Pacific Graphics 2017

The 25th Pacific Conference on Computer Graphics and Applications

Taipei, Taiwan October 16 – 19, 2017

Conference Co-Chairs

Leif Kobbelt, RWTH Aachen University Jung Hong Chuang, National Chiao Tung University Bing-Yu Chen, National Taiwan University

Program Co-Chairs

Jernej Barbic, University of Southern California Wen-Chieh Lin, National Chiao Tung University Olga Sorkine-Hornung, ETH Zurich

DOI: 10.1111/cgf.13289

Organizers

Sponsors

Ministry of Science and Technology

Preface

The 25th Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2017) was held in Taipei, Taiwan, on October 16-19, 2017. Pacific Graphics is one of flagship conferences of Asia Graphics Association. As a highly successful conference series, Pacific Graphics provides a premium forum for researchers, developers, and practitioners in the Pacific Rim and around the world to present and discuss new problems, solutions, and technologies in computer graphics and related areas.

There were 98 papers submitted, which were reviewed by a program committee of 102 international experts, as well as 195 external reviewers. Of these submissions, 22 papers were selected for full oral presentation at the conference, as well as for inclusion in this issue of Computer Graphics Forum. Each paper received at least 4 reviews by members of the program committee and external experts. Each of the accepted papers underwent a second review cycle to ensure that the necessary revisions indicated in the reviews were carried out.

In addition to the paper presentations, the conference also featured three invited talks by Hirokazu Kato, Johannes Kopf, and Miguel A. Otaduy. There was also a short paper session, where seven short papers were presented. The short papers are published electronically through the EG Digital Library. The topics of the papers in this volume are diverse, including fabrication and design, analyzing geometries, coloring rendering and sampling, video and visualization, interaction and creation, reconstruction and generation based on RGBD Images, representing and editing Images, and simulation and animation. Some of the papers were submitted with supplementary materials that EUROGRAPHICS members can access through the EG Digital Library.

We would like to thank the authors and participants at the conference, the program committee members, and the external reviewers, all of whom made their best effort to ensure the high quality of the Pacific Graphics 2017 technical program. We also wish to thank The Ministry of Science and Technology of Taiwan, Digital Domain Holdings Limited, Rayark Inc., NTU IoX Center, CyberLink Corp., Industrial Technology Research Institute, and International Games System Co. Ltd, for their financial support. Finally, we would like to thank Stefanie Behnke, whose administrative help and technical support was invaluable.

Jernej Barbic, University of Southern California, USA Wen-Chieh Lin, National Chiao Tung University, Taiwan Olga Sorkine-Hornung, ETH Zurich, Switzerland

Pacific Graphics 2017 Program Co-chairs

International Program Committee

Hujun Bao, Zhejiang University

Connelly Barnes, University of Virginia

Christopher Batty, University of Waterloo

Bernd Bickel, Disney Research Zurich

David Bommes, RWTH Aachen

Nicolas Bonneel, CNRS

Stefan Bruckner, University of Bergen

Marcel Campen, New York University

Bing-Yu Chen, National Taiwan University

Guoning Chen, University of Houston

Ming-Te Chi, National Chengchi University

Hung-Kuo Chu, National Tsing Hua University

Yung-Yu Chuang, National Taiwan University

Stelian Coros, Carnegie Mellon University

Carsten Dachsbacher, Karlsruhe Institute of Technology

Zhigang Deng, University of Houston

Olga Diamanti, Stanford University

Yoshinori Dobashi, Hokkaido University

Zhao Dong, Autodesk

Christian Duriez, INRIA

Kenny Erleben, University of Copenhagen

Xianfeng Gu, Stony Brook University

Diego Gutierrez, University of Zaragoza

Toshiya Hachisuka, The University of Tokyo

Shimin Hu, Tsinghua University

Hui Huang, Shenzhen University

Qixing Huang, University of Texas at Austin

Alec Jacobson, University of Toronto

Eakta Jain, University of Florida

Wenzel Jakob, EPFL

Stefan Jeschke, NVIDIA Research

Tao Ju, Washington University in St. Louis

Oliver van Kaick, Carleton University

Vladimir G. Kim, Adobe

Young J. Kim, Ewha Womans University

Min H. Kim, KAIST

Leif Kobbelt, RWTH Aachen University

Taku Komura, Edinburgh University

Yu-Kun Lai, Cardiff University

Yu-Chi Lai, National Taiwan University of Science and Technology

Jean-François Lalonde, Laval University

Manfred Lau, Lancaster University

Tong-Yee Lee, National Cheng Kung University

Seungyong Lee, Pohang University of Science and Technology

International Program Committee

Hao Li, University of Southern California

Steve Lin, Microsoft Research Asia

I-Chen Lin, National Chiao Tung University

Yang Liu, Microsoft Research Asia

Feng Liu, Portland State University

Ligang Liu, University of Science and Technology of China

Kwan-Liu Ma, University of California at Davis

Belen Masia, University of Zaragoza

Dominik Michels, KAUST

Niloy Mitra, University College London

Rahul Narain, University of Minnesota

Junyong Noh, KAIST

Carol O'Sullivan, Trinity College Dublin

Miguel Otaduy, URJC Madrid

Daniele Panozzo, New York University

Fabio Pellacini, Sapienza University of Rome

Nico Pietroni, CNR-ISTI

Hong Qin, Stony Brook University

Zhong Ren, Zhejiang University

Holly Rushmeier, Yale University

Hubert Shum, Northumbria University

Claudio Silva, New York University

Cyril Soler, Inria

Justin Solomon, MIT

Shinjiro Sueda, Texas A&M

Kalyan Sunkavalli, Adobe

Matthias Teschner, University of Freiburg

Nils Thuerey, TU Munich

James Tompkin, Brown University

Xin Tong, Microsoft Research Asia

Yu-Ting Tsai, Yuan Ze University

Amir Vaxman, Utrecht University

Etienne Vouga, UT Austin

Lvdi Wang, Microsoft Research Asia

Yu-Shuen Wang, National Chiao Tung University

Huamin Wang, Ohio State University

Wenping Wang, The University of Hong Kong

Rui Wang, University of Massachusetts

Sai-Keung Wong, National Chiao Tung University

Tien-Tsin Wong, The Chinese University of Hong Kong

Enhua Wu, Chinese Academy of Sciences & University of Macau

Hongzhi Wu, Zhejiang University

Chris Wyman, NVIDIA Research

Kai Xu, National University of Defense Technology

International Program Committee

Kun Xu, Tsinghua University
Dong-ming Yan, NLPR-CASIA
Yongliang Yang, University of Bath
Ruigang Yang, University of Kentucky
Yin Yang, University of New Mexico
Sai-Kit Yeung, Singapore University of Technology and Design
Sung-Eui Yoon, KAIST
Jingyi Yu, University of Delaware
Craig Yu, University of Massachusetts Boston
Yonghao Yue, Columbia University
Eugene Zhang, Oregon State University
Changxi Zheng, Columbia University
Kun Zhou, Zhejiang University
Bo Zhu, MIT

External Reviewers

Alliez, Pierre Ando, Ryoichi Assarsson, Ulf Azencot, Omri Baecher, Moritz Belcour, Laurent Bitterli, Benedikt Bittner, Jiří Bo, Pengbo Boll Nielsen, Jannik Boominathan, Vivek Bousseau, Adrien Hyde, David Iwasaki, Kei Bowman, Doug Bryan, Chris Calian, Dan Andrei Casas, Dan Ceylan, Duygu Chapiro, Alexandre Chen, Renjie Chen, Xiaodiao Chen, Yi-Ling Chentanez, Nuttapong Chien, Edward Chu, James Cline, David Crnovrsanin, Tarik

Du, Peng Dudte, Levi Duncan, Noah Ebeida, Mohamed Fei, Yun Feiner, Steven K. Feng, Jie Fišer, Jakub Fratarcangeli, Marco

Darabi, Soheil

Frigo, Oriel Fu, Chi-Wing Fu, Xiaoming Gao, Lin Gao, Xifeng

Garces, Elena Goes, Fernando de Goswami, Prashant Guennebaud, Gael Guo, Jianwei Hädrich, Torsten Harada, Takahiro He, Ying

Hennessey, James Hochstetter, Hendrik Hongvi, Xu Hormann, Kai Hou, Junhui Hoyet, Ludovic Hu, Xinghong Hu, Zhe Hua, Binh-Son Huang, Jia-Bin Huang, Jingwei

Jansen, Yvonne Jarabo, Adrián Ji, Yu Jin, Xiaogang Kalkofen, Denis Kalojanov, Javor Kazhdan, Misha

Khademi Kalantari, Nima Kim, Kujin Kim, Min H. Kim, Young J. Langlois, Tim Lei. Na Lepetit, Vincent Leung, Howard Li, Chen Li, Guiqing Li, Jun

Li, Kun

Li, Xiao

Lin, Chao-Hung Lin, Haiting Lin, Hongwei Lin, Kaimo Lin, Shih-Syun Lin, Stephen Liu, Shuaicheng Liu, Xueting Liu, Zhiguang Livesu, Marco Lu, Xuequan Mao, Xiangyu Mao, Xiaoyang Martínez, Jonas McCann, Jim

Merrell, Paul

Moon, Bochang Mueller, Paul Nan, Liangliang Nguyen, Rang Niu, Yuzhen Nogneng, Dorian Okabe, Makoto Ovsjanikov, Maks Pan, Hao Panetta, Julian Park, Kyoungju Peers, Pieter Oiu, Linhai

Renoust, Benjamin

Rhee, Taehyun

Rodola, Emanuele Roy, Lawrence Sahillioglu, Yusuf Sauer, Franz Seok Heo, Yong Serrano, Ana Shao, Tianjia Sharf, Andrei Shi, Fuhao Song, Ying Su. Hao Su, Zhengyu Tagliasacchi, Andrea Tai, Yu-Wing

Takahashi, Tetsuya Tam, Gary Kl. Tanahashi, Yuzuru Tang, Chengcheng Tang, Chengzhou Tarini, Marco Thanh Nguyen, Duc Thomaszewski, Bernhard Wang, Baoyuan

Wang, Beibei Way, Derlor Weinmann, Michael Won, Jungdam Wu, Chia-Min Wu, Hsiang-Yun Xi, Pengcheng Xin, Tong Xu, Feng Xu, Pengfei Xu, Xu

External Reviewers

Xue, Su Yeh, I-Cheng Zhang, Jianjie You, Shaodi Zhang, Lei Yan, Ling-Qi Yang, Xiaosong Yu, Hongfeng Zhang, Xiaoting Yang, Xubo Yu, Lap-Fai Zheng, Yi Yang, Zhou Yuan, Ye Zhong, Zichun Yao, Chih-Yuan Zhang, Fang-Lue Zhou, Qingnan Ye, Jinwei Zhang, Guofeng Zollhoefer, Michael

Author Index

Avidan Shai	Liang Xiaohui229	Wang Fei157
Bo Zhitao	Liao Bin	Wang Hao-Chuan145
Brown Michael S 83	Liao Jingtang	Wang Huamin1
Bruckner Stefan135	Lieng Henrik 195	Wang Hui51
Chen Baoquan	Lin Shujin	Wang Jun63
Chen Bing-Yu	Lin Wen-Chieh	Wang Ruomei
Chen Hsin-I	Liu Ligang15	Wang Zhaowen105
Chen Kang	Liu Minghua167	Wu Enhua
Chen Lan	Li Frederick W. B 229	Wu Hefeng
Chen Ming-Shiuan115	Li Guiqing	Xiao Chunxia
Chen Zhili1	Li Jituo	Xia Yang29
Cherng Fu-Yin	Li Wei	Xie Qian
Cohen-Or Daniel	Luan Lyu207	Xie Xingyu
Cohen Scott 83	Luo Xiaonan	Xiong Gang
Delrieux Claudio	Lu Lin	Xu Kai63
Deussen Oliver29	Matković Kresimir 135	Xu Weiwei1
Diehl Alexandra135	Ma Guanghui	Yang Sheng
Eisemann Elmar 175	Mitani Jun41	Yang Xiaosong
Eisemann Martin	Miyamoto Emi41	Yao Miaojun1
Endo Yuki41	Nguyen Rang M. H 83	Ye Juntao
Fried Ohad	Pelorosso Leandro135	You Lihua
Fu Hongbo	Price Brian	Yuan Chunqiang229
Gao Chengying93	Remil Oussama	Zhang Jianjun15
Gröller M. Eduard	Ren Xiaohua	Zhang Ling
He Xiaowei	Ruiz Juan	Zhang Xiaopeng217
Huang Hui51	Sharf Andrei	Zhang Xuaner
Huang Xun-Yi	Shen I-Chao	Zhang Yanci
Hu Shi-Min	Shen Yicong	Zhang Zili229
Jang Deok-Kyeong73	Sung Ching-Ying145	Zheng Anzong
Jiang Liguo217	Sunkavalli Kalyan105	Zhou Fan157
Kanamori Yoshihiro 41	Su Zhuo93	Zhu Yao125
Lee Joon-Young	Tang Min	Zou Changqing93
Lee Sung-Hee	Tan Ping	
Lee Wei-Tse	Wang Dong93	

Recommendation

TABLE OF CONTENTS

Fabrication and Design	
Modeling, Evaluation and Optimization of Interlocking Shell Pieces	1
Miaojun Yao, Zhili Chen, Weiwei Xu, and Huamin Wang	
Rib-reinforced Shell Structure Wei Li, Anzong Zheng, Lihua You, Xiaosong Yang, Jianjun Zhang, and Ligang Liu	15
Printable 3D Trees	29
Zhitao Bo, Lin Lu, Andrei Sharf, Yang Xia, Oliver Deussen, and Baoquan Chen	_,
Semi-Automatic Conversion of 3D Shape into Flat-Foldable Polygonal Model Emi Miyamoto, Yuki Endo, Yoshihiro Kanamori, and Jun Mitani	41
Analyzing Geometries	
Group Representation of Global Intrinsic Symmetries Hui Wang and Hui Huang	51
Data-Driven Sparse Priors of 3D Shapes	63
Oussama Remil, Qian Xie, Xingyu Xie, Kai Xu, and Jun Wang	
Regression-Based Landmark Detection on Dynamic Human Models Deok-Kyeong Jang and Sung-Hee Lee	73
Coloring, Rendering, and Sampling	
Group-Theme Recoloring for Multi-Image Color Consistency Rang M. H. Nguyen, Brian Price, Scott Cohen, and Michael S. Brown	83
£0 Gradient-Preserving Color Transfer Dong Wang, Changqing Zou, Guiqing Li, Chengying Gao, Zhuo Su, and Ping Tan	93
Video and Visualization	
Photometric Stabilization for Fast-forward Videos Xuaner Zhang, Joon-Young Lee, Kalyan Sunkavalli, and Zhaowen Wang	105
High-resolution 360 Video Foveated Stitching for Real-time VR Wei-Tse Lee, Hsin-I Chen, Ming-Shiuan Chen, I-Chao Shen, and Bing-Yu Chen	115
Video Shadow Removal Using Spatio-temporal Illumination Transfer Ling Zhang, Yao Zhu, Bin Liao, and Chunxia Xiao	125
Albero: A Visual Analytics Approach for Probabilistic Weather Forecasting Alexandra Diehl, Leandro Pelorosso, Claudio Delrieux, Kresimir Matković, Juan Ruiz, M. Eduard Gröller, and Stefan Bruckner	135
Exploring Online Learners' Interactive Dynamics by Visually Analyzing Their Time- anchored Comments	145
Ching-Ying Sung, Xun-Yi Huang, Yicong Shen, Fu-Yin Cherng, Wen-Chieh Lin, and Hao-Chuan Wang	
Interaction and Creation	
A Data-Driven Approach for Sketch-Based 3D Shape Retrieval via Similar Drawing-Style	157

Fei Wang, Shujin Lin, Xiaonan Luo, Hefeng Wu, Ruomei Wang, and Fan Zhou

TABLE OF CONTENTS

Reconstruction and Generation based on RGBD Images	
Saliency-aware Real-time Volumetric Fusion for Object Reconstruction Sheng Yang, Kang Chen, Minghua Liu, Hongbo Fu, and Shi-Min Hu	167
Split-Depth Image Generation and Optimization Jingtang Liao, Martin Eisemann, and Elmar Eisemann	175
Representing and Editing Images	
Patch2Vec: Globally Consistent Image Patch Representation Ohad Fried, Shai Avidan, and Daniel Cohen-Or	183
A Probabilistic Framework for Component-based Vector Graphics Henrik Lieng	195
Efficient Gradient-Domain Compositing Using an Approximate Curl-free Wavelet Projection Xiaohua Ren, Lyu Luan, Xiaowei He, Yanci Zhang, and Enhua Wu	207
Simulation and Animation	
A Unified Cloth Untangling Framework Through Discrete Collision Detection Juntao Ye, Guanghui Ma, Liguo Jiang, Lan Chen, Jituo Li, Gang Xiong, Xiaopeng Zhang, and Min Tang	217
Modeling Cumulus Cloud Scenes from High-resolution Satellite Images Zili Zhang, Xiaohui Liang, Chunqiang Yuan, and Frederick W. B. Li	229

Invited Talk

Computer Animation Fuels new Design Engines

Miguel A. Otaduy

Associate professor of Universidad Rey Juan Carlos (URJC Madrid)

Abstract

Design is ubiquitous, and computer graphics has been an integral tool for design since the early days of CAD. The relevance of CAD in computer graphics is experiencing a revival, and computer animation is no exception. Computer animation provides a means to create computer models of objects, bodies, or other phenomena, which can then be used within a CAD application. Beyond movies and video games, computer animation enjoys the opportunity to transform the way in which we approach design. This talk will cover several examples of computer graphics research, where computer animation models, together with optimization tools, build the engine of design applications. The examples cover the animation of diverse materials such as skin, soft tissue, cloth, or flexible fabrication materials, and they find impact in diverse applications such as medicine, fabrication, or fashion.

Short Biography

Miguel Otaduy is a professor at Universidad Rey Juan Carlos, where he leads the Multimodal Simulation Laboratory http://mslab.es. He obtained his PhD in computer science at the University of North Carolina in 2004, and he was a research associate at ETH Zurich from 2005 to 2008, when he joined URJC. His research seeks novel models and algorithms to simulate mechanical phenomena in a wide variety of applications involving dynamic systems. These include medical training and planning, computer animation and videogames, computational design and virtual prototyping, computer haptics or virtual touch, and even molecular dynamics for drug design. He pays special interest to the robust and efficient solution of contact and interaction between different objects, particles, or materials. He aims to develop solutions from different angles, including geometric algorithms, efficient discretizations, numerical methods, directable simulation, the use of precomputed or measured data, massively parallel computing, or user interaction. Miguel Otaduy is currently associate editor for the IEEE Trans. on Visualization and Computer Graphics and the IEEE Robotics & Automation Letters. He has also served as program chair for the ACM SIGGRAPH / Eurographics Symp. on Computer Animation, the ACM SIGGRAPH Symp. on Interactive 3D Graphics & Games, and the IEEE World Haptics Conference.

Invited Talk

Image-based Modeling and Rendering

Johannes Kopf Research Scientist of Facebook

Abstract

The field of computer vision has long been working on the problem of reconstructing three-dimensional models from two-dimensional images, while the field of computer graphics has been—in a way—working on the opposite problem of rendering compelling two-dimensional images from a given three-dimensional scene description. The two fields are coming together in the area of Image-based Modeling and Rendering (IBMR). These methods perform a purpose-driven reconstruction and re-projection of a set of input images or video with the goal of synthesizing novel views of the same scene or performing other interesting image manipulations. Compared to modeling from scratch, IBMR often has often the advantage of better retaining the photographic quality of the input image set. In addition, the reconstruction is often automatic, which makes the systems suitable for casual users. In this talk I will look at the (more recent) history of this area and present a selection of interesting systems and algorithms, focusing on practical applications. I will also discuss open problems and interesting directions for future research in this area.

Short Biography

Johannes Kopf is a research scientist in the Computational Photography group at Facebook in Seattle. Before joining Facebook, he has been working for Microsoft Research, and even before, he received a PhD from the University of Konstanz, Germany. Johannes has received the Eurographics Young Researcher Award in 2013, and the ACM SIGGRAPH Significant New Researcher Award in 2015 for his contributions to the fields of digital imaging and video. Johannes' work is in the fields of computer graphics and vision. More specifically, his past research spans a variety of areas including computational photography, image-based rendering, image and texture synthesis, and digital imaging and video.

Invited Talk

What is the Next Stage of Augmented Reality

Hirokazu Kato

Professor of Nara Institute of Science and Technology

Abstract

Augmented Reality (AR) has been studied for more than 20 years. Nowadays we can see a lot of AR applications such as PokemonGO. Some people think that AR technologies are almost completed and it has moved to a practical phase. But it is not true because current AR applications are not ideal style of AR. AR researchers still have to make the next breakthrough. In this talk, I would like to introduce my past works on AR and then explain my idea about what AR researchers have to do for the next breakthrough. After that I will briefly talk about my current research works which I am expecting to make the next breakthrough for AR.

Short Biography

Dr. Hirokazu Kato received Dr. Eng. degrees from Osaka University, Japan in 1996. He has worked for Osaka University and Hiroshima City University and since 2007 he has been working for Nara Institute of Science and Technology. Dr. Kato has studied about Augmented Reality for more than 15 years. He developed a vision-based tracking library called the ARToolKit in 1999 which has had a significant impact on the growth of Augmented Reality research. Dr. Kato received Virtual Reality Technical Achievement Award from IEEE VGTC in 2009 and Lasting Impact Award at the 11th IEEE International Symposium on Mixed and Augmented Reality in 2012.