Pacific Graphics 2017
The 25th Pacific Conference on Computer Graphics and Applications

Taipei, Taiwan
October 16 – 19, 2017

Conference Co-Chairs
Leif Kobbelt, RWTH Aachen University
Jung Hong Chuang, National Chiao Tung University
Bing-Yu Chen, National Taiwan University

Program Co-Chairs
Jernej Barbic, University of Southern California
Wen-Chieh Lin, National Chiao Tung University
Olga Sorkine-Hornung, ETH Zurich

DOI: 10.1111/cgf.13289
Sponsors

Ministry of Science and Technology

DIGITAL DOMAIN

RAYARK

NTU I-OX center

CyberLink

www.cyberlink.com

ITRI

Industrial Technology Research Institute

IGS®
Preface

The 25th Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2017) was held in Taipei, Taiwan, on October 16-19, 2017. Pacific Graphics is one of flagship conferences of Asia Graphics Association. As a highly successful conference series, Pacific Graphics provides a premium forum for researchers, developers, and practitioners in the Pacific Rim and around the world to present and discuss new problems, solutions, and technologies in computer graphics and related areas.

There were 98 papers submitted, which were reviewed by a program committee of 102 international experts, as well as 195 external reviewers. Of these submissions, 22 papers were selected for full oral presentation at the conference, as well as for inclusion in this issue of Computer Graphics Forum. Each paper received at least 4 reviews by members of the program committee and external experts. Each of the accepted papers underwent a second review cycle to ensure that the necessary revisions indicated in the reviews were carried out.

In addition to the paper presentations, the conference also featured three invited talks by Hirokazu Kato, Johannes Kopf, and Miguel A. Otaduy. There was also a short paper session, where seven short papers were presented. The short papers are published electronically through the EG Digital Library. The topics of the papers in this volume are diverse, including fabrication and design, analyzing geometries, coloring rendering and sampling, video and visualization, interaction and creation, reconstruction and generation based on RGBD Images, representing and editing Images, and simulation and animation. Some of the papers were submitted with supplementary materials that EUROGRAPHICS members can access through the EG Digital Library.

We would like to thank the authors and participants at the conference, the program committee members, and the external reviewers, all of whom made their best effort to ensure the high quality of the Pacific Graphics 2017 technical program. We also wish to thank The Ministry of Science and Technology of Taiwan, Digital Domain Holdings Limited, Rayark Inc., NTU IoX Center, CyberLink Corp., Industrial Technology Research Institute, and International Games System Co. Ltd, for their financial support. Finally, we would like to thank Stefanie Behnke, whose administrative help and technical support was invaluable.

Jernej Barbic, University of Southern California, USA
Wen-Chieh Lin, National Chiao Tung University, Taiwan
Olga Sorkine-Hornung, ETH Zurich, Switzerland

Pacific Graphics 2017 Program Co-chairs
International Program Committee

Hujun Bao, Zhejiang University
Connelly Barnes, University of Virginia
Christopher Batty, University of Waterloo
Bernd Bickel, Disney Research Zurich
David Bommes, RWTH Aachen
Nicolas Bonneel, CNRS
Stefan Bruckner, University of Bergen
Marcel Campen, New York University
Bing-Yu Chen, National Taiwan University
Guoning Chen, University of Houston
Ming-Te Chi, National Chengchi University
Hung-Kuo Chu, National Tsing Hua University
Yung-Yu Chuang, National Taiwan University
Stelian Coros, Carnegie Mellon University
Carsten Dachsbacher, Karlsruhe Institute of Technology
Zhigang Deng, University of Houston
Olga Diamanti, Stanford University
Yoshinori Dobashi, Hokkaido University
Zhao Dong, Autodesk
Christian Duriez, INRIA
Kenny Erleben, University of Copenhagen
Xianfeng Gu, Stony Brook University
Diego Gutierrez, University of Zaragoza
Toshiya Hachisuka, The University of Tokyo
Shimin Hu, Tsinghua University
Hui Huang, Shenzhen University
Qixing Huang, University of Texas at Austin
Alec Jacobson, University of Toronto
Eakta Jain, University of Florida
Wenzel Jakob, EPFL
Stefan Jeschke, NVIDIA Research
Tao Ju, Washington University in St. Louis
Oliver van Kaick, Carleton University
Vladimir G. Kim, Adobe
Young J. Kim, Ewha Womans University
Min H. Kim, KAIST
Leif Kobbelt, RWTH Aachen University
Taku Komura, Edinburgh University
Yu-Kun Lai, Cardiff University
Yu-Chi Lai, National Taiwan University of Science and Technology
Jean-Francois Lalonde, Laval University
Manfred Lau, Lancaster University
Tong-Yee Lee, National Cheng Kung University
Seungyong Lee, Pohang University of Science and Technology
International Program Committee

Hao Li, University of Southern California
Steve Lin, Microsoft Research Asia
I-Chen Lin, National Chiao Tung University
Yang Liu, Microsoft Research Asia
Feng Liu, Portland State University
Ligang Liu, University of Science and Technology of China
Kwan-Liu Ma, University of California at Davis
Belen Masia, University of Zaragoza
Dominik Michels, KAUST
Niloy Mitra, University College London
Rahul Narain, University of Minnesota
Junyong Noh, KAIST
Carol O’Sullivan, Trinity College Dublin
Miguel Otaduy, URJC Madrid
Daniele Panozzo, New York University
Fabio Pellacini, Sapienza University of Rome
Nico Pietroni, CNR-ISTI
Hong Qin, Stony Brook University
Zhong Ren, Zhejiang University
Holly Rushmeier, Yale University
Hubert Shum, Northumbria University
Claudio Silva, New York University
Cyril Soler, Inria
Justin Solomon, MIT
Shinjiro Sueda, Texas A&M
Kalyan Sunkavalli, Adobe
Matthias Teschner, University of Freiburg
Nils Thuerey, TU Munich
James Tompkin, Brown University
Xin Tong, Microsoft Research Asia
Yu-Ting Tsai, Yuan Ze University
Amir Vaxman, Utrecht University
Etienne Vouga, UT Austin
Lvdi Wang, Microsoft Research Asia
Yu-Shuen Wang, National Chiao Tung University
Huamin Wang, Ohio State University
Wenping Wang, The University of Hong Kong
Rui Wang, University of Massachusetts
Sai-Keung Wong, National Chiao Tung University
Tien-Tsin Wong, The Chinese University of Hong Kong
Enhua Wu, Chinese Academy of Sciences & University of Macau
Hongzhi Wu, Zhejiang University
Chris Wyman, NVIDIA Research
Kai Xu, National University of Defense Technology
International Program Committee

Kun Xu, Tsinghua University
Dong-ming Yan, NLPR-CASIA
Yongliang Yang, University of Bath
Ruigang Yang, University of Kentucky
Yin Yang, University of New Mexico
Sai-Kit Yeung, Singapore University of Technology and Design
Sung-Eui Yoon, KAIST
Jingyi Yu, University of Delaware
Craig Yu, University of Massachusetts Boston
Yonghao Yue, Columbia University
Eugene Zhang, Oregon State University
Changxi Zheng, Columbia University
Kun Zhou, Zhejiang University
Bo Zhu, MIT
External Reviewers

Alliez, Pierre
Ando, Ryoichi
Assarsson, Ulf
Azencot, Omri
Baecher, Moritz
Belcour, Laurent
Bitterli, Benedikt
Bittner, Jíf
Bo, Pengbo
Boll Nielsen, Jannik
Boominathan, Vivek
Bousseau, Adrien
Bowman, Doug
Bryan, Chris
Calian, Dan Andrei
Casas, Dan
Ceylan, Duygu
Chapiro, Alexandre
Chen, Renjie
Chen, Xiaodiao
Chen, Yi-Ling
Chentanez, Nuttapong
Chien, Edward
Chu, James
Cline, David
Crnovrsanin, Tarik
Darabi, Soheil
Du, Peng
Dudte, Levi
Duncan, Noah
Ebeida, Mohamed
Fei, Yun
Feiner, Steven K.
Feng, Jie
Fišer, Jakub
Fratarcangeli, Marco
Friso, Oriel
Fu, Chi-Wing
Fu, Xiaoming
Gao, Lin
Gao, Xifeng
Garces, Elena
Goes, Fernando de
Goswami, Prashant
Guennebaud, Gael
Guo, Jianwei
Hädrich, Torsten
Harada, Takahiro
He, Ying
Hennessey, James
Hochstetter, Hendrik
Hongyi, Xu
Hormann, Kai
Hou, Junhui
Hoyet, Ludovic
Hu, Xinghong
Hu, Zhe
Hua, Binh-Son
Huang, Jia-Bin
Huang, Jingwei
Hyde, David
Iwasaki, Kei
Jansen, Yvonne
Jarabo, Adrián
Ji, Yu
Jin, Xiaogang
Kalkofen, Denis
Kaljanov, Javor
Kazhdan, Misha
Khademi Kalantari, Nima
Kim, Kujin
Kim, Min H.
Kim, Young J.
Langlois, Tim
Lei, Na
Lepetit, Vincent
Leung, Howard
Li, Chen
Li, Guiqing
Li, Jun
Li, Kun
Li, Xiao
Lin, Chao-Hung
Lin, Haiting
Lin, Hongwei
Lin, Kai mo
Lin, Shih-Syun
Lin, Stephen
Liu, Shuaicheng
Liu, Xueting
Liu, Zhiguang
Livesu, Marco
Lu, Xuequan
Mao, Xiangyu
Mao, Xiaoyang
Martínez, Jonas
McCann, Jim
Merrell, Paul
Moon, Bochang
Mueller, Paul
Nan, Liangliang
Nguyen, Rang
Niu, Yuzhen
Nogeng, Dorian
Okabe, Makoto
Ovsjanikov, Maks
Pan, Hao
Panetta, Julian
Park, Kyounju
Peers, Pieter
Qiu, Linhài
Renoust, Benjamin
Rhee, Taehyun
Rodola, Emanuele
Roy, Lawrence
Sahillioglu, Yusuf
Sauer, Franz
Seok Heo, Yong
Serrano, Ana
Shao, Tianjia
Sharf, Andrei
Shi, Fuhao
Song, Ying
Su, Hao
Su, Zhengyu
Tagliasacchi, Andrea
Tai, Yu-Wing
Takahashi, Tetsuya
Tam, Gary KI.
Takahashi, Yuzuru
Tang, Chengcheng
Tang, Chengzhou
Tarini, Marco
Thanh Nguyen, Duc
Thomaszewski, Bernhard
Wang, Baoyuan
Wang, Beibeì
Way, Derlor
Weinmann, Michael
Won, Jungdâm
Wu, Chia-Min
Wu, Hsiang-Yun
Xi, Pengcheng
Xin, Tong
Xu, Feng
Xu, Pengfei
Xu, Xu
External Reviewers

<table>
<thead>
<tr>
<th>Xue, Su</th>
<th>You, Shaodi</th>
<th>Zhang, Jianjie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yan, Ling-Qi</td>
<td>Yu, Hongfeng</td>
<td>Zhang, Lei</td>
</tr>
<tr>
<td>Yang, Xiaosong</td>
<td>Yu, Lap-Fai</td>
<td>Zhang, Xiaoting</td>
</tr>
<tr>
<td>Yang, Xubo</td>
<td>Yuan, Ye</td>
<td>Zheng, Yi</td>
</tr>
<tr>
<td>Yang, Zhou</td>
<td>Zhang, Fang-Lue</td>
<td>Zhong, Zichun</td>
</tr>
<tr>
<td>Yao, Chih-Yuan</td>
<td>Zhang, Guofeng</td>
<td>Zhou, Qingnan</td>
</tr>
<tr>
<td>Ye, Jinwei</td>
<td></td>
<td>Zollhoefer, Michael</td>
</tr>
</tbody>
</table>
Author Index

Avidan Shai 183
Bo Zhitao 29
Brown Michael S. 83
Bruckner Stefan 135
Chen Baoquan 29
Chen Bing-Yu 115
Chen Hsin-I 115
Chen Kang 167
Chen Lan 217
Chen Ming-Shiuan 115
Chen Zhili 1
Cherng Fu-Yin 145
Cohen-Or Daniel 183
Cohen Scott 83
Delrieux Claudio 135
Deussen Oliver 29
Diehl Alexandra 135
Eisemann Elmar 175
Eisemann Martin 175
Endo Yuki 41
Fried Ohad 183
Fu Hongbo 167
Gao Chengying 93
Gröller M. Eduard 135
He Xiaowei 207
Huang Hui 51
Huang Xun-Yi 145
Hu Shi-Min 167
Jang Deok-Kyeong 73
Jiang Liguo 217
Kanamori Yoshihiro 41
Lee Joon-Young 105
Lee Sung-Hee 73
Lee Wei-Tse 115
Liang Xiaohui 229
Liao Bin 125
Liao Jingtang 175
Lieng Henrik 195
Lin Shujin 157
Lin Wen-Chieh 145
Liu Ligang 15
Liu Minghua 167
Li Frederik W. B. 229
Li Guiqing 93
Li Jituo 217
Li Wei 15
Luan Lyu 207
Luo Xiaohan 157
Lu Lin 29
Matković Kresimir 135
Ma Guanghui 217
Mitani Jun 41
Miyamoto Emi 41
Nguyen Rang M. H. 83
Pelrorosso Leandro 135
Price Brian 83
Remil Oussama 63
Ren Xiaohua 207
Ruiz Juan 135
Sharf Andrei 29
Shen I-Chao 115
Shen Yicong 145
Sung Ching-Ying 145
Sunkavalli Kalyan 105
Su Zhong 93
Tang Min 217
Tan Ping 93
Wang Fei 157
Wang Hao-Chuan 145
Wang Huamin 1
Wang Hui 51
Wang Jun 63
Wang Ruomei 157
Wang Zhaowen 105
Wen Hua 207
Wu Hefeng 157
Xiao Chunxia 125
Xia Yang 29
Xie Qian 63
Xie Xingyu 63
Xiong Gang 217
Xu Kai 63
Xu Weiwei 1
You Lihua 15
Yuan Chunqiang 229
Zhang Jiajun 15
Zhang Ling 125
Zhang Xiaopeng 217
Zhang Xuaner 105
Zhang Yanci 207
Zhang Zili 229
Zheng Anzong 15
Zhou Fan 157
Zhu Yao 125
Zou Changqin 93
TABLE OF CONTENTS

Fabrication and Design

- **Modeling, Evaluation and Optimization of Interlocking Shell Pieces**
 Miaojun Yao, Zhili Chen, Weiwei Xu, and Huamin Wang
 1

- **Rib-reinforced Shell Structure**
 Wei Li, Anzong Zheng, Lihua You, Xiaosong Yang, Jianjun Zhang, and Ligang Liu
 15

- **Printable 3D Trees**
 Zhitao Bo, Lin Lu, Andrei Sharf, Yang Xia, Oliver Deussen, and Baoquan Chen
 29

- **Semi-Automatic Conversion of 3D Shape into Flat-Foldable Polygonal Model**
 Emi Miyamoto, Yuki Endo, Yoshihiro Kanamori, and Jun Mitani
 41

Analyzing Geometries

- **Group Representation of Global Intrinsic Symmetries**
 Hui Wang and Hui Huang
 51

- **Data-Driven Sparse Priors of 3D Shapes**
 Oussama Remil, Qian Xie, Xingyu Xie, Kai Xu, and Jun Wang
 63

- **Regression-Based Landmark Detection on Dynamic Human Models**
 Deok-Kyeong Jang and Sung-Hee Lee
 73

Coloring, Rendering, and Sampling

- **Group-Theme Recoloring for Multi-Image Color Consistency**
 Rang M. H. Nguyen, Brian Price, Scott Cohen, and Michael S. Brown
 83

- **L0 Gradient-Preserving Color Transfer**
 Dong Wang, Changqing Zou, Guiqing Li, Chengying Gao, Zhuo Su, and Ping Tan
 93

Video and Visualization

- **Photometric Stabilization for Fast-forward Videos**
 Xuander Zhang, Joon-Young Lee, Kalyan Sunkavalli, and Zhaowen Wang
 105

- **High-resolution 360 Video Foveated Stitching for Real-time VR**
 Wei-Tse Lee, Hsin-I Chen, Ming-Shiuan Chen, I-Chao Shen, and Bing-Yu Chen
 115

- **Video Shadow Removal Using Spatio-temporal Illumination Transfer**
 Ling Zhang, Yao Zhu, Bin Liao, and Chunxia Xiao
 125

- **Albero: A Visual Analytics Approach for Probabilistic Weather Forecasting**
 Alexandra Diehl, Leandro Pelorosso, Claudio Delrieux, Kresimir Matković, Juan Ruiz, M. Eduard Gröller, and Stefan Bruckner
 135

- **Exploring Online Learners’ Interactive Dynamics by Visually Analyzing Their Time-anchored Comments**
 Ching-Ying Sung, Xun-Yi Huang, Yicong Shen, Fu-Yin Cheng, Wen-Chieh Lin, and Hao-Chuan Wang
 145

Interaction and Creation

- **A Data-Driven Approach for Sketch-Based 3D Shape Retrieval via Similar Drawing-Style Recommendation**
 Fei Wang, Shujin Lin, Xiaonan Luo, Hefeng Wu, Ruomei Wang, and Fan Zhou
 157
TABLE OF CONTENTS

Reconstruction and Generation based on RGBD Images

- **Saliency-aware Real-time Volumetric Fusion for Object Reconstruction**
 Sheng Yang, Kang Chen, Minghua Liu, Hongbo Fu, and Shi-Min Hu
 167

- **Split-Depth Image Generation and Optimization**
 Jingtang Liao, Martin Eisemann, and Elmar Eisemann
 175

Representing and Editing Images

- **Patch2Vec: Globally Consistent Image Patch Representation**
 Ohad Fried, Shai Avidan, and Daniel Cohen-Or
 183

- **A Probabilistic Framework for Component-based Vector Graphics**
 Henrik Lieng
 195

- **Efficient Gradient-Domain Compositing Using an Approximate Curl-free Wavelet Projection**
 Xiaohua Ren, Lyu Luan, Xiaowei He, Yanci Zhang, and Enhua Wu
 207

Simulation and Animation

- **A Unified Cloth Untangling Framework Through Discrete Collision Detection**
 Juntao Ye, Guanghui Ma, Liguo Jiang, Lan Chen, Jituo Li, Gang Xiong, Xiaopeng Zhang, and Min Tang
 217

- **Modeling Cumulus Cloud Scenes from High-resolution Satellite Images**
 Zili Zhang, Xiaohui Liang, Chunqiang Yuan, and Frederick W. B. Li
 229
Invited Talk

Computer Animation Fuels new Design Engines

Miguel A. Otaduy
Associate professor of Universidad Rey Juan Carlos (URJC Madrid)

Abstract
Design is ubiquitous, and computer graphics has been an integral tool for design since the early days of CAD. The relevance of CAD in computer graphics is experiencing a revival, and computer animation is no exception. Computer animation provides a means to create computer models of objects, bodies, or other phenomena, which can then be used within a CAD application. Beyond movies and video games, computer animation enjoys the opportunity to transform the way in which we approach design. This talk will cover several examples of computer graphics research, where computer animation models, together with optimization tools, build the engine of design applications. The examples cover the animation of diverse materials such as skin, soft tissue, cloth, or flexible fabrication materials, and they find impact in diverse applications such as medicine, fabrication, or fashion.

Short Biography
Miguel Otaduy is a professor at Universidad Rey Juan Carlos, where he leads the Multimodal Simulation Laboratory http://mslab.es. He obtained his PhD in computer science at the University of North Carolina in 2004, and he was a research associate at ETH Zurich from 2005 to 2008, when he joined URJC. His research seeks novel models and algorithms to simulate mechanical phenomena in a wide variety of applications involving dynamic systems. These include medical training and planning, computer animation and videogames, computational design and virtual prototyping, computer haptics or virtual touch, and even molecular dynamics for drug design. He pays special interest to the robust and efficient solution of contact and interaction between different objects, particles, or materials. He aims to develop solutions from different angles, including geometric algorithms, efficient discretizations, numerical methods, directable simulation, the use of precomputed or measured data, massively parallel computing, or user interaction. Miguel Otaduy is currently associate editor for the IEEE Trans. on Visualization and Computer Graphics and the IEEE Robotics & Automation Letters. He has also served as program chair for the ACM SIGGRAPH / Eurographics Symp. on Computer Animation, the ACM SIGGRAPH Symp. on Interactive 3D Graphics & Games, and the IEEE World Haptics Conference.
Invited Talk

Image-based Modeling and Rendering

Johannes Kopf
Research Scientist of Facebook

Abstract
The field of computer vision has long been working on the problem of reconstructing three-dimensional models from two-dimensional images, while the field of computer graphics has been—in a way—working on the opposite problem of rendering compelling two-dimensional images from a given three-dimensional scene description. The two fields are coming together in the area of Image-based Modeling and Rendering (IBMR). These methods perform a purpose-driven reconstruction and re-projection of a set of input images or video with the goal of synthesizing novel views of the same scene or performing other interesting image manipulations. Compared to modeling from scratch, IBMR often has often the advantage of better retaining the photographic quality of the input image set. In addition, the reconstruction is often automatic, which makes the systems suitable for casual users. In this talk I will look at the (more recent) history of this area and present a selection of interesting systems and algorithms, focusing on practical applications. I will also discuss open problems and interesting directions for future research in this area.

Short Biography
Johannes Kopf is a research scientist in the Computational Photography group at Facebook in Seattle. Before joining Facebook, he has been working for Microsoft Research, and even before, he received a PhD from the University of Konstanz, Germany. Johannes has received the Eurographics Young Researcher Award in 2013, and the ACM SIGGRAPH Significant New Researcher Award in 2015 for his contributions to the fields of digital imaging and video. Johannes’ work is in the fields of computer graphics and vision. More specifically, his past research spans a variety of areas including computational photography, image-based rendering, image and texture synthesis, and digital imaging and video.
Invited Talk

What is the Next Stage of Augmented Reality

Hirokazu Kato
Professor of Nara Institute of Science and Technology

Abstract
Augmented Reality (AR) has been studied for more than 20 years. Nowadays we can see a lot of AR applications such as PokemonGO. Some people think that AR technologies are almost completed and it has moved to a practical phase. But it is not true because current AR applications are not ideal style of AR. AR researchers still have to make the next breakthrough. In this talk, I would like to introduce my past works on AR and then explain my idea about what AR researchers have to do for the next breakthrough. After that I will briefly talk about my current research works which I am expecting to make the next breakthrough for AR.

Short Biography
Dr. Hirokazu Kato received Dr. Eng. degrees from Osaka University, Japan in 1996. He has worked for Osaka University and Hiroshima City University and since 2007 he has been working for Nara Institute of Science and Technology. Dr. Kato has studied about Augmented Reality for more than 15 years. He developed a vision-based tracking library called the ARToolKit in 1999 which has had a significant impact on the growth of Augmented Reality research. Dr. Kato received Virtual Reality Technical Achievement Award from IEEE VGTC in 2009 and Lasting Impact Award at the 11th IEEE International Symposium on Mixed and Augmented Reality in 2012.