat, Sungkil Lee, and Elmar Eisemann. “MegaViews: Scal-
able Many-View Rendering With Concurrent Scene-View Hierarchy Traversal”. In:
Computer Graphics Forum (2018) (cit. on pp. 83, 117, 148).

[130] Warren Hunt, Michael Mara, and Alex Nankervis. “Hierarchical Visibility for Virtual
Reality”. In: Proceedings of the ACM on Computer Graphics and Interactive Techniques
1.1 (2018), p. 8 (cit. on p. 83).

Bibliography 131

[131] Samuli Laine and Tero Karras. “Efficient sparse voxel octrees”. In: IEEE Trans. Vis.
Comput. Graph 17.8 (2011), pp. 1048–1059 (cit. on pp. 84, 87, 89, 99, 101, 106, 110,
144).

[132] Marcos Balsa Rodriguez, Enrico Gobbetti, José Antonio Iglesias Guitián, Maxim
Makhinya, Fabio Marton, Renato Pajarola, and Susanne Suter. “State-of-the-art in
Compressed GPU-Based Direct Volume Rendering”. In: Computer Graphics Forum 33.6
(2014), pp. 77–100 (cit. on pp. 85, 87, 144).

[133] Erik Sintorn, Viktor Kämpe, Ola Olsson, and Ulf Assarsson. “Compact Precomputed
Voxelized Shadows”. In: ACM Trans. Graph. 33.4 (July 2014), 150:1–150:8 (cit. on
pp. 87, 88, 113, 118, 149).

[134] Viktor Kämpe, Erik Sintorn, and Ulf Assarsson. “Fast, memory-efficient construction
of voxelized shadows”. In: Proc. ACM I3D. 2015, pp. 25–30 (cit. on pp. 87, 88, 113,
118, 149).

[135] Bas Dado, Timothy R. Kol, Pablo Bauszat, Jean-Marc Thiery, and Elmar Eisemann.
“Geometry and Attribute Compression for Voxel Scenes”. In: Computer Graphics Forum
(Proc. Eurographics) 35.2 (May 2016), pp. 397–407 (cit. on pp. 87–89, 102, 113, 114,
118, 149).

[136] Enrico Gobbetti, Fabio Marton, and José Antonio Iglesias Guitián. “A single-pass GPU
ray casting framework for interactive out-of-core rendering of massive volumetric
datasets”. In: The Visual Computer 24.7-9 (2008), pp. 797–806 (cit. on p. 87).

[137] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann. “Gigavoxels:
Ray-guided streaming for efficient and detailed voxel rendering”. In: Proc. ACM I3D.
2009, pp. 15–22 (cit. on pp. 87, 88, 98).

[138] Marco Agus, Enrico Gobbetti, José Antonio Iglesias Guitián, and Fabio Marton. “Split-
Voxel: A Simple Discontinuity-Preserving Voxel Representation for Volume Rendering”.
In: Proc. Volume Graphics. 2010, pp. 21–28 (cit. on p. 88).

[139] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann.
“Interactive indirect illumination using voxel cone tracing”. In: Computer Graphics
Forum. Vol. 30. 7. 2011, pp. 1921–1930 (cit. on p. 88).

[140] Robert E Webber and Michael B Dillencourt. “Compressing quadtrees via common
subtree merging”. In: Pattern recognition letters 9.3 (1989), pp. 193–200 (cit. on
p. 88).

[141] Eric Parker and Tushar Udeshi. “Exploiting Self-similarity in Geometry for Voxel Based
Solid Modeling”. In: Proc. ACM Solid Modeling. 2003, pp. 157–166 (cit. on p. 88).

[142] Rama Karl Hoetzlein. “GVDB: Raytracing Sparse Voxel Database Structures on the
GPU”. In: Eurographics/ ACM SIGGRAPH Symposium on High Performance Graphics.
Ed. by Ulf Assarsson and Warren Hunt. The Eurographics Association, 2016. ISBN:
978-3-03868-008-6. DOI: 10.2312/hpg.20161197 (cit. on pp. 88, 114).

[143] Viktor Kämpe, Sverker Rasmuson, Markus Billeter, Erik Sintorn, and Ulf Assarsson.
“Exploiting Coherence in Time-varying Voxel Data”. In: Proc. ACM I3D. 2016, pp. 15–
21. DOI: 10.1145/2856400.2856413 (cit. on p. 88).

Bibliography 132

https://doi.org/10.2312/hpg.20161197
https://doi.org/10.1145/2856400.2856413

[144] Erik Hubo, Tom Mertens, Tom Haber, and Philippe Bekaert. “Self-similarity Based
Compression of Point Set Surfaces with Application to Ray Tracing”. In: Comput.
Graph. 32.2 (Apr. 2008), pp. 221–234 (cit. on p. 88).

[145] Ruwen Schnabel and Reinhard Klein. “Octree-based Point-Cloud Compression.” In:
Proc. SPBG. 2006, pp. 111–120 (cit. on pp. 89, 106).

[146] Sylvain Lefebvre and Hugues Hoppe. “Compressed random-access trees for spatially
coherent data”. In: Proc. EGSR. 2007, pp. 339–349 (cit. on p. 89).

[147] Johanna Beyer, Markus Hadwiger, and Hanspeter Pfister. “State-of-the-Art in GPU-
Based Large-Scale Volume Visualization”. In: Computer Graphics Forum. In press. 2015
(cit. on pp. 89, 113).

[148] Cyril Crassin and Simon Green. “Octree-based sparse voxelization using the GPU
hardware rasterizer”. In: OpenGL Insights (2012), pp. 303–318 (cit. on pp. 89, 105).

[149] Tim Foley and Jeremy Sugerman. “KD-tree Acceleration Structures for a GPU Ray-
tracer”. In: Proc. ACM Graphics Hardware. 2005, pp. 15–22 (cit. on p. 98).

[150] Daniel Reiter Horn, Jeremy Sugerman, Mike Houston, and Pat Hanrahan. “Interactive
k-D tree GPU raytracing”. In: Proc. ACM I3D. 2007, pp. 167–174 (cit. on p. 99).

[151] Martin Pätzold and Andreas Kolb. “Grid-free out-of-core voxelization to sparse voxel
octrees on GPU”. In: Proc. High-Performance Graphics. 2015, pp. 95–103 (cit. on
p. 105).

[152] Dan Dolonius, Erik Sintorn, Viktor Kampe, and Ulf Assarsson. “Compressing Color
Data for Voxelized Surface Geometry.” In: IEEE transactions on visualization and
computer graphics (2017) (cit. on pp. 114, 118, 149).

[153] Weiwei Duan, Jianxin Luo, Guiqiang Ni, Bin Tang, Qi Hu, and Yi Gao. “Exclusive
grouped spatial hashing”. In: Computers & Graphics 70 (2018), pp. 71–79 (cit. on
p. 114).

Bibliography 133

ASinopsis (thesis summary in

Spanish)

La disponibilidad y uso de datos tridimensionales crece a un ritmo enormemente
acelerado gracias a la rápida evolución de las técnicas de adquisición y creación
de modelos 3D, que a su vez son cada vez más detallados. Al mismo tiempo,
muchos dominios no sólo se limitan a estudiar estos datos de manera off-
line, sino que requieren sistemas interactivos de exploración y visualización
de estos modelos con un cierto realismo. Esto plantea nuevos retos para
conseguir transformar eficientemente cantidades masivas de datos 3D en tipos
de datos renderizables, y representarlos eficazmente de una manera visualmente
convincente, a altas frecuencias de frames por segundo. Esta tesis presenta
nuevos métodos escalables para mejorar creación de modelos masivos capturados
de la realidad y técnicas novedosas que mejoren la escalabilidad de renderizado
avanzado, mediante procesamiento por lotes adaptable y adecuado para las
GPUs, o mediante compresión de representaciones voxelizadas de las escenas.
En este anexo se ofrece una sinopsis de la tesis en lengua española, centrándose
en las motivaciones, objetivos, y logros conseguidos, junto a las descripciones
resumidas de los diversos métodos propuestos.

A.1 Contexto, motivación e hipótesis

HOY en día se generan continuamente una inmensa cantidad datos tridimen-

sionales de enorme escala y densidad, provenientes de diversos tipos de

sensores, sistemas de escaneado, modelado 3D o simulaciones numéricas

en una gran variedad de disciplinas y sus diversos campos de aplicación. Estas

tecnologías, así como la creciente digitalización de las metodologías de trabajo en

prácticamente cualquier dominio, producen modelos 3D cada vez más complejos y

con tamaños siempre mayores. Una de los tipos de dato más utilizados son los mode-

los de superficie 3D, que describen la forma y color de objetos diseñados, simulados o

reales. La figura Fig. 1.2 en el capítulo introductorio de la tesis muestra ejemplos

de este tipo de datos utilizados en diversas disciplinas. Estos modelos han sido

generados desde distintas fuentes o como resultado de procesos computacionales,

dependiendo de su función. Una clasificación informal de los tipos de modelos más

utilizados podría ser de esta manera:

134

• Modelos CAD. Las técnicas de Diseño Asistido por Computador o CAD son

utilizadas comúnmente por ingenieros, arquitectos, diseñadores, etc. Estas

escenas a menudo representan proyectos de gran tamaño, y como suelen tener

un objetivo técnico, presentan gran cantidad de detalles de enorme precisión.

La manera en que normalmente se visualizan estos datos es utilizando modelos

de superficie, compuestos por mallas de triángulos derivadas de los bordes

externos de los objetos CAD, ya sean estos sólidos o paramétricos. Estos modelos

de superficie llegan a ser verdaderamente grandes; por ejemplo el Boeing 777

de la figura Fig. 1.1 contiene entorno a 350 millones de triángulos.

• Modelos adquiridos. El uso de scanners como LIDAR u otras técnicas como

la fotogrametría se han extendido ampliamente en estos últimos años. Éstas

permiten obtener geometría de alta precisión y información colorimetrétrica

del mundo real. Al mismo tiempo que el costo de estas técnicas se reduce

drásticamente, aumenta su grado de resolución. Estas tecnologías se usan

en una gran variedad de sectores y a diversas escalas, desde ingeniería con,

por ejemplo, escaneos aéreos de vastas extensiones de terreno o entornos

urbanos, hasta la conservación cultural, donde estas metodologías se han

vuelto de uso común para la digitalización o captura de objetos artísticos o

arqueológicos como pinturas o esculturas. Normalmente la resolución de los

objetos adquiridos incrementa cuando se aumenta el número de muestras, lo

que genera enormes bases de datos, difíciles de gestionar, procesar, o peor aún,

explorar visualmente. La representación más básica de esos modelos es la nube

de puntos, con conjuntos de datos que pueden contener decenas, centenares o

miles de millones de puntos. Por ejemplo, el modelo del David de Michelangelo

de la figura Fig. 1.2 contiene medio millar de millones de puntos.

• Modelos resultado de computaciones, Muchos modelos 3D se obtienen como

resultado de procesos numéricos, fundamentalmente en sectores científicos

como la química, biología o astrofísica. A veces son usados como soporte para

cómputos secundarios, como para realizar iluminación global, sombras, o el

cálculo de colisiones, donde algoritmos similares a los utilizados normalmente

para visualización se aprovechan para efectos o comportamientos específicos.

Estos pueden ser de diversos tipos, como por ejemplo campos volumétricos

escalares; pero también en este ámbito los grandes modelos de superficies son

muy utilizados.

• Modelos de malla diseñados o construidos, ampliamente usados en simu-

laciones, diseño de interiores, entornos de realidad virtual, o la industria de

entretenimiento, como películas o videojuegos. Este tipo de modelos los gen-

A.1 Contexto, motivación e hipótesis 135

eran normalmente artistas o diseñadores con herramientas de autor. Pueden

tener todo tipo de tamaños, de muy pequeños a enormes, dependiendo de su

utilidad. Pero es común encontrar modelos con grandes cantidades de detalles,

como los ejemplos de la Fig. 1.2.

Una gran variedad de campos, como se ha mostrado, producen lo que podríamos

denominar como modelos masivos. Como se señala en la referencia estándar sobre

renderizado de este tipo de modelos [3], éstos se cumplen tres preceptos: por una

parte, la representación de sus superficies requiere millones o incluso miles de mil-

lones de primitivas geométricas, que se traducen en cantidades ingentes de memoria

que llegan fácilmente a los centenares de gigabytes o incluso terabytes. Por otra

parte, estos datos digitales que representan los modelos, describen altísimos niveles

de detalle que normalmente no son percibidos por el ojo humano hasta que son

magnificados, mientras que la forma del modelo completa sólo es percibida cuando

se aleja mucho el punto de vista. Por último, la gestión de estos datos sobrepasa la

capacidad normal de las técnicas y hardware convencionales de procesado.

Aunque una variedad de análisis diversos pueden ser efectuados off-line en tales

modelos, muchos de sus usos requieren su inspección interactiva por operadores

humanos. La visualización 3D en tiempo real de estos conjuntos de datos es, sin

embargo, particularmente desafiante, dada la necesidad inherente de generar imá-

genes visualmente ricas en altas frecuencias y con baja latencia, en respuesta al

movimiento del punto de vista efectuada por el usuario. De hecho, para que una

aplicación de visualización sea interactiva debe, por un lado, generar imágenes a una

velocidad lo suficientemente alta como para proporcionar la ilusión de animación

al sistema de percepción humana. Esto típicamente significa mantener al menos

un ritmo de actualización de unos 10Hz [3]. Además, la aplicación debe responder

con una latencia lo suficientemente baja como para proporcionar la impresión de

una retroalimentación instantánea, que es necesaria para el control interactivo. Este

típicamente significa usar sólo unos pocos milisegundos para responder a una acción

del usuario, como un click de ratón o un cambio en la dirección de movimiento. Las

imágenes generadas a alta frecuencia y con baja latencia deben ser de una calidad lo

suficientemente alta como para ofrecer una información visual convincente, lo que

significa, para muchas aplicaciones, la necesidad de calcular sombras e iluminación

no local/global.

A pesar del continuo aumento de potencia de procesado de los ordenadores y

unidades gráficas (GPUs), es evidente que no se puede simplemente esperar que el

A.1 Contexto, motivación e hipótesis 136

uso de técnicas de fuerza bruta en hardware más potente sea suficiente para alcanzar

el objetivo de la inspección interactiva de datos masivos. Esto no es sólo debido a que

las mejoras de hardware también conducen a la generación de conjuntos de datos

cada vez más complejos, sino también porque el ancho de banda de la memoria y

la velocidad de acceso a los datos crecen a un ritmo mucho más lento que la poten-

cia de procesamiento, convirtiéndose así en los principales cuellos de botella para

manejar estas grandes cantidades de datos (ver Fig. 1.3), especialmente en el caso de

iluminaciones complejas no locales, que deben combinar, por píxel, la contribución

de muchas partes de la escena que afectan a sombras y/o interreflexiones, y que

hacen aumentar dramáticamente los requisitos de ancho de banda.

Por estas razones fundamentales, muchos esfuerzos de investigación se han centrado

en la problema de idear métodos inteligentes para renderizar modelos masivos en

hardware gráfico (véase la investigación clásica de Yoon et al. [3], y la más reciente

sobre soluciones de ray-tracing por Deng et al. [4]). En general, las principales

técnicas empleadas en todas las soluciones se esfuerzan por reducir la cantidad de

datos que necesitan ser almacenados o procesados en un momento dado. Pueden ser

clasificadas como sigue:

• Técnicas de filtrado de datos. Dado que los modelos masivos son demasiado

grandes para ser procesados y requieren demasiada computación, muchos

métodos intentan dividirlo muy eficientemente en datasets reducidos en los

que realizar el cálculo de renderizado sea lo suficientemente rápido como

para cumplir con las restricciones de tiempo y no reducir la calidad. Este

objetivo se logra empleando estructuras de datos y algoritmos apropiados para

la visibilidad o la selección de detalles, que eliminan rápidamente porciones de

la escena que no contribuyen a la imagen final (véase el estado del arte de la

sección Sec. 4.2).

• Técnicas out-of-core adaptativas. Dado que los modelos masivos no caben

totalmente en la memoria gráfica, y a menudo incluso en la memoria principal,

sus métodos de renderizado están diseñados para trabajar en estructuras fuera

del núcleo o out-of-core, cargando datos bajo demanda. Dados los altos costes

de entrada/salida, normalmente se emplean métodos adaptativos que tratan

de hacer un acceso coherente, con el objetivo de reducir el número de fallos de

caché y, por tanto, el tiempo de acceso a los datos (véase también los estados

del arte en Sec. 3.2 y Sec. 4.2).

• Técnicas de compresión de datos. Dado que la cantidad limitada de memoria

impone límites de tamaño en el modelo más grande que se puede gestionar den-

A.1 Contexto, motivación e hipótesis 137

tro del procesador (in-core) y, al mismo tiempo, el acceso a grandes cantidades

de datos también es muy costoso en términos de tiempo, muchos métodos

reducen los requisitos de tamaño de los datos con técnicas de compresión.

Dado que muchos algoritmos complejos, como aquellos de trazado de rayos,

requieren acceso aleatorio a las estructuras de datos espaciales, así como a

los datos de escena, el formato comprimido está diseñado para soportar una

descompresión aleatoria muy eficiente y transitoria (véase el estado del arte en

Sec. 5.2).

Se han propuesto muchas soluciones que combinan estos ingredientes en complejos

y potentes sistemas de render. Sin embargo, el problema general del renderizado

de modelos masivos está lejos de ser resuelto, y muchos aspectos necesitan ser

investigados con más profundidad [5, 6, 7].

En particular, muchas de las técnicas de aceleración anteriores se han diseñado e

implementado especialmente para métodos de rasterización acelerados en la GPU que

utilizan una iluminación local sencilla. El cálculo de efectos no locales, como sombras

e interreflexiones, requiere la implementación de métodos aproximados de pasadas

múltiples, no triviales de realizar en el contexto de un renderizador out-of-core en

tiempo real, debido a la necesidad de programar cuidadosamente el acceso a datos y

el procesamiento de pases de render basados en complejas dependencias entre partes

de escenas desarticuladas. Esto ha limitado en gran medida la calidad de las imágenes

en los recorridos en tiempo real basados en soluciones de rasterización [5]. Por el

contrario, se han propuesto sistemas de renderizado de alta calidad que soportan la

iluminación avanzada basados en el trazado de rayos en tiempo real [4], pero sólo se

han realizado soluciones completamente out-of-core mediante aceleración en la CPU.

El complejo patrón de acceso del trazado de rayos se beneficiaría de la compresión,

por ejemplo, para ajustar completamente los datos en la memoria de la GPU para

obtener una renderización de baja latencia, pero las soluciones más avanzadas para

la compresión de las estructuras de datos espaciales totalmente renderizables y de

los datos de la escena asociados a éstos reducen demasiado el tiempo de acceso

como para soportar el rendimiento requerido para el tiempo real, o bien no están

comprimiendo los datos lo suficiente como para soportar modelos de gran tamaño [6,

8].

El trabajo presentado en esta tesis está motivado principalmente por la necesidad de

eliminar estas limitaciones.

A.1 Contexto, motivación e hipótesis 138

A.2 Objetivos

Esta tesis se ha realizado con el objetivo de contribuir a la mejora del estado del

arte en las áreas de exploración de modelos 3D masivos, investigando el potencial

de tecnologías nóveles que traspasen los límites de complejidad en los modelos y

calidad de render en entornos interactivos, utilizando hardware de uso común. En

particular, se fijan los siguientes objetivos:

• Mejorar la creación masiva de modelos extendiendo los procesos de fusión

de datos a estructuras escalables. Aún mientras que el enfoque principal de

la tesis es el diseño y desarrollo de técnicas para explorar interactivamente

modelos masivos, se propone como primer objetivo abordar el problema del

manejo eficiente y la creación de modelos 3D a partir de cantidades masivas

de datos adquiridos. Ahondar en este tema permitirá comenzar a trabajar no

sólo en modelos ya creados, sino también a partir de los datos brutos utilizados

para construirlos. Dado que las actuales técnicas topográficas para capturar

escenas reales, como la fotografía digital, la fotogrametría y el escaneado

láser, están haciendo posible adquirir rápidamente representaciones de forma

y color muy densas de objetos y ambientes, me propongo como objetivo la

creación de métodos y técnicas escalables para gestionar una representación de

grandes bases de datos en bruto y fusionarlos para producir formas de color

limpias, renderizables y detalladas, que puedan ser utilizadas en aplicaciones

de renderizado interactivo.

• Mejorar la exploración masiva de modelos mediante una estrategia de

división en lotes de trabajo out-of-core. Aunque las GPUs actuales soportan

modelos generales de programación y permiten ejecutar algoritmos complejos

sobre estructuras de datos de aceleración, la gestión eficiente de la memoria y

la programación de los cálculos para el trazado de rayos es mucho más difícil

que para la rasterización, lo que provoca problemas de rendimiento y/o ancho

de banda, cuando se intenta integrar la rasterización y el trazado de rayos en la

misma aplicación, por ejemplo, para calcular iluminación global compleja. En

esta tesis se estudia cómo utilizar la visibilidad con una planificación inteligente

de trabajo por lotes, para poder procesar y renderizar directamente modelos 3D

de gran tamaño out-of-core, desde dentro de un núcleo de renderizado flexible

que soporte naturalmente iluminación compleja.

• Mejorar la exploración masiva de modelos mediante una estrategia de

compresión in-core. Los métodos adaptativos out-of-core no tienen límites en

A.2 Objetivos 139

el tamaño de los modelos que pueden gestionar, debido al hecho de que trabajan

en lotes de tamaño limitado, pero introducen de forma inherente cierta latencia

mientras se van cargando datos en la GPU para actualizar el conjunto de trabajo

renderizable. En varias aplicaciones, esta latencia, aunque sea mínima, es un

factor limitante. Por lo tanto, hacen falta también técnicas permitan cargar

la mayor cantidad de datos en la memoria del núcleo como sea posible, y

en un formato totalmente renderizable. El voxelizado de superficies para la

representación de escenas complejas en 3D ha sido ampliamente utilizadas

recientemente para este propósito, ya que ofrecen una codificación de los datos

muy fácil de interpretar. Sin embargo, en la actualidad, estas representaciones

necesitan grandes cantidades de memoria. para soportar el renderizado de

modelos masivos, en esta tesis se propone como objetivo mejorar el rendimiento

de compresión de este tipo de representación basadas en vóxeles, minimizando

su tamaño en memoria y manteniendo tiempos de cómputo similares a los

actuales, y, por lo tanto, permitiendo aplicar el trazado de rayos en la GPU a

modelos masivos.

• Validar las diferentes estrategias propuestas con casos de uso de escenas

masivas del mundo real. Con el fin de verificar en la práctica todos estos

enfoques, uno de los objetivos será realizar implementaciones de prototipos

realmente viables capaces de proporcionar un rendimiento sin precedentes en

datos masivos del mundo real. Por lo tanto, cada uno de los métodos deberá

compararse con un gran número de datos masivos y con otras soluciones

existentes.

A.3 Métodos escalables para la gestión out-of-core
de nubes de puntos y fusión de datos

La proliferación de la fotografía digital y los dispositivos de digitalización 3D están

haciendo posible adquirir, a un coste razonable, muestras muy densas y precisas

de las propiedades geométricas y ópticas de las superficies de objetos reales. Una

gran variedad de aplicaciones en el campo del patrimonio cultural se benefician

especialmente de esta evolución tecnológica. De hecho, este progreso en la tecnología

está haciendo factible la construcción de réplicas digitales a color, no sólo de objetos

digitales individuales sino a gran escala. Las reconstrucciones digitales de precisión

generadas a partir de medidas objetivas tienen muchas aplicaciones, que van desde

la restauración virtual hasta la comunicación visual.

A.3 Métodos escalables para la gestión out-of-core de nubes de puntos y fusión de datos 140

Las nubes de puntos son uno de los tipos de datos más utilizados para representar

tales modelos en campos como la ingeniería, las ciencias ambientales o el patrimonio

cultural. En manera natural son escalables, ya que cuantas más muestras tenga el

conjunto de datos, más fina será la representación del objeto o escena real. Sin

embargo, los actuales conjuntos de datos de nubes de puntos pueden llegar a ser

imposibles de renderizar en el hardware actual, dado que pueden superar fácilmente

los miles de millones de muestras. La gestión de conjuntos de datos tan grandes

requiere técnicas escalables. En este capítulo, considero el caso común en el que

una nube de puntos muy grande debe ser optimizada para permitir rápidamente la

exploración, análisis y coloración de múltiples resoluciones. Ejemplos comunes de

aplicaciones de estas estructuras son:

• fusión de nubes de puntos con datos fotográficos para, por ejemplo, la creación

de modelos fotorrealistas, realizados con láser para la forma, y cámaras para el

color;

• extracción de características geométricas como planos, cilindros, etc. con

propósito de análisis en ingeniería;

• exploración en tiempo real de modelos de nubes de puntos masivos en una var-

iedad de ordenadores, adaptando la complejidad del render a las capacidades

de cada plataforma.

Todos estos casos de uso requieren técnicas capaces de optimizar estáticamente una

nube de puntos para transformarla en una estructura multirresolución out-of-core,

de la que extraer, en tiempo de ejecución, los detalles de las distintas partes para

las operaciones requeridas. En esta tesis se presentan una implementación de una

arquitectura basada en un refinamiento de la técnica "Layered Point Clouds", así como

una aplicación particularmente desafiante de la fusión de datos de puntos e imágenes

en el ámbito del patrimonio cultural: la digitalización eficiente de la forma y el color

de obras de arte.

Contribuciones. Las principales contribuciones de esta tesis en este primer ámbito

son:

• un diseño general de un sistema escalable capaz de crear, colorear, analizar y

explorar nubes masivas de puntos completamente out-of-core;

• un protocolo de adquisición sencillo basado en escaneo láser y fotografía con

flash para generar nubes masivas de puntos con color;

A.3 Métodos escalables para la gestión out-of-core de nubes de puntos y fusión de datos 141

• un método semiautomático de eliminación de soportes y oclusiones y masquer-

ado de fotografías para generar nubes de puntos libres de ruido con mínima

intervención manual;

• una implementación escalable de una completa pipeline de masquerado, edición,

relleno de huecos, corrección de color y combinación de fotografías, que

funciona completamente out-of-core sin límites en el tamaño del modelo o

número de fotos.

• la evaluación del método y las herramientas, en una aplicación real de gran

escala.

A.4 Exploración escalable mediante planificación
adaptativa y algoritmos out-of-core

La exploración interactiva de grandes modelos, incluidos aquellos capturados del

mundo real y de alta densidad generados con los métodos descritos en la sección

anterior, requieren técnicas eficientes de rendering para poder superar las limitaciones

de tiempo de cálculo. Los métodos de culling por oclusión o view-frustrum, además

de la multirresolución, se utilizan comúnmente para cargar y procesar sólo la parte

visible de la escena y, por lo tanto, para hacer un rendering output-sensitive. Estas

técnicas son especialmente eficaces en el caso de la rasterización usando la pipeline

de la GPU estándar, adaptada para hacer streaming ordenado por objetos de lotes

de primitivas geométricas (en particular, triángulos). En el capítulo 4 de la tesis, se

amplía este enfoque a un entorno de trazado de rayos más flexible, proponiendo un

novedoso método que generaliza el método CHC++ de oclusión jerárquica. Este

nuevo enfoque explota la pipeline de rasterización y las consultas de oclusión de

hardware para crear lotes coherentes de trabajo que serán procesados por núcleos de

ray-tracing codificados en shaders locales. Mediante la combinación de dos jerarquías

diferentes, una en el espacio de rayos, y otra en el espacio de los objetos, el método

es capaz de compartir los resultados intermedios de los algoritmos de traversal entre

múltiples rayos. Además, se explota la coherencia temporal entre conjuntos de rayos

similares entre frames recientes en el tiempo y el actual. Una gestión adecuada

del estado de visibilidad permite beneficiarse del culling por oclusión para tipos de

rayos menos coherentes, como las reflexiones difusas. Dado que las escenas de gran

tamaño siguen siendo un reto para los ray-tracers modernos en la GPUs, el método

presentado es muy útil para escenas de complejidad media a alta, especialmente

porque es intrínsecamente compatible con el trazado de rayos de modelos muy

A.4 Exploración escalable mediante planificación adaptativa y algoritmos out-of-core 142

complejas que no caben en la memoria de la GPU (out-of-core). Para escenas in-core,

nuestro método es comparable al trazado de rayos en CUDA y funciona hasta seis

veces mejor que otros ray-trafers basados en shaders.

Contribuciones. Abordamos estos problemas proponiendo una técnica de trazado

de rayos que está diseñada para ser integrada en la pipeline de rasterización por

streaming. La idea central del método es aprovechar la pipeline de rasterización

estándar del hardware gráfico, junto con las occlusion queries, para crear lotes de

trabajo coherentes de trazado de rayos en la GPU. Mediante la combinación de

las jerarquías antes mencionadas (espacio objetos y espacio rayos), y haciendo uso

de la coherencia temporal, se minimiza la sobrecarga en el algoritmo de traversal

por la estructura, y el método puede centrarse en el cálculo de las intersecciones

rayo - objeto para conjuntos de rayos y objetos significativamente reducidos. Este

enfoque de computación por lotes y gestión de memoria permite utilizar los mismos

esquemas de streaming pero para el trazado de rayos, en vez de la rasterización.

De esta manera, se abre la puerta a una integración flexible de la rasterización y el

ray-tracing, tanto para escenas dinámicas como out-of-core. Se muestra la eficacia

del método para varios tipos de rayos, como aquellos usados para calcular sombras

suaves, o las interreflexiones difusas. Las principales contribuciones de este trabajo

son:

• Método de descarte por oclusiones para ray-tracing usando la pipeline de

rasterización, que es hasta 6× más rápida que un trazador de rayos estándar

basado en OpenGL.

• Un medio para planificar las intersecciones rayo - triángulo de partes visibles

de la jerarquía de la escena en la GPU, que permite una extensión simple y

natural al trazado de rayos out-of-core.

Ademas, se muestra una implementación eficiente del método usando el estándar

OpenGL, con una serie de beneficios:

• un algoritmo novel para identificar automáticamente grupos de rayos que

pueda intersecar con triángulos;

• puede ser fácilmente adaptado para escenas dinámicas (basta una jerarquía

espacial aproximada);

• consigue una paralelización eficiente mediante el hardware de rasterización

estándar (así que la gestión de los datos por streaming y su asignación a los

diferentes cores es automáticamente llevada por el hardware);

A.4 143

• permite utilizar el método en equipos más antiguos, ya que usa una pipeline

estándar.

A.5 Exploración escalable mediante compresión y
algoritmos in-core

Con el aumento rendimiento y la capacidad de programación de las unidades de

procesamiento gráfico, el ray-casting en la GPU se está convirtiendo en una solución

eficaz para muchos problemas de renderizado en tiempo real. Con el fin de manejar

escenas detalladas de gran tamaño, es fundamental crear una representación de es-

cena compacta y eficiente para acelerar las consultas de intersección de geometría con

los rayos, y en este sentido se han propuesto se han propuesto múltiples soluciones

(véase Sec. 5.2). Entre ellos, los sparse voxels octrees (SVO) [131] han proporcionado

resultados muy eficientes, ya que se pueden crear a partir de distintos tipos de

representaciones de escenas, y la codifican descartando eficientemente el espacio

vacío. Esto aporta grandes beneficios sea en el rendimiento del trazado de rayos,

como en la ocupación de memoria , e implícitamente proporciona un mecanismo

de niveles de detalle (LOD, por sus siglas en inglés). Pero su costo de memoria es

aún relativamente alto, y por lo tanto requiere también un ancho de banda, así que

estos enfoques voxelizados se han visto limitados a tamaños y resoluciones de escena

moderados, o a efectos que no requieren detalles geométricos precisos (como por

ejemplo, sombras suaves).

Aunque se han propuesto muchas representaciones extremadamente compactas para

modelos volumétricos de alta resolución, especialmente en el área de renderizado de

volumenes [132], el gran aumento en los ratios de compresión de estas soluciones

se equilibra con el aumento de los costos de descompresión y traversal, lo que las

hace difícilmente utilizables en entornos generales. Esto ha desencadenado una

búsqueda de representaciones más simples que pueden proporcionar datasets más

compactos, in necesidad de excesivas costes de descompresión. Kämpe et al. [14] han

demostrado recientemente que, para escenas típicas de simulaciones y videojuegos,

una maya binaria de vóxeles puede ser representada órdenes de magnitud más

eficientemente que usando un SVO, simplemente fusionando subárboles idénticos,

generalizando el árbol de vóxeles disperso a un gráfico acíclico dirigido (SVDAG).

Esta representación es enormemente compacta, ya que los nodos pueden compartir

A.5 Exploración escalable mediante compresión y algoritmos in-core 144

punteros con subárboles idénticos, y sigue siendo tan rápida como las SVOs y los

octrees simples, ya que la rutina de trazado es esencialmente la misma.

En esta parte de la tesis (capítulo 5) se muestra cómo una compresión eficiente de

la geometría sin pérdidas puede combinarse con un buen rendimiento de trazado

de rayos, mediante la fusión no sólo de subárboles completamente idénticos, sino

también de aquellos similares después de aplicarles una transformación de similitud,

a distintos niveles del grafo (nodos internos y hojas), y compactando los punteros de

los nodos de acuerdo a su frecuencia de ocurrencia. La estructura resultante, que

bautizamos como Symmetry-aware Sparse Voxel DAG (SSVDAG) puede ser construida

eficientemente mediante un algoritmo out-of-core ascendente que reduce un SVO a un

SSVDAG mínimo alternando diferentes fases en cada nivel. Primero, todos los nodos

que representan subárboles similares son agrupados y reemplazados por un solo

representante. Luego, los punteros a esos nodos en el nivel inmediatamente superior

son reemplazados por punteros etiquetados al único representante, donde la etiqueta

codifica la transformación que necesita ser aplicada para recuperar el subárbol

original del representante. Finalmente, los representantes son ordenados por el

número de referencias que les apuntan, lo que permite una eficiente codificación

de los punteros con bitrate variable. Demostramos que, seleccionando reflexiones

en los planos axiales a lo largo de las direcciones principales de la cuadrícula como

transformación de simetría, se puede lograr un buen rendimiento de construcción y

trazado.

Contribuciones. En el ámbito de la compresión de modelos masivos, las contribu-

ciones de esta tesis son:

• Una nueva estructura tridimensional compacta llamada Symmetry-aware Sparse

Voxel DAG (SSVDAGs) que puede representar sin pérdida geometría voxelizada

de escenas y datos reales con una enorme compresión, y eficientemente render-

izable.

• Un algoritmo out-of-core basado en un método simple de multipases para

construir esta representación desde un SVO o un SVDAG;

• Una modificación sencilla de los algoritmos estándares en GPU para poder

realizar el traverse y render de la estructura con muy poca carga extra. Se

describe, en particular, los detalles de un método basado en el algoritmo

multirresolución del Digital Differential Analyzer (DDA), implmentando con

una pila completa (full-stack).

A.5 Exploración escalable mediante compresión y algoritmos in-core 145

Nuestra técnica de reducción se basa en el supuesto de que las representaciones de

la escena original son geométricamente redundantes, en el sentido de que contienen

una gran cantidad de subárboles que son similares con respecto a una transformación

reflexiva. Nuestros resultados, ver Sec. 5.6, demuestran que esta suposición es válida

para escenas habituales del mundo real, de tipos y características muy diferentes,

que van desde modelos CAD de gran tamaño, a escaneados en 3D, hasta modelos de

juegos típicos. Esto permite representar escenas muy grandes a alta resolución en

las GPUs, y soportar renderizados geométricos precisos, así como fenómenos de alta

frecuencia, como sombras nítidas, con una sobrecarga en el cómputo de trazado de

rayos menor al 15%.

A.6 Logros y conclusiones

El trabajo de investigación llevado a cabo durante esta tesis ha dado lugar a los

siguientes logros y publicaciones revisadas por pares:

• La introducción de un diseño multiresolución general para un sistema escalable,

capaz de crear, colorear, analizar y explorar nubes de puntos masivas total-

mente out-of-core. Una implementación acelerada en la GPU capaz de procesar

y renderizar un conjunto de datos de miles de millones de puntos [9], así como

su aplicación en campos como el patrimonio cultural o la ingeniería[10, 11].

"Point Cloud Manager: Applications of a Middleware for Managing Huge
Point Clouds". O. A. Mures,A. Jaspe Villanueva, E.J-Padrón, J.R. Rabuñal.
Chapter 13 of “Effective Big Data Management and Opportunities for Imple-
mentation” book. Pub. IGI Global (2016)

"Virtual Reality and Point-based Rendering in Architecture and Heritage".
O. A. Mures, A. Jaspe Villanueva, E.J- Padrón, J.R. Rabuñal.Chapter 4 of “Hand-
book of Research on Visual Computing and Emerging Geometrical Design Tools”
book. Pub. IGI Global(2016)

• Un protocolo de adquisición fácil de aplicar, basado en el escaneo láser y la

fotografía con flash para generar nubes de puntos coloreadas, que introduce

un nuevo método semiautomático para la eliminación de las oclusiones y en-

mascaramiento fotográfico para generar datasets de nubes de puntos limpios y

estructurados, con una mínima intervención manual. El diseño multirresolu-

ción previamente introducido permite que todo el enmascaramiento, edición,

A.6 Logros y conclusiones 146

relleno, corrección de color y mezcla de color funcionen completamente out-of-

core sin límites en el tamaño del modelo y el número de fotos.

"Mont’e Scan: effective shape and color digitalization of cluttered 3D art-
works". F. Bettio, A. Jaspe Villanueva, E. Merella, F. Marton, E. Gobbetti, R.
Pintus. ACM Journal on Computing and Cultural Heritage, Vol 8, Num 1 (2015)

• Un novedoso enfoque para aprovechar el pipeline de rasterización y las occlu-

sion quesries por hardware, con el fin de crear lotes coherentes de trabajo para

núcleos de ray-tracing basados en shaders locales [5]. Mediante la combinación

de jerarquías tanto en el espacio de rayos como en el espacio de objetos, el

método es capaz de compartir los resultados intermedios de traversal entre

múltiples rayos. Entonces, la coherencia temporal se explota entre sets de rayos

de los frames cercanos. Esta arquitectura de programación permite de manera

natural el trazado de rayos out-of-core, con la posibilidad de renderizar escenas

potencialmente ilimitadas.

"CHC+RT: Coherent Hierarchical Culling for Ray Tracing". O. Mattausch, J.
Bittner, A. Jaspe Villanueva, E. Gobbetti, M. Wimmer, and R. Pajarola. Computer
Graphics Forum Journal Vol 32, Num 2. Presented at Eurographics’15 (2015)

• Un nuevo método de compresión llamado SSVDAG (Symmetry-aware Sparse

Voxel DAG) [6, 7], que puede representar sin pérdidas geometrías 3D vox-

elizada, así como un algoritmo out-of-core para construir dicha representación

a partir de un SVO o un SVDAG, y una modificación sencilla del algoritmo de

ray-casting en GPU estándar para atravesar y renderizar esta representación

con una baja sobrecarga computacional. Esta técnica ha demostrado que es

capaz de comprimir un grid de vóxeles de hasta 1M3 en un dataset que cabe

completamente en lq memoria de la GPU y renderizarlo en tiempo real.

"SSVDAGs: Symmetry-aware Sparse Voxel DAGs". A. Jaspe Villanueva, F.
Marton, and E. Gobbetti- ACM SIGGRAPH i3D full paper (2016).

"Symmetry-aware Sparse Voxel DAGs (SSVDAGs) for compression-domain
tracing of high-resolution geometric scenes". A. Jaspe Villanueva, F. Marton,
E. Gobbetti. Journal of Computer Graphics Techniques Vol 2 Num 6 (2017).

"Voxel DAGs and Multiresolution Hierarchies: From Large-Scale Scenes to

A.6 Logros y conclusiones 147

Pre-computed Shadows". U. Assarsson, M. Billeter, D. Dolonius, E. Eisemann,
A. Jaspe Villanueva, L. Scandolo, E. Sintorn. Eurographics Tutorials (2018).

• La evaluación de todos los métodos anteriormente descritos con datos de gran

escala del mundo real. En particular, como se describe en los secciones 3.4.7,

5.6, y 4.7, todos las técnicas se han probado con modloes que sobrepasan los

cientos de millones de primitivas geométricas.

Además, durante el curso de mis estudios de doctorado y siempre en relación con

esta tesis, he contribuido también en una serie de publicaciones que no han sido

incluidas directamente en este trabajo, y que se listan en la sección dedicada a los

resultado bibliográficos (Sec. 6.3).

Conclusiones y futuro. La tesis ha abordado tanto el problema de la creación como

el de la exploración de modelos masivos utilizando técnicas escalables. Mientras que

las contribuciones presentadas en el ámbito de las nubes de puntos son, en su mayor

parte, a nivel práctico, mostrando una novedosa implementación completa de las

mejores prácticas que resuelve problemas muy prácticos, los enfoques estudiados

para mejorar la exploración en tiempo real son potencialmente más interesantes en

términos de potencial para el trabajo futuro.

La técnica CHC+RT basada en lotes que se ha presentado representa un novedoso

uso de la oclusión jerárquica para acelerar el trazado de rayos basado en OpenGL.

Este trabajo encaja perfectamente en el área de renderizado de modelos masivos, ya

que permite explotar la técnica de carga adaptativa basada en la visibilidad típica

de los rasterizadores out-of-core actuales en un entorno de ray-tracing más flexible,

lo que abre la puerta a un renderizado out-of-core acelerado en la GPU utilizando

sombras e iluminación global. Esto se logra en un contexto muy simple, utilizando

una técnica que puede integrarse fácilmente con los renderizadores actuales. Hemos

demostrado efectos de iluminación no-locales en grandes modelos a través de sombras

e iluminación difusa de primer rebote. Es interesante mencionar, como se comenta

en la Sec. 4.9, que la idea de la aceleración basada en la visibilidad usando una

jerarquía dual está siendo explotada actualmente para trabajos de iluminación global

muy avanzados, como en la técnica de Megaviews de Kol et al. [129].

Aunque esta técnica permite renderizar escenas muy grandes, que superan la memoria

de la GPU, mediante carga adaptativa, las contribuciones siguientes de la tesis, que

usan técnicas de compresión, abordan el problema compactando los datos de forma

A.6 Logros y conclusiones 148

agresiva para que quepan, en un formato totalmente renderizable, en la memoria de

la GPU. Considero esta parte como mi principal contribución en mi trabajo doctoral.

De hecho, este enfoque encaja perfectamente con la tendencia actual de aumento

de memoria las GPUs. Tal aumento, de varios GBs, es todavía demasiado bajo para

permitir la renderización de modelos grandes sin comprimir, aunque si al mismo

tiempo comienzan a no ser no despreciables. Con este trabajo, se demuestra que,

aprovechando las transformaciones de similitud y la codificación inteligente, los

sparse voxel octrees, unas representaciones muy fáciles de usar en la GPU pero que

consumen mucha memoria, pueden transformarse en DAGs de vóxeles dispersos

muy compactos para una gran variedad de tipos de modelos, incluidos aquellos

provenientes de escaneados láser, modelos CAD y los modelos de videojuegos. Estas

representaciones tan compactas son cientos de veces más pequeñas que los datos

originales y, por lo tanto, requieren poco almacenamiento sea offline que en la GPU,

así como poco ancho de banda para su transmisión hacia el hardware gráfico. Al

mismo tiempo, la codificación compatible con la GPU permite usar las técnicas

avanzadas de trazado de rayos sin pérdida de rendimiento.

Como demuestra las secciones finales de los distintas técnicas presentadas (Sec. 3.4.7,

Sec. 4.7 and Sec. 5.6), los resultados de los métodos desarrollados durante esta tesis

obtienen el rendimiento esperado, tal y como se describe en la Sec. 2.4 de verificación

de las hipótesis, para todos los datasets probados, y hacen avanzar el estado del arte

en el campo de la exploración de modelos masivos.

En el ámbito de la compresión, de forma similar a otros trabajos sobre DAGs [14,

133, 134], en este tesis se ha trabajado principalmente en la compresión de los datos

geométricos. Otros autores han mostrado cómo asociar a la geometría otros atributos

como colores o normales [135, 152]. Además de evaluar cómo pueden mejorarse

estas técnicas, se han identificado diversas áreas de interés para el trabajo futuro.

En primer lugar, el enfoque usado hasta ahora ha sido la compresión sin pérdidas de

la representación voxelizada. Parece muy prometedor, en cambio, considerar también

los enfoques con pérdidas (o lossy), en las mismas configuraciones. Dado que las rep-

resentaciones voxelizadas son ya una discretización de otra geometría (por ejemplo,

triángulos, nubes de puntos, superficies implícitas, parches de orden superior, etc.),

parece razonable considerar que ésta podría ser ligeramente variada para mejorar

las posibilidades de encontrar similitudes. Esto podría implementarse utilizando un

enfoque de prefiltrado, que reduzca la variabilidad a nivel de hoja (conservando al

mismo tiempo algunos errores) para aumentar el número de subárboles similares.

A.6 Logros y conclusiones 149

Este enfoque, que promete una compresión mucho mayor, no se ha intentado hasta

ahora.

Una segunda mejora muy práctica, podría considerar un estudio a nivel de sistema de

las cargas incrementales, utilizando la propia estructura comprimida. Hasta ahora, la

compresión agresiva mediante una representación DAG siempre se ha utilizado para

estructuras monolíticas mantenidas en la GPU. Esta es una situación muy favorable,

ya que la residencia completa de la GPU soporta un renderizado muy eficiente. Sería

interesante estudiar, especialmente en el contexto del renderizado en remoto (usando

una red de datos, por ejemplo), cómo podría utilizarse esta representación tan

compacta en un contexto de carga incremental. Esto requeriría la implementación de

un sistema de paginado ad-hoc y, a nivel de compresión, una mejora en la ordenación

de los datos para apoyar la localización de la geometría a nivel espacial, de modo

que sea más probable que los datos cercanos entre ellos se almacenen en la misma

página. Actualmente, esta localidad espacial queda completamente anulada por la

reordenación basada en la similitud que se realiza a nivel de compresión. Parece

muy interesante poder encontrar compromisos para optimizar al mismo tiempo los

datos y la similitud espacial. Tal implementación permitiría, por ejemplo, conseguir

renderizadores basados en ray-tracing muy eficientes en la Web (y eventualmente,

incluso en dispositivos móviles), reduciendo enormemente la latencia de carga de

datos.

A.6 Logros y conclusiones 150

BCurriculum Vitae

Alberto Jaspe Villanueva is an expert researcher of the Visual Computing group (ViC)
specialized in the field of Computer Graphics. He also teaches Virtual and Augmented
Reality courses at the European Institute of Design. He has been previously awarded
with a Mary Curie Early Stage Researcher Fellowship from the DIVA Initial Training
Network. He also is a PhD student at University of A Coruña (Spain), where he got
his Bachelor and M.Sc. degrees with honors in Computer Science. Before joining
CRS4, he worked as a Computer Graphics developer and researcher for VideaLAB and
RNASA groups at the same university, where he contributed to projects in the fields
of Virtual Reality, Architecture Visualization, Terrain and Point Clouds Rendering,
and Natural Interaction. He also has experience in the industry, as he started and
managed for two years the R&D department of CEGA Audiovisuals, a company
focused on interactive audio and video installations.

Contact Information

Name Alberto Jaspe Villanueva
Address CRS4, Ex-Distilleria Pirri.

Via Ampere 2, 09134 - Caglari, Italy
E-Mail ajaspe@gmail.com
Online http://albertojaspe.net

https://www.linkedin.com/in/albertojaspe
@albertojaspe

Personal Details

Date of Birth July 10th, 1981
Place of Birth A Coruña, Spain
Languages Spanish (native), Galician (native),

English (fluent), Italian (fluent)

151

http://albertojaspe.net
https://www.linkedin.com/in/albertojaspe
https://twitter.com/albertojaspe

Education

Since 2013 Ph.D. candidate on Computer Science.
University of A Coruña (UDC), Spain. Doctoral program in
Information and Communications Technologies.

2012 - 2013 Bachelor on Computer Science. UDC, Spain
2011 - 2012 Master on High Performance Computing. UDC, Spain
2005 - 2011 Technical Engineering in Computer Science. UDC, Spain

Employment History

Since 2016 Expert Researcher at the Visual Computing Group of the
Center for Advanced Studies, Research and Development in
Sardinia (CRS4), Italy.

2013 - 2015 Marie Curie Early Stage Researcher at the Visual Comput-
ing Group (CRS4), Italy.

2011 - 2013 Research & Development Manager at CEGA Audiovisuals
S.L., Spain

2003 - 2010 Developer & Researcher at the Visualization for Engineer-
ing Architecture and Urban Design Group (VideaLAB) at
UDC, Spain.

2001 - 2003 Undergraduate intern at the Artificial Neural Networks and
Adaptive Systems lab (RNASA) at UDC, Spain.

Other Professional Activities

Since 2018 Adjunct lecturer at European Institute of Design (IED),
teaching Virtual and Augmented Reality courses.

Since 2018 Program Committee member at Eurographics Smart Tools
and Applications in Graphics (STAG).

Since 2013 Invited reviewer for various IEEE and ACM journals.
2006 - 2012 Invited lecturer for seminars on Computer Graphics and

Interaction (UDC).
2006 Adjunct lecturer at Master in Digital Creativity and Commu-

nication (UDC), teaching Audio & Video Editing course.

Curriculum Vitae 152

Selected Publications

Journal Articles

• Artworks in the Spotlight: Characterization with a Multispectral Dome.
I. Ciortan, T. Dulecha, A. Giachetti, R. Pintus, A. Jaspe, and E. Gobbetti.
Materials Science and Engineering Journal (2018).

• Symmetry-aware Sparse Voxel DAGs (SSVDAGs) for compression-domain tracing
of high-resolution geometric scenes. A. Jaspe, F. Marton, E. Gobbetti.
Journal of Computer Graphics Techniques (2017).

• CHC+RT: Coherent Hierarchical Culling for Ray Tracing.
O. Mattausch, J. Bittner, A. Jaspe, E. Gobbetti, M. Wimmer, and R. Pajarola.
Computer Graphics Forum Journal Vol 32, Num 2. Presented at Eurographics’15 (2015)

• Mont’e Scan: effective shape and color digitalization of cluttered 3D artworks.
F. Bettio, A. Jaspe, E. Merella, F. Marton, E. Gobbetti, R. Pintus.
ACM Journal on Computing and Cultural Heritage, Vol 8, Num 1 (2015)

• Automatic room detection and reconstruction in cluttered indoor environments
with complex room layouts. C. Mura, O. Mattausch, A. Jaspe, E. Gobbetti, R. Pajarola.
Computer & Graphics Journal Num 44 (2014)

• IsoCam: interactive visual exploration of massive cultural heritage models on
large projection setups.
F. Marton, M. Balsa, F. Bettio, M. Agus, A. Jaspe, and E. Gobbetti.
ACM Journal on Computing and Cultural Heritage, Vol 7, Num 2 (2014)

• ExploreMaps: Efficient Construction and Ubiquitous Exploration of Panoramic
View Graphs of Complex 3D Environments.
M. Di Benedetto, F. Ganovelli, M. Balsa, A. Jaspe, R. Scopigno, and E. Gobbetti.
Computer Graphics Forum Journal, Vol 33, Num 2. Presented at EuroGraphics’14
(2014)

• Space perception in architectonic visualization using immersive virtual reality.
L. A. Hernández, J. Taibo, A. Seoane, A. Jaspe.
Architectonic Graphic Expression Journal, Num 18 (2011)

• Physically Walking in Digital Spaces: A Virtual Reality Installation for Explo-
ration of Historical Heritage.
L. A. Hernández, J. Taibo, D. Blanco, J. A. Iglesias, A. Seoane, A. Jaspe y R. López.
International Journal of Architectural Computing, Vol 5, Num 13 (2007)

Curriculum Vitae 153

Conference Papers

• Objective and Subjective Evaluation of Virtual Relighting from Reflectance Trans-
formation Imaging Data. R.Pintus, T. Dulecha, A. Jaspe, A. Giachetti, I. Ciortan, E.
Gobbetti. Eurographics Workshop on Graphics and Cultural Heritage (2018).

• Voxel DAGs and Multiresolution Hierarchies: From Large-Scale Scenes to Pre-
computed Shadows. U. Assarsson, M. Billeter, D. Dolonius, E. Eisemann, A. Jaspe, L.
Scandolo, E. Sintor. Eurographics Tutorials (2018).

• PEEP: Perceptually Enhanced Exploration of Pictures. M. Agus, A. Jaspe, G. Pintore,
E. Gobbetti. International Workshop on Vision, Modeling and Visualization (VMV) full
paper (2016).

• SSVDAGs: Symmetry-aware Sparse Voxel DAGs.
A. Jaspe, F. Marton, and E. Gobbetti.
ACM SIGGRAPH i3D full paper (2016).

• SOAR: Stochastic Optimization for Affine global point set Registration. M. Agus,
E. Gobbetti, A. Jaspe, C. Mura, and R. Pajarola.
International Symposium on Vision, Modeling, and Visualization VMV’14 full paper
(2014)

• Practical line rasterization for multi-resolution textures. J. Taibo, A. Jaspe, A.
Seoane, Marco Agus, and L. A. Hernandez.
STAG’14 full paper (2014)

• Robust Reconstruction of Interior Building Structures with Multiple Rooms under
Clutter and Occlusions.
C. Mura, O. Mattausch, A. Jaspe, E. Gobbetti, and R. Pajarola.
CAD/Graphics’13 full paper (2013)

• Automatic Geometric Calibration of Projector-based Light-field Displays. M. Agus,
E. Gobbetti, A. Jaspe, G. Pintore, and R. Pintus.
EuroVIS’13 short paper (2013)

• Interactive installations and virtual reality in the museum. The Galicia Dixital
experience. L. Hernández, A. Seoane, R. López, A. Jaspe.
ICT’07, Conference in Historical Heritage full paper (2008)

• Hardware-Independent Clipmapping. A. Seoane, J Taibo, L. Hernández, R. López
and A. Jaspe.
WSCG’07 full paper. The 15th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision (2007)

• Real-time visualization of geospatial features through integration of GID with a
realistic 3D terrain dynamic visualization system. L. A. Hernandez, J. Taibo, A.
Seoane, R. López, A. Jaspe, A. Varela.
ICC’05 full paper. XXII International Cartographic Conference (2005)

• The Creativity Space: An Immersive VR Framework for 3D Creation. L.A. Hernán-
dez, J. Taibo, A. Jaspe, R. López, D. Blanco, R. López, A. Seoane.
Digital Engineering Workshop, CAD/CAM Workshop full paper (2005)

Curriculum Vitae 154

Book chapters

• Point Cloud Manager: Applications of a Middleware for Managing Huge Point
Clouds. O. A. Mures, A. Jaspe, E.J-Padrón, J.R. Rabuñal.
Chapter 13 of “Effective Big Data Management and Opportunities for Implementation”
book. Pub. IGI Global. ISBN: 9781522501824 (2016)

• Virtual Reality and Point-based Rendering in Architecture and Heritage. O. A.
Mures, A. Jaspe, E.J- Padrón, J.R. Rabuñal.
Chapter 4 of “Handbook of Research on Visual Computing and Emerging Geometrical
Design Tools” book. Pub. IGI Global. ISBN: 9781522500292 (2016)

• Acceleration of AI algorithms using GPUs. A. Seoane and A. Jaspe. Chapter of
“Encyclopedia of Artificial Intelligence” book. Pub. IGI Global. ISBN: 978-1-59904-849-
9 (2008)

• Mapping Large Textures for Outdoor Terrain Rendering. A. Seoane, J. Taibo, L.
Hernández, A. Jaspe.
Chapter of “Game Programming Gems 7” book. Pub. Charles River Media. ISBN:
978-1584505273 (2008)

Curriculum Vitae 155

	Title and front pages
	Acknowledgements
	Abstracts
	Resumo (Galician abstract)
	Resumen (Spanish abstract)
	Abstract (English)

	Preface
	Contents
	1 Introduction
	1.1 Background and motivation
	1.2 Objectives
	1.3 Achievements
	1.4 Organization

	2 General requirements, work hypotheses, and means of verification
	2.1 Basic definitions
	2.2 Research questions
	2.3 Hypotheses supporting the prospected solutions
	2.4 Means of verification

	3 Improving reality-based massive model creation: scalable out-of-core point-clouds and effective data-fusion methods
	3.1 Contribution
	3.2 Related work
	3.2.1 Out-of-core point cloud management
	3.2.2 Color acquisition and blending
	3.2.3 Color and geometry masking

	3.3 Out-of-core massive point cloud management
	3.3.1 System architecture
	3.3.2 Interactive exploration

	3.4 Supporting shape and color digitization cluttered 3D artworks
	3.4.1 Context and method overview
	3.4.2 Data acquisition
	3.4.3 Semi-automatic geometry and color masking
	3.4.4 Data consolidation and editing
	3.4.5 Color correction, mapping, and inpainting
	3.4.6 Inpainting
	3.4.7 Implementation and results

	3.5 Discussion
	3.6 Bibliographical Notes

	4 Improving scalability through adaptive batching: Coherent Hierarchical Culling for Ray Tracing
	4.1 Contribution
	4.2 Related Work
	4.2.1 Ray tracing data structures and acceleration
	4.2.2 Mixing ray tracing and rasterization
	4.2.3 Out-of-core ray tracing
	4.2.4 Visibility and rasterization methods

	4.3 Overview
	4.4 Hierarchical Occlusion Culling for Ray Tracing
	4.4.1 Generalized Occlusion Queries
	4.4.2 Shader-based Ray-Triangle Intersection
	4.4.3 Hierarchical Occlusion Culling
	4.4.4 Traversing the Query-Pair Hierarchy
	4.4.5 Exploiting Temporal Coherence

	4.5 CHC+RT Implementation
	4.5.1 Hierarchical Traversal
	4.5.2 Ray-Triangle Intersections
	4.5.3 Ray Generation and Scheduling
	4.5.4 Out-of-Core Ray Tracing

	4.6 Analysis
	4.6.1 Problem-domain pruning
	4.6.2 GLSL rendering
	4.6.3 Limitations

	4.7 Results
	4.8 Discussion
	4.9 Bibliographical notes

	5 Improving scalability through compression: Symmetry-aware Sparse Voxel DAG
	5.1 Contribution
	5.2 Related Work
	5.3 Overview
	5.4 Construction and encoding
	5.4.1 Bottom-up construction process
	5.4.2 Out-of-core implementation
	5.4.3 Compact encoding

	5.5 Ray-tracing a SSVDAG
	5.5.1 Traversal
	5.5.2 Scene rendering

	5.6 Results
	5.6.1 Datasets
	5.6.2 DAG reduction speed
	5.6.3 Compression performance
	5.6.4 Rendering

	5.7 Discussion
	5.8 Bibliographical notes

	6 Summary and conclusions
	6.1 Overview of achievements
	6.2 Discussion and future work
	6.3 Bibliographical results

	Bibliography
	Appendix A Sinopsis (thesis summary in Spanish)
	A.1 Contexto, motivación e hipótesis
	A.2 Objetivos
	A.3 Métodos escalables para la gestión out-of-core de nubes de puntos y fusión de datos
	A.4 Exploración escalable mediante planificación adaptativa y algoritmos out-of-core
	A.5 Exploración escalable mediante compresión y algoritmos in-core
	A.6 Logros y conclusiones

	Appendix B Curriculum Vitae

