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Abstract
Creating digital representations of humans is of utmost importance for applications ranging from

entertainment (video games, movies) to human-computer interaction and even psychiatrical treat-

ments. What makes building credible digital doubles difficult is the fact that the human vision system

is very sensitive to perceiving the complex expressivity and potential anomalies in body structures and

motion.

This thesis will present several projects that tackle these problems from two different perspectives:

lightweight acquisition and physics-based simulation. It starts by describing a complete pipeline that

allows users to reconstruct fully rigged 3D facial avatars using video data coming from a handheld

device (e.g., smartphone). The avatars use a novel two-scale representation composed of blendshapes

and dynamic detail maps. They are constructed through an optimization that integrates feature

tracking, optical flow, and shape from shading. Continuing along the lines of accessible acquisition

systems, we discuss a framework for simultaneous tracking and modeling of articulated human bodies

from RGB-D data. We show how L1 regularization can be used to extract semantic information for the

body shapes.

In the second half of the thesis, we will deviate from using standard linear reconstruction and

animation models, and rather focus on exploiting physics-based techniques that are able to incorporate

complex phenomena such as dynamics, collision response and incompressibility of the materials. The

first approach we propose assumes that each 3D scan of an actor records his body in a physical

steady state and uses a process called inverse physics to extract a volumetric physics-ready anatomical

model of him. By using biologically-inspired growth models for the bones, muscles and fat, our

method can obtain realistic anatomical reconstructions that can be later on animated using external

tracking data such as the one resulting from tracking motion capture markers. This is then extended

to a novel physics-based approach for facial reconstruction and animation. We propose a novel

facial reconstruction and animation model which simulates biomechanical muscle contractions in a

volumetric face model in order to create the facial expressions seen in the input scans. We then show

how this approach allows for new avenues of dynamic artistic control, simulation of corrective facial

surgery, and interaction with external forces and objects.

Key words: scanning, registration, face reconstruction, body reconstruction, simulation,

facial animation, physics-based animation, body animation, face modeling, body modeling
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Résumé
La création de représentations numériques d’humains revêt une importance capitale pour les appli-

cations allant du divertissement (jeux vidéo, films) à l’interaction homme-ordinateur et même aux

traitements psychiatriques. Ce qui rend difficile le renforcement des doubles numériques est le fait

que le système de vision humaine est très sensible à la perception de l’expressivité et des anomalies

potentielles dans les structures et le mouvement du corps.

Cette thèse présentera plusieurs projets qui abordent ces problèmes sous deux angles différents :

l’acquisition légère et la simulation basée sur la physique. Il commence par décrire un pipeline complet

qui permet aux utilisateurs de reconstruire des avatars faciaux 3D complètement gréés en utilisant

des données vidéo provenant d’un périphérique de poche (par exemple, un smartphone). Les avatars

utilisent une nouvelle représentation à deux niveaux composée de formes de fond et de cartes détaillées

dynamiques. Ils sont construits grâce à une optimisation qui intègre le suivi des fonctionnalités, le

flux optique et la forme à partir de l’ombrage. En suivant les systèmes d’acquisition accessibles, nous

discutons d’un cadre pour le suivi simultané et la modélisation de corps humains articulés à partir de

données RGB-D.

Au cours de la deuxième moitié de la thèse, nous allons nous éloigner de l’utilisation de modèles de

reconstruction et d’animation linéaire standard et nous concentrons plutôt sur l’exploitation de tech-

niques basées sur la physique capables d’intégrer des phénomènes complexes tels que la dynamique,

la réponse aux collisions et l’incompétence des matériaux. La première approche que nous proposons

suppose que chaque analyse 3D d’un acteur enregistre son corps dans un état physique stable et utilise

un processus appelé physique inverse pour extraire un modèle anatomique volumétrique prêt à la

physique. En utilisant des modèles de croissance biologiquement inspirés pour les os, les muscles et les

matières grasses, notre méthode peut obtenir des reconstructions anatomiques réalistes qui peuvent

être ultérieurement animées en utilisant des données de suivi externes telles que celles résultant du

suivi des marqueurs de capture de mouvement. Ceci est ensuite étendu à une nouvelle approche basée

sur la physique pour la reconstruction et l’animation du visage. Nous proposons un nouveau modèle

d’animation faciale qui simule des contractions musculaires biomécaniques dans un modèle de visage

volumétrique afin de créer les expressions faciales observées dans les scans d’entrée. Nous montrons

ensuite comment cette approche permet de nouvelles avenues de contrôle artistique dynamique, la

simulation de la chirurgie corrective du visage et l’interaction avec des forces et des objets externes.

Mot clefs : scanning, registration, face reconstruction, body reconstruction, simulation,

facial animation, physics-based animation, body animation, face modeling, body modeling
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1 Introduction

1.1 Motivation

The most natural way for humans to communicate is through close face-to-face interac-

tions. As technology evolved, humans grew the need to send information to one another at

great distances, without physically traveling themselves. We mention a few approaches in

chronological order: written mail, telegraphs, telephones, e-mail, instant messaging, and

more recently, video conferencing. All these ways of tackling long-distance human commu-

nication do increasingly well at transmitting messages in an efficient manner, but to various

extents they lack the emotional presence of face-to-face discussions. In other words, they lack

immersion.

While a lot of impressive advancements have been done recently in the fields of virtual,

augmented and mixed reality, both in the hardware and software departments, the prob-

lem of creating compelling interactive digital human avatars is still elusive. For such new

environments, credible 3D avatar representations are of utmost importance.

Throughout this thesis, we identify and propose solutions to two important subproblems

in the quest to build and animate realistic digital humans: lightweight acquisition and physics-

based animation.

The first part of the thesis focuses on lightweight acquisition - how to extract as much

information as possible from commercially-accessible devices with optical sensors that pro-

duce noisy measurements. During this work, we have explored monocular stills and video

data coming from a standard mobile phone, as well as low quality RGB-D data recorded using

the first mass-market depth sensor, i.e., the Primesense family which includes the Microsoft

Kinect.

1



Chapter 1. Introduction

The second part revolves around employing physics-based models for the reconstruction

and animation stages. By extensively using industry-standard linear models for facial and body

animation in the previous projects, it has become apparent that these models do not provide

the flexibility necessary to obtain highly realistic animations. This becomes particularly

interesting when the amount of input data to be used for avatar reconstruction is limited (e.g.,

a few 3D scans obtained after a short capture session, as opposed to hours of data collection),

and user assistance is kept at a minimum.

Data-driven techniques are very effective at using the input information, but most, if not all,

discard real-world priors. For example, in the last centuries vast amounts of effort have been

put into better understanding the inner workings of the human body. Why should we discard

all this well-understood knowledge and rely almost blindly on abstract sensor information we

have gathered? The projects in the second half of the thesis show how we can take medical

knowledge, build abstract animation models using mechanics principles, and then use those

to create compelling novel animations.

It has been shown in the literature that realistic face and body animations can be obtained

through various interpolatory techniques, usually based on machine learning concepts. The

downside of such methods is that a lot of real-world measurements need to be collected. As

expected, this requires long and expensive scanning sessions. We approach the problem from

a different perspective. We reduce the amount of data required to be collected by proposing

novel physics-based animation models that act as strong regularizers in the reconstruction and

animation processes. While they are less lightweight than their data-driven counterparts, they

provide excellent extrapolatory properties, especially under secondary motion and previously

unseen interaction with external objects and forces.

1.2 Publications

The published work on which this thesis is based on are the following, in chronological order

of publication:

• ICHIM, A.E., BOUAZIZ, S., AND PAULY, M. Dynamic 3D Avatar Creation from Hand-held

Video Input. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 2015

• ICHIM, A.E. AND TOMBARI, F. Semantic Parametric Body Shape Estimation from Noisy

RGB-D Sequences. Robotics and Autonomous Systems, 2015

• ICHIM, A.E., KAVAN, L., NIMIER-DAVID, M., AND PAULY, M. Building and Animating

2



1.3. Organization

User-Specific Volumetric Face Rigs. ACM SIGGRAPH / Eurographics Symposium on

Computer Animation (SCA), 2016

• KADLECEK, P.(*), ICHIM, A.E.(*), LIU, T., KAVAN, L., AND KRIVANEK, J. (* joint first

authors). Reconstructing Personalized Anatomical Models for Physics-based Body

Animation. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), 2016

• ICHIM, A.E., KADLECEK, P., KAVAN, L., AND PAULY, M. Phace: Physics-based Face

Modeling and Animation, ACM Transactions on Graphics (Proceedings of SIGGRAPH),

2017

Each chapter starts with an explicit paragraph describing the contributions of the author.

During the PhD work of the author, other papers have been published. However, they have

not been included in this thesis:

• HOLZ, D., ICHIM, A.E., TOMBARI, F., RUSU, R.B., AND BEHNKE, S. A modular framework

for aligning 3D point clouds - Registration with the Point Cloud Library. IEEE Robotics

and Automation Magazine, 2015

• ACHILLES, F., ICHIM, A.E., COSKUN, H., TOMBARI, F., NOACHTAR, S., AND NAVAB, N.

Patient MoCap: Human Pose Estimation under Blanket Occlusion for Hospital Monitor-

ing Applications. International Conference on Medical Image Computing and Computer

Assisted Intervention (MICCAI), 2016

• BERTHOLET, P., ICHIM, A.E., AND ZWICKER, M. Temporally Consistent Motion Segmen-

tation from RGB-D Video. arXiv, August 2016

• ICHIM, A.E., POPOVIC, J., KAUFMAN, D., WAMPLER, D., AND PAULY, M. Multi-Layer 2D

Simulation. to be published

1.3 Organization

The thesis presents multiple human face and body reconstruction and performance capture

approaches.

• Chapter 2 describes a complete pipeline that allows the user to reconstruct fully rigged,

personalized 3D facial avatars using image and video data coming from a hand-held

3



Chapter 1. Introduction

device (e.g., off-the-shelf smartphone). The resulting character mimics the facial ex-

pression dynamics of the user by adapting a blendshape template to the recorded video

through an optimization that integrates feature tracking, optical flow, and shape from

shading. Fine-scale details such as wrinkles are also captured and animated through

a learnt regressor. We believe that this system is one of the first to demonstrate that

the use of appropriate reconstruction priors yields compelling face rigs even with a

minimalistic acquisition system and limited user assistance.

• Continuing along the lines of accessible acquisition systems, Chapter 3 proposes a com-

plete framework for tracking and modeling articulated human bodies from sequences

of range maps acquired from inexpensive RGB-D sensors. Our system fits a pre-defined

parameteric shape model to depth data by exploiting the simultaneous tracking of the

3D body pose. In addition, compact semantic tags associated to the estimated body

shape can be produced by leveraging on an open-source body modeling software and

L1 regularization.

• The first two chapters (2 and 3) performed face and body avatar creation by exploiting

linear reconstruction and animation models. Such models are not versatile when it

comes to incorporating features such as dynamics, collision response, or incompresibil-

ity of the flesh. Physics-based models can deliver these effects, but previous approaches

lost the controllability that artists were used to with linear models. Chapter 5 proposes

a method that combines the benefits of blendshapes with the advantages of physics-

based simulation, through the use of novel volumetric blendshapes that are driven by

the same weights as traditional blendshapes. We fit our volumetric template model

to a set of 3D scans of the actor’s face through the usage of physics-inspired 3D fitting

priors, and then are able to produce new animation sequences complete with dynamics,

secondary motion, collision response and volume preservation through a fast physics

simulation.

• Chapter 4 presents a method to create personalized anatomical models ready for physics-

based animation using only a set of 3D surface scans. This technique departs from the

classical data-driven approaches by using a template anatomical model and physics-

based growth constraints. The key contribution is formulating and solving a large-

scale optimization problem where subject-specific and pose-dependent parameters are

computed such that the resulting anatomical model explains the captured 3D scans as

closely as possible. The resulting body avatars are volumetric physics-based models,

which provide realistic 3D geometry of the bones and muscles, and support effects such

as inertia, gravity, and collisions according to Newtonian dynamics.

4



1.3. Organization

• Chapter 6 extends the inverse physics formulation presented in Chapter 4 for usage with

facial animation. While bodies were actuated by a softly-coupled rigid skeleton, faces

are actuated by both bones (cranium and mandible), as well as muscles. As such, we

compute facial expressions by minimizing a set of non-linear potential energies that

model the physical interaction of passive flesh, active muscles, and rigid bone structures.

A novel muscle activation model leads to a robust optimization that faithfully reproduces

complex facial articulations. Our method supports temporal dynamics due to inertia or

external forces, incorporates skin sliding to avoid unnatural stretching, and offers full

control of the simulation parameters, which enables a variety of advanced animation

effects. For example, slimming and fattening is achieved by scaling the volume of the

soft tissue elements. This approach is explified with multiple demos, including artistic

editing of the animation model, simulation of corrective facial surgery, or dynamic

interaction with external forces and objects.

At the end of each chapter there is a section called Retrospective that brings an updated

view on the projects presented in each chapter, linking them together, as well as including

comments referring to newer published related work.
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2 Dynamic 3D Avatar Creation from Hand-held

Video Input

Figure 2.1 – Our system creates a fully rigged 3D avatar of the user from uncalibrated video
input acquired with a cell-phone camera. The blendshape models of the reconstructed avatars
are augmented with textures and dynamic detail maps, and can be animated in realtime.

Note

This chapter is based on the following publication [IBP15]:

ICHIM, A.E., BOUAZIZ, S., AND PAULY, M. Dynamic 3D Avatar Creation from Hand-held

Video Input. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 2015

The candidate contributed with most of the scientific contributions and implementation

of this publication.

Abstract

We present a complete pipeline for creating fully rigged, personalized 3D facial avatars from

hand-held video. Our system faithfully recovers facial expression dynamics of the user by

7



Chapter 2. Dynamic 3D Avatar Creation from Hand-held Video Input

adapting a blendshape template to an image sequence of recorded expressions using an

optimization that integrates feature tracking, optical flow, and shape from shading. Fine-

scale details such as wrinkles are captured separately in normal maps and ambient occlusion

maps. From this user- and expression-specific data, we learn a regressor for on-the-fly detail

synthesis during animation to enhance the perceptual realism of the avatars. Our system

demonstrates that the use of appropriate reconstruction priors yields compelling face rigs

even with a minimalistic acquisition system and limited user assistance. This facilitates a range

of new applications in computer animation and consumer-level online communication based

on personalized avatars. We present realtime application demos to validate our method.

2.1 Introduction

Recent advances in realtime face tracking enable fascinating new applications in performance-

based facial animation for entertainment and human communication. Current realtime

systems typically use the extracted tracking parameters to animate a set of pre-defined char-

acters [WLVGP09, WBLP11, LYYB13, CWLZ13, BWP13, CHZ14]. While this allows the user to

enact virtual avatars in realtime, personalized interaction requires a custom rig that matches

the facial geometry, texture, and expression dynamics of the user. With accurate tracking

solutions in place, creating compelling user-specific face rigs is currently a major challenge for

new interactive applications in online communication. In this paper we propose a software

pipeline for building fully rigged 3D avatars from hand-held video recordings of the user.

Avatar-based interactions offer a number of distinct advantages for online communication

compared to video streaming. An important benefit for mobile applications is the significantly

lower demand on bandwidth. Once the avatar has been transferred to the target device, only

animation parameters need to be transmitted during live interaction. Bandwidth can thus be

reduced by several orders of magnitude compared to video streaming, which is particularly

relevant for multi-person interactions such as conference calls.

A second main advantage is the increased content flexibility. A 3D avatar can be more easily

integrated into different scenes, such as games or virtual meeting rooms, with changing

geometry, illumination, or viewpoint. This facilitates a range of new applications, in particular

on mobile platforms and for VR devices such as the Occulus Rift.

Our goal is to enable users to create fully rigged and textured 3D avatars of themselves at

home. These avatars should be as realistic as possible, yet lightweight, so that they can be

readily integrated into realtime applications for online communication. Achieving this goal

implies meeting a number of constraints: the acquisition hardware and process need to be
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Figure 2.2 – The main stages of our processing pipeline. Static Modeling reconstructs the
geometry and albedo of the neutral pose. Dynamic Modeling adapts a generic blendshape
model to the recorded user and reconstructs detail maps for each video frame. Animation
drives the reconstructed rig using blendshape coefficients and synthesizes new pose-specific
detail maps on the fly.

simple and robust, precluding any custom-build setups that are not easily deployable. Manual

assistance needs to be minimal and restricted to operations that can be easily performed

by untrained users. The created rigs need to be efficient to support realtime animation, yet

accurate and detailed to enable engaging virtual interactions.

These requirements pose significant technical challenges. We maximize the potential user

base of our system by only relying on simple photo and video recording using a hand-held

cell-phone camera to acquire user-specific data.

The core processing algorithms of our reconstruction pipeline run automatically. To improve

reconstruction quality, we integrate a simple UI to enable the user to communicate tracking

errors with simple point clicking. User assistance is minimal, however, and required less than

15 minutes of interaction for all our examples.

Realtime applications are enabled by representing the facial rig as a set of blendshape meshes

with low polygon count. Blendshapes allow for efficient animation and are compatible with all

major animation tools. We increase perceptual realism by adding fine-scale facial features such

as dynamic wrinkles that are synthesized on the fly during animation based on precomputed

normal and ambient occlusion maps.

We aim for the best possible quality of the facial rigs in terms of geometry, texture, and

expression dynamics. To achieve this goal, we formulate dynamic avatar creation as a ge-

ometry and texture reconstruction problem that is regularized through the use of carefully

designed facial priors. These priors enforce consistency and guarantee a complete output for

a fundamentally ill-posed reconstruction problem.

Contributions. We present a comprehensive pipeline for video-based reconstruction of fully-

rigged, user-specific 3D avatars for consumer applications in uncontrolled environments. Our
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core technical contributions are:

• a two-scale representation of a dynamic 3D face rig that enables realtime facial ani-

mation by integrating a medium-resolution blendshape model with a high-resolution

albedo map and dynamic detail maps;

• a novel optimization method for reconstructing a consistent albedo texture from a set

of input images that factors out the incident illumination;

• a new algorithm to build the dynamic blendshape rig from video input using a joint

optimization that combines feature-based registration, optical flow, and shape-from-

shading;

• an offline reconstruction and online synthesis method for fine-scale detail stored in

pose-specific normal and ambient occlusion maps.

We demonstrate the application potential of our approach by driving our reconstructed

rigs both in a realtime animation demo and using a commodity performance capture system.

With our minimalistic acquisition setup using only a single cellphone camera, our system has

the potential to be used by millions of users worldwide.

2.2 Related Work

We provide an overview of relevant techniques for 3D facial avatar creation. We start by cover-

ing techniques for high quality static modeling of human faces. We then discuss approaches

that attempt to capture fine-scale information associated with dynamic facial deformations,

like expression lines and wrinkles. Finally, as our target is the creation of an animatable avatar,

we will also discuss methods that attempt to map the acquired dynamic details onto given

input animation data.

Static modeling. Due to the high complexity of facial morphology and heterogeneous skin

materials, the most common approaches in facial modeling are data-driven. The seminal

work of [BV99] builds a statistical (PCA) model of facial geometry by registering a template

model to a collection of laser scans. Such a model can be employed to create static avatars

from a single image [BV99] or from multiple images [ABF∗07, DIF04], or for the creation of

personalized real-time tracking profiles [WBLP11, LYYB13, BWP13]. However, as a compact

PCA model only captures the coarse-scale characteristics of the dataset, the generated avatars
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are typically rather smooth, lacking the ability to represent fine-scale features like wrinkles

and expression lines.

Fine-scale detail for facial modeling has been recovered in a controlled environment with

multiple calibrated DSLR cameras in the work of Beeler et al. [BBB∗10]. This setup allows

capturing wrinkles, skin pores, facial hair [BBN∗12], and eyes [BBN∗14]. The more involved

system of [GFT∗11] uses fixed linear polarizers in front of the cameras and enables accurate

acquisition of diffuse, specular, and normal maps. While effective for high-end productions,

such systems require a complex calibration within a lab environment and are thus unsuitable

for personalized avatar creation at home. In contrast, our approach uses only a cell-phone

camera, requires neither calibration nor a controlled environment, and only relies on minimal

user assistance.

Dynamic modeling. A static reconstruction only recovers the geometry and texture for a sin-

gle facial expression. To build compelling avatars, we also need to reconstruct a dynamic

expression model that faithfully captures the user’s specific facial movements. One approach

to create such a model is to simulate facial muscle activation and model the resulting bone

movements and viscoelastic skin deformations [VLR05, WKT96]. However, the large computa-

tional cost and complex parameter estimation make such an approach less suitable for facial

animation.

Consequently, parametric models are typically employed to represent dynamic skin be-

havior [Oat07, JEOG11]. Unfortunately, such models are not only difficult to design, but are

typically also custom-tuned to a particular animation rig. This makes it difficult to infer generic

models for facial dynamics that can easily be adapted to specific subjects. For these reasons,

data-driven techniques are again the most common way to approach the reconstruction of

facial dynamics.

The multi-linear models introduced by [VBPP05] and then further explored in [CWZ∗14]

offer a way of capturing a joint space of pose and identity. Alternatively, rather than assuming

an offline prior on pose and identity, dynamic geometry variations can be linearly modeled

in realtime while tracking videos [CHZ14] or RGB-D data [BWP13, LYYB13]. These compact

linear models are tailored towards estimating a small set of tracking parameters to enable

realtime performance, and consequently are not suitable to recover detailed avatars. Our

approach builds upon this prior work, but utilizes detail information in the acquired images

to recover a significantly richer set of facial features for avatar creation.

The use of custom hardware has been the most successful way of estimating dynamic
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Figure 2.3 – Our dynamic face rig augments a low-resolution blendshape pose (left) with
dynamic per-texel ambient occlusion coefficients and normals, and a high-resolution albedo
texture.

avatars for high-end productions. For example, the Digital Emily project [ARL∗09] demon-

strates how the Light Stage system enables photorealistic dynamic avatars. The work of

Alexander et al. [AFB∗13] recently extended this approach to enable real-time rendering of

highly detailed facial rigs. Structured light and laser scanners have also been used to acquire

facial geometry at the wrinkle scale [ZSCS04, MJC∗08, LAGP09, HCTW11]. Similarly, the setup

of [BBB∗10, BHB∗11] is capable of reconstructing fine-scale detail using multiple calibrat-

ed/synchronized DSLR cameras. More recent work attempts to further reduce the setup

complexity by only considering a binocular [VWB∗12] or a hybrid binocular/monocular setup

[GVWT13]. We push this trend to its limit by only requiring hand-held video recording in an

uncontrolled environment.

Animation. While the methods above are able to infer detailed geometry we aim for the

creation of an avatar of the recorded user, that can be animated programmatically or using

other sources of tracking parameters. The systems of [GVWT13], and [SWTC14] essentially

recover detailed facial geometry by providing one mesh per frame deformed to match the

input data. The former uses a pre-built user-specific blendshape model for the face alignment

by employing automatically corrected feature points [SLC11]. A dense optical flow field is

computed in order to smoothly deform the tracked mesh at each frame, after which a shape-

from-shading stage adds high frequency details. Although our tracking approach and detail

enhancement is based on similar principles, the aim of our approach is to integrate all these
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shape corrections directly into our proposed two-scale representation of dynamic 3D faces. Shi

et al. [SWTC14] use their own feature detector along with a non-rigid structure-from-motion

algorithm to track and model the identity and per-frame expressions of the face by employing

a bilinear face model. Additionally, a keyframe-based iterative approach using shape from

shading is employed in order to further refine the bilinear model parameters, as well as the

albedo texture of the face, and per-frame normal maps exhibiting high frequency details such

as wrinkles Neither method aims at creating an animation-ready avatar that incorporates all

of the extracted details.

Of the methods presented above, only Alexander and colleagues [ARL∗09, AFB∗13] produce

a blendshape model that can be directly embedded in animation software, but as mentioned,

the complexity of the setup makes it unsuitable for consumer applications. The recent tech-

niques of [BBB∗14], and [LXC∗15] can re-introduce high frequency details in a coarse input

animation, if a high-resolution performance database is provided. Conversely, our technique

generates an animatable blendshape model augmented with dynamic detail maps using only

consumer camera data. Our rigged avatars can thus be directly driven by tracking software,

e.g. [WBLP11, SLC11], or posed in a keyframe animation system.

2.3 Overview

We first introduce our two-scale representation for 3D facial expression rigs. Then we discuss

the acquisition setup and provide a high-level description of the main processing steps for

the reconstruction and animation of our rigs (Figure 2.2). The subsequent sections explain

the core technical contributions, present results, and provide an evaluation of our method.

The paper concludes with a discussion of limitations and an outline of potential future work.

Implementation details are provided in the Appendix.

Dynamic Face Rig. Our method primarily aims at the reconstruction of 3D facial rigs for

realtime applications. We therefore propose a two-scale representation that strikes a balance

between a faithful representation of the dynamic expression space of the recorded user and

the efficient animation of the reconstructed avatar. This balance can be achieved using a

coarse blendshape mesh model of approximatively 10k vertices that is personalized to the

specific user and augmented with texture and detail information as shown in Figure 2.3.

A specific facial expression is represented by a linear combination of a set of blend-

shapes [LAR∗14]. At low resolution, the blendshape representation can be efficiently evaluated
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Figure 2.4 – All acquisition is performed with a hand-held cell phone camera. A semi-circular
sweep is performed for the static reconstruction (top row), a frontal video is recorded for the
dynamic modeling (bottom row).

and rendered, but lacks fine-scale detail. We therefore augment the mesh with a static high-

resolution albedo map to capture color variations across the face. In addition, we build

dynamic high-resolution maps with per-pixel normals and ambient occlusion coefficients to

represent fine-scale geometric features. We refer to these latter maps as detail maps in the

subsequent text. Previous methods such as [BLB∗08] use a similar two-scale decomposition,

but operate on high-resolution meshes and can thus represent details as displacements. To

avoid the complexities of realtime displacement mapping we opted for normal and ambient

occlusion maps that can be synthesized and rendered more efficiently during animation.

Acquisition. In order to build a dynamic rig of the user we need to capture enough information

to reconstruct the blendshapes, the albedo texture, and the detail maps. At the same time,

keeping our consumer application scenario in mind, we want to restrict the acquisition to

simple hardware and a minimalistic process that can be robustly performed by anyone. We

therefore opted for a simple hand-held cell-phone camera. The user first records her- or

himself in neutral expression by sweeping the camera around the face capturing images

in burst mode. We then ask the user to record a video in a frontal view while performing

different expressions to capture user-specific dynamic face features (see Figure 2.4). For all

our acquisitions we use an Apple iPhone 5 at 8 megapixel resolution for static photo capture

and 1080p for dynamic video recordings (see accompanying video).
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The key advantage of our acquisition setup is that we do not require any calibration,

synchronization, or controlled lighting. All acquisitions can be done by an inexperienced user

in approximatively 10 minutes. However, this simplistic acquisition process poses significant

challenges for our reconstruction algorithms as the quality of the input data is significantly

lower than for existing calibrated studio setups.

Processing Pipeline. Figure 2.2 provides an overview of our processing pipeline. We split the

reconstruction into a static and a dynamic modeling stage. In the static stage (Section 2.4) we

first reconstruct a 3D point cloud from the photos taken in neutral pose using a multi-view

stereo algorithm. We then apply non-rigid registration to align a template mesh to this point

cloud to model the user’s face geometry. A static albedo texture is extracted by integrating the

color images into a consistent texture map.

The dynamic modeling stage (Section 2.5) reconstructs expression-specific information.

Given the neutral pose, we first transfer the deformations of a generic blendshape model to

obtain an initial blendshape representation for the user. We further refine this user-specific

blendshape model using an optimization that integrates texture-based tracking and shading

cues to best match the geometric features of the recorded user. The reconstructed blendshape

model then faithfully recovers the low- and medium frequency dynamic geometry of the user’s

face. However, high frequency details such as wrinkles are still missing from the rig. In order to

capture these details we automatically extract a set of dynamic detail maps from the recorded

video frames.

Finally, in the animation stage (Section 2.6), the reconstructed rig can be driven by a

temporal sequence of blendshape coefficients. These animation parameters can either be

provided manually through interactive controllers, or transferred from a face tracking software.

The specific detail map for each animated pose of the avatar is synthesized on the fly from the

captured detail maps using a trained regressor driven by surface strain.

2.4 Static Modeling

This section describes the static modeling stage of the reconstruction pipeline (see Figure 2.5).

The first part of the acquisition provides us with a set of images of the user in neutral expression

from different viewpoints. From these uncalibrated images we extract a point cloud using a

state-of-the-art structure from motion (SFM) software [FP10, Wu13]. We then use a geometric

morphable model [BV99], representing the variations of different human faces in neutral
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Figure 2.5 – Static Modeling recovers the neutral pose. A deformable template model is
registered to a 3D point cloud computed from a set of images using multi-view stereo. A static
albedo texture integrates color information of all recorded images while factoring out the
illumination.

expression, as a prior for reconstruction.

2.4.1 Geometry Registration

We register the morphable model towards the point cloud to obtain a template mesh that

roughly matches the geometry of the user’s face. We improve the registration accuracy using

non-rigid registration based on thin-shell deformation [BKP∗10, BTP14].

The registration is initialized by using 2D-3D correspondences of automatically detected
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2D facial features [SLC11] in each input frame. For the precise non-rigid alignment of the

mouth, eye and eyebrow regions, the user is asked to mark a few contours in one of the frontal

images as illustrated on the right.

...

+-

best-view selection Poisson integrated light factorized inpainted

uv-projected input frames
spherical harmonics spherical harmonics

+ corrective field
screening texture mask

median
skin color

Figure 2.6 – Reconstructing the albedo map. Poisson integration combines the pixel colors of
different input images using a gradient optimization. The illumination is factored out based
on a lighting model that combines a 2nd order spherical harmonics approximation with a
per-pixel corrective field. The screening texture provides a reconstruction prior to complete
missing parts in the albedo map.

To improve the realism of the reconstructed avatars, we

add eyes and inner mouth components, i.e., teeth, tongue,

and gums. These parts are transferred from the template

model and deformed to match the reconstructed head

geometry by optimizing for the rotation, translation and

anisotropic scaling using a set of predefined feature points

around the mouth and eye regions. We also adapt the tex-

ture for the eye meshes to the recorded user. The iris is

found by detecting the largest ellipse inside the projection of the eye region to the most frontal

input image using Hough transform [DH72]. Histogram matching is performed between a

template eye texture and the image patch corresponding to the iris [GW06]. The images in

Figure 2.7 illustrate the eye texture adaptation for one example subject.

template texture reconstructioninput image

Figure 2.7 – Our approach for eye texture adaptation for one example subject.
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We currently do not recover the specific geometry or appearance of the user’s teeth or

tongue, which is an interesting topic for future work.

2.4.2 Texture Reconstruction

Given the registered template mesh, the next step in the pipeline is the reconstruction of a high-

resolution albedo texture (see Figure 2.6). We use the UV parameterization of the template to

seamlessly combine all images using Poisson integration [PGB03]. This is achieved by selecting

the color gradients of the pixels with the most parallel view rays to the surface normals.

Factorizing Illumination. After integration, the texture map not only contains the RGB re-

flectance but also the specific illumination of the recording environment. This may be prob-

lematic as the final mesh will be used in a virtual environment where the lighting may not

match the one baked into the texture. To factor out the illumination from the skin albedo,

we define the color of a skin pixel {i , j } as ci j = ri j ◦ si j , where ri j is the skin reflectance, si j

accounts for the illumination, and ◦ denotes the entry-wise product. We assume a smooth

illumination and we represent it using spherical harmonics. Low-dimensional lighting rep-

resentations using spherical harmonics are effective in numerous lighting situations with a

variety of object geometries [FSB04]. However, they are not expressive enough to account

for complex conditions involving self-shadowing or complex specularities. This is due to the

fact that spherical harmonics have the limitation of being only expressed as a function of the

surface normals, i.e., points with similar normals will have a similar illumination. To compen-

sate for the inaccuracy of this illumination model, we augment the spherical harmonics with

corrective fields in uv-space di j = [d r
i j d g

i j d b
i j ] for the R, G and B color channel, respectively.

This leads to

si j = yTφ(ni j )+dT
i j , (2.1)

where ni j is the mesh normal at the pixel p and

φ(n) = [1,nx ,ny ,nz ,nx ny ,nx nz ,ny nz ,n2
x −n2

y ,3n2
z −1]T (2.2)

is a vector of second order spherical harmonics with corresponding weight vectors y =
[yr yg yb]. As the illumination is assumed to be of low frequency, we require the correc-

tive fields to be smooth. In addition, we assume that the required corrections are small. This

leads to a minimization over the spherical harmonics weight vectors and the corrective fields
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expressed as

min
y,d

∑
i , j

‖r◦si j −ci j‖2
2 +λ1‖d‖2

F +λ2‖Gd‖2
F +λ3‖Ld‖2

F , (2.3)

where ‖ · ‖F is the Frobenius norm, d stacks all the di j , G is the gradient matrix, and L is

the graph Laplacian matrix. Both the gradient and Laplacian are computed with periodic

boundary condition. The non-negative weights λ1, λ2, and λ3 control the magnitude and the

smoothness of the corrective fields. To optimize Equation 2.3, we employ a two-stage process,

where the skin reflectance is set to a constant r using the median color of the face pixels. We

first compute the spherical harmonics weight vectors by initializing the corrective fields to

zero and only optimizing over y. This only requires solving a 9×9 linear system. We then solve

for the corrective fields keeping the weight vectors fixed. This minimization can be performed

efficiently using a Fast Fourier Transform (FFT) as the system matrix is circulant [Gra06].

We use the extracted illumination si j to reconstruct the illumination-free texture. Finally,

to generate a complete texture map, we reintegrate the illumination-free texture into the

template texture map using Poisson integration. Because the extracted illumination is smooth,

i.e., of low frequency, high frequency details are preserved in the final albedo texture (see

Figure 2.6).

2.5 Dynamic Modeling

The goal of the dynamic modeling phase is to complete the face rig by reconstructing user-

specific blendshapes as well as dynamic normal and ambient occlusion maps (see Figure 2.8).

We focus here on the general formulation of our optimization algorithm and refer to the

appendix for more details on the implementation.

2.5.1 Reconstructing the Blendshape Model

The blendshape model is represented as a set of meshes B = [b0, . . . ,bn], where b0 is the neutral

pose and the bi , i > 0 are a set of predefined facial expressions. A novel facial expression is

generated as F(B,w) = b0 +∆Bw, where ∆B = [b1 −b0, . . . ,bn −b0], and w = [w1, . . . , wn]T are

blendshape weights. The reconstruction prior at this stage is a generic blendshape model

consisting of 48 blendshapes (see also accompanying material). We denote with FT the facial

expression F transformed by the rigid motion T = (R,t) with rotation R and translation t.
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Figure 2.8 – Dynamic Modeling adapts a generic blendshape model to the facial characteristics
of the user and recovers expression-specific detail maps from the recorded video sequence.

We initialize the user-specific blendshape model by applying deformation transfer [SP04]

from the generic blendshape template to the reconstructed mesh of the user’s neutral pose.

Deformation transfer directly copies the deformation gradients of the template without ac-

counting for the particular facial expression dynamics of the user. To personalize the blend-

shape model, we optimize for additional surface deformations of each blendshape to better

match the facial expressions of the user in the recorded video sequence. Previous methods,

such as [BWP13, LYYB13], perform a similar optimization using 3D depth-camera input.

However, these methods only aim at improving realtime tracking performance and do not

recover detailed rigged avatars. Moreover, in our reconstruction setting we are not constrained

to realtime performance and can thus afford a more sophisticated optimization specifically

designed for our more challenging 2D video input data.

Our algorithm alternates between tracking, i.e., estimating the blendshape weights and
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rigid pose of the facial expressions in the image sequence, and modeling, i.e., optimizing the

blendshapes to better fit the user’s expression.

initial
markers

initial 
tracking

corrected
markers

resulting
tracking

Figure 2.9 – The initial marker locations extracted using feature detection can be corrected by
the user to improve the tracking. Here the markers at the mouth corners and jaw line have
been manually displaced. Such user annotations are propagated through the entire sequence,
so that only a small number of frames need to be corrected.

Tracking. We propose a tracking algorithm using 2D image-based registration based on a

combination of feature alignment and optical flow. This results in a per-frame optimization

over the blendshape weights w and the rigid motion T expressed as

argmin
w,T

Efeature +Eflow +Esparse. (2.4)

We formulate the facial feature energy as

Efeature = γ1
∑

v∈M

‖mv −P (FT(Bv ,w))‖2
2, (2.5)

where M is the set of points representing the facial feature locations on the mesh surface,

mv is the 2D image location of the feature point v extracted using the method of [SLC11],

P (·) projects a 3D point to 2D, and Bv = cT
v B, where the vector cv contains the barycentric

coordinates corresponding to v .

The feature extraction algorithm of [SLC11] is fairly accurate, but does not always find the

correct marker locations. To improve the quality of the tracking, we ask the user to correct

marker locations in a small set of frames (see Figure 2.9). Following [GVWT13], these edits

are then propagated through the image sequence using frame-to-frame optical flow [ZPB07].

For a sequence of 1500 frames, we typically require 25 frames to be manually corrected. With

more sophisticated feature extraction algorithms such as [CHZ14], this manual assistance can

potentially be dispensed with completely.
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To complement the feature energy, we use a texture-to-frame optical flow using a gradient-

based approach. This formulation increases the robustness to lighting variations between the

static and dynamic acquisition. This energy is defined as

Eflow = γ2
∑

v∈O

∣∣∣∣∣
∣∣∣∣∣
[
ρv+∆vx −ρv

ρv+∆vy −ρv

]
−

[
I (uv+∆vx )− I (uv )

I (uv+∆vy )− I (uv )

]∣∣∣∣∣
∣∣∣∣∣
2

2

, (2.6)

where O is the set of visible points located on the mesh surface involved in the optical flow

constraint, and uv = P (FT(Bv ,w)). ∆vx is a 3D displacement along the surface such that the

surface point v +∆vx maps to the texture pixel immediately above the one corresponding to

point v ; analogously, v +∆vy maps to the texture pixel on the right. ρv is the grayscale value

for the point v extracted from the albedo texture, and I (x) is the grayscale color extracted from

the image at location x.

We apply an `1-norm regularization on the blendshape coefficients using

Esparse = γ3‖w‖1. (2.7)

This sparsity-inducing term stabilizes the tracking and avoids too many blendshapes being

activated with a small weight. Compared to the more common `2 regularization, this better

retains the expression semantics of the blendshape model and thus simplifies tracking and

retargeting as shown in [BWP13]. Similar to [WBLP11], we alternate between optimizing for

the rigid transformation T and the blendshape weights w.

Modeling. After solving for the tracking parameters, we keep these fixed and optimize for the

vertex positions of the blendshapes. We again use facial features and optical flow leading to

argmin
B

Efeature +Eflow +Eclose +Esmooth. (2.8)

The closeness term penalizes the magnitude of the deformation from the initial blendshapes

B∗ created using deformation transfer:

Eclose = γ4‖B−B∗‖2
F . (2.9)

The smoothness term regularizes the blendshapes by penalizing the stretching and the bend-

ing of the deformation:

Esmooth = γ5‖G(B−B∗)‖2
F +γ6‖L(B−B∗)‖2

F . (2.10)
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initialinput optimized initialinput optimized

Figure 2.10 – Optimizing blendshapes is essential to accurately represent user-specific ex-
pressions. The initial blendshapes computed with deformation transfer (middle column) are
registered towards the input images (left column). The resulting optimized blendshapes (right
column) faithfully capture expression asymmetries.

In contrast to the tracking optimization of Equation 2.4 that is performed separately for each

frame, the blendshape modeling optimization is performed jointly over the whole sequence.

Tracking and modeling are iterated 20 times for all our examples.

Geometric Refinement. The blendshape modeling optimization from 2D images is effective

for recovering the overall shape of the user-specific facial expressions (see Figure 2.10). We

further improve the accuracy of the blendshapes using a 3D refinement step. For this purpose

we extract one depth map per frame using a photometric approach [KSB11, WZN∗14]. The

input video is downsampled by a factor of 8 to a resolution of 150 × 240 pixels in order to

capture only the medium-scale details corresponding to the mesh resolution of the blendshape

model (see Figure 2.11). Fine-scale detail recovery will be discussed in Section 2.5.2.

For each video frame we rasterize the tracked face mesh recovered during the blendshape

optimization to obtain the original 3D location p̄i j in camera space and the grayscale albedo

value ρi j of each pixel {i , j }. We compute smooth interpolated positions using cubic Bézier tri-

angles on the face mesh refined with two levels of Loop subdivision. To create the perspective

displacement map, we apply the displacement along the view rays
p̄i j

‖p̄i j ‖2
. Therefore, the new
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video frame

optimized blendshapesextracted depth map

initial blendshapes

Figure 2.11 – Geometry refinement adds further nuances to the reconstructed blendshapes.
For each frame of the video sequence we extract a depth map using shape-from-shading that
serves as a constraint for the refinement optimization.

3D point location pi j of the pixel {i , j } can be expressed as

pi j = p̄i j +di j
p̄i j

‖p̄i j‖2
, (2.11)

where di j is the displacement value for this pixel. The normal at that pixel can then be

estimated as

ni j = 1

Ni j
(pi+1, j −pi j )× (pi , j+1 −pi j ), (2.12)

where Ni j = ‖(pi+1, j −pi j )× (pi , j+1−pi j )‖2. Let d be a vector that stacks all the displacements

di j and y be the vector of spherical harmonics coefficients. To reconstruct the displacement
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map we optimize

min
d,y

∑
i j

∣∣∣∣∣
∣∣∣∣∣
[
ρi+1, j si+1, j −ρi j si j

ρi , j+1si , j+1 −ρi j si j

]
−

[
ci+1, j − ci j

ci , j+1 − ci j

]∣∣∣∣∣
∣∣∣∣∣
2

2

+

+µ1‖d‖2
2 +µ2‖Gd‖2

2 +µ3‖Ld‖2
2

(2.13)

over d and y, where ci j is the grayscale value at pixel {i , j } of the input frame and si j = yTφ(ni j ).

Similar to Equation 2.3, we regularize the displacements to be smooth and of low magnitude.

To solve this optimization we alternately minimize Equation 2.13 over y by solving a linear

system with fixed normals initialized from the original mesh, and over d with fixed weights y

using a Gauss-Newton method. The depth and normal maps are then computed from the

displacement maps using Equation 2.11 and Equation 2.12, respectively.

After extracting the depth and normal maps, we use a non-rigid registration approach to

refine the blendshapes. We formulate a registration energy

Ereg =
∑

v∈V

‖nT
v (FT(Bv ,w)−pv )‖2

2, (2.14)

where V is the set of blendshape vertices, pv is the closest point of FT(Bv ,w) on the depth map,

and nv is the normal at that point. This energy is optimized over the blendshapes B jointly

over the whole sequence combined with a closeness and a smoothness energy (Equation 2.9

and Equation 2.10, respectively).

2.5.2 Reconstructing Detail Maps

In high-end studio systems, fine-scale details such as wrinkles are commonly directly encoded

into the mesh geometry [BBB∗10, GVWT13]. However, this requires a very fine discretization

of the mesh which may not be suitable for realtime animation and display. Instead, we create a

set of detail maps in an offline optimization to enable realtime detail synthesis and rendering

at animation runtime.

Similar to the geometric refinement step, we extract one depth map per frame. This time

the input video is downsampled 4 times to a resolution of 270 × 480 in order to keep small-

scale details while reducing noise. To reconstruct sharp features we modify Equation 2.13 by

replacing the `2 norm in the smoothness energies by an `1 norm. The `1 norm has been widely

employed for image processing tasks such as denoising [CCC∗10] as it allows preserving sharp

discontinuities in images while removing noise. To solve the `1 optimization, Gauss-Newton is

adapted using an iterative reweighing approach [CY08]. The normal maps are then computed
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albedo L1 norm

L2 norm, 1e10 weightL2 norm, 1e9 weightL2 norm, 1e7 weight

video frame

Figure 2.12 – Our reconstruction of detail maps uses `1-norm optimization to separate salient
features such as the wrinkles on the forehead from noise. The lower row shows that `2

optimization with a low smoothness weight retains too much noise (left), while increasing the
smoothness weights blurs out salient features (right).

from the displacement maps using Equation 2.12. Figure 2.12 shows a visualization of the

effect of the `1-norm in the extraction of the detail maps.

After extracting normals, we compute ambient occlusion maps by adapting the disk based

approach proposed in [Bun05] to texture space, where we directly estimate ambient occlusion

coefficients from the extracted normal and displacement maps. For each pixel p we calculate

the ambient occlusion value ao(p) by sampling a set Sp of nearby pixels such that

ao(p) = 1− ∑
k∈Sp

(1− 1√
1

‖vpk‖2
+1

)
σ(vT

pk np )σ(vT
pk nk )

|Sp |
, (2.15)

where σ(x) clamps x between 0 and 1, nk is the normal at pixel k of the normal map, and vpk

is the vector between the 3D locations of pixels p and k reconstructed using the displacement

maps.
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training data (offline)

blendshape coefficients
  (online)

shading

sampled elasticity
descriptor

local RBF regression RBF evaluation

...

occlusion
avatar

detail maps

...

normals 

before detail synthesis

with synthesized details

...

rest pose current pose
max +

max -

zero
edge
strain

Figure 2.13 – On-the-fly detail synthesis. Blendshape coefficients drive the reconstructed
face rig during realtime animation. For each animated expression, pose-specific details are
synthesized using an RBF regressor that is trained with the detail maps reconstructed offline
during dynamic modeling. The RBF function is evaluated based on deformation strains
measured on a sparse set of edges (colored).
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2.6 Animation

The dynamic reconstruction stage provides us with a user-adapted blendshape model and

a set of high-resolution detail maps containing normal and ambient occlusion maps that

correspond to the recorded expressions of the video sequence. The blendshape representation

allows for simple and intuitive animation. Blendshape coefficients can be directly mapped to

animation controllers for keyframe animation or retargeted from face tracking systems (see

also Figure 2.19). To augment the blendshape rig, we synthesize dynamic details on the fly by

blending the reconstructed detail maps of the dynamic modeling stage using a local strain

measure evaluated on the posed blendshape meshes (see Figure 2.13).

Detail Map Regression. Our detail synthesis method is inspired by the approach of [BLB∗08]

that links edge strain to a displacement function. In contrast, we learn a mapping between

edge strain and normal and ambient occlusion maps which facilitates more efficient detail

synthesis using GPU shaders.

In a preprocessing stage, we train a radial basis function (RBF) regressor using the detail

maps extracted for each frame of the tracked sequences and a strain measure computed on a

sparse set of feature edges E defined on the mesh (see Figure 2.13). We compute the strain

value of an edge e ∈ E as fe = (‖e1 − e2‖2 − le )/le , where e1 and e2 are the positions of the

edge endpoints and le is the edge rest length. We then learn the coefficients w of an RBF

regressor independently for each layer of the detail map. The regression for each pixel {i , j } of

a particular layer is formulated as

li j (f) = ∑
k∈K

ηkϕ
(
‖D

1
2

i j ,k (f− fk )‖2

)
, (2.16)

where K is a set of selected keyframes,η= [η1, . . . ,ηk ] are the RBF weights, and f = [ f1, . . . , f|E |]T

is a vector stacking the strain f of all feature edges. We employ the biharmonic RBF kernel

ϕ(x) = x in our implementation. To localize the strain measure, we integrate for each keyframe

a per-pixel diagonal matrix Di j ,k = diag(αi j ,k,1, . . . ,αi j ,k,|E |). Dropping the index i j ,k for nota-

tional brevity, we define the weight αe for each edge e ∈ E based on the distance of the pixel

{i , j } with 3D position pi j to the edge e as

αe = ᾱe∑
l∈E ᾱl

with ᾱe = exp−β(‖pi j−e1‖2+‖pi j−e2‖2−le ) . (2.17)

The parameter β controls the drop-off. The localization spatially decouples the keyframes to

avoid global dependencies and facilitates independent detail synthesis for different regions of
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the face. The RBF weights w are trained by minimizing the reconstruction error to the frames

of the tracked sequences. The keyframes are selected greedily by sequentially adding the

frame with maximum reconstruction error.

Detail Synthesis. The trained RBF regressor can now be used for detail synthesis during

animation. The face rig is driven by blendshape coefficients. For the posed mesh, we compute

the strain vector of the feature edges and evaluate Equation 2.16 to create new detail maps.

The synthesized normal and ambient occlusion maps are then applied in the pixel shader.

fitted modelSfM reconstruction accumulated pictures 
in texture space

normalized and
 inpainted texture

Figure 2.14 – Degrading input data, in this case missing images on the cheek of the captured
user, can lead to lower accuracy in the reconstructed static pose and texture artifacts produced
by the inpainting algorithm (c.f. with Figure 2.5).

2.7 Evaluation

We applied our dynamic 3D avatar reconstruction pipeline on a variety of subjects as shown

in Figures 2.1 and 2.17. For all subjects, we use around 80 images for the static reconstruction

and less than 90 seconds of video for the dynamic modeling. These examples illustrate that our

approach faithfully recovers the main geometric and texture features of the scanned subjects.

We also show the effect of on-the-fly detail synthesis. The combination of per-pixel normals

and ambient occlusion coefficients, which can both be integrated efficiently into per-pixel

shading models, leads to further improvements on the appearance of the animated face rig

(see also accompanying video).

Data Quality. We investigated how the output of our algorithm is affected by degrading input

data quality. In particular, insufficient coverage of the face for the acquisition of the static

model can lead to artifacts in the reconstruction. This lack of coverage can either result from
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Poisson
integrated

Spherical 
harmonics

Spherical 
harmonics +

corrective field

Albedo
(spherical 
harmonics)

Albedo
(spherical

harmonics +
corrective field)

Figure 2.15 – Our lighting factorization approach successfully normalizes the light in three
datasets captured under different illuminations. Notice how the corrective field aids in captur-
ing shadows and specularities better than using spherical harmonics alone.

more smoothness

Figure 2.16 – The influence of the parameters in the albedo extraction. By increasing the
smoothness of the corrective field using the values of λ2 and λ3, more details are captured in
the albedo.
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Figure 2.17 – Fully rigged 3D facial avatars of different subjects reconstructed with our method.
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video frame
with markers

tracked pose
w/o details

semi-transparent
overlay normal map

Figure 2.18 – Misalignments between video frames and the textured model can cause inconsis-
tencies in the detail maps, here most visible at the mole on the cheek.

the user failing to capture sufficiently many images, or from images being automatically dis-

carded by the MVS algorithm due to, for example, excessive motion blur. Figure 2.14 illustrates

how artifacts in the reconstructed point cloud can to a certain extent be compensated by

the PCA regularization at the cost of diminished resemblance to the recorded user. Similarly,

texture inpainting can fill missing texture information, but leads to visible artifacts in the

reconstruction. While more sophisticated inpainting methods could alleviate these artifacts,

we found that the simplest solution is to give visual feedback to the user to ensure adequate

data capture. In all our experiments, users were able to record images of sufficient quality

after being instructed about potential pitfalls in the acquisition, such as fast camera motion,

changing illumination during capture, or insufficient coverage of the face.

Light Extraction. We ran experiments to verify the robustness of our albedo extraction given

different lighting conditions, using the same set of parameters. Figure 2.15 displays the

results for one of our test subjects, as well as the intermediate lighting estimations. Due to

ambiguity introduced by the dependency of the captured skin color to the real skin color and

the environment lighting, considering the skin color as the median color inside the face mask

outputs slightly different results.

Furthermore, Figure 2.16 shows the behaviour of the albedo extraction under different

parameters. We vary the smoothness of the corrective field in equation 2.3, regularizing the

level of detail included into the extracted lighting.

Texture alignment. In general, the combination of feature energy and optical flow constraints

in the tracking optimization of Equation 2.4 yields accurate alignments between the textured
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model and the video frames. However, in areas far away from the tracked features, such as

the cheek, texture misalignments can occur that in turn can lead to reconstruction errors in

the detail maps (see Figure 2.18). A possible solution to this problem is to adapt the optical

flow energy of Equation 2.6 to incorporate additional texture features computed, for example,

using SIFT descriptors.

Faceshift Studio live tracking

tracking
parameters

interactive character posing realtime animation

Figure 2.19 – Application demos utilizing our rigged avatars. Left: an interactive tool for posing
the avatar by directly controlling blendshape weights. Right: The avatar is animated in realtime
by streaming blendshape coefficients from a realtime tracking software.

Limitations. The simplicity of our acquisition setup implies a number of limitations in terms

of scanning accuracy. As indicated above, limited spatial and temporal resolution of the

camera, sensor noise, motion blur, or potentially insufficient illumination can adversely affect

the reconstruction results.

Our albedo factorization works well in casual lighting scenarios, but cannot fully handle high

specularity or hard shadows in the acquired images. For such adverse lighting conditions,

artifacts in the reconstructed albedo are likely to occur.

Blendshape models also have some inherent limitations. In particular, unnatural poses can be

created for extreme expressions such as mouth very wide open, since a proper rotation of the

lower lip is not represented in the linear model. Popular remedies, such as corrective shapes

or a combination with joint-based rigging could potentially be integrated into our system, at

the expense of a more complex tracking optimization.

A further limitation of our method is that we do not represent nor capture hair. This means

that currently we can only reconstruct complete avatars for subjects with no hair or where the

hair can be appropriately represented as a texture. More complex hair styles need to be treated

separately outside our pipeline. Recent progress on hair capture [HMLL14] and realtime

hair animation [CZZ14] offer promising starting points to further investigate this challenging

problem. We also do not capture the teeth or tongue, but simply scale the template geometry

appropriately.
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Applications. Figure 2.19 shows reconstructed avatars in two application scenarios. Inter-

active character posing for keyframe animation is facilitated through direct control of the

blendshape weights. Please see the additional material for a demo application that allows

animating a reconstructed character in realtime. Alternatively, the character can be animated

by transferring blendshape weights from a face tracking application. We use the commercial

tool faceshift Studio that allows realtime streaming of blendshape coefficients. This demo

illustrates the potential of our approach to bring personalized 3D avatars into consumer-level

applications.

Future Work. Beyond addressing the limitations discussed above, we identify several inter-

esting avenues for future work. Recent advances in RGB-D cameras show great promise of

bringing active depth sensing into mobile devices such as tablets or phones. This opens up

interesting possibilities for new reconstruction algorithms that directly exploit the acquired

depth maps.

Integrating sound seems a promising extension of our method, both on the reconstruction

and the synthesis side. For example, an analysis of recorded speech sequences could guide

the tracking and reconstruction of the blendshape model and detail maps. Avatars could also

be driven by text-to-speech synthesis algorithms.

The possibility to transfer detail maps between subjects (see Figure 2.20) not only allows

modifying the reconstructed avatars, but can potentially also simplify the acquisition process.

Statistical priors for wrinkle formation could be learned from examples, given a sufficiently

large database.

Further research is also required to answer important questions related to the perception

of virtual avatars, such as: How well does an avatar resemble the user? How well does an

animated avatar convey the true emotions of a tracked user? or What reactions does the

virtual model evoke in online communication? We believe that these questions, along with

the ultimate goal of creating complete, video-realistic 3D avatars with a consumer acquisition

system lays out an exciting research agenda for years to come.

2.8 Conclusion

We have introduced a complete pipeline for reconstructing 3D face rigs from uncalibrated

hand-held video input. While this minimalistic acquisition setup brings the creation of per-

sonalized 3D avatars into the realm of consumer applications, the limited input data quality

also poses significant challenges for the generation of consistent and faithful avatars. Our
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source targets

Figure 2.20 – Detail maps can easily be transferred between subjects thanks to the consistent
parameterization of the blendshape meshes across all avatars.

solution combines carefully designed reconstruction priors, a two-scale dynamic blendshape

representation, and advanced tracking and reconstruction algorithms to minimize the re-

quired user assistance while maximizing reconstruction quality. We believe that our solution

provides an important first step towards realtime avatar-based interactions for the masses,

which could have a significant impact on the way we communicate in virtual worlds.

2.9 Implementation Details

Our software is implemented in C++ and parallelized on the CPU using OpenMP. We use the

Eigen library for fast linear algebra computations and OpenCV for all the image processing

operations. Our implementation runs on a laptop with an Intel Core i7 2.7Ghz processor, 16

GBytes of main memory, and an NVIDIA GeForce GT 650M 1024MB graphics card.

Static Modeling. The dense point cloud reconstruction with about 500k points takes 30 to

40 minutes for approximatively 80 pictures. The static modeling is then performed using

the identity PCA model of [BV99]. We use 50 PCA basis vectors to approximate the neutral

expression. The registration problem is optimized with Gauss-Newton using the supernodal

Cholmod sparse Cholesky factorization. The non-rigid registration takes approximatively 10

seconds.

For the static model, we generate a high-resolution albedo texture of 4096 × 4096 pixels. To

efficiently solve the Poisson integration [PGB03] and to minimize Equation 2.3 over the correc-

tive fields we use the Matlab Engine FFT. The parameters of Equation 2.3 are set to λ1 = 102,

λ2 = 10−3, and λ3 = 103 for all the examples. The static texture is created in approximatively 5

minutes.
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Dynamic Modeling. In our current implementation we employ a blendshape model of 48

blendshapes (see also accompanying material). The input videos are recorded at 30Hz with

an average length of 1 minute. The videos are temporally downsampled to 3Hz prior to

processing. We then apply a multiresolution approach with a four-level image pyramid.

The optimization is first solved on the coarsest level, the solution is then propagated as an

initialization to the next finer level until reaching the original resolution. The combined

tracking and modeling optimization takes approximatively 60 seconds per frame. We perform

the tracking optimization using a warm started shooting method [Fu98], and the modeling

using Gauss-Newton.

The parameters are set to γ1 = 10−1, γ2 = 10−2, γ3 = 104, γ4 = 104, γ5 = 102, and γ6 = 108 for

all our examples.

To solve the shape-from-shading optimization we use Gauss-Newton. Symbolic sparse

Cholesky factorization is used to improve performance as the sparsity pattern of the system

matrix remains constant. Computation time is around 5 seconds for extracting a 150 × 240

depth map for the geometric refinement. The detail map extraction takes 25 seconds for a

1024 × 1024 normal map and another 5 seconds for the corresponding ambient occlusion

map. The optimization weights are set to µ1 = 106, µ2 = 103, and µ3 = 107 for the geometric

refinement, and µ1 = 106, µ2 = 104, and µ3 = 106 for the detail map extraction. The non-rigid

refinement of the blendshape model is performed in about 60 seconds. The parameters are

set to γ4 = 105, γ5 = 1, and γ6 = 10.

Animation. We implemented the RBF evaluation on the GPU using a GLSL fragment shader.

For 6 keyframes of size 1024 × 1024, and 44 strain edges the animation can be performed at

realtime frame rates, i.e., 100 fps. The training of the RBF regressor takes approximatively 5

seconds. The parameter β is set to 150 for our meshes with an average edge length of 4.1 cm.

Manual User Interaction. From our trials, we concluded that about 15 minutes are needed to

perform the manual feature corrections necessary for the static (∼ 1−2 minutes) and dynamic

reconstructions (∼ 7−15 minutes). The additional video shows a complete example. The

decision of using [SLC09] was based on code and documentation availability, and we believe

that more recent and precise methods such as [CWLZ13, CWWS12] could be used to reduce

or eliminate the amount of manual corrections.
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Retrospective

As mentioned already in Section 2.5, the feature extraction algorithm used in our implementa-

tion is that of Saragih et al. [SLC09] and it was chosen back then for its mature open-source

implementation. In the meantime, multiple works have been published with more advanced

techniques for facial feature extraction [LKA∗17]. Not only would these potentially improve

the tracking accuracy and performance of our pipeline, but they would significantly reduce

the need for the user assistance in correcting the landmark locations.

In this paper we have extensively employed the thin-shell deformation model as a regu-

larizer for whenever we were deforming the shape of the face outside the PCA or template

blendshape space. In one of our subsequent publications [IKNDP16] we have proposed an

anatomically-inspired volumetric model that fixes some of the artifacts present in surface-only

regularization models. In particular, this helps in preserving the volume of the face when

performing expressions as well as helps avoid self-intersections of the mesh by explicitly

resolving collisions. For a more detailed presentation, we refer the reader to Chapter 5.

Along the lines of departing from blendshape models, worth mentioning are the works of

Garrido et al. [GZW∗16] and Wu et al. [WBGB16]. The first explores corrective blendshapes

for improving the tracking of lips in monocular videos. The second work uses localized

face patches together with anatomically-inspired constraints in order to extract per-frame

geometry from monocular videos. Similarly, Cao et al. [CBZB15] use trained local regressor

to add medium- and small-scale facial details such as wrinkles to a tracked performance

sequence. None of these methods aim at creating a consistent facial avatar, but rather extract

good quality geometry for each frame of the input video. It would be an interesting venue of

work to explore how to build a consistent avatar from such results.

Our work does not capture hair, and until now there have not been convincing approaches

to capturing hair using data from consumer-level devices [HBLB17]. However, techniques

for reconstructing personalized teeth models have been proposed [WBG∗16a], as well as for

inferring realistic eyes [BBGB16].

In order to improve the robustness to missing areas or low quality input data, a work that

would be interesting to integrate within our framework is that of Saito et al.[SWH∗16], which

uses deep neural networks to infer high resolution face textures given a single low quality

portrait.

Furthermore, regarding the deployment of such software, smart phone capabilities have

progressed since the publication of this paper. Notably, phones with dual cameras or full-
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fledged RGB-D sensors are becoming available, such as the ones with the Google Tango

technology [Goo17]. We expect such devices to become more widespread in the next years as

AR applications get more and more mature. Having a good quality depth map together with

color information would simplify some of the tracking and geometric steps significantly.

Later in this thesis (Chapter 6) we will look into a completely different approach to ani-

mating face avatars. Instead of relying on deformable blendshape models, we shall explore

anatomically-motivated techniques for actuating muscle regions in order to deform the skin

of the digital actor to the desired shape. Moreover, we will show in the results section that the

facial geometry created using the approach presented in this chapter can be used directly as

targets in our newer work relying on physics simulation.
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3 Semantic Parametric Body Shape Estimation

from Noisy RGB-D Sequences

Figure 3.1 – MakeHuman parametric body model with an overlaid example skeleton.

Note

This chapter is based on the following publication [IT16]:

ICHIM, A.E. AND TOMBARI, F. Semantic Parametric Body Shape Estimation from Noisy

RGB-D Sequences. Robotics and Autonomous Systems, 2015

The candidate contributed with most of the scientific contributions and implementation

of this publication.
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Abstract

The paper proposes a complete framework for tracking and modeling articulated human bod-

ies from sequences of range maps acquired from off-the-shelf depth cameras. In particular,

we propose an original approach for fitting a pre-defined parametric shape model to depth

data by exploiting the 3D body pose tracked through a sequence of range maps. To this goal,

we make use of multiple types of constraints and cues embedded into a unique cost function,

which is then efficiently minimized. Our framework is able to yield compact semantic tags

associated to the estimated body shape by leveraging on semantic body modeling from Make-

Human and L1 relaxation, and relies on the tools and algorithms provided by the open source

Point Cloud Library (PCL), representing a good integration of the functionalities available

therein.

3.1 Introduction and Related Work

This paper is accompanied by a webpage containing the datasets and source code for the

approach presented in the paper, as well as other samples: http://lgg.epfl.ch/~ichim/bodies_

ras_2015/.

The task of 3D body modeling aims at automatically obtaining an accurate 3D model of a

person’s body. The possibility of having at disposal an accurate 3D model adapted to the body

characteristics of a subject opens up new directions in a variety of applications, such as in the

fields of entertainment (e.g. 3D avatar creation for videogaming and movie special effects),

fitness (e.g., for automatic estimation of the body mass), apparel (e.g., for virtual changing

room applications), interactive design, and security (people detection and identification).

The output of this task is generally represented by a parametric 3D body model, with the

parameters estimated so that the model adapts to the specific characteristics of the subject

being scanned. It is often the case that these parametric models are open sourced and available

to the community so to favor interchange and standardization. While earlier parametric

models [ACP03] were based on simple Principal Component Analysis (PCA) of standard human

poses (e.g., T/A poses), more recent approaches also model minute body deformations such

as muscle bulging under complex poses, e.g., the SCAPE models [ASK∗05, HSS∗09]. Another

possibility of sourcing parametric body models is from semantic models, i.e., models built by

artists, where each body shape modifier has an associated semantic tag, such as it is the case

of MakeHuman [BRM08].
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3.1. Introduction and Related Work

Accurately estimating the 3D body model traditionally requires dedicated and expensive

hardware to acquire high resolution scans of the body, generally by means of 3D laser scanners

or high frame-rate structured light sensors. In addition, this procedure is characterized by

high processing time due to the re-positioning of the scanner from different view points, the

acquisition and the joint 3D registration of the different scans. To overcome such limitations,

the work of [GWBB09] proposed to fit a 3D parametric model to a frame acquired by means of

a monocular RGB camera. Although not fully automatic due to the need of user interaction as

well as limited in the modeling accuracy due to the 2D to 3D fitting, this work introduced the

concept of using low-cost hardware for the task of 3D body modeling.

Successively, thanks to the popularity of consumer depth cameras originated by the devel-

opment of the Microsoft Kinect, other works [WHB11, MKHG13, HBB∗13, YY14] have tackled

3D body modeling by means of the noisy range data acquired from such low-cost 3D sensors.

Initially, [WHB11] proposed to fit each parametric 3D model obtained from SCAPE [ASK∗05]

on a certain number of range depth maps (e.g. 4) by optimizing an objective cost fuction

relying on 3D data fitting as well as silhouette fitting. The main limitations of such a method

are represented by the constraints imposed by the system, in the form of a specific pose

(T-pose) that the subject has to assume throughout the sequence, and by the overall efficiency

(more than one hour is reported to process one subject). Successively, in [HBB∗13], simplified

SCAPE shape models are estimated from two depth maps of the subject (one frontal, one

from the back) in real time by optimizing a cost function composed of two terms, respectively

taking into account point-to-point and point-to-plane fitting. Analogously to [WHB11], this

method carries out the modeling by relying on a small number of slightly overlapping frames,

hence might suffer from the presence of noise in the data.

Differently, non-parametric shape modeling approaches have been also proposed. This

is the case of [MKHG13], where a moving voxel grid is used for each body part to integrate

together surface measurements obtained from a depth map sequence within a Truncated

Signed Distance Function (TSDF) representation, this allowing to build volumetric models

for both the background and each piecewise body part. Due to the TSDF fusion, the output

is not a parametric body model, but a piecewise smooth 3D mesh reconstruction of the

body. Another non-parametric approach is the one proposed in [YY14], where real-time pose

and shape estimation is obtained via a probabilistic approach based on a Gaussian Mixture

Model (GMM). Also in this case, the input is represented by a sequence of RGB-D frames. A

purely point-based technique is proposed by [MBF∗14] for the people re-identification task;

the authors use the Microsoft SDK to track and segment the body, and then the points are

accumulated by transforming each limb to the standard A-pose.
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Shape

Tracking Modeling
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Figure 3.2 – Overview of the proposed tracking and modeling pipeline

In this work, we propose a framework aimed at efficient 3D parametric body modeling

from noisy depth sequences acquired with consumer depth cameras. Conversely to [WHB11,

HBB∗13], one main contribution of this work is to leverage on the temporal cue by explicitly

tracking the 3D subject and estimating its 3D pose through a sequence of frames. This allows

us to integrate the noisy body shape of the subject over many temporally correlated frames,

effectively averaging out noise. The modeling procedure is carried out by minimization of

an energy cost which includes, as a second contribution of our approach, additional set

of cues with respect to those used in previous works, based on silhouette and 3D surface

fitting, as well as skeleton similarity, PCA and smoothness. We show that the combinations

of these terms induces a more robust estimation of the body model. Finally, and differently

to [WHB11, HBB∗13], we propose to use MakeHuman models [BRM08] due to their better

integration with semantic information associated to each body part. In conjuction with this,

a third contribution is a specific L1 minimization of the energy cost term associated with

our modeling scheme, so to induce sparsity in the semantic tags and automatically yield a

compact semantic description of each acquired body.

In Sections 3.2 and 3.3 we illustrate the entire proposed pipeline, which tracks the body

motion of the subject and estimates the pose of its body joints over time, then, from the 3D

estimated body pose at each frame, it refines the parameters of a MakeHuman body model

by cost function optimization. A graphical overview of the proposed pipeline is shown in

Figure 3.2. Our framework relies on open-source computer vision and full body modeling

libraries such as the Point Cloud Library (PCL) and MakeHuman, and it is easily customizable

for different tasks requiring different precision and performance due to the modularity of its

nature. In our initial implementation it is able to process frames at a speed of 3 fps and does

not require specific constraints on the pose of the subject.

To demonstrate the effectiveness of our approach, in Section 3.4 we show some qualitative

examples of body models estimated and tracked from real data acquired from consumer depth
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cameras, as well as measured accuracy of the estimated body model with respect to specific

body parts. We also demonstrate the usefulness of compact semantic body tags associated to

our estimated body models.

3.2 Proposed methodology

3.2.1 Data Representation

In our system, the articulated human bodies are represented as quad and/or triangle meshes.

The bodies can be articulated via the underlying skeleton. Skeletons are composed of multiple

joints disposed in a tree hierarchy (see Figure 3.1 for an example), based on which local node

transformations are propagated: T j
abs = T par ent ( j )

abs T j
local , where T j

abs is the world transforma-

tion of joint j , and T j
l ocal is its local transformation with respect to its parent node in the

skeleton tree. Each joint influences a number of mesh vertices in its vicinity, as defined by

the linear blend skinning model: v pose
i =∑

j w j
i T pose

j ∗ (T r est
j )−1 ∗v r est

i , where each joint j in

the skeleton has T r est
j as the transformation corresponding to the rest pose (A or T-pose) and

T pose
j the transformation of the joint in the posed skeleton configuration, and w j

i is the blend

skinning weight of joint j over mesh vertex vi . The joints are modelled by their rest trans-

formation (expressed using rotation matrix R r est
j and translation vector t r est

j ) and the pose

rotation parametrized using Euler angles β: T pose
j = R r est

j ∗R x (βx
j )∗R y (βy

j )∗R z (βz
j )+ t r est

j .

The skeleton model deforms the mesh based on the pose of the body, but does not take

into account the deformations that define the identity of a person. To this end, we employ a

global linear deformation model in which vertices v r est
i are expressed as linear combinations

s of bases stacked as columns into matrix B : v r est
i = mi +Bi s. Previous work such as [ACP03,

ASK∗05, HSS∗09] uses statistical models derived from a set of registered scans of people. The

framework we propose allows for such models to be used (they use the same linear system),

but in our implementation we employed blendshapes exported from the popular human body

modeling software MakeHuman [BRM08]. These blendshapes correspond to the sliders in the

MakeHuman application, that is used by numerous artists and game developers to generate

realistic character assets. As a result, our model is based on a set of non-orthogonal bases

(blendshapes) that are linearly combined in order to obtain novel shapes. The advantage of

using such a technique as opposed to statistical models is that the fitting weights s represent

a certain comprehensible body characteristic along each dimension (e.g.: fat/slim middle,

more/less muscular etc.). This enables applications such as body shape retargetting, where

the body parameters computed with our system could be used by artists to model bodies in
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Figure 3.3 – Visualization of the registration energies used in our optimization.

semantically equivalent spaces (e.g., use the human body blendshape weights to generate a

semantically equivalent cartoonish character, animal or monster) (see Subsection 3.2.7 for

more details).

We formulate the tracking and modeling problem as a global energy minimization, which

aims to estimate the pose of the skeleton βi at each frame i , as well as the global shape of

the body, encoded by s: argmin{βi },s Etot al . Figure 3.3 shows the different energies that we

propose to use in our framework. In the following subsections we will explain the formulation

of each energy functional, as well as offer an intuition on its contribution to solving the global

problem.

3.2.2 Feature Constraints

In order to start with a good initial alignment and anchor the tracking, we use a soft energy that

keeps the global translations of each joint close to the tracked sparse set of body landmarks.

Several off-the-shelf solutions are available for tracking body landmarks over depth sequences.

In our experiments, we have used the Primesense NiTE body tracker (currently not available

due to the acquisition of the company). Alternatives are represented by the People Tracking

module in PCL, as well as the Microsoft Kinect SDK1. All these trackers process, as input, a

sequence of depth maps as those provided by a consumer depth camera, and output, at each

frame, a set of tracked points representing the skeletal joints of the human body appearing in

the sequence. As such, any of these methods could be used within our framework for the goal

of tracking 3D body landmarks.

The energy term modeling the alignment between each template body joint and the re-

spective estimated body landmark via tracking is formulated as follows:

E f eatur es =
∑

j

∣∣∣∣∣∣t pose
j −χ j

∣∣∣∣∣∣2

2
(3.1)

1https://www.microsoft.com/en-us/kinectforwindows/
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where t pose
j are the world-space translations of each joint, and χ j are the corresponding

tracked 3D features.

3.2.3 Point-to-plane Constraints

The sampled scene surface obtained from the scanner is registered against the current estimate

of the template body model. In order to align those two surfaces, the point-to-plane error

metric is used:

Esur f ace =
∑

i

∣∣∣∣nT
i (xi −vi )

∣∣∣∣2
2 (3.2)

where scan point xi with its normal ni is in correspondence with the template vertex vi .

Mesh vertices vi are expressed as functions of the skeleton pose and linear blend skinning, as

explained in the previous subsection.

The PCL library offers multiple techniques for pre-processing the input data, obtaining and

filtering pairs of corresponding points between the mesh and the depth map. The depth maps

are represented as organized grids of 3D points, offering the possibility of using fast techniques

such as integral images [HRD∗12] to compute the normals of the depth maps efficiently.

Furthermore, the input point cloud comes from a sensor that can be approximated via the

pinhole camera model, the correspondences can be estimated in linear time by projecting the

template vertices onto the depth map. Filtering is performed by discarding correspondences

between points with incompatible distances and orientations [RL01]. The correspondences

are computed at each outer iteration of the tracking optimization algorithm.

3.2.4 Contour Constraints

Due to the fact that the normals from depth data are noisy at the boundaries, they do not

constrain the movement of the template body enough. To overcome this issue, an energy

functional that minimizes the point-to-plane distances between the silhouette of the depth

map and that of the template model is proposed.

From our experiments, we concluded that computing the silhouette by means of the

following approach yields good enough quality for the purpose of our application (see the

graphical example in figure 3.4, left). For the depth map, a pixel is considered to be on

the boundary if it has less than 7 neighbors in its 3x3 neighborhood with a small depth

difference (we used 3 cm in our experiments). For the template mesh, the boundary vertices

are detected by rendering the current pose of the mesh in a framebuffer and extracting them

45



Chapter 3. Semantic Parametric Body Shape Estimation from Noisy RGB-D Sequences

Figure 3.4 – Left: computed contour from depth and mesh: the green points represent the
depth contour, the red points are the mesh contour, respectively. Right: associated normals
computed on the depth map contour.

using morphological operators.

The energy functional for Econtour is similar to the one in equation 3.2, with the differences

that the correspondences are computed on the contour subsets as explained above, and

the normals ni (shown in green on the example contour image Īcontour in figure 3.4, right)

are computed using the blurred contour image gradients as follows, with Īcontour =G(µ,σ) ◦
Icontour , and Gaussian kernel G(µ,σ):

n = (∇x Īcontour ,∇y Īcontour ,0)T∣∣∣∣(∇x Īcontour ,∇y Īcontour ,0)
∣∣∣∣ (3.3)

Furthermore, the correspondences are filtered by the angle between the projection of

the template normals to the image plane and the depth pixel normals computed as above.

Performing the normal computations and rejection step in 2D ensures more robustness to

noisy input data.

3.2.5 Prior Energy

Principal Component Analysis (PCA) is a dimensionality reduction technique that has been

employed numerous times in the tasks of modeling [BV99, ASK∗05] and tracking [DOKA13]. In

particular, Douvantzis et al. [DOKA13] use PCA to decrease the number of variables needed to

describe the pose of a human hand. On the one hand, by doing so, the optimization problem

46



3.2. Proposed methodology
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Figure 3.5 – Geometrical interpretation of the proposed PCA energy terms Epr i or _pr o j and
Epr i or _dev .

becomes easier due to less variables that lie within trained statistical boundaries. On the other

hand, solutions can only be picked from within the learnt subspace, limiting the tracking

algorithm to be able to follow only poses similar to those in the training set. Furthermore,

human bodies can undergo more complex pose changes as compared to hands, and it is

considered very difficult to generate a comprehensive training set that contains all possible

human poses. As such, in order to allow for novel poses to be tracked while still penalizing

unlikely poses, our approach uses the PCA subspace as a regularizer instead of an optimization

space.

To begin with, we train the PCA model by using multiple long sequences tracked using

the NiTE feature tracker. This tracker is imprecise, but enough to enable the generation of

a large collection of plausible human poses. The covariance matrix of the de-meaned data

matrix D obtained by concatenating rows of joint angles β j for each frame j in the training

set is expressed using eigenvalue decomposition as C = (D −1µ)T (D −1µ) =UΣU−1. U is the

matrix formed of stacked columns of eigenvectors, Σ the eigenvalues in a diagonal matrix,

µ the mean of β over the training set. The eigenvectors are sorted in descending order by

their corresponding eigenvalues and the first p modes are selected to form the PCA projection

matrix M . The number of modes p is chosen such that M forms a basis that explains a

consistent portion of the training space (usually around 90%).

In order to keep the estimated skeleton pose β in the feasible space of poses, we introduce

an error term that measures the distance between β and the back-projection of its projection
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to the PCA space:

Epr i or _pr o j =
∣∣∣∣(β−µ)−M M T (β−µ)

∣∣∣∣2
2 (3.4)

The previous energy tries to push the current estimate of the angles close to their projection

in the PCA space. While this gives a soft guarantee that the current estimate of β can be

expressed as the linear basis learnt in the PCA model, it does not regularize the values to the

variance seen in the training set. To this end, we introduce an additional energy that penalizes

the distance of the projections of β to the mean of the PCA space. The projection along each

subspace dimension is weighted by the inverse of the standard deviation of the corresponding

PCA basis, which is the square root of the elements in the diagonal eigenvalue matrixΣ:

Epr i or _dev = ∣∣∣∣Σ−1/2M T (β−µ)
∣∣∣∣2

2 (3.5)

Adding those two terms together, the prior energy functional with training becomes:

Epr i or =λ5Epr i or _pr o j +λ6Epr i or _dev (3.6)

A geometrical interpretation of the two terms Epr i or _pr o j and Epr i or _dev is given in figure 3.5.

In the case a training set is not available for computing the PCA model, an alternative prior

energy Ẽpr i or is used to keep the skeleton close to its neutral A/T-pose:

Ẽpr i or =
∣∣∣∣β∣∣∣∣2

2 (3.7)

However, it is important to point out that this method is less desirable than the data-driven

technique described above as it allows for implausible human poses.

3.2.6 Smoothness Energy

Tracking each frame independently leads to jitter due to high frequency differences between

the values of β from one frame to another. To overcome this, we introduce a soft contraint

that penalizes large jumps of β between consecutive frames:

Esmoothness =
∣∣∣∣β(t ) −β(t−1)

∣∣∣∣2
2 (3.8)

This is a first order smoothness term, enforcing that the angular velocity of the limbs is

zero. More complex smoothness terms could be used in order to regularize the problem using
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acceleration or even higher order derivatives of the pose vector. We deemed the energy in

equation 3.8 to be sufficient for the purpose of this system, as we do not expect excessively

fast motions for the scenario of dynamic body scanning.

The smoothness energy term could be omitted, and the sequence could be smoothed as a

post-processing stage, via temporal Laplacian filtering, for example. However, the smoothness

energy included into the optimization acts as a soft prior term, adjusting the angular velocities

of the limbs, and attracting the variables to the solution of the previous frame.

3.2.7 Tracking and Modeling

The optimization is split into two stages: tracking, aimed at estimating the pose βi of the

skeleton for each frame i , and modeling, aimed at estimating the body shape parameters s

over the whole sequence. These two stages are briefly outlined in the following.

Tracking The tracking is performed sequentially for each frame, by keeping s fixed and

finding values of β for which Etot al is minimized. The Levenberg-Marquardt algorithm

is used to optimize for the tracking, in which the linear system to be solved is computed

analytically. The adaptive damping technique present in this algorithm is needed as the

problem is unstable because of the chain of variables that influence all the nodes below in the

tree. If the smoothness term Esmoothness is removed from the total energy, then the tracking

can be solved for each frame independently, allowing for heavy parallelization of this stage of

the pipeline.

Modeling As mentioned before, the modeling stage refers to finding the optimal blend-

shape weights s such that the mesh vertices v r est
i = mi +Bi s minimize the modeling error

over the sequence of frames tracked so far. Note that the modeling error does not contain

some of the terms in Etot al , as those were pertaining to regularizing the solutions for β:

Emodeli ng = γ1Esur f ace +γ2Econtour +γ3Ebs_r eg (3.9)

The tracking and modeling paradigm we proposed can be used for both online and offline

modeling. Similar to [BWP13], one option is to use a temporal weighting scheme for the

accumulation of the per frame constraints, giving more weight to more recent frames. In such

a scheme, the modeling is done after each tracked frame, continuously updating the body

model during the tracking. This is expressed mathematically as solving the linear system at

time t , M t
lhs∆s t = M t

r hs . The update is done as follows, with:
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Figure 3.6 – Unrealistic body model obtained due to not regularizing the blendshape weights
s.

J t =
∂E t

model i ng

∂s t (3.10)

bt = E t
model i ng (3.11)

the left and right-hand-side of the linearized constraints for frame t , respectively; w t
γ is the

temporal weight determined by the parameter γ< 1, which quantifies the influence of recent

frames in the detriment of old frames:

w t
γ = γw t−1

γ +1 (3.12)

M t
l hs = γ

w t−1
γ

w t
γ

M t−1
l hs + 1

w t
γ

(J t )T J t (3.13)

M t
r hs = γ

w t−1
γ

w t
γ

M t−1
r hs +

1

w t
γ

(J t )T bt (3.14)

The second option is to accumulate all the frames of the sequence with equal weights (γ= 1 in

the equations above), and solve for the modeling only at the end of the tracked input sequence.

The main disadvantage of this scheme is that multiple tracking passes of the sequence are

required, but the results will be more consistent with the whole dataset.

Allowing for any values of s can lead to unrealistic models such as the one depicted in Figure

3.6. Regularization is needed to keep the optimization from converging to such unwanted
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(a) Template model
avg. tracking error: 0.39

(b) L2 fitting
avg. tracking error: 0.32

(c) L1 fitting
avg. tracking error: 0.34

Figure 3.7 – Visualization of the effect of the different norms on the blendshape weights for the
body modeling of subject S4. Displayed are the resulting body meshes, along with a graphical
representation of the blendshape weights and the average tracking error across the whole
depth sequence obtained by using the respective body model estimation. (a) shows the scaled
template model. (b) shows the modeling result with the classical L2 norm energy on the
blendshape weights. (c) showcases the body model obtained by regularizing the blendshape
weights with an L1 norm. The tracking error becomes slightly higher, but notice the smaller
number of activated blendshapes with high values, compared to the L2 fitting, where a lot of
blendshapes are activated with small values.

solutions. To this end, we suggest two options:

Ebs_r eg _L2 = ||s||22 (3.15)

Ebs_r eg _L1 = ||s||1 (3.16)

The effect of using either one of these regularization energies is explained in Figure 3.7. By

employing Ebs_r eg _L2, the linear system can be solved with the Gauss-Newton solver, with no

damping necessary. Using the L1 norm present in Ebs_r eg _L1 necessitates a different solver. In

our implementation we use the Gauss-Seidel method with successive over-relaxation adapted

to the L1 norm regularization [Fu98], along with iterative reprojections to keep the blendshape

weights in the [0,1] range. Another option, albeit usually considered slower, would have been

Gauss-Newton with iterative reweighting [CY08].

In some situations the tracking does fail, and using those wrong constraints for the model-

ing phase might lead to erroneous results. In order to avoid such situations, we skip the frames
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for which the global tracking error Etot al is higher than a certain threshold and the percentage

of the overlap between the depth map and the template model surface is below a certain value.

(in our experiments we chose 45%).

3.3 Implementation

The skeleton is scaled once at the beginning of the pipeline by taking the median distances

between the NiTe features at each frame over the whole sequence as being the limb lengths.

From our experiments, this proved to be sufficient, and no further limb size adaptation was

necessary during the tracking refinement and modeling iterations. Such a solution would not

be possible in the case of online modeling and a different heuristic for the limb size adaptation

should be employed.

The current implementation of the framework uses PCL exclusively, by relying on multiple

components for the pre-processing, correspondence estimation and visualization stages. In

particular, for efficient Nearest Neighbor search in the point cloud 3D domain we rely on

the FLANN library included in PCL. Normals on the depth maps and on the point clouds are

estimated, respectively, with the multithread method pcl::NormalEstimationOMP and with

the integral images-based method pcl::IntegralImageNormalEstimation. All the solvers are

implemented using the Eigen C++ linear algebra library, with no other external dependencies.

For parallelization, we used the OpenMP library.

We have performed all of our experiments on data collected from an Asus Xtion PRO LIVE

sensor, which consists of synchronized depth and color images at a resolution of 640x480 each,

delivered at 30Hz. For the performed experiments, the blendshape model used for fitting

contained 18 meshes selected from MakeHuman, representing macro shape variations of

the body. The template mesh has 13380 vertices and 26756 triangles. The skeleton structure

used is the second_life rig provided in the MakeHuman application, which has been manually

mapped to the NiTE tracking features. The pose prior has been trained from a database of

about 2300 frames with 18 3D feature locations per frame. The compressed PCA model retains

91% of the variability of the motion database by using 12 modes.

3.4 Experimental results

In this Section, we provide some experimental results and applications of our tracking and

body shape estimation framework. To this goal, we have acquired multiple sequences of
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(a) S1 (b) S2 (c) S3

(d) S4 (e) S5 (f) S6

Figure 3.8 – Modeling results showing the six experimental subjects (S1 · · ·S6) together with
their modeled 3D body shape.
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around 500-600 frames for each person of a group of four males and two female subjects

(subjects S1 · · ·S6). Figure 3.8 shows one frame relatively from each acquired subject, together

with the corresponding estimated body model. As it can be seen, the setting is that of a typical

indoor environment, which includes cluttered background. As witnessed by the figure, the

estimated body models are different to fit the specific body traits of each subject. In addition,

we show, in Figure 3.9, multiple examples of tracked and estimated body models for different

sequences, along with the corresponding RGB frames. As it can be seen, the method can track

the 3D body also in complex poses, and also when the person’s back is facing the camera. For

a more clear view of the incremental tracking and modeling process, Figure 3.10 shows the

evolution of the template silhouette with respect to the depth map contour as the optimization

converges.

To evaluate quantitatively the modeling precision of our framework, we computed the

standard deviations measured on a few key locations of the body model estimated along each

of the 4 sequences associated to each of the 4 subjects for which such number of sequences

was available (i.e., subjects S1 · · ·S4). The results are reported in Table 3.1, along with a

visualization of the location of the body features (on the left). The reported results range

between a minimum of 0.36 cm and a maximum of 2.35 cm, with an average over all locations

and all subjects of 1.10 cm, which demonstrates an encouraging repeatability of the proposed

modeling algorithm, leading us to believe that this framework has the potential to obtain

relatively accurate results, even without the need of a complicated setup or scripted actor

movement.

We wish to point out here that our framework does not explicitly take into account the

presence of clothes. Indeed, precise body pose measurements should be taken without clothes

or wearing garments that are tight to the body. Indeed, loose clothes might easily lead to

errors in both the tracking and modeling stages of the pipeline, this resulting in decreasing

the accuracy of body measurements. The same problem would occur if the subject has

long/voluminous hair, or in presence of any accessory with a non negligible size, such as bags,

hats, glasses, belts, etc.

As mentioned before, the L1 semantic body modeling we propose opens up multiple

avenues for applications that could have not been possible with L2 statistical models. A

simple such example is depicted in Figure 3.11, where the word clouds corresponding to the

blendshape weights of the body fitted in Figure 3.7 have been created. Note the compactness

of the semantic representation yielded by the use of the L1 relaxation with respect to the one

yielded by the L2 model.

Moreover, by having the body mesh modeled and tracked throughout the sequence, and
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Figure 3.9 – The proposed framework is able to track bodies and estimate their parametric
body model from a depth sequence. In each row of the figure, we report three examples of a
sequence corresponding to one of the evaluated subjects (S1, S2, S3, S4, and S4, respectively).
For each example, we show the input RGB frames, the posed body and its corresponding
skeleton.
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Figure 3.10 – Each row of images shows the progress of the tracking and modeling optimization
for the contours of single frames of actor S4, starting from the initial estimate given by the 3D
feature locations and the template mesh, up to convergence for both the pose and the body
shape parameters. The template mesh silhouette is drawn in red, and the depth map contour
is green.
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S1 S2 S3 S4

µ σ µ σ µ σ µ σ

arm 25.97 0.35 28.95 0.42 29.4 0.36 32.55 1.05
chest 89.59 0.70 100.96 2.35 105.35 0.6 108.68 1.01
hips 92.27 1.24 99.37 1.01 105.21 0.59 106.65 0.67
leg 48.74 1.07 54.91 0.49 55.6 0.91 59.56 1.22

waist 76.70 1.53 83.2 1.92 91.25 0.84 94.67 1.12
avg 1.06 1.46 0.69 1.05

total avg σ 1.10

Table 3.1 – Mean and average standard deviation of all the measurements for 4 test subjects
with 4 recorded sequences each. All reported values are in cm. On the left: locations of the five
measurements taken on the subjects

(a) (b)

Figure 3.11 – Example application of the proposed semantic body modeling. (a), (b) show word
clouds created using the activated blendshape names and their weights for the L2 blendshapes
regularization, and the L1, respectively.

being the associated RGB frame available as well in correspondence with each depth frame

(i.e., RGB-D data), our framework allows to build a complete texture of the mesh (see Figure

3.12). A simple technique is employed that projects each RGB frame into the UV-space of the

mesh, accumulating color contributions weighted by the foreshortening angle (angle between

the normal at the mesh surface and the viewing direction of the camera). Note the presence of

artifacts such as blurring and black regions. These are due to inaccuracies in the tracking and

the fact there are regions that have not been captured during the sequence.

3.4.1 Effect of each tracking energy

Finally, in Figure 3.13 we show some results relatively to the influence of the most relevant

energy terms employed in the proposed cost function, obtained by deactivating them one at a

time and highlighting the most remarkable qualitative differences. As witnessed by 3.13a, the

surface registration energy encapsules the most important set of constraints of the proposed

optimization. Its purpose is to align the underlying scene surface sampled by the depth sensor
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Figure 3.12 – Our framework allows for texturing the body meshes using a weighted average of
the color contributions from each RGB frame.

(a) Without and with Esur f ace .

(b) Not using the Epr i or ener-
gies (left) may lead to implau-
sible poses.

(c) Effect of not tracking the con-
tours.

Figure 3.13 – Influence of the proposed energy terms on the resulting tracking.

with the template mesh. The contour and feature constraints in addition to the tracking

priors are not enough for precise tracking. Differently, the contour energy is useful because

the depth map normals are rather flat at the silhouette of the objects in the scene, thus not

constraining the tracking enough in those regions. As such, misalignments like the one in

figure 3.13c can occur as the point to plane energy is minimized even if the hand alignment

is off. The contour correspondences shown in the zoomed in part of the figure would have

pulled the template body to its correct location. These effects can accumulate in time and

lead to a complete loss of tracking.

Moreover, the prior energy is needed in order to avoid implausible poses to be outputted.

In the situations when the input data is lacking information about certain regions of the body

due to occlussions, the statistical pose priors we propose help keep the body in a reasonable

pose. An example is shown in figure 3.13b, where the 3D features were wrong. Without

priors the tracker moves the arm in an impossible pose, but employing the priors (right side)

converged to a more plausible solution. Finally, although not shown in the Figure, the feature

energy that keeps the joint position close to the NiTE 3D features detected for each frame is
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Step Average number Average time
of iterations [ms]

Normal estimation 1 24
Initialize IK with 3D Features 1 1
Point to plane correspondences 3.5 3
Contour correspondences 3.5 26
IK with all energies 3.5 27
Accumulate modeling constraints 1 3

Tracking per frame - 279
Modeling per frame - 3

Table 3.2 – Performance benchmarking results for each stage of the pipeline. The average
number of iterations is per frame. The rest of the total per frame average time is spent with
other book-keeping operations.

especially useful for initial alignment, after which its weight can be decreased to zero during

the optimization. Without it, manual intervention would be mandatory to pose the body so

that the iterative optimization tracking can have a warm start.

3.4.2 Performance Evaluation

We have performed our experiments on a laptop with an 8-core Intel Core i7-4940MX processor,

with 32GB of RAM, and a GeForce GTX 880M graphics card, running Ubuntu 14.10. The code

uses the CPU for all of the computation, with the exception of the framebuffer rendering for

extracting the mesh silhouette, which is done using primitive OpenGL calls. Table 3.2 collects

the timing information from our experiments. Furthermore, it is worth mentioning that the IK

optimization using only the 3D features was tuned to use an average number of 24.1 Levenberg

Marquardt iterations, and the IK optimization with all the energies performed with an average

of 10.44 internal iterations.

3.5 Conluding Remarks

In this paper we have presented a modular framework for 3D body tracking and parametric

modeling. Our framework can run efficiently, and thanks to the use of MakeHuman models

together with L1 relaxation allows for new applications such as semantic body part tagging

of the acquired subjects, as well as body model texturing. Moreover, our framework can be

easily adapted to fitting posed bodies that have been scanned using technologies such as PCL’s

Kinect Fusion [NIH∗11] implementation, KinFu, or multiview reconstruction using external
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tools such as 123DCatch [BF14].

The code is modularized in a logical structure that allows for further experimentation and

extensions. We are planning on releasing the code as open-source, and integrate it in the

pcl::bodies module of the PCL library. Indeed, we believe that our contribution can lead to

a higher interest from developers and researchers to dive into more complex body tracking

and modeling applications. Also, we believe that due to its customizability, it will enable

future work which includes novel research, better benchmarking data and interesting new

applications.

Retrospective

Because this work has been intended as a generic framework for body tracking, the different

modules that build the optimization constraints can be replaced and tuned for various sensors

and applications, as well as updated in order to reflective novel, more performant techniques.

For example, one could use a more sophisticated approach for landmark detection such as

ones based on different deep learning techniques [WHC∗16, MSS∗17].

It is worth mentioning that the parametric body model can be replaced with other tech-

niques that could offer more robustness [ASK∗05], or added value such as intrinsically model-

ing learnt secondary motion [PMRMB15]. Moreover, recent techniques have shown that one

can reconstruct good quality models of general deformable scenes [NFS15, ZNI∗14], and it

would be interesting to see how these could be integrated with our body tracking and modeling

framework.

In the next chapter we present our subsequent work that turns away from linear skinning

models and investigates how volumetric anatomical templates can be used within a physics

simulation framework in order to better model and animate human bodies. While we have

not directly experimented with this, our newer work [KIL∗16] can be adapted to RGB-D

body tracking by following this framework. However, as opposed to linear skinning models,

the complexity of the optimization will not make this combination suitable for realtime

applications. Furthermore, we believe that the low quality of the data coming from commercial

RGB-D sensors does not justify the need for more complex models. In order to benefit from

the increased representational power of physics-based models, in the next chapter we only

perform experiments using high-quality 3D scans.
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4 Reconstructing Personalized Anatomical

Models for Physics-based Body Animation

Figure 4.1 – We present a full-body reconstruction and animation system that can simulate
physics-based volumetric effects such as self-collision and inertial effects. Our method uses a
set of 3D surface scans to adapt an anatomically-inspired volumetric model to the user.

Note

This chapter corresponds to the following publication [KIL∗16]:

KADLECEK, P.(*), ICHIM, A.E.(*), LIU, T., KAVAN, L., AND KRIVANEK, J. (* joint first authors).

Reconstructing Personalized Anatomical Models for Physics-based Body Animation. ACM

Transactions on Graphics (Proceedings of SIGGRAPH Asia), 2016

The first authorship for this paper has been shared with Petr Kadlecek. The author’s

contributions are as follows:

• inverse body modeling formulation and optimization solution

• roughly half of the implementation effort.
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Abstract

We present a method to create personalized anatomical models ready for physics-based ani-

mation, using only on a set of surface 3D scans. We start by building a template anatomical

model of an average male which supports deformations due to both 1) subject-specific vari-

ations: shapes and sizes of bones, muscles, and adipose tissues and 2) skeletal poses. Next,

we capture a set of 3D scans of an actor in various poses. Our key contribution is formulating

and solving a large-scale optimization problem where we solve for both subject-specific and

pose-dependent parameters such that our resulting anatomical model explains the captured

3D scans as closely as possible. Compared to data-driven body modeling techniques that

focus only on the surface, our approach has the advantage of creating physics-based models,

which provide realistic 3D geometry of the bones and muscles, and naturally supports effects

such as inertia, gravity, and collisions according to the Newtonian dynamics.

4.1 Introduction

Figure 4.2 – Workflow of our method: We take as input a set of 3D scans of the same actor
in different poses. Our method aims at reconstructing a complete volumetric, rigged, and
physics-ready body model of the actor. This consists of extracting its exterior and interior
shape, as well as skeleton bone lengths. Finally, our models are ready to be animated using
external skeletal and muscle activation data.

The importance of human anatomy in visual arts was appreciated already by Renaissance

masters such as Leonardo da Vinci. More recently, 3D anatomical models combined with

physics-based simulation have been used to deliver unprecedented visual realism in modern

computer generated movies. Unfortunately, the design of anatomically realistic characters is a

labor intensive process even for experienced digital artists using professional modeling and

simulation tools, such as those developed at Weta Digital and the ILM. Therefore, high-fidelity

anatomical models are typically only affordable in high-budget production, e.g., in movies
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such as Avatar or The Lord of The Rings trilogy. Even though modeling of imaginary creatures

such as dragons inherently relies on creativity of digital artists, when it comes to modeling

humans, we believe we can substantially improve upon the state of the art.

In this paper we present an automatic method to create an anatomical, physics-based

model of the body of a given human subject, e.g., an actor. We achieve this by capturing

a set of 3D full-body scans in various poses and combining it with a template anatomical

model. This template model represents the anatomy of an average human body, similar

to traditional medical atlases. However, actual human bodies exhibit large variations in

height, muscularity, adiposity, proportions of the limbs, etc. Our goal is to reshape and

rescale the template anatomical model in order to fit the target scans as closely as possible,

while accounting for shape changes due to both subject-specific variations (bone lengths,

muscularity, adiposity, ...) as well as due to posing (changes of joint angles). The first type of

deformations (subject-specific) are caused by long-term biological growth processes, while

the pose-based deformations are induced by short-term voluntary muscle contractions and

consequent joint motion. Our approach is summarized in Figure 4.2.

Data-driven modeling of animated human bodies has been a long standing topic in com-

puter graphics. Systems such as SCAPE [ASK∗05] or the more recent BlendSCAPE [HLRB12]

(to name just a two) construct an articulated human body model from a set of input 3D scans.

Similarly to artist-directed systems such as Pose Space Deformation [LCF00], these meth-

ods build a data-driven model which predicts skin deformations based on the skeletal pose

(joint rotations). However, these methods focus exclusively on the skin, i.e., outer boundary

of the human body. The skeleton is modeled as connected line segments, disregarding the

volumetric nature of bones or even muscles. While surface-based data-driven methods are

effective in interpolating the input scans, they are oblivious to the fact that biological soft

tissues are elastic solids subject to Newton’s laws of motion (a notable exception is DYNA

[PMRMB15], which we will discuss in Related Work). To our knowledge, our method is the first

to reconstruct a fully physics-based subject-specific anatomical model, naturally supporting

effects such as inertia, collisions, and gravity. We found that already volumetric modeling of

organs and their corresponding stiffness has interesting visual implications, e.g., the rigidity

of the rib cage is clearly visible when animating upper trunk rotations (Figure 4.8).

The problem of reconstructing anatomical models only from surface 3D scans is inherently

ill-posed. Ground truth measurements of organs could be obtained using MRI or CT scans,

however, these are expensive medical-grade devices designed to diagnose fine-scale patholo-

gies such as bone fractures or tumors. Aside from the high costs, MRI or CT scanners are not

suitable for computer animation purposes because they offer only a very limited workspace,
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i.e., the motion of the imaged human subject is highly constrained. Fortunately, for computer

graphics purposes we do not need high-fidelity medical imaging, because a rough estimate of

the scale and shape of the bones, muscles, and subcutaneous adipose tissues is sufficient to

produce high quality animations. Our anatomical model is designed for full-body animations

and contains only the most visually significant muscles; we do not model the delicate muscles

of the face, hands, and feet, as these body parts are often animated by specialized techniques.

Our anatomical template also does not contain the nervous or circulatory systems or models

of internal organs. However, our results can be of course combined with other computer

graphics techniques such as displacement mapping in order to model, e.g., prominent veins.

By measuring only the 3D geometry of the skin, it seems impossible to determine what are

the shapes and sizes of the underlying bones, muscles, and adipose tissues. However, bones

and muscles do not grow arbitrarily in healthy human subjects (we do not consider pathologies

in this paper), because the musculoskeletal apparatus must be a functional mechanical

system to allow locomotion. To quantify which shapes are more likely than others, we employ

biomechanics-based growth models similar to Computational Bodybuilding [SZK15]. While

Computational Bodybuilding presented methods for the forward simulation of growth of

bones, muscles, and adipose tissues, in this paper, we study the inverse problem, i.e., we solve

an optimization problem to recover the growth parameters which best explain our input 3D

scans. This problem is quite challenging because we have to account for 1) the fact that each

3D scan is in a different pose and 2) the organs do not grow independently, but influence

each other due to action-reaction internal forces (when one bone/muscle grows, it pushes the

adjacent organs out of the way).

Contributions To our knowledge, the problem of reconstructing physics-based anatomical

models from input 3D scans has not been tackled in previous work. Our main contribution

is inverse body modeling (Section 4.5), i.e., formulating and solving a large optimization

problem to find a subject-specific anatomical model which explains the input 3D scans as

closely as possible. Most parts of our forward skinning model (Section 4.4) are derived from

previous work, however, we had to devise a new elastic potential (which we call “symmetric as-

rigid-as-possible” energy) in order to make the subsequent inverse modeling work (classical

as-rigid-as-possible models did not work, as discussed in Section 4.4). We hope that our

approach will help to lower the costs of creating anatomical models of humans and make

high-quality physics-based animation accessible not only to well-known VFX studios, but to a

larger body of researchers and artists.
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4.2 Related Work

Data-driven techniques. The most common approaches for modeling complex anatomical

variation is by leveraging large amounts of data, usually in the form of 3D body scans or

performance capture data. Anguelov et al. [ASK∗05] learn a statistical model for body shape

variations as a function of body pose changes, which is applied on top of a statistical model

of neutral-pose body shapes. An advantage of our method over this is the fact that the same

deformation model is used for all the people, while we construct person-specific internal

components. This data-driven approach was extended and applied to sparse motion-capture

animation in Loper et al. [LMB14], in order to obtain better quality motion reconstructions as

compared to traditional skeleton-driven skinning approaches. Zuffi et al. [ZB15] propose a

part-based model where each body component is a mesh associated to a statistical space, and

connected together by pairwise stitching energies. Recently, [PMRMB15] introduces a novel

data-driven technique that additionally encodes shape changes due to skin and limb velocity

and acceleration, producing animations with compelling inertial effects without the need for

a physics simulation. While these techniques are powerful interpolation tools, they are limited

in their extrapolation capabilities, fixable by collecting more and more data. In contrast, our

method produces fully physics-based models, naturally supporting not only inertial effects,

but also effects due to gravity, volumetric bones, and collisions.

For the particular task of breathing simulation, Tsoli et al. [TMB14] introduce a data-driven

approach in which pose and shape variation is extracted from a set of registered 3D scans

of people captured while breathing in different scripted ways. These priors are then used to

generate varying types of respiration motions in novel characters. In our method we do not

explain shape variations due to breathing, even though this would be an interesting direction

for future work.

Anatomical models and Physics. The motion of humans and interactions between the var-

ious anatomical elements have long been an important focus point for the biomechanics

community. OpenSim [DAA∗07] is an example of an open-source software framework for

biomechanical modeling, simulation and analysis, extensively used in biomechanics and mo-

tor control science. However, OpenSIM does not support physics-based volumetric modeling

of muscles or adipose tissues.

The survey of [LGK∗10] offers a thorough overview of how the biomechanics and computer

graphics communities model and simulate muscles, with most work being focused on skeletal

muscles. Muscles are very complex structures that are not completely understood by modern
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medicine, and, as a result, various approximations have been proposed for making muscle

simulation tractable for various medical or entertainment applications. Out of those, the

physical-based and data-driven approaches are the ones of most interest for our work. Teran

et al. [TBHF03, TSIF05, TSB∗05] introduced some of the first comprehensive approaches for

biomechanical human body simulation in computer graphics. They construct a complete

volumetric human body and a compatible FEM simulation by using solely data from the

Visible Human Dataset.

[SZK15] propose a novel system for performing bodybuilding or weight loss simulations on

human models. They model the muscles using synthetically computed muscle fibers. The

growth of the muscles is discretized into the anisotropic stretch of individual muscle tetrahedra

in the direction of the fibers, and computed efficiently using the projective dynamics solver

[BML∗14]. The key difference from our method is that [SZK15] requires the bone/muscle/fat

growth parameters to be provided by the user.

Fan et al. [FLP14] propose a framework for simulating a dynamic volumetric muscoskeletal

system using an Eulerian-on-Lagrangian discretization that can handle sliding elements in

close contact, volume preservation and large deformations.

Anatomy Transfer [DLG∗13] is a method for transferring and editing the internal structure

of human bodies. It uses a template human body model containing the skeleton and internal

organs and register it to new surface-mesh humanoid models. The internal volume is adapted

using harmonic deformation, driven by the registration of the exterior surface. The amount of

fat tissue is controlled manually and the growth of the bones is constrained for more plausible

results. In a similar vein, [ZHK15] adapts the bone structure of upper and lower limbs given

an RGB-D sequence of moving limbs.

While a lot of research has gone into tackling the general problem of human body mo-

tion, there has been work targeting specific aspects. For example, Si et al. [SLST14] use an

anatomical body model with muscle actuations in a complex fluid simulation in order to build

a control system to simulate different styles of swimming. Similarly, Lee et al. [LT06] focus on

the biomechanical modeling and neuromuscular control of the neck region.

Combining simulation and data. A technique for modeling non-linear material deforma-

tions from a set of captured examples is introduced by Bickel et al. [BBO∗09]. They used

a scattered data interpolation technique in strain-space to simulate novel deformations of

objects composed of the observed materials. Similarly, [WWY∗15] use off-the-shelf 3D sen-

sors to track and model deformations of soft objects using physics-based probabilistic priors.
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Figure 4.3 – Components of our anatomically-inspired volumetric template model.

[CZXZ14] propose a performant approach to reconstruct the zero-gravity rest pose shape of

an object given multiple observations under various external forces such as gravity.

4.3 Template Body Model

The template model defines the topology of the fitted actors, and acts as a regularizer in

the reconstruction process (see Figure 4.3). It consists of a set of n vertices Xtmpl ∈ R3n ,

connected in a tetrahedral mesh. We build the template similar in spirit to Saito et al. [SZK15]

by starting from the commercially available Zygote anatomical body model [Zyg16] with 111

muscles and 204 bones represented as meshes. The skin, as well as the muscles and bones are

uniformly remeshed with the Instant Meshes algorithm [JTPSH15] and then the surfaces are

tetrahedralized using the approach of Jacobson et al. [JKSH13].

In our work, we differentiate between four main types of materials: bones, tendons, mus-

cles, and generic soft tissue. Each bone, tendon, and muscle is embedded into the template

tetrahedral mesh in a non-conforming way, i.e., each tetrahedron might contain one or all of

the materials in certain percentages. These percentages are computed as a pre-processing

stage using a Monte Carlo sampling approach to estimate the amount of overlap of each mus-

cle/tendon/bone with each tetrahedron. For modeling the muscle atrophy and hypertrophy

during subject-specific body fitting, as well as muscle activations during the animation stage

(Section 4.6), the muscle fiber directions are required (see Figure 4.4). We compute the fiber

directions in a similar way as Saito et al. [SZK15]. First, the tendon regions are selected manu-

ally and associated with Dirchlet boundary conditions. The non-tendon muscle boundaries

are associated with Neumann boundary conditions. Next, we solve a Poisson equation for a
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Figure 4.4 – Left: a close-up on the fibers on the right bicep muscle. Right: Visualization of the
embedded muscle fibers in the template model.

scalar field using these boundary conditions. The resulting muscle fiber directions are aligned

with gradients of this scalar field.

Our template anatomical model corresponds to a lean male. To be able to realistically model

subjects with larger amounts of subcutaneous fat, we enhance our discretized volumetric

template with “muscle envelope,” [SZK15], i.e., a triangle mesh which wraps all of the muscles

and separates them from the subcutaneous tissues. See Figure 4.5 for a visualization of the

material distribution in the template model.

In addition to modeling soft tissue, we also use a realistic skeletal rig to parameterize

the allowed motion of the bones. We built our rig using kinematic models established in

biomechanics [WSA∗02, WVdHV∗05]. The final rig is sufficiently expressive to allow even

for complex poses, as shown in Figure 4.6. Also, our rig describes not only pose-dependent

variations (via the joint rotation angles θθθ), but also subject-specific variations (via scaling

parameters πππ). The scaling parameters πππ allow us to model different lengths and sizes of

the bones between individuals. We shall denote Rig(θiθiθi ,πππ) as the function that describes the

motion of the bones as a function of rig parameters. Specifically, the function Rig(θiθiθi ,πππ) returns

posed (skinned) vertex samples, illustrated in Figure 4.9, in the current pose and scaling of

the skeletal rig. These vertex samples will be used as boundary conditions for minimizing the

elastic energies of the soft tissues, as described below.
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Figure 4.5 – The distribution of the material types inside the body. From left to right: bones,
generic soft tissue, muscle.

4.4 Forward Skinning Model

Before diving into the inverse problem of body reconstruction, we will first describe our

forward physics-based character model. Our model is built by extending recent works, in

particular Saito et al. [SZK15] and Zhu et al. [ZHK15]. Saito et al. simulated growth only in

the rest pose, skeletal rig was not included. Zhu et al. did create a skeletal rig, but only for

the extremities: the arm and the leg. Also, the deformation model of Zhu et al. [ZHK15]

was based on direct skinning models. In this paper, the body shape is implicitly defined

as minimizer of a deformation energy (corresponding to elasticity of soft biological tissues)

subject to Dirichlet boundary conditions (corresponding to the bones which are fixed in a

given position in space). This process is known as quasi-statics [MZS∗11]: the bones are

kinematically controlled, e.g., by an animator, and for each configuration of the bones, we

compute a quasi-static equilibrium where the forces due to bone contacts cancel forces due

to internal elasticity of the flesh (we use the term “flesh” as a shorthand for soft biological

tissues). These two interpretations are equivalent because forces are negative derivatives of

the elastic potential and therefore must be zero in a minimizer.

In equations, we can define the quasi-static solution as function:

Skin(Xsrc,θθθi ,πππ) = argmin
X

Eskin(Xsrc,X,θθθi ,πππ), (4.1)
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Figure 4.6 – Complex skeleton rig fitting on Faust dataset.

where Eskin(Xsrc,X,θθθi ,πππ) is equal to the following sum:

BoneFlesh(X,θθθi ,πππ)+Edef(Xsrc,X)+Egrav(X)+Ecol(X). (4.2)

Here θθθ andπππ are joint orientations and bone scaling parameters as discussed in Section 4.3.

The vector Xsrc describes positions of mesh vertices in a reference rest pose, while X corre-

sponds to the deformed pose. The BoneFlesh function describes the connection between the

deformable mesh representing the flesh and the fixed bones. Edef(Xsrc,X) is an elastic potential

function which measures the amount of deformation between configurations Xsrc and X (both

of which correspond to meshes with the same connectivity). Egrav(X) is the gravity potential,

i.e., a linear function which corresponds to the familiar mg h product (mass, gravity constant,

height). The gravity potential allows us to simulate the interplay between inertial and gravity

forces in a physically realistic way, which is important, e.g., in animating fat man jumping.

Finally, Ecol(X) is energy potential penalizing collisions, i.e., self-intersections of the mesh, see

Section 4.5.1 for more details on collision processing. The necessary condition for X being in

quasi-static equilibrium is ∇XEskin = 0, i.e., sum of forces is zero. More details on the above

mentioned terms follow.

70



4.4. Forward Skinning Model

Figure 4.7 – Complex pronation-supination motion is handled well by our physics skinning.

BoneFlesh. The BoneFlesh term introduced above models coupling between kinematically

controlled bones and physically simulated flesh. Anatomically, this term can be related to

connective tissues which hold the musculoskeletal system together. Mathematically, we define:

BoneFlesh(X,θθθi ,πππ) = wbone

∥∥∥SboneX−Rig(θθθi ,πππ)
∥∥∥2

, (4.3)

where Sbone is a binary selector matrix which extracts vertices corresponding to the bone

vertices kinematically controlled by the Rig function, see Figure 4.9. These vertices are chosen

to approximately uniformly sample the surface of the bones and are explicitly present in the

tet-mesh associated with X (conforming embedding). In theory, barycentric (non-conforming)

embedding of bone vertices should be sufficient, however, we observed occasional numerical

stability issues when nearly co-linear or co-planar vertex samples shared the same tetrahedron.

Switching to conforming embedding of bone-samples successfully prevents these issues. For

that we use TetGen with a switch to insert additional points [Si15]. The weighting wbone

controls the stiffness of the bone-flesh attachments and is chosen sufficiently high to avoid

excessive sliding of the flesh (we note that some sliding is natural because biological connective

tissues are compliant). This model is sufficient even for large deformations of the flesh such as

pronation/supination (Figure 4.7) or upper trunk rotation (Figure 4.8).

Rig. Our kinematic skeleton model is modeled by function Rig(θθθ,πππ), which takes joint angle

orientations θθθ and bone scaling parametersπππ as input, and produces world-space coordinates

of vertices sampling the surfaces of the bones, as shown in Figure 4.9. The function Rig

performs two main tasks: 1) it geometrically deforms the bones according to the scaling

parameters, allowing us to model individuals with various lengths and shapes of the bones;

2) it implements standard forward kinematics, i.e., hierarchical composition of rotations of

individual joints. We currently support only rotational joints, but more complicated joint types

(e.g. spline joints [LT08]) could be added to improve the accuracy of the kinematic modeling.
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Figure 4.8 – Anatomically correct bones produce more realistic body shapes e.g. during upper
trunk rotation, where the rib cage retains its shape.

When changing the lengths and shapes of the bones, it is important not to distort the shape

of the bone heads, because adjacent bone heads are often in close sliding contact. We achieve

this in a similar way as Zhu et al. [ZHK15]. Specifically, each bone is deformed using linear

blend skinning with bounded biharmonic weights [JBPS11] with handles located in the center

of each of the bone heads, see Figure 4.10. The handles of adjacent bones (i.e., forming a

joint) are constrained to be transformed by the same matrix which contains only rotation,

translation and uniform scale. This guarantees that the structure of the joint will be preserved.

Formally, we can express this deformation using function BoneGrow(πππ) which depends only

on the growth parametersπππ and produces the modified rest pose bone vertex samples.

The next step is standard forward kinematics, i.e., hierarchical composition of transforma-

tions which correspond to the rotations of individual joints (appearing as components of θθθ)

and coordinate transformations between the individual joints. This is analogous to traditional

forward kinematics models used in robotics [MLSS94], with the only difference that in our

model, the lengths of the bones can change according to the πππ parameters. If we denote

the resulting transformation from the rest pose to the world space as FK(θθθ,πππ), the entire rig

function can be written as composition:

Rig(θθθ,πππ) = FK(θθθ,πππ)BoneGrow(πππ), (4.4)
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Figure 4.9 – Sample bone vertices corresponding to the selector matrix Sbone.

Figure 4.10 – Example of the humerus bone elongation preserving shape of bone heads using
two deformation handles and precomputed bounded biharmonic weights.

where we assume the FK function returns a stack of homogeneous matrices which are applied

to each of the rescaled rest pose bone samples returned by BoneGrow.

Elastic Potential Edef. Elastic models of biological soft tissues have received considerable at-

tention both in the biomechanics [WMG96, Fun13] as well as computer graphics communities

[TSB∗05, TSIF05, SNF05, LST09, SB12]. Neohookean hyper-elastic materials have been found

to function well in recent work [BKS∗12, STK∗14, STC∗13]. Their advantage is realistic model-

ing of large compression – when an element degenerates, the Neohookean energy approaches

infinity, as such configuration is not physically realistic. However, for applications in computer

graphics, this behavior can be problematic, because as shown by Irving et al. [ITF04], inverted

tetrahedra may be necessary to capture large deformations without resorting to remeshing.

Increasing the mesh resolution (e.g., subdividing tetrahedra) can avoid these problems, but

the resolution required to avoid all inversions would be prohibitively high; consider, e.g., the

narrow space between cartilages of two bones connected by a joint. One possible solution is
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the popular corotated elastic model, which penalizes inverted elements by finite energies, i.e.,

allowing elements to invert if they are forced to do so. In the core of corotated elasticity is the

following term: ‖DS D−1
M −R‖2

F , where DM and DS are edge direction matrices in the material

(i.e., reference) space and the deformed space (this notation is consistent with the tutorial of

Sifakis and Barbic [SB12]). The matrix R ∈ SO(3) is found by projecting DS D−1
M onto the closest

rotation.

Even though the classical corotated model is robust enough for use in a production environ-

ment [MZS∗11], it has a significant problem for our inverse problem, where we are optimizing

also over the rest pose, i.e., in our setting, the matrices DM are no longer constant. Unfor-

tunately, we found that the inversion of the DM matrices poses serious numerical problems

when rest pose tetrahedra become close to degenerate, i.e., the DM matrices become close to

singular. This is problematic even if there is just a single degenerate tetrahedron.

To avoid these numerical difficulties, we use the following energy:

Edef(Xsrc,X) =∑
i

ki‖DS,i −Ri DM ,i‖2
F , (4.5)

where the index i goes over all tets and ki ≥ 0 is stiffness of the i -th tet. Note that DM ,i depends

linearly on Xsrc, DS,i depends linearly on X and Ri are rotation matrices minimizing the value

of Edef(Xsrc,X). This optimal Ri can be computed by forming the signed SVD of DS,i DT
M ,i and

replacing the matrix of singular values with an identity matrix. We call this energy “symmetric

as-rigid-as-possibe” because ‖DS,i −Ri DM ,i‖F = ‖RT
i DS,i −DM ,i‖F , i.e., the rest pose and the

deformed pose can be interchanged without changing the value of the energy. Perhaps more

importantly, there is no need to invert the rest pose edge matrices DM ,i , avoiding the numerical

difficulties of the classical corotated model. Another advantage to the corotated model is that

we do not need any volume weighting term such as 1
6 |det(DM ,i )| [SB12], because our units do

not cancel as in the DS D−1
M term, i.e., larger tets automatically contribute more to the total

energy than smaller ones.

The stiffness ki of each tetrahedron is computed as a weighted average of materials overlap-

ping this tetrahedron. Note that even though our tet-mesh conforms to bone sample vertices,

it does not conform to the full polygonal boundaries of the bones or muscles (which would

require prohibitively high-resolution tet-meshes). Similarly to Lee et al. [LST09], we define

the stiffness of each tetrahedron as (
∑

t Vt kt )/(
∑

t Vt ), where t indexes individual material

types (bones, tendons, muscles, generic soft tissues), kt > 0 represents stiffness of each of the

materials and Vt is the volume of a tetrahedron occupied by each component (bone, tendon,

muscle, and generic soft tissues account for the remaining volume). We estimate Vt using
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Monte Carlo sampling (high accuracy is not necessary). See Section 4.8 for more details.

Muscle growth. Our symmetric as-rigid-as-possible (ARAP) elastic model can be extended to

account for muscle growth [SZK15]. We accomplish this using the following energy:

Emuscle(Xsrc,X,α) = ‖DS −RBS(α)BTDM‖2
F , (4.6)

which differs from the symmetric ARAP model by the term BS(α)BT accounting for muscle

growth. Specifically, the orthonormal matrix B is a change of coordinates which transforms

the x-axis to align with the fiber directions (Figure 4.4). The matrix S(α) is a scaling matrix

in the y and z-axes, which allows for simulating muscle shape changes due to atrophy or

hypertrophy:

S(α) =


1 0 0

0 α 0

0 0 α

 . (4.7)

4.5 Inverse Body Modeling

The input of our algorithm is a set of scans corresponding to various poses of a given human

subject (see Figure 4.2). First, the input scans are registered against our template body model

Xtmpl, i.e., deforming Xtmpl until it is in close correspondence with the target scans. We use a

standard non-rigid ICP procedure [RL01], explained in more detail in Section 4.5.2. We denote

the resulting registered meshes as Ti , where i = 1. . .numScans. The goal of inverse body

modeling is to recover the subject-specific body shape in the rest pose Xpers. Note that this

configuration is devoid of the effects of gravity (as if in zero-gravity environment), because the

gravity forces are added during the quasi-static solve in the forward skinning process (Eq. 4.1).

In addition to determining Xpers, we also have to solve for the bone growth parameters πππ

and joint angles θθθi , where i also indexes individual poses, i = 1. . .numScans. The growth

parameters πππ are fixed for a given human being, but the joint angles θθθi vary from pose to

pose. We need to find the values of Xpers,πππ, and θθθi such that the forward skinning function

Skin(Xpers,θθθi ,πππ) produces shapes as close as possible to Ti . Because the function Skin is a

complicated implicitly defined non-linear function, we introduce auxiliary variables Xarti
i

for the personalized and articulated (posed) body shapes. When the inverse body modeling

process is complete, we will have Xarti
i = Skin(Xpers,θθθi ,πππ), however, this equality does not have

to hold in the intermediate steps of our optimization pipeline.
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Targeting term. We formalize the requirement of Xarti
i aligning as closely as possible with Ti

using the following “targeting term”, which is the main objective of our optimization:

Etarg(Xarti
i ) =∑

i
‖NT

i (SskinXarti
i −Scorsp

i Ti )‖2, (4.8)

where Ni is a matrix of stacked scan normals, Sskin is a binary selector matrix of surface

vertices, and Scorsp
i is a matrix of barycentric coordinates that allows us to depart from the

initial registration in order to account for imperfections in the initial correspondences. This is

also why we use this “point-to-plane” objective which allows for sliding of the skin vertices

of Xarti
i along their corresponding tangent planes at Ti . The matrix Scorsp

i is initialized to

the identity (i.e., trusting the initial registration as described in Section 4.5.2) and after each

iteration of the optimization process, we search for new correspondences. Specifically, for

every skin vertex of Xarti
i , we search for closest point of Ti , rejecting pairs further than 5 cm

away or with normals differing by more than 30 degrees [RL01].

Reconstruction. Inverse body modeling can be formulated as the following optimization

problem:

min
Xpers,Xarti

i ,πππ,θθθi

Etarg(Xarti
i )+Ereg(Xpers,πππ)

subject to ∇Xarti
i

Eskin(Xpers,Xarti
i ,θθθi ,πππ) = 0

(4.9)

where i = 1. . .numScans as before. The equality constraints require the posed shapes Xarti
i to

be exactly in quasi-static equilibrium, however, these constraints will be relaxed during our

numerical solution procedure described below.

But first, let us explain the regularization term Ereg(Xpers,πππ). Reconstructing anatomical

models from surface scans only is an ill-posed problem, because we lack direct measurements

from the inside of the human body. Instead, we rely on anatomical priors to rule out unlikely

or even unnatural anatomies. We use

Ereg(Xpers,πππ) = BoneFlesh(Xpers,θθθ0,πππ)+Edef(Xtmpl,Xpers)

+wmuscleEmuscle(Xtmpl,Xpers).
(4.10)

Even though the sum of the BoneFlesh and Edef terms is reminiscent of the forward skinning

function, here these terms have somewhat different function: they serve to explain deforma-

tions between individual human subjects, as opposed to poses of a single individual. The

θθθ0 vector of joint angles corresponds to the rest pose and the term BoneFlesh(Xpers,θθθ0,πππ)

requires the personalized rest pose Xpers to align with the skeleton grown according to skeletal
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growth parametersπππ. The Edef(Xtmpl,Xpers) term states that the deformation between Xtmpl

and Xpers should be minimized. In other words, the personalized mesh needs to stretch or

shrink according to the resized skeleton, but the shape should not depart too much from

the initial template. Finally, the Emuscle(Xtmpl,Xpers) term penalizes shape changes which

cannot be explained by muscle growth (the α parameters are free). The reason is the – perhaps

optimistic – assumption that shape variations are more likely explained by muscle growth

rather than by more general fat growth. The parameter wmuscle ≥ 0 controls our confidence

in this assumption and can be tuned by the user or based on external measurements, e.g.,

assessment of body fat percentage by measuring the skin fold thickness. Note that there is

no gravitational potential acting on Xpers; it only acts on the final articulated shapes Xarti
i . In

other words, our Xpers shape corresponds to the rest-pose body in a zero gravity environment

[CZXZ14], such as at the International Space Station.

Penalty method. Equation 4.9 represents a non-convex constrained optimization problem

that can be written in a general form as min f (x) subject to c(x) = 0, where f is the objective

and c a vector function of constraints. We solve this optimization problem by converting it into

a sequence of unconstrained optimization problems using the penalty method [NW06]. Each

unconstrained subproblem has the following form: min f (x)+γ‖c(x)‖2, where γ is the penalty

weight. The γ parameter is progressively increased from 0 to 107 by factors of 10. (increasing

the γ further does not produce any visible differences).

Each γ-subproblem is solved using Newton’s method with Hessian modification (Algorithm

3.2 in [NW06]). In particular, evaluating the exact Hessian matrix would be complicated

because it contains third derivative terms (note that the constraints c already contain first

derivatives of the Eskin potential). Similarly to Bickel et al. [BKS∗12], we drop these third

derivative terms. The approximate Hessian is further modified by adding scalar multiple of

the identity matrix to ensure positive definiteness. Having determined the descent direction,

we calculate appropriate step size using backtracking line search. We note that alternative

numerical solution procedures are possible, e.g., the Augmented Lagrangian Method, however,

we found that our quasi-Newton penalty method converges rapidly in our experiments.

4.5.1 Handling Collisions

We treat collisions in a fashion similar to McAdams et al. [MZS∗11]. We detect tet-tet collisions

using a fast bounding box sequence intersection algorithm [ZE00]. For efficiency reasons, only

selected regions near the joints are considered for collision processing, as these are the most
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common places where self-intersections occur. For example, our system does not try to detect

or resolve pose-induced collisions such as hand touching the belly. The detected collisions are

handled by instantiating temporary anisotropic springs that project the colliding vertices X

out of the collision, to the surface of the tetrahedral mesh:

Ecol(X) =
(
n˝(X)

T(X− ˝(X))
)2

, (4.11)

where ˝(X) is the projection of X onto the surface of the tetrahedral mesh, encoded by the

barycenters of the closest surface triangle, and n˝(X) is the normal at the projected surface

triangle. This anisotropy is helpful by allowing for sliding along the tangent plane at the pro-

jected surface point [MZS∗11]. The Ecol energy potential is removed once the corresponding

vertices are no longer in contact.

4.5.2 Registration

In this section we describe our method to obtain the initial registration between our template

model Xtmpl and the input scans T̃1, . . . , T̃numScans, which are unstructured triangle meshes

with noise, holes, or other imperfections. We use a non-rigid ICP procedure which deforms

Xtmpl into T1, . . . ,TnumScans such that each Ti is well aligned with its corresponding scan T̃i . We

initialize the process with approximately 15 landmark points, interactively selected by the user

in our GUI. We use the tet-mesh associated with Xtmpl to define a regularization energy for

non-rigid ICP. Specifically, we use our symmetric ARAP energy (Eq. 4.5) with uniform stiffness

ki for all tets. We do not even account for the rigidity of the bones, i.e., we treat the entire

template tet-mesh as a jellyfish. This crude approximation is sufficient to establish good initial

correspondences, which will be refined in subsequent iterations of our optimization process,

as discussed earlier in the Targeting term paragraph.

4.6 Animation

The resulting personalized body model Xpers,πππ is ready for physics-based animation. As input,

we provide a time-varying sequence of joint angles θθθ j , where the index j samples discrete

time intervals (corresponding, e.g., to a constant time step such as 1/30s). The animated

joint angles can come from various sources such as keyframe animation or from retargeted

motion capture data. The latter is particularly easy to achieve in our framework, because

motion retargeting can be easily achieved using a subset of functionality of our optimization

framework.
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But first, let us explain how to introduce dynamics effects, such as flesh jiggling. In our

physics-based framework, this can be naturally achieved by switching from quasi-statics to

full dynamics simulation. Assuming the widely used Implicit Euler time integration, this is as

simple as adding an extra convex quadratic term to the energy terms in the Eskin(Xsrc,X,θθθi ,πππ)

function (Eq. 4.2). This “inertial” term introduces history dependence, i.e., accounts for

Newton’s first law (which is ignored in quasi-statics). Specifically, let us denote the animated

body shape as Xanim
j , where j again indexes discrete time steps. We assume that Xanim

0 and

Xanim
1 are provided as initial conditions (typically starting with zero velocities, i.e., Xanim

0 =
Xanim

1 ). The inertial term can be defined as:

Einert(X) = 1

2h2 ‖M1/2(X−2Xanim
j +Xanim

j−1 )‖2 (4.12)

where M is a diagonal mass matrix and h is the time step. This term can be derived from the

Implicit Euler integration rules, which can be found e.g. in [BML∗14].

In addition to the inertial term, we also add the collision avoidance potential Ecol discussed

in Section 4.5.1. Gravity potential is also accounted for as described already in Eq. 4.2.

The physics-based animation framework is quite versatile and in addition to supporting

the effects of inertia, collisions, and gravity, we can also add muscle contraction forces. To do

this, we assume that time-varying muscle activation signals are provided by the user. These

can be e.g. keyframed, which is common in professional VFX animation systems [WET13],

or calculated using inverse dynamics models [LST09]. Let us denote the muscle activation

signals asβββ j , where j indexes discrete time steps as before. The muscle contraction potential

is similar to the muscle growth potential (Eq. 4.6), however, instead of the rest-pose growth

matrix S(α) (Eq. 4.7) we use the following matrix:

S(β) =


β−1 0 0

0
√
β 0

0 0
√
β

 (4.13)

which accounts for the volume preserving nature of muscle contraction due to high water

content in soft biological tissues [WMG96]. Mathematically, this is modeled by the fact that

the determinant of matrix S(β) is one, resulting in the characteristic bulging behavior of

contracting muscles (see Figure 4.11 for an example). Note that the muscle growth scaling

matrix S(α) (Eq. 4.7) does not have determinant one because it accounts for growth, which is

of course not volume conserving.
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Figure 4.11 – Our physics-based animation approach allows for animating pose-specific
muscle shape changes due to muscle contractions. The upper images show the shape of the
arm and muscles in a flexing pose, and the lower images show the effect of contracting the
biceps muscle in the same pose.

4.7 Results

We performed our experiments on 3D surface scans with diverse quality and resolution.

Specifically, we tested our reconstructions on publicly avaiable good quality 3D surface scans

obtained from the FAUST dataset [BRLB14] and database of Hasler et al. [HSS∗09], from high

quality commercially available scan collections and we also experimented with low resolution

scans captured using the Microsoft Kinect with the Skanect Pro registration software.

Reconstruction Accuracy We have successfully reconstructed targets with various body types

and skeletal variations including a muscular bodybuilder, subjects with apparent subcuta-

neous fat, as well as a slim actor, see Figure 4.12. We used between 2 to 5 scans for each subject

depending on the quality of scans and diversity of the poses. Although it would possible to use

only a single scan in our method (similarly to [DLG∗13]), this means the underlying anatomi-

cal model is less well determined. In particular, we observed ambiguities when optimizing

for subject specific variations in bone lengths. For example, given one 3D surface scan with

the actor with straight limbs, it is very difficult to accurately determine the locations of the
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a) b) c) d) e) f)

Figure 4.12 – Registered 3D surface scans of our test subjects in two different poses (a, c) and
corresponding reconstructions using our anatomical physics-based model (b, d). Note that the
shapes are quite similar. We also show our optimized rest pose Xpers (e) and a novel, unseen
pose synthesized using our forward skinning model (f).

joints. Jointly optimizing over scans of multiple poses, e.g. adding a scan with bent limbs,

helps to this eliminate uncertainty, as the optimization algorithm places the joint in the most

appropriate location. In Figure 4.12 we demonstrate the accuracy of our approach in terms of

matching the input 3D scans. Our results show that our physics-based model can reproduce

high quality body shapes with a close visual similarity to the scans.

Gravitational Effects Another advantage of using multiple scans is reducing the ambiguity

due to gravitational effects and self-collisions of the skin. In Figure 4.13 we show the effect

of taking gravity into consideration during our inverse body modeling process. We aim

to reconstruct the rest pose in zero gravity, because gravity will be added in the forward

simulation process. Note that this is a challenging problem in its own right [CZXZ14].
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Figure 4.13 – Example of the effect of gravity on the rest pose reconstruction process. The
figure on the left shows the result of the reconstruction without taking gravity into account.
In the middle, gravity is taken into account and eliminated from the rest pose – note that the
belly “floating” as if the body was submersed in water. This “zero gravity” rest pose matches
the input scan (right) closely because gravity is added during the forward simulation process.

Collisions An example of collision handling during the forward animation phase is shown in

Figure 4.14. Equally important is collision handling during inverse body modeling. When the

input 3D scan contains body parts in contact, it means the measured shape was influenced by

action-reaction forces preventing the flesh from inter-penetrating. Our Ecol term estimates

these contact forces and compensates for them during our inverse body modeling process.

This results in recovering more accurate rest poses, as shown in Figure 4.15.

Comparison to Anatomy Transfer Our approach has several key advantages over Anatomy

Transfer [DLG∗13] and its more recent extensions [ZHK15]. First, our approach can take

advantage of multiple scans in different poses, which leads to high reconstruction accuracy,

as discussed above. Second, Anatomy Transfer as well as its extensions [ZHK15] use only a

highly approximate deformation model of biological soft tissues. In our method, we use more

realistic growth models for the bones and muscles, which allows us to estimate the underlying

anatomy more accurately, as shown in Figure 4.16.

4.8 Implementation Details

The geometric search data structures and algorithms used for the scan registration and colli-

sion detection are based on CGAL [The16] and nanoflann [ML14]. Numerical linear algebra is
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Figure 4.14 – Example of collision handling for the forward simulation.

Figure 4.15 – Example of collision handling during inverse body modeling. In this example, a
single scan was used (shown in gray) in which the actor was pressing his arms against his body.
Notice that the rest pose reconstruction on the left has the shape of the arm imprinted on the
chest; the rest pose reconstruction on the right does take the collision forces into account and
reaches a more realistic rest shape.

83



Chapter 4. Reconstructing Personalized Anatomical
Models for Physics-based Body Animation

Template a) b) a) b) a) b)

Figure 4.16 – Comparison of our method with muscle modeling and material-aware deforma-
tion (a) vs. uniform flesh deformation (b) similar to Anatomy Transfer

implemented using Eigen [GJ∗10]. We benchmarked the performance on a consumer laptop

with a 3.1 GHz Intel Core i7 processor and 32GB of main memory. For a complete rest pose

optimization using 4 scans, we needed a total number of about 15 Newton iterations until

convergence, with about 120s of computation time per iteration.

The template model used for the results presented in this paper has 12977 vertices, out of

which 4901 are surface vertices, and 64164 tetrahedra. The skeleton used for rigging has 67

joints with a total of 52 articulation and 38 sizing parameters. There are 111 muscles in the

template model.

In order to compute the contribution of each material to each body tetrahedron, we use a

Monte Carlo sampling approach. For each muscle/tendon/bone tetrahedron Tm , we generate

one sample for each mm3 of the volume of Tm . Specifically, we generate random samples

using a uniform distribution around the centroid of Tm until the desired number of samples is

reached. Using those locations, we perform look-ups in the AABB tree of the body tetrahedrons

Tb and count the contributions of those samples inside the body.

In the forward simulation for the animation stage, we use a time step h = 1/30s, and we

build the mass matrix M assuming uniform density of the material in the body, meaning that

the per-vertex mass is proportional to the sum of the volumes of the tetrahedra in which that

vertex is present.

Our approach proved robust and excessive parameter tuning was not needed. The material

parameters we used to generate results are: kbone = 10−1, kdef_bone = 7∗10−4, kdef_tendon =
3∗10−4, kdef_muscle = 2∗10−4, kdef_soft_tissue = 10−4, kmuscle = 10−3.
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4.9 Limitations and Future Work

We focus on capturing the physics of large- and medium-scale anatomical details, but we do

not reconstruct faces, hands or toes. We believe that these are research topics of their own

which require specialized approaches. However, such techniques already exist and could be

integrated in our body modeling framework.

In the visualizations of our experiments we noticed that the bones sometimes protrude

through the muscles, which is most visible in the chest region. This is due to the soft non-

conformal embedding of the bones in the tetrahedral mesh of the body, as well as due to the

multi-material property of each body tetrahedron. These problems could be alleviated by

increasing the resolution of the template model, which may lead to the necessity of applying

more memory-efficient and performant optimization techniques.

We do not consider muscle shape changes in the posed scans, assuming all the muscles

are in a relaxed stage or that they are not contracted significantly. While this holds true for

most of the scans we used in our experiment, one can think of poses and situations in which

correctly capturing the shape variation of muscles due to contractions becomes important.

For example, using a scan of the bodybuilder flexing his arm muscles together with scans in

which he was relaxed created issues in our optimization. However, once reconstructed, our

anatomical models allow for simulating muscle contraction in the forward animation stage.

A venue of future research would be to automatically extract muscle activations given the

pose of the subject, and to normalize the shape changes due to contractions in the rest pose

reconstruction problem.

The scans used in our experiments are static poses, in which the actor was in equilibrium.

The reconstruction problem becomes much more complex when dynamics are added to the

scans, e.g., by capturing a continuous stream of point clouds from an actor’s performance.

Furthermore, having the muscle forces actively change passive joint angles has been a topic

intensely studied in the biomechanics community, but not tackled in great detail by Computer

Graphics researchers.

Retrospective

A similar problem will be revisited in Chapter 6, but applied to the human head and specifically

to modeling facial expressions. While at first sight the setting seems similar, animating human

faces is fundamentally different. Skeletal muscles in the body contract and act on the skeletal
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joints, while facial muscles only deform the skin on the face (with the exception of the muscles

of mastication). This makes it easier to build a coherent muscle-actuated facial template

model.

In terms of optimization techniques, in our subsequent work we used the interior point

method approach instead of the penalty method with Newton optimization. We found this

to be superior for solving the inverse physics problem due to the improved solver, as well as

the fact that we employed the IPOPT library which contains a mature implementation of this

optimization algorithm.

Finally, Chapter 6 shows multiple applications of using physical constraints in order to

produce realistic simulations of face modifications as a result gaining weight or facial surgery,

for example. Such applications are also possible in the project described in this chapter,

although we have not explored them yet.
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metric Face Rigs

Figure 5.1 – We present a facial animation system that can simulate physics-based volumetric
effects such as self-collisions and collision with external objects. Our method is data driven
and avoids the burden of detailed anatomical modeling.

Note

This chapter corresponds to the following publication [IKNDP16]:

ICHIM, A.E., KAVAN, L., NIMIER-DAVID, M., AND PAULY, M. Building and Animating

User-Specific Volumetric Face Rigs. ACM SIGGRAPH / Eurographics Symposium on Computer

Animation (SCA), 2016

The candidate contributed with most of the concepts and implementation in this publica-

tion.
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Figure 5.2 – Workflow of our method: from a template model and input 3D scans, our system
produces a subject-specific facial animation model. We propose a volumetric formulation of
example-based facial rigging (EBFR) to generate the volumetric blendshapes (VBS).

Figure 5.3 – Template model: skull of an average subject with expected flesh thicknesses (left),
tet-mesh of the interior (middle), and skin (right).

Abstract

Currently, the two main approaches to realistic facial animation are 1) blendshape models

and 2) physics-based simulation. Blendshapes are fast and directly controllable, but it is not

easy to incorporate features such as dynamics, collision resolution, or incompressibility of

the flesh. Physics-based methods can deliver these effects automatically, but modeling of

muscles, bones, and other anatomical features of the face is difficult, and direct control over

the resulting shape is lost. We propose a method that combines the benefits of blendshapes

with the advantages of physics-based simulation. We acquire 3D scans of a given actor with

various facial expressions and compute a set of volumetric blendshapes that are compatible

with physics-based simulation, while accurately matching the input scans. Furthermore, our

volumetric blendshapes are driven by the same weights as traditional blendshapes, which

many users are familiar with. Our final facial rig is capable of delivering physics-based effects

such as dynamics and secondary motion, collision response, and volume preservation without

the burden of detailed anatomical modeling.

88



5.1. Introduction

5.1 Introduction

Realistic animation of human faces is a long standing problem in computer graphics. Blend-

shape models are currently the most widely used solution in animation production [LAR∗14]

and impressive facial animations have been created with blendshape models in recent high-

end productions. However, this process can be very labor-intensive and time-consuming

even for experienced digital artists. Physics-based simulation of anatomically-based face

models can potentially eliminate much of this manual work, because non-linear effects such

as incompressibility of biological soft tissues or prevention of self-collisions (e.g. lips-lips or

lips-teeth) can be handled automatically. However, the anatomy of the human face is highly

complex, posing significant difficulties in creating accurate anatomical face models of specific

people.

Instead, we explore a new route, proposing a facial animation model that leverages the

benefits of physics-based simulation without the burden and complexity of full anatomical

modeling. Specifically, our technique helps prevent geometric inconsistencies such as volume

loss, inter-penetrations, or unnatural facial expressions commonly observed in traditional

blendshape models. Even though these deficiencies can be manually fixed by a skilled artist

using corrective blendshapes, our method achieves physically-realistic behavior automatically,

without the need of user intervention.

Our goal is to build an animatable facial rig of a specific actor. We start by acquiring 3D

scans of several facial expressions of the actor including a neutral face shape. These scans

are used to adapt a volumetric head template, corresponding to an average human (see

Figure 5.3), to the specific actor. To achieve physics-based behavior, we propose a novel

volumetric blendshape model, which controls the deformation gradients in the entire face

volume.

The proposed volumetric blendshapes model retains the key desirable properties of tra-

ditional blendshapes: posing with intuitive blendshape weights and direct control over the

resulting deformations. This means that any animator familiar with traditional blendshape

models will be able to readily use our method. In contrast to traditional blendshapes, our

model performs a full physics-based simulation, allowing even effects such as inertia or col-

lisions with external objects. This is enabled by the fact that our volumetric blendshapes

control deformation gradients of the flesh instead of absolute positions. However, we do not

model individual muscles, which would require significant modeling effort and simulation

time. Instead, the volumetric blendshapes discretize the entire deformable volume of the face

using a tetrahedral mesh.
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Our method (see Figure 5.2) assumes an average-human volumetric head model as input.

To create an actor-specific face model, we scan the actor in a neutral pose and several (in

the order of 10) facial expressions. In the first step, Neutral Registration in Figure 5.2, we

volumetrically warp the template to align with the input scan of the actor’s neutral facial

expression. In step 2, we perform Expression Registration to deform this neutral shape into the

acquired facial expressions, such as smile, frown, etc. The key difference from the first step is

that now we assume the bones are rigid and the soft tissues are incompressible, because at

this stage we do not model a new human being, but rather explain different facial expressions

of the same actor. Due to the fact that our models are volumetric, we obtain full volumetric

deformation for each of the facial expressions.

In order to create a facial rig compatible with traditional blendshape models, step 3: Vol-

umetric EBFR executes a volumetric version of Example-Based Facial Rigging [LWP10], i.e.,

explaining each of the expression scans using a blend of volumetric blendshapes. The key

idea of volumetric blendshapes is to perform non-linear blending of deformation gradients

of all tetrahedra in our face model. On one hand, volumetric blendshapes are driven by the

same weights as traditional blendshapes, constituting a convenient interface for the Anima-

tion stage of our pipeline. On the other hand, volumetric blendshapes approximate muscle

contraction forces, i.e., the generators of facial expressions. This allows us to combine them

with other competing forces in a physics-based simulation, enabling us to deliver effects such

as secondary motion and inertia, volume preservation, and contact forces.

Contributions. We present a pipeline to turn 3D scans of an actor’s face into physics-based

simulation-ready models that are able to respond to inertia or external forces, e.g., due to

self-collisions of the face or collisions with external objects. We formulate our pipeline in a

coherent optimization framework – all components are built using the concepts of Projective

Dynamics [BML∗14], which 1) results in efficient run times and 2) can be easily reproduced

using open source implementations of Projective Dynamics such as ShapeOp [DDB∗15]. Sev-

eral novel technical contributions make this approach practically viable: 1) novel registration

methods using physics-based priors such as volume preservation and self-collision handling,

2) advanced collision handling for Projective Dynamics, and 3) a “baking” system for gen-

erating higher-order corrective blendshapes which explain physical effects such as volume

preservation and collisions with performance comparable to traditional blendshapes.

In this paper we focus on creating simulation-ready volumetric models. We do not aim

for complete production-quality facial rigs that are commonly equipped with high resolution

textures, normal, or displacement maps, see Figure 5.4. Compared to traditional blendshape
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Figure 5.4 – Input hi-res 3D scan (left). Our volumetric physics-based model (middle) uses only
a medium-resolution mesh, but details can be re-introduced using high-resolution textures
(right), as is commonly done in high-end productions.

models, our approach provides more accurate volume and area preservation, as well as rigid

motion of the skull and the jaw. Our model also handles interactions between the lips and the

teeth, often prone to self-intersections with traditional blendshape models, in particular for

speech or chewing sequences. We can also simulate interactions with external objects, e.g.,

responding to contacts with rigid bodies.

5.2 Related Work

Facial reconstruction. Research in the field of facial animation has mostly focused on data-

driven techniques, due to the high complexity of facial morphology. The seminal work of

[BV99] builds a statistical (PCA) model of facial geometry and later on [CWZ∗14] builds a

bilinear facial model, which can be employed to create blendshape models from a single

image [BV99], [CWZ∗14], from multiview stereo [ABF∗07], [ARL∗10], or for the creation of

personalized real-time tracking profiles from RGB-D data [WBLP11], [BWP13] or monocular

video [IBP15],[GVWT13], [SWTC14].

Anatomical models. Dicko et al. [DLG∗13] propose a method for transferring and editing the

internal structure of human bodies. They use a template human body model containing the
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skeleton and internal organs and register it to new surface-mesh humanoid models. The exte-

rior surfaces are registered and the internal volume is adapted using harmonic deformation.

Additional constraints are used for manually tuning the amount of fat tissue and keeping the

bones straight. In a similar vein, [ZHK15] adapts the bone structure of upper and lower limbs

given an RGB-D sequence of moving limbs. [CBB∗15] propose a technique to transfer facial

anatomy to challenging non-human creatures using sophisticated correspondences between

the template and target shapes. However, their method relies only on a single neutral facial

expression. In contrast, our approach uses multiple scans of facial expressions and is able to

reproduce them with high accuracy.

[VCL∗06] present a review of computerized techniques for craniofacial reconstruction, i.e.,

generating the skin surface of faces from 3D skull information. An algorithm to reconstruct

the skin surface, as well as an animatable muscle system from 3D scans of skulls is proposed

by [KHS03]. Their method registers a template face model to the 3D mesh of the skull by

RBF deformation on a sparse set of landmarks with user-specified skin thicknesses. A mass-

spring system is then adapted to the fitted template and the face can be animated. For

more application-specific use cases of anatomical models, [BB14] present an approach for

rigid stabilization of the head in high quality 3D scans by fitting a simple skull model with

physically-inspired constraints. [BBK∗15] use high quality facial scanning and a simplified

physical model in order to recover spatio-temporal details of the eyelids.

Physics-based facial animation. [SNF05] build a system for physics-based animation of one

human subject. The subject’s face is captured using a laser scanner (high-resolution, surface

only) and an MRI scanner (low-resolution, volumetric). A simulation-ready 3D model is cre-

ated using custom software tools, medical atlases, and multiple months of manual work. The

resulting face model is biomechanically accurate in the sense that realistic facial expressions

are created by physics-based simulation of muscle activations. In addition, the model can

be used to track a facial performance of the subject, captured using a sparse set of mark-

ers attached to the face. The physics simulator is based on a quasi-static FEM approach,

numerically solved using Newton’s method.

More recent techniques such as Position-based [MHHR07] and Projective Dynamics [LBOK13,

BML∗14] propose to substitute Newton’s method with faster numerical solution procedures.

In particular, Projective Dynamics [BML∗14] yields faster per-iteration times while simul-

taneously enjoying high robustness and support of many different types of deformation

constraints.
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Combining simulation and data. Our volumetric blendshapes blend deformation gradients,

similarly to MeshIK [SZGP05]. However, MeshIK relies only on deformation gradients of

surface triangles and does not support dynamics or collisions. Similar approaches such as

deformation transfer [SP04] and FaceShift [WBLP11] also do not take collisions into account,

see Figure 5.6. We use a complete volumetric model combined with full physics-based simula-

tion, enabling us to deliver inertial and secondary motion effects (such as flesh jiggling) as

well as realistic response to collisions while preserving the volume of biological soft tissues.

[MWF∗12] build a mass-spring system model for the face that is able to deliver some of these

effects. However, volume preservation with mass-spring systems is problematic. A concurrent

work [BSC16] uses Projective Dynamics to deform the surface of a face combined with a

new concept of “blendforces”, which are similar to our volumetric blendshapes. However,

[BSC16] model only the surface of the face. In contrast, our method explicitly models volume

preservation of the flesh, as well as rigidity of the skull and the jaw bones.

5.3 Method

As input, we assume a template model of an average human face. This model consists of a

volumetric tetrahedral mesh for the neutral expression which discretizes the interior of the

head, including a realistic model of the oral cavity, see Figure 5.3. We obtain this model by

converting a commercial anatomical CAD model of the head [Zyg16] into a tet-mesh using

the method of [JKSH13]. The skin is the boundary of this tet-mesh. To get an initial model of

facial deformations, we use an artist-created surface blendshape model [WBLP11], which also

comes with parameterization (UV coordinates). We register this model against the boundary

of our volumetric model, which allows us to animate the skin, but not the interior. Extending

the surface deformations to the interior is one aspect of our pipeline, discussed below.

Our final volumetric template model is a single connected tet-mesh where we can identify

the following components corresponding to high-level anatomical features of the head (see

Figure 5.3): 1) skin – a UV-mapped surface mesh, 2) bones – tet-meshes for the cranium and

the mandible, including teeth, 3) flesh – in-between tet-mesh conforming to the skin and the

boundaries of the bones.

Our volumetric model corresponds to a hypothetical average human subject and must

be adapted to a given actor. The scanning of our actor’s face is performed using a custom

multiview stereo rig with 12 DSLR cameras with uniform lighting, similar to [BBB∗10]. Note

that our method is not dependent on the specific scanning method. Any approach for creating

high-resolution scans of a face, e.g. laser scanning, RGB-D, are equally suitable. The captured
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photos are processed in AgiSoft PhotoScan which creates detailed triangle meshes for each

expression.

5.3.1 Volumetric modeling of actor’s neutral face

Registration. The 3D scan of the actor’s neutral face is a triangle mesh containing noise,

topological errors, and other imperfections, see Figure 5.7. We overcome these issues by

regularized registration, i.e., by deforming our volumetric template model to align well with

the 3D scan of the actor. We follow the paradigm of Iterative Closest Point (ICP) algorithms

and iterate between finding correspondences and volumetric deformations of our template.

We find surface correspondences using the standard approach of closest points with distance

and normal-based rejection [RL01]. The non-rigid deformation steps are alternated with

shape-preserving rigid fitting steps, which only allow for translation, rotation, and uniform

scale (necessary because multi-view stereo does not determine scale).

Deformation model. We model volumetric deformations in the Projective Dynamics frame-

work due to its speed, robustness, and flexibility [BML∗14]. The key concept of Projective

Dynamics is to use elastic energy potentials expressed in the following “projective” form:

Ei (x) = ‖Gi x−Pi (Gi x)‖2
F , (5.1)

where Ei is the energy contribution due to element number i (e.g., tetrahedron), x is a column

vector concatenating all of the nodal coordinates (deformed state), Gi is a sparse matrix,

typically representing a discrete differential operator, and Pi is a projection operator. For

example, the finite element As-Rigid-As-Possible model (E ARAP
i ) [CPSS10] can be expressed

with Gi representing the deformation gradient of a tetrahedron [SB12] and Pi representing

the projection onto SO(3), i.e., the group of 3D rotations.

Correspondence terms. Our registration process utilizes a set of 26 land-

mark correspondences initialized automatically using [SLC11] and fine-

tuned by the user (see the figure on the right). In the Projective Dynamics

framework, these correspondences are implemented using an “attach-

ment” term E attach
i where Gi is simply a selector matrix and Pi is the

constant target position (i.e., projection onto a fixed point). The corre-

spondences found through closest point search by the ICP algorithm
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are handled similarly; the only difference is that we do not “trust” the

absolute positions of these correspondences and therefore use a point-to-plane energy term

E planeDist
i , where Gi is still a selector, but Pi projects on the plane tangent to the scan at

the closest point. This allows for tangential sliding, which improves the convergence of the

ICP process [LSP08]. The point-to-plane energy is also used as a collision response mecha-

nism, projecting inter-penetrated vertices outside of the volume; we elaborate on collision

processing in Section 5.3.5.

Face priors. We also add energy terms specific to faces, i.e., utilizing the prior knowledge

that the resulting surface must correspond to a plausible human face. As we are solving for

deformations of the interior too, ideally we would also use a statistical shape model of skulls.

However, so far we were not successful in obtaining a sufficiently large database of 3D skull

shapes. Instead, we utilize flesh thickness measurements from a forensic study [DGCV∗06],

inspired by the work of Beeler and Bradley [BB14] on rigid stabilization.

Statistical shape models of neutral faces of various people are available; we use the estab-

lished PCA model of Blanz and Vetter [BV99]. This model consists of a mean face shape m

and 50 PCA basis vectors, represented as orthonormal columns of a matrix B. Each of the

basis vectors is associated with a standard deviation, represented as a 50×50 diagonal matrix

Σ. Let us also denote by S a surface selector matrix, i.e., Sx represents the boundary (skin)

vertices, discarding the interior ones. The skin shape Sx can be additively decomposed into

two parts: one in the column space of B and the other one orthogonal to it. We introduce

a different energy term for each part. For the component of Sx in the column space of B

we can measure its likelihood of corresponding to a natural face shape, as predicted by our

PCA model. This leads to E faceLike(x) = ‖Σ−1/2BT(Sx−m)‖2. The orthogonal complement

(I−BBT)(Sx−m) corresponds to modes outside of our PCA model. We do not have stan-

dard deviations for these modes and therefore we penalize them uniformly using the term

E faceDist(x) = ‖(I−BBT)(Sx−m)‖2. Both of these terms are convex quadratic functions that

can be easily embedded in the Projective Dynamics framework.

Flesh thickness. Our flesh thickness model is based on statistical information from a forensic

study [DGCV∗06]. We start from a sparse set of 16 skull landmarks containing the mean and

variance of flesh thickness at this point, and then linearly interpolate these values over the

entire skull. Specifically, for each non-landmark skull vertex, we find three closest landmarks,

with closeness measured using geodesic distance on the skull. The mean and variance are then

interpolated linearly, using the inverse geodesic distances as blending weights. The resulting
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mean thicknesses are visualized in Figure 5.3 (left). Regions such as the craniocervical junction

and the teeth do not have flesh thickness measurements (in these regions, we set the mean to

zero and the standard deviation to infinity). For each skull vertex j , we introduce an energy

term:

E thickness
j (x) = 1

σ2
j

‖nT
j (H j x−T j x)−µ j‖2 (5.2)

where σ j is the standard deviation, n j is the skull normal, H j is the selector of the skull vertex

and T j selector of the corresponding skin vertex, and µ j is the mean flesh thickness. The term

E thickness
j (x) encourages realistic placement of the skull inside the head, see Figure 5.5. We

combine all of the face-specific priors into:

E prior = E faceLike +E faceDist +τ∑
j

E thickness
j (5.3)

For notational brevity we drop the argument x which appears in all the terms. The parameter

τ≥ 0 expresses the relative confidence in the flesh thickness prior.

For a given set of correspondences, the final volumetric deformation problem can be

expressed as the minimization of:

E total = E planeDist +αE attach +βE ARAP +γE prior, (5.4)

where we assume that each energy type is summed over all elements, e.g., E ARAP(x) =∑
i E ARAP

i (x),

with i summing over all tetrahedra. The weights α≥ 0,β≥ 0,γ≥ 0 are used to guide the reg-

istration process. The key idea is to start with high regularization (high values of α,β,γ) to

obtain an initial guess and progressively reduce the regularization as our correspondences are

becoming more and more accurate. Specific parameter values used in our experiments can be

found in Section 5.5.

In terms of numerical optimization, we minimize E total using the local/global solver of

Projective Dynamics [BML∗14]. We slightly modify the solver in order to handle constraints

using Lagrange multipliers, which allows us to avoid collision constraints in a more efficient

way, as described in Section 5.3.5. We denote the final result as xneutral, see the third column of

Figure 5.7.

5.3.2 Registration of actor’s facial expressions

In the previous section we showed how to deform the volumetric template into xneutral, which

corresponds to the scan of our actor in neutral expression. In this section, we describe how to
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Figure 5.5 – Rigid stabilization using the skull mesh and skin thicknesses. The standard skin
registration approach (left) does not compute the correct rigid registration of a mouth open
scan, as compared to the skull-based approach (middle and right).

deform xneutral to align with the other expression scans. Specifically, we use 10 expressions

such as smile, frown, kiss, sneer, etc. The key difference from the previous section is that

the deformation from xneutral to the target expression must be physiologically plausible, i.e.,

achievable by a normal human subject under normal conditions. For example, in Section 5.3.1

it is accepted to deform the bones, because we are explaining individual subject-specific

differences. However, in the next stage the bones must remain rigid, because now we are

explaining only shape differences due to facial motion of a given human subject.

For each facial expression of our actor (Figure 5.7) we manually find approximate corre-

sponding blendshape weights. This is not too difficult because the actors were instructed

to assume specific expressions, which are combinations of only a few blendshapes. We use

deformation transfer [SP04] to bootstrap the expression registration process. Assuming a

given facial expression, for each triangle of the template surface mesh (2D), we compute

the deformation gradient, i.e., the 3D linear transformation between the rest pose and the

template expression, using the cross product of the edges to determine the normal, as in

[SP04]. Next, we select all surface tetrahedra from the neutral pose (xneutral) and define an

energy term

E defTransfer
k = ‖Fk −Ftarget

k ‖2
F , (5.5)

which attracts the deformation gradients Fk of all surface tets k of the neutral face (xneutral) to

the deformation gradients Ftarget
k calculated from the template model.

Because the template blendshape model explains only the surface, the terms E defTransfer
k are

defined only for tetrahedra adjacent to the boundary. To propagate the surface deformation to
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(a) FaceShift [WBLP11] scan registration.

(b) Deformation transfer [SP04].

Figure 5.6 – Most previous methods do not handle self-collisions.
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the entire volumetric shape, we apply the E ARAP term discussed in Section 5.3.1 to all of the tets.

This term ensures that the surface deformation is distributed throughout the entire volume.

During this volumetric deformation, we need to account for the fact that most biological

soft tissues are nearly incompressible [WMG96]. We capture this behavior with a new term

E volume that is analogous to the ARAP term, except that the projection on SO(3) is replaced

with projection of SL(3) – the group of matrices with determinant 1, i.e., volume preserving

linear maps. This leads to the objective

E defTransfer +µE ARAP +λE volume, (5.6)

where the µ and λ are Lamé parameters approximating the elasticity of the flesh. We minimize

Equation 5.6 using Projective Dynamics, keeping the vertices corresponding to the bones

fixed (they do not appear as degrees of freedom in the optimization problem). We open the

jaw manually by estimating the rigid transformation of the jaw corresponding to the given

expression. We denote the result as xinit, which serves as volumetric initialization for the

subsequent fitting.

Next, we need to take the actual expression scan into account. As shown by Beeler and

Bradley [BB14], it is advantageous to start the fitting process with “rigid stabilization”, guided

by areas of the skin that are close to the skull and thus not significantly affected by facial

expressions. We use an energy analogous to Equation 5.2, where the mean is set to the actual

flesh thickness in xneutral and the variance is left out, because at this point we are no longer

trying to model variations among different human subjects. We denote this modified objective

as Ẽ thickness. We find the optimal transformation T as a composition of rotation, translation,

and uniform scale such that Ẽ thickness(Txinit) is minimized. The uniform scale takes care of the

fact that the expression scan from multi-view stereo is in arbitrary units of length.

The resulting “rigidly stabilized” state Txinit contains a good estimate of the bone positions

and a good initialization of the skin. We are therefore ready to launch the ICP process to ac-

count for the subtleties of flesh deformations, while keeping the bones fixed. The deformation

energy is analogous to Equation 5.4:

E exp-total = E planeDist +αE attach +µE ARAP +λE volume (5.7)

Similarly to Section 5.3.1, the attachment term E attach is found in a semi-automatic way using

[SLC11]. Differently from Equation 5.4, we drop the E prior term because at this stage we are

already committed to a given actor. For the same reason, we include the E volume term to

enforce incompressibility of the soft tissues.
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5.3.3 Volumetric facial rigging

The expression registration process described in Section 5.3.2 results in plausible volumetric

shapes xexpression,l , where l indexes the individual facial expressions. Interpreting xneutral

(Section 5.3.1) as the rest pose, we can compute deformation gradients for all tets, mapping

from xneutral to xexpression,l . For each expression, we stack the deformation gradients of all tets

into a matrix Hl . Let us denote the vector of blendshape weights for the l-th expression as

αl . These blendshape weights are copied from the template blendshapes and ensure that our

volumetric blendshapes will have the same semantics as the template blendshapes. This has

the desired consequence that the user intuitively understands how each parameter affects the

shape of the face, e.g., that αl ,6 lowers the right mouth corner etc.

Our next task is to find the volumetric blendshapes. A volumetric blendshape is a collec-

tion of deformation gradients for all tets in the face model. Even in the traditional surface

case [LWP10], we do not observe the blendshapes directly, because each facial expression

xexpression,l is composed of several blendshapes. We find our volumetric blendshapes through

a process similar to Example-based Facial Rigging [LWP10] adapted to the volumetric case.

Specifically, we solve for volumetric blendshapes Vm by minimizing:

∑
l

∣∣∣∣∣∣∣∣(I+∑
m

Vmαl ,m

)
−Hl

∣∣∣∣∣∣∣∣2

F

+κ∑
m

‖Vm − Ṽm ||2F (5.8)

where the addition of stacked identity matrices I ensures that if all αl ,m = 0, we obtain the

neutral face, corresponding to all deformation gradients equal to identities. In other words,

the αl ,m are not coefficients of an affine combination, but rather scaling factors of individual

blendshapes, interpreted as differences from the neutral pose. In the second term, the Ṽm are

volumetric blendshapes obtained from deformation transfer of template blendshapes, i.e.,

minimizing Equation 5.6. The second term including its weighting coefficient κ≥ 0 expresses

a prior, which is necessary because the first (data) term does not specify the volumetric

blendshapes uniquely (in all of our experiments we use κ= 10−4). This is because we use only

a small set of expressions which could be generated by many different volumetric blendshapes.

Therefore, we use the second (regularization) term that picks a unique solution – the one that

is as close as possible to deformation-transferred template blendshapes.

5.3.4 Animation

We create new facial animations using a time-varying sequence of blendshape weights w(t )

and rigid head motion R(t) ∈ SE(3); the latter specifies the position and orientation of the
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skull. Even though the jaw motion could be also controlled explicitly, we continue to rely

on the blendshape model, which is compatible with standard animation workflows, i.e.,

the jaw motion is implicitly controlled via blendshape weights instead of explicit control

via rigid transformations or a kinematic rig (used by Sifakis and colleagues [SNF05]). The

rigidity of the jaw bone will be enforced in the volumetric-blendshape blending process,

described below. Our input sequences of the time-varying w and R parameters can be either

directly keyframed by artists or captured from human subjects using tracking software such as

FaceShift [WBLP11].

The blendshape weights can be used to blend the deformation gradients from the individual

volumetric blendshapes linearly, Ftarget = I+∑
m Vmαm , as in Equation 5.8. However, it is a

well-known fact that linear blending of matrices is prone to artifacts, especially when the

blended transformations contain larger rotations [SD92]. This problem can be avoided by

using the polar decomposition method introduced by Shoemake and Duff [SD92]. Specifically,

if we have a set of 3× 3 matrices M1, . . . ,Mn , we first find their polar decompositions, i.e.,

Mi = Ri Si , where Ri is a rotation and Si is symmetric. The rotations Ri are then blended

non-linearly using quaternions [Sho85]; the “stretch” matrices Si are blended linearly, as they

correspond to the non-rigid component of the transformation. Finally, the blended rotations

and stretch components are multiplied together to create the final result. This approach avoids

the loss of volume associated with linear blending of rotations. If the input transformations

are pure rotations, as is the case for tets corresponding to the jaw, the blended result will also

be a pure rotation, guaranteeing that the jaw bone remains rigid as expected. See the figure

on the right for an example: the blue curve is the path of a linearly interpolated vertex for a

mouth opening sequence, while the green curve is the path using nonlinear interpolation.

In theory, Equation 5.8 should be revised for polar decomposition-

based blending. In practice, the computation of polar decomposition

inside the objective would require more complicated numerical solution

procedures and therefore, we continue to rely on Equation 5.8. This lin-

ear approximation seems to be sufficient for the purpose of determining

volumetric blendshapes.

If we denote the deformation gradients computed by polar-

decomposition-blending as Ftarget, we can create a “targeting” energy

term:

E target(x) = ‖F(x)−Ftarget‖2
F (5.9)

where F is a linear function of x [SB12]. This energy specifies that all deformation gradients

F of the unknown mesh state x are attracted to Ftarget. Intuitively speaking, the E target term
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serves the same purpose as muscle activations in full anatomical models [SNF05], however,

without the need of modeling the geometry and mechanics of individual muscles. While

we avoid the intricacies of full anatomical modeling, we retain the possibility of introducing

additional energy potentials and constraints. For example, dynamic effects can be easily

added using an “inertial” term E inertia(x) = 1
2 (x−y)TM(x−y), where M is the mass matrix and

y is state predicted by Newton’s first law, i.e., motion without the presence of forces. This

term is equivalent to the variational Implicit Euler formulation used in Projective Dynamics

[BML∗14]. Perhaps even more useful is the ability to add constraints due to collisions with the

face itself, e.g., lips-lips or lips-teeth collisions, or external objects. Our approach to handling

contact involves a modification of the Projective Dynamics solver which is described in the

following section.

Stronger inertial or contact forces can result in shapes with deformation gradients signif-

icantly departing from the targeting term E target. In order to preserve realistic behavior of

the soft tissues even in these large deformations, we add the µE ARAP +λE volume terms, as in

Equation 5.6. This has a natural biomechanic interpretation as the elasticity of passive soft

tissues [TSIF05]. Intuitively, if there is, e.g., a large external force acting on the cheek, this force

is propagated through the entire musculoskeletal system. For tets corresponding to the skull

and the jaw, we use stiffness high enough to prevent any visible deformations of the bones

(specifically, we use µ= 1000).

5.3.5 Collisions

Our collision processing mechanism is based on point-to-plane constraints which are dynam-

ically instanced as needed to resolve collisions, analogous to classical collision resolution

approaches [MZS∗11]. To detect inter-penetrations, we use a fast bounding box sequence

intersection algorithm [ZE00] for the broad phase, and an AABB tree built in the rest pose.

For efficiency, only certain pairs of regions of the face are checked against collisions (e.g., lips

against lips, lips against skull, skin against external objects). When colliding with external

objects, our current implementation assumes these external objects are fixed, e.g., directly

controlled via keyframing. In either case, if we detect a collision, i.e., a vertex penetrating

a tetrahedron, we find the closest surface point where the vertex needs to move in order to

resolve the collision. To facilitate sliding, we create a constraint which requires the offending

vertex to align with a tangent plane at the closest surface point. In case of both self-collisions

and external collisions, this can be expressed as affine equality constraint Ci x = di , where i

indexes contact points. We append all of the collision constraints together: Cx = d. The main

challenge in efficient collision processing is the fact that the collision constraints Cx = d are
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Figure 5.7 – Registration of 3D scans of our test subjects: neutral pose (left) and two facial
expressions (middle, right).

frequently changing.

The original Projective Dynamics paper [BML∗14] proposes two options. The first is to

directly add energy terms penalizing violation of the collision constraints. Unfortunately,

this requires re-computing the factorization of the global step matrix, resulting in significant

computational overheads. The second option is to add these constraints for all vertices in the

system and pre-factorize only once, because changing the target positions or planes of the

constraints affects only the right hand sides. The undesired side-effect is that these constraints

affect the behavior of the system even if there are no collisions. The collision constraints

are always present in the system, and even if they are not active, they attract the vertices

towards their current locations. In practice, this introduces additional damping, slowing down

convergence in the quasi-static case and creating artificial viscosity in the dynamic case.

To avoid these drawbacks, we propose a new method, motivated by the observation that

the number of colliding vertices is typically small, because the collision resolution process

is invoked each iteration. The key idea is to apply the Schur complement [Jac13, YCP16] to

reuse the pre-computed factorization without introducing any artificial damping. First, recall

that the global step of Projective Dynamics solves a linear system Ax = b, where A is a constant

symmetric positive definite matrix. Therefore, Projective Dynamics pre-computes a sparse
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Cholesky factorization of A that allows calculating A−1b very efficiently as long as A is not

changing.

We propose to incorporate our frequently changing collision constraints Cx = d using

Lagrange multipliers. This leads to the KKT system, named after the famous Karush-Kuhn-

Tucker optimality conditions [NW06]:

[
A CT

C 0

][
x

λ

]
=

[
b

d

]
(5.10)

One possible way to solve this system while taking advantage of the existing factorization of A

would be using low-rank updates [CDHR08]. Unfortunately, in our case the cost of low-rank

updates is comparable or even greater to the cost of factorizing the KKT system from scratch.

Instead, we propose to solve for the Lagrange multipliers using the Schur complement of

Equation 5.10: CA−1CTλ = CA−1b−d. The matrix CA−1CT is dense but small, because we

assume the number of rows of C is small; in our simulations, it is typically less than 50. The

solve forλ is therefore fast even with dense linear algebra. Having foundλ, we can compute

the solution x = A−1(b−CTλ).

5.4 Corrective blendshapes

In some cases, physics-based facial animation may not be desirable, e.g., in 3D game engines

which require extremely fast animation algorithms. In this case, our approach can be used as

an automatic method to generate corrective blendshapes, which is a common way to address

the problems of linear blendshape models [LAR∗14]. We focus on the basic case of quadratic

blendshapes, even though higher-order methods are also possible. The key idea is to sample

activations of every pair of blendshapes. For each pair, we sample activations of each of the

two blendshapes; we use four steps for the first weight: 0.25,0.5,0.75,1 and five for the second

one: 0,0.25,0.5,0.75,1, leading to a total of 20 samples per pair. We denote the final sequence

of 20
(b

2

)
blendshape weights samples as w1,w2, . . . , where the number of blendshapes in our

case is b = 29. For each of them we synthesize a realistic face shape using our method, as

described in Section 5.3, and denote the coordinates of the resulting skin vertices as p1,p2, . . . .

Our goal is to explain these example face shapes pk using the quadratic blendshape model.

This task can be formulated as an optimization problem:

argmin
m,ui ,vi j

∑
k

∣∣∣∣∣
∣∣∣∣∣m+∑

i
wk,i ui +

∑
i

∑
j

wk,i wk, j vi j −pk

∣∣∣∣∣
∣∣∣∣∣
2

(5.11)
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where m is the mean, corresponding to neutral facial expression, ui are traditional linear

blendshapes and vi j are the quadratic blendshapes. We find the optimal m,ui ,vi j by solving a

linear least squares problem.

5.5 Implementation and results

The geometric search data structures and algorithms used for registration and collision de-

tection are based on CGAL. Our optimization framework is an extension of the open-source

ShapeOp [DDB∗15]. Numerical linear algebra is handled using Eigen. Our current prototype

runs on the CPU, parallelized using OpenMP. We benchmark the performance on a consumer

laptop with a 2.5 GHz Intel Core i7 processor and 16GB of main memory. In our experiments,

the animation converged using 6 iterations per frame. The timing per frame ranges from

500ms if no collisions are detected up to 1200ms when the lips collide heavily (about 80 colli-

sion constraints at a time, like in the chewing sequences shown in the supplementary video).

The template volumetric model has 7366 vertices and 14600 triangles for the skin surface, 8947

vertices and 36654 tetrahedra for the flesh, 6760 vertices and 29888 tetrahedra for the bones.

We use the same anatomical template for all of our actors.

Registration. For registration of the neutral face expression (Section 5.3.1), we used the fol-

lowing parameters: α = 101,β = 101,γ = 10−2,τ = 101. We captured three different human

subjects, all of them experienced actors. The input neutral scans and our resulting registered

templates are shown in Figure 5.7 (left). In addition to the neutral expression, for each actor

we also captured 10 facial expressions and executed the expression fitting algorithm described

in Section 5.3.2 with parameters µ= 102 and λ= 103. The results for two different expressions

can be seen in Figure 5.7 (middle and right). Our registration technique takes advantage of col-

lision constraints to avoid self-penetrations, see Figure 5.8. Similarly, the volume preservation

terms used in the expression registration process help us avoid unnatural deformations, as

shown in Figure 5.9. Because the inside of the mouth is not visible and therefore not captured

by 3D scanning methods, previous techniques that do not account for incompressibility of

the flesh can deform the lips into unnaturally thin shapes. Furthermore, volume preservation

helps to establish the lip contact surface, which is difficult to determine using optical methods

due to occlusions.
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Figure 5.8 – Our collision handling (right) avoids inter-penetrations during expression registra-
tion.

Animation. We invite the reader to watch the accompanying video, showing facial animation

sequences generated by our system. In particular, certain types of facial expressions frequently

produce self-intersections of the lips with traditional blendshape models. Our method success-

fully removes these inter-penetrations while departing from the original blendshape model as

little as possible, see Figure 5.10.

In addition to traditional facial motion driven purely by muscle activations, our method

allows incorporating external forces. In Figure 5.11 (left), as well as in the accompanying

video, we show a talking sequence with part of the bottom lip held fixed. Our simulator

can also naturally deliver dynamic effects, including stylized animations such as shockwave

propagation through the skin or making the nose more heavy while swinging the head, see

Figure 5.11 (middle). Perhaps even more entertaining are collisions with external objects, such

as the boxer glove in Figure 5.11 (right). Note that the nose bridge does not deform due to the

presence of the bone in this region, unlike the rest of the nose.

Corrective blendshapes. We use 8120 samples corresponding to activating all pairs of blend-

shapes at different activation levels (Section 5.4), resulting in 406 quadratic blendshapes which

require additional 65MB of memory (in addition to 7.7MB for the linear blendshapes). The

runtime increases from 1ms for linear-only blendshapes to 8ms, which is acceptable even

in real-time applications such as games. To compare the accuracy of quadratic vs. linear

blendshapes, we measured for each frame of an animation sequence the error between the full

simulated model and an approximation computed by 1) linear and 2) quadratic blendshapes.
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Figure 5.9 – Volume preservation allows us to achieve more natural expression registration
(right). To the left is the result without volume preservation.

Figure 5.10 – The difference between the blendshape animation and our physically simulated
animation, expressed as the squared norm error between each mesh for each frame of a
sequence. Note that the spikes appear when large non-linear motion is present (e.g., frame
280), or when collisions are present (e.g. frames 90, 155, 330).

Figure 5.11 – Our method allows us to incorporate external forces and dynamic effects.
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Figure 5.12 – Error decrease when using blendshapes against our trained quadratic corrective
blendshapes on an animation sequence.

Figure 5.13 – An example of the handling of self-collisions via corrective blendshapes. From
left to right: linear blendshapes, quadratic correctives, simulation.

The resulting plot is shown in Figure 5.12. The quadratic blendshapes significantly reduce the

error compared to the linear ones. Even though we cannot guarantee collision-free results,

the quadratic blendshape model is quite effective in avoiding visible self-penetrations, as

demonstrated in Figure 5.13. A limitation of quadratic blendshapes is the fact that they are

not able to capture previously unseen external forces, such as collisions with external objects.

5.6 Conclusion

We introduced a method for creating personalized volumetric face rigs that combine the

intuitive control of blendshapes with the improved realism of physics-based simulation.

Specifically, our face animation supports volume preservation, avoids self-collisions, and en-

ables dynamic effects due to external forces. These improvements in animation quality come
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at the cost of increased computation time. To alleviate this performance loss, we show how

the simulated face model can be used to automatically create corrective blendshapes. While

these cannot guarantee the same level of accuracy as the full simulation model, significant

quality improvements are achieved with a low computational overhead compared to the initial

blendshape model.

Building a volumetric face rig based on high-resolution surface scans requires advanced

registration algorithms to mitigate errors caused by the inherent limitations of the optical 3D

scanning process, such as occlusions. We show how the same underlying optimization frame-

work used for animation can be applied effectively for volumetric registration as well. This

unification of representation and optimization leads to a simple and robust implementation

based on existing open-source software.

As the quest for more realism continues, we believe that reducing the complexity of facial

rigging will be crucial for wide-spread adoption in computer gaming, movie production, VR

and avatar-based online communication. Interesting future challenges lie in further simplifi-

cations of the acquisition process, in building more advanced volumetric priors for effective

model reconstruction, and in more efficient simulation methods for realtime animation of

volumetric face rigs.
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Retrospective

While the approach presented in this chapter enabled us to produce numerous compelling

animations, we did notice some limitations that we have addressed in more detail in the

next chapter. The major drawback was the way we constrain the tetrahedra when performing

expressions. Because we impose the rotational component for each tetrahedron (Equation 5.9),
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we essentially have a linear elasticity model, which we will show to cause visual artifacts under

large rotations due to heavy inertia or collisions. Second, from a mathematical point of view,

the essential property of the system to be in a steady state in the scans is not respected in this

approach, and we will correct that with the inverse physics solution in Chapter 6. Furthemore,

the jaw motion will be modeled as an actual rigid body, creating boundary constraints in the

physics solves. These additions, as well as others, made the forward animation more robust

and lively, allowing for a large range of novel result applications.

However, we will use this project as the anatomy transfer registration module for the next

chapter, as we have shown it performs much better than thin shels deformation models for

facial scan registration.
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6 Phace: Physics-based Face Modeling and

Animation

Figure 6.1 – Physics-based simulation facilitates a number of advanced effects for facial
animation, such as applying wind forces, fattening and slimming of the face, wearing a VR
headset, and even turning into a zombie.

Note

This chapter corresponds to the following publication [IBP15]:

ICHIM, A.E., KADLECEK, P., KAVAN, L., AND PAULY, M. Phace: Physics-based Face Modeling

and Animation, ACM Transactions on Graphics (Proceedings of SIGGRAPH), 2017

The candidate contributed as follows:

• collecting the data

• the inverse physics formulation of the muscle activation model and its regularization

• some of the applications

• the implementation of the registration and animation pipelines
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Abstract

We present a novel physics-based approach to facial animation. Contrary to commonly used

generative methods, our solution computes facial expressions by minimizing a set of non-

linear potential energies that model the physical interaction of passive flesh, active muscles,

and rigid bone structures. By integrating collision and contact handling into the simulation,

our algorithm avoids inconsistent poses commonly observed in generative methods such as

blendshape rigs. A novel muscle activation model leads to a robust optimization that faithfully

reproduces complex facial articulations. We show how person-specific simulation models can

be built from a few expression scans with a minimal data acquisition process and an almost

entirely automated processing pipeline. Our method supports temporal dynamics due to

inertia or external forces, incorporates skin sliding to avoid unnatural stretching, and offers

full control of the simulation parameters, which enables a variety of advanced animation

effects. For example, slimming or fattening the face is achieved by simply scaling the volume

of the soft tissue elements. We show a series of application demos, including artistic editing

of the animation model, simulation of corrective facial surgery, or dynamic interaction with

external forces and objects.

6.1 Introduction

Accurate simulation of facial motion is of paramount importance in computer animation for

feature films and games, but also in medical applications such as regenerative and plastic

surgery. Realistic facial animation has seen significant progress in recent years, largely due to

novel algorithms for face tracking and improvements in acquisition technology [vdPJD∗14,

KRP∗15].

High-end facial animations are most commonly produced using a sophisticated data

capture procedure in combination with algorithmic and manual data processing. While

video-realistic animations can be created in this manner, the production effort is significant

and costly. A main reason is that complex physical interactions are difficult to recreate with

the commonly employed reduced model representations. For example in blendshape rigs,

collisions around the lip regions or inertial effects of the facial tissue are typically not accounted

for. To remedy these shortcomings, artists often introduce hundreds of corrective shapes

that need to be carefully sculpted and blended to achieve the desired effect in each specific

animation sequence [LAR∗14].

Recent work [IKNDP16, BSC16] proposes to avoid these shortcomings by augmenting the
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generative approach of blendshape animation with a simulation-based solution. A key benefit

of physics-based simulation is the ability to correctly handle collision and contact, both for

internal contact of facial tissue or bones, as well as for collisions with external objects. In

addition, secondary motion, such as inertial deformations or other time-dependent effects

can easily be integrated into the optimization pipeline.

One major difficulty in simulation-based approaches is to achieve the required level of

realism, which is particularly challenging for facial animation, due to the heightened human

sensitivity for facial motion perception [BY86]. Accurate simulation requires building a de-

tailed volumetric face model that faithfully represents the shape and dynamics of the captured

subject. However, acquiring such a volumetric face model is challenging. Volumetric data

produced by CT or MRI scanners is often difficult to convert into a simulation-ready repre-

sentation. So far, successful pioneering methods required a significant amount of manual

editing [SNF05], which makes them difficult to deploy at scale.

We approach this problem by combining easy-to-obtain facial surface scans with a template

model that integrates rigid bone structures, active muscle tissues and passive flesh, fat, and

skin layers in a fully volumetric simulation model of the human face (see Figure 6.3). By

scanning the subject in multiple facial poses, we obtain a representation of the geometry and

expression dynamics of the acquired person. We then solve an inverse problem to estimate

the activation parameters of the registered template rest pose in order to best reproduce the

scanned expressions under activation.

We propose a novel muscle activation model in order to match the input scans more

accurately. Unlike previous models that are constrained by fixed fiber directions, our model

introduces additional degrees of freedom to support any deformation devoid of global rotation

(since a muscle cannot rotate itself). This generalized model avoids the problem of relying on

pre-determined fiber directions which are often inaccurate.

Subsequently, we can create new animations driven by muscle activations using a forward

physics simulation that incorporates collision handling, volume preservation, inertia, and

external forces such as wind forces or gravity. Muscle activations can be computed from a

temporal sequence of blendshape weights, which enables straightforward integration into

existing animation environments.

Contributions. The main technical contributions of our work are:

• a novel muscle activation model that offers more flexibility than standard fiber-based
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models,

• a physics-based simulation method that retains realism even with significant external

forces or substantial modifications of the face geometry and tissue material properties,

• an inverse modeling optimization to adapt the simulation template to a series of expres-

sion scans of a specific person.

An important feature of physics-based approaches is that their parameters can be con-

trolled to achieve the desired effects. In our case, the parameters include the stiffness of

simulation elements, their rest shape volume, the static bone structure, or the muscle activa-

tion parameters. This detailed control facilitates numerous new applications that are difficult

to achieve with existing methods. Examples we show in this paper include

• slimming and fattening of the face by adapting the volume of soft tissue,

• simulation of corrective facial surgery, such as orthognathic surgery to correct for jaw

malformations,

• dynamic interaction with external forces (e.g. wind) and objects (e.g. VR headsets),

• artistic editing of facial expression dynamics by modifying tissue stiffness or muscle

behavior.

Overview. Figure 6.2 provides a visual summary of our physics-based face modeling and

animation approach. Central to our method is a face template model that combines volumetric

and surface elements as shown in Figure 6.3. Physics-based optimization is performed on

a tetrahedralized volumetric model composed of rigid bones and deformable tissue. The

latter is further separated into active muscles, and passive flesh and skin. Muscles actively

deform to drive the dynamic motion of the face model. In order to control the animation,

we augment the volumetric template with a surface blendshape basis that represents the

facial expression space. This also provide an interface to the surface scans used to build

actor-specific simulation models.

The core algorithmic components of our method are the inverse and forward physics

simulation modules. Inverse physics is used in a model building stage to create a simulation-

ready anatomical face model of a specific person. As input to this preprocessing stage, we

assume a set of surface scans that are first transformed to a user-specific blendshape model.

An anatomy transfer step warps the volumetric template towards the neutral expression of

the blendshape model. Subsequently, our inverse physics solver computes suitable muscle

activations of the simulation model to best approximate each expression blendshape.

Given the person-specific simulation model and corresponding muscle activation patterns,
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Figure 6.2 – Schematic workflow of our method.

we can apply forward physics simulation to compute dynamic face articulations. This anima-

tion stage takes as input a temporal series of blendshape weights that are mapped to per-frame

muscle activations. External effects such as gravity or object collisions can be incorporated in

the simulation to support a wide range of dynamic effects.

The rest of the paper is organized as follows: we first put our work in context by discussing

related work in Section 6.2. In Section 6.3 we present our simulation template model. Then

we introduce the forward and inverse physics simulation algorithms in Sections 6.4 and 6.5,

respectively. Section 6.6 explains how these components are integrated into the model building

and animation stages. In Section 6.7 we analyze the behavior of our method and provide
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Figure 6.3 – Our template model consists of a volumetric representation of the tissue and
bones (a), and a surface blendshape basis to represent the expression space (d). Muscles are
embedded into a non-conforming tetrahedral mesh discretization (b). We explicitly model
jaw kinematics with a 5 DoF joint (c) and utilize low-resolution geometry proxies for faster
collision detection for the teeth region (e). Dynamic skin sliding is supported by introducing
both sliding (green) and fixed (red) constraints for bone-tissue connections (f).

comparisons to previous work. We show several application demos in Section 6.8, before

concluding with a discussion of limitations and future work.

6.2 Related Work

Data-driven methods. A significant body of work in facial animation is based on data-driven

techniques. Multi-view stereo acquisition systems are used extensively to acquire detailed ge-

ometry and texture models, e.g., [ABF∗07, ARL∗10, BBB∗10]. Avatar creation based on simple

cell-phone camera acquisition was proposed by Ichim et al. [IBP15], while depth sensors are

often used to create 3D avatars suitable for realtime tracking, e.g., [WBLP11, BWP13, LYYB13].

These methods typically rely on data-driven priors to guide the reconstruction process, in

particular morphable face models [BV99] or multi-linear (tensor) decomposition [VBPP05,

CWZ∗14]. They can be used in combination with upsampling methods, for example to add

subject-specific details such as wrinkles [BBB∗14]. Data-driven methods typically do not

capture dynamic effects, even though some recent progress on this front has been made in

the case of full-body animation [PMRMB15].
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Advanced acquisition. In recent years we have witnessed significant improvements in ac-

quisition of facial performance and morphology, in particular detailed skin microstructure

[NFA∗15], eyes [BBN∗14, BBGB16], eyelids [BBK∗15], hair [HMLL15], lips [GZW∗16] and teeth

[WBG∗16b]. Modern methods can also capture medium-scale details (wrinkles) from monoc-

ular input in real-time [CBZB15]. Anatomical constraints have proven useful in estimating

the rigid transformation of the skull (rigid stabilization) [BB14] and extracting detailed flesh

deformations [WBGB16].

Anatomical models. Early anatomical models were based on procedural models such as FFD

[CHP89]. Procedural muscle models were also used in pioneering work on facial reconstruc-

tion [KHS03]. Physics-based models of muscles and passive soft tissues were explored by Teran

and colleagues [TBHF03, TSIF05, TSB∗05], later extended into a comprehensive biomechani-

cal model of the upper body [LST09], and combined with fluid simulation to study swimming

[SLST14].

Biomechanical modeling is a complex task and several software platforms support soft

tissue simulation, such as Sofa [ACF∗07], ArtiSynth [LSF12], or FEBio [MEAW12]. An impor-

tant aspect of soft tissue modeling is the capture of material properties [BBO∗09] and their

reproduction using modern fabrication methods such as 3D printing [BKS∗12].

Algorithmic and numerical aspects of soft tissue simulation continue to be a topic of active

research; recently, Fan et al. [FLP14] proposed an Eulerian-on-Lagrangian method to simulate

dynamic musculoskeletal systems, while Saito et al. [SZK15] applied Projective Dynamics

[BML∗14] to simulate hypertrophy or atrophy of the muscles or fat.

More recently, Kadlecek et al. [KIL∗16] studied the inverse problem of full-body modeling,

inferring effects such as hypertrophy or atrophy of skeletal muscles from input 3D scans. De-

spite certain similarities to faces, a key difference is that full-body animation is characterized

by muscles moving the bones, e.g., biceps moving the elbow. In facial animation, the skeletal

articulation is limited to the jaw bone and facial expressions are created mainly by muscles

pulling one another without any associated bone motion.

Physics-based face animation. The pioneering work of Sifakis et al. [SNF05] proposed a fully

physics-based facial animation model, built from MRI and laser scan data of one specific

subject. The key differences of our method are a more flexible muscle activation model

combined with a more efficient inverse physics solver (Section 6.5). While Sifakis et al. [SNF05]

also solve the inverse activation problem, their approach needs to invert a dense n ×n matrix,
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where n is the number activation variables. This limits their method to using only low-

dimensional activations, such as one activation per muscle, as opposed to our approach that

allows for a richer high-dimensional activation model. A key benefit of our approach is that

building the simulation model for different people is an almost entirely automatic process,

as opposed to the substantial manual work required in previous work [SNF05]. Without the

need of detailed parameter tuning, our approach also simplifies facial modifications such as

slimming/fattening or geometric edits of the rigid bones.

The problem of scaling physics-based animation to different subjects has also been ad-

dressed in Cong et al. [CBB∗15]. They propose a method that uses only the neutral expression

to adapt an anatomical face model to different characters, including fictional ones. However,

they do not attempt to closely match specific expressions of the target character as in our

approach.

Cong and colleagues [CBF16] introduce “art-directed muscles”, i.e., blendshape models

applied to the muscles. This approach caters to experienced visual artists who appreciate

direct control over their anatomical rigs. However, the art-directed muscles lack translation

and rotation invariance which limits their ability to generalize, e.g., to significant facial modifi-

cations or large external forces inducing displacements of entire muscle groups. We propose a

translation and rotation invariant muscle activation model and an automatic inverse physics

procedure for inferring muscle activations from target expressions.

Alternative approaches to physics-based facial animation use mass-spring systems [MWF∗12]

or finite element modeling of the face as elastic thin shell [BSC16]. While these methods sup-

port certain types of physics-based effects, a surface-only approach does not correctly handle

collisions or support volumetric face modifications, such as visualizing the outcome of facial

surgery. Modeling interior tissue and bones is also important when the face is subjected to

inertial or external forces that visibly expose the rigidity of the internal bone structure.

Volumetric blendshapes as proposed in Ichim et al. [IKNDP16] introduce energy terms

attracting deformation gradients to their target values derived from input facial expressions of

a given person. The volumetric blendshapes are translation invariant, but they lack rotation

invariance, introducing similar artifacts as linear elasticity, especially in situations with large

external forces (Figure 6.10). In this paper, we create a model compatible with traditional

blendshape interfaces, but we push the anatomical realism further by utilizing a novel muscle

activation model, separating active and passive soft tissue layers, and introducing sliding con-

straints to attach soft tissue to the bones. As a consequence, our model implements a variety

of advanced animation effects and supports significant modifications of the face simulation

model, which enables a number of new applications as demonstrated in Section 6.8.
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6.3 Template Face Model

Our approach starts from a generic face model – an anatomical face template corresponding

to an average human subject (see Figure 6.3). We created this model from a commercially

available anatomical data set [Zyg16] that contains polygonal representations of the bones

(the skull, the jaw, including teeth), skin (including a realistic model of the oral cavity), and

33 facial muscles. Using the winding-number method of Jacobson et al. [JKSH13] we gen-

erate a tetrahedral mesh discretizing the soft tissue of the face. Our tet-mesh conforms to

the skin and the bones, but not to the muscles, because a conforming discretization of the

numerous thin facial muscles would require prohibitively many elements. Instead, we use

non-conforming discretization where every tetrahedron can represent multiple types of soft

tissues. We distinguish between two types of soft tissues: active corresponds to muscles, while

passive corresponds to subcutaneous fat, connective tissue and the skin, i.e., tissue that is not

voluntarily activated by neural signals (Figure 6.3-b).

Up to the accuracy of the discretization, the active layer corresponds to the union of all

facial muscles, while the passive layer forms the region between the active layer and the skin

and fills in areas between the bones. Even though this model is not as accurate as modeling

every muscle individually, it captures the key fact that the shape of the skin is affected by

facial muscles only indirectly, i.e., the contracted muscles deform passive soft tissue, which

consequently induces skin deformations.

Jaw kinematics. The relative motion of the jaw with respect to the skull contributes signifi-

cantly to the final articulation of the face. The kinematics of the temporomandibular joint

is non-trivial, consisting of both rotational and translational motion. In our model (see Fig-

ure 6.3-c), we define the major rotation axis (x-axis, corresponding to mouth opening) as the

axis passing through the centers of the mandibular condyles. Halfway through the condyles,

we define a perpendicular axis (y-axis) corresponding to vertical jaw rotation. The jaw does

not normally rotate about the third orthogonal axis (z-axis), but it can translate (slightly) in

all three directions. This amounts to 5 DoFs for the jaw motion, expressed with respect to

the skull, which is treated as a free rigid body (our model does not include the craniocervical

junction). We concatenate the kinematic parameters of the jaw bone into a vector b ∈R5.

Template blendshapes. Given an anatomical model of the face, a natural control interface

would be activation signals for all motor units. While biologically meaningful, such controls

would not be user-friendly, because many motor units can affect a surface point in a complex,
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non-linear way. Instead, we augment our template model with a set of 48 blendshapes

inspired by FACS [EF77] that have been sculpted by an artist on our generic face model.

These blendshapes are only defined on the skin as a basis for parametrizing the space of

facial expressions. They provide no information about the internal deformations, which are

handled by physics-based simulation (Section 6.4 and Section 6.5). This combination of

surface blendshape basis and volumetric simulation model allows us retain compatibility with

commonly used blendshape controls, while offering the benefits of advanced physics-based

simulation effects.

6.4 Forward Physics

The goal of the forward physics algorithm is to compute the deformed soft tissue and resulting

skin surface given bone kinematics and muscle activation parameters. We model the latter

with a vector a (see “Active tissue” below) that represents the amount of activation (contraction)

of all facial muscles. Even though in reality the jaw motion is controlled by muscle activations

(in particular the masseter muscle) our model assumes the bones are directly controlled

kinematically and the muscle activations are used only to create the facial expressions.

At the heart of our method is a physics-based model of soft tissue elasticity including

muscle activation. We define this model using linear finite elements on our tet-mesh adapted

for a given subject. Let x denote a vector stacking all degrees of freedom of the soft tissue, i.e.,

the 3D coordinates of all nodes.

Passive tissue. For passive tissue we define deformation energy

Epass(x) =∑
i

min
Ri∈SO(3)

W pass
i µ‖Fi (x)−Ri‖2

F +

W pass
i λ(det(Fi (x))−1)2, (6.1)

where the index i goes over all tets and W pass
i ≥ 0 denotes the volume of the i -th tetrahe-

dron that is occupied by passive tissue, pre-computed during template construction with

Monte-Carlo sampling. The first term in Eq. 6.1 corresponds to the commonly used co-rotated

elasticity (measure of deviation from rigid motion), while the second term models the resis-

tance to changes of volume. Fi (x) denotes the deformation gradient, and Ri is an auxiliary

rotation matrix used in the co-rotated model [SB12]. µ and λ are material parameters that we

set by default to µ= 1 and λ= 3. We can change these parameters to achieve specific effects as
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discussed in Section 6.8.

Active tissue. For tets corresponding to the active layer (muscles), we propose a novel acti-

vation model. Previous muscle models typically assume a given direction of muscle fibers

along which the muscle contracts [TSB∗05, LST09]. While this corresponds to the biological

structure of muscles, the problem is that the exact muscle fiber directions are in general

not known. Medical imaging techniques such as diffusion tensor imaging are prohibitively

expensive and time consuming, and the signal quality is limited.

Previous work in graphics [SZK15] applied ad-hoc muscle fiber approximations which

worked well for major skeletal muscles (such as the biceps), but are not sufficiently accurate

for the delicate facial muscles. Along with the exact location of muscle insertion points, tuning

of these parameters to obtain realistic facial expressions is possible, but tedious [SNF05]. To

circumvent these issues, we propose a different muscle activation model that does not require

explicit knowledge of fiber directions, but relies on the elementary bio-mechanical fact that

muscles can generate only internal forces. In other words, an isolated muscle is not capable of

translating or rotating by itself (even though the muscle can of course be translated or rotated

due to contact with the surrounding tissues).

The property that the muscle cannot translate itself is already guaranteed by the translation

invariance of deformation gradient operator Fi (x). Since a muscle tet should also not rotate

itself, we require the activation to be a symmetric 3×3 matrix. Every symmetric matrix in

R3×3 has an eigendecomposition of the form Q˜QT, where Q ∈ SO(3) and ˜ ∈R3×3 is diagonal.

Therefore, the symmetric activation matrix corresponds to non-uniform scaling (˜) in an

arbitrary orthonormal coordinate system (Q). In other words, the symmetric matrix represents

pure distortion without any change of orientation [SD92] (see Figure 6.4).

For each active tet, we define an activation vector ai ∈ R6 and use a linear operator S :

R6 →R3×3 to generate the corresponding symmetric matrix S (ai ) ∈R3×3. Muscles, like most

biological soft tissue, are approximately incompressible, which means that det(S (ai )) =
det(Q˜QT) = det(˜) should be close to 1. However, to compensate for discretization errors, we

do not enforce det(S (ai )) = 1 strictly, but only as a soft constraint, as discussed in Section 6.5.

We use this activation model to define the deformation energy Eact(x,a) of active tissue,

where a is a vector stacking the 6-dimensional activation parameters for all active tets. Specifi-
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a = [2.0, 0.7, 0.7, 0.0, 0.0, 0.0]

a = [1.7, 0.7, 1.0, 0.0, -0.6, 0.0]

a = [1.8, 1.2, 0.8, 0.2, 0.1, 0.6]

a = [0.9, 1.2, 1.7, 0.5, -0.5, 0.2]

Figure 6.4 – Visualization of the capabilities of our 6-DoF activation model by squishing a
cube, corresponding to a small sample of muscle tissue.

cally, we define:

Eact(x,a) =∑
i

min
Ri∈SO(3)

W act
i µ‖Fi (x)−Ri S (ai )‖2

F +

W act
i λ(det(Fi (x))−det(S (ai )))2, (6.2)

where the index i goes over all tets and W act
i ≥ 0 represents the volume of the i -th tet that

corresponds to active tissue. Here the co-rotated term aims to find the rotation Ri that best

aligns the deformation gradient Fi (x) with S (ai ). The second term encourages the volume

ratio of the deformed tet (i.e., det(Fi (x))) to align with the volume ratio of the activation matrix

det(S (ai )), which should be close to 1, i.e., volume conserving.

Bone attachments. Muscles are connected to the bones using a complex network of connec-

tive tissue, whose exact function is a matter of active research [SFCH13]. In animation, the

visual importance of skin sliding is well recognized [LSNP13]. To distinguish areas where soft

tissue is directly attached to the bones from areas where soft tissue slides over the bones,

we create two types of constraints: 1) pin constraints and 2) sliding constraints. The pin

constraints are straightforward to implement using Dirichlet boundary conditions. The sliding

constraints are modeled as point-on-plane constraints on the tangent planes of the bone

surfaces. We found this approximation to be sufficient even for curved regions, since the
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6.4. Forward Physics

Figure 6.5 – An eyebrow raise expression uses the skin sliding feature of our model. The blue
arrows show the displacement of the contact vertices between the cranium and the flesh.

amount of sliding displacement is generally small.

Formally, we express both pin and sliding constraints using a function c(x,b) that depends

also on the kinematic parameters b ∈R5 of the jaw bone. All of the constraints are satisfied if

and only if c(x,b) = 0. We have manually distributed the pin and sliding constraint as shown in

Figure 6.3-f. The constraint types were chosen to achieve realistic deformations. For example,

for an eyebrow raise expression, the skin slides over the skull as illustrated in Figure 6.5.

Quasi-static solution. In this section we discuss how to compute the quasi-static solution of

the forward physics simulation, deferring the discussion of dynamics to Section 6.6. Quasi-

statics means calculating a steady state where all dynamic motion has settled. The quasi-static

regime is useful in generating static expressions and is particularly important when solving for

muscle activations from observed shapes, as discussed in Section 6.5. Finding the steady state

can be formulated as the following optimization problem:

minimize
x

Epass(x)+Eact(x,a)+Egrav(x)

subject to c(x,b) = 0,p(x) ≥ 0,
(6.3)

where Egrav(x) represents a linear gravitational potential (i.e., the familiar mg h). The inequality

constraints p(x) are used to resolve penetrations (collision response) as follows. When collision

detection finds a surface vertex penetrating the volumetric face model (see below for more

details), an inequality constraint is appended to p. For each offending vertex we find its

projection onto the surface and create a tangent plane at this point. The inequality constraint

requires the vertex to be at the half-space opposite the volume.
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We solve Eq. 6.3 by alternating between an interior point solver used to minimize Eq. 6.3

for fixed collision constraints p, and collision detection to update p. We have initially imple-

mented a “homebrew” augmented Lagrangian solver, but ultimately decided to use the IPOPT

package [WB06], which has proven to be more robust and usually needs fewer iterations to

converge.

Collisions - implementation details. We implemented collision handling between lips and

the teeth and between the upper and lower lip, which are the areas most prone to inter-

penetration. Because the geometry of the teeth is quite detailed (and we are not aspiring to

simulate e.g. flossing where the detail would be necessary), we start by creating proxy collision

shapes for the upper and lower teeth (see Figure 6.3-e). The upper and lower lip geometries

are already sufficiently smooth and we do not need any special collision proxy. We detect

collisions using AABB hierarchies built for the upper and lower teeth proxy geometries and

the upper and lower lips. Since lips are deforming, we recompute the AABB hierarchies at

run-time. We did not use techniques to avoid or amortize this recomputation costs as this was

not a bottleneck in our implementation.

For each of the collision proxies and the lips, we also manually define a “projection region”,

i.e., subset of triangles where interpenetrating vertices can be pushed to resolve collisions.

Previous work considers all surface points as valid candidates for projection [MZS∗11]. In our

case this occasionally created problems such as resolving lip-teeth collisions by projecting

the lip vertices behind the teeth, i.e., inside the mouth, which is rarely a plausible solution.

Instead of more complicated continuous collision detection, we therefore disallowed these

implausible projections. For each of the projection regions, we compute another AABB

hierarchy that is used to find the closest point in the projection region, i.e., the location where

an inter-penetrated vertex will be pushed in order to resolve the collision. A collision handling

example during animation is shown in Figure 6.6.

6.5 Inverse Physics

The previous section explains how to compute face articulations for given bone positions and

muscle activations. In this section we discuss the inverse problem. For a given target shape of

the skin, we want to compute the corresponding bone parameters b and muscle activations a,

which, when used in the forward simulation (Eq. 6.3), will produce a skin surface close to the

input shape.
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6.5. Inverse Physics

Figure 6.6 – Importance of collision handling. Without collisions, intersections between the
teeth and the deformable tissue can occur (left). Our method correctly detects and handles
the contact (right).

Optimization formulation. Let t denote the target vertex positions of the skin. The inverse

modeling problem can be written as

min.
x,a,b

‖Sx−Tt‖2 +Ract(a)+Rsparse(a)

subj. to c(x,b) = 0,p(x) ≥ 0

∇xEpass(x)+∇xEact(x,a)+∇xEgrav(x) = 0

(6.4)

where Ract(a) and Rsparse(a) are regularization terms discussed below. The objective term ‖Sx−
Tt‖2 measures how close state x is to the target t. The matrix S selects the simulation nodes

corresponding to the skin surface. In addition S and T encode both position (point-to-point)

and point-to-plane distance terms [RL01]. The point-to-plane terms enable some amount of

sliding (tangential motion) which is useful if we do not completely trust the correspondences

represented by t. The last vector equality constraint describes the condition of quasi-static

equilibrium, i.e., the sum of all forces (gradients with respect to x) is zero. Even though x is

also an optimization variable, the desired output are the optimal values of muscle activations

a and bone parameters b.

Regularization. Without regularization, the optimization of Eq. 6.4 can lead to over-fitting

and anatomically implausible activations a. To provide an appropriate prior on activation

patterns, we exploit the geometric structure of the muscles by estimating an approximate

preferred contraction direction. Following Choi et al. [CB13] we compute these directions

by solving a Laplace equation and encode the corresponding orientations for the i -th tet as
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Figure 6.7 – Muscle activation regularization. Red lines indicate the direction and magnitude
of the dominant muscle contraction, computed from the SVD of the activation matrix.

Qi ∈ SO(3). The regularizing prior softly penalizes deviations in muscle contraction from the

preferred direction and is defined as:

Ract(a) = ∑
i ,m

fi ,m

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣Q

T
i


γ−1

m(i ) 0 0

0
p
γm(i ) 0

0 0
p
γm(i )

Qi −S (ai )

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

where i sums over all active tets and m over all muscles. Since our tet mesh does not conform

to the muscles, some tets may be occupied only partially by a muscle, or be occupied by several

muscles. We calculate the fraction fi ,m ∈ [0,1] of tet i occupied by muscle m by Monte-Carlo

sampling (if an active tet contains some amount of passive tissue, we get
∑

m fi ,m < 1 and the

regularization strength is proportionally reduced as expected). The contraction parameters

γm ≥ 0 are auxiliary variables representing the contraction of muscle m. Recall that S (a) is our

symmetric muscle activation matrix introduced in Section 6.4. Intuitively, Ract(a) encourages

all tets corresponding to a single muscle to contract in a uniform, volume preserving way

(because γ−1
m(i )

p
γm(i )

p
γm(i ) = 1).

In addition to the muscle-activation regularization term Ract, we found it beneficial to also

include the following term to promote sparse muscle activations:

Rsparse(a) =∑
m

√∑
i

fi ,m‖ai‖2 (6.5)

Specifically, this is a group sparsity term similar to L1 regularization, but applied to entire

groups – in our case, muscles. This term encourages all activations corresponding to one

muscle to remain zero unless contributing significantly to the result. We introduced this term

to avoid small spurious activations of remote muscles, which is justified when our target

126



6.5. Inverse Physics

Figure 6.8 – Inverse physics finds jaw transformation and muscle activations that accurately
reproduce the target blendshapes.

shapes t correspond to traditional FACS-type blendshape models which isolate individual

action units. Figure 6.7 shows that compared to a naive L2 regularization approach, our

method leads to sparser activations that are better aligned with the geometric structure of the

muscles.

Numerical solution. As in Section 6.4, we use interior-point methods [WB06] to solve the

constrained optimization problem in Eq. 6.4. Our implementation of the Hessian of the

Lagrangian of Eq. 6.4 ignores third-order derivatives of E (pretends they are zero), amounting

to the commonly used Gauss-Newton approximation of the Hessian [SNF05, BKS∗12]. We

alternate the interior point solver with collision detection that determines the non-penetration

constraints p as in Section 6.4.

Even though including the regularization term Ract could be directly incorporated into

our optimization objective (adding γm as auxiliary variables), we found that this significantly

increases the non-linearity of the problem and forces the non-linear solver to take many

iterations, each making only slow progress towards the solution. To avoid this problem, we
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instead use a local-global approach [SA07]. In the local step, the activations a are fixed and

we compute optimal γm by finding roots of a 6-th order polynomial using the method of

Brent [Bre71]. In the global step, we call the interior point solver to optimize a for fixed γm ,

which is an easier optimization problem exhibiting fast convergence.

Figure 6.8 shows an example of an inverse physics solve for two blendshapes of a user-

specific blendshape model, visualizing separately the effect of the jaw motion and the effect of

muscle activations.

6.6 Phace Modeling and Animation

In this section we explain how we integrate the optimization algorithms presented above into

a complete system for creating and animating subject-specific face simulation models.

Model Building. We start by 3D scanning the face of our subject in neutral expression and

about 5-10 additional premeditated facial expressions using a multi-view stereo setup as

described in Ichim et al. [IKNDP16]. Each of the scans is approximately aligned with the skin

of our template model (Section 6.3) using rigid registration (plus uniform scale). Then we

apply non-rigid ICP [RL01] to find dense correspondences between the template skin and the

target scan, guided with a few manually chosen markers as shown in the inset. We denote the

registered skin surfaces as sneut for the neutral and sk for k-th expression.

Next, we deform our volumetric template model such that its bound-

ary (skin) aligns with sneut. This is accomplished with Anatomy Trans-

fer [DLG∗13, IKNDP16]. Note that during this process the generic face model

can deform freely, i.e., the shape and/or volume of all cells can change, in-

cluding the bones (in contrast to the deformation model considered in

Section 6.4). We then use Example-Based Facial Rigging [LWP10] to convert

the registered expressions sk to subject-specific blendshapes c j , j = 1, . . . ,48.

The processing steps so far essentially rely on existing methods to align

the volumetric template to the neutral expression and to create the subject-

specific blendshape model. We refer to the above cited papers for implemen-

tation details on these algorithms. After this geometric preprocessing, we

now solve for activations a j and jaw bone parameters b j that correspond to

each of the blendshapes c j using the Inverse Physics optimization of Section 6.5.

128



6.6. Phace Modeling and Animation

Animation. To animate the created face model, we need to feed appropriate muscle activa-

tions and jaw bone parameters to the Forward Physics optimization of Section 6.4 for each

animation frame. Given per-frame blendshape weights w = {w1, . . . , w48}, we compute muscle

activations as a = aneut +∑
j w j (a j −aneut), where aneut corresponds to neutral activations, i.e.,

each activation S (a j ,i ) = I ∈ R3×3. Linear blending of the activation parameters is justified

because there is no rotational component in symmetric matrices [SD92]. Similarly, we com-

pute the blended jaw kinematics parameters b =∑
j w j b j . While blending of rotation angles

is in general not recommended, we found that for the limited range of rotations of the jaw this

simple scheme does not produce any visible artifacts.

Dynamics. Adding inertia corresponds to a minor change of Eq. 6.3. We use the popular back-

ward Euler integration, which in its optimization form [LBOK13] corresponds to augmenting

the objective of Eq. 6.3 with the term: 1
2‖x− (xn +hvn)‖2

M, where xn and vn are positions and

velocities in the previous frame, h > 0 is the time step, and M is the mass matrix. We use a

diagonal matrix M (mass lumping) with a soft tissue density of 1g /cm3. The minimizer x of

Eq. 6.3 then becomes the new state xn+1 and the new velocity is vn+1 = (xn+1−xn)/h. The main

difference from the quasi-static solution is that the dynamic solution depends on the previous

state (xn ,vn), i.e., we need to execute the time steps in sequence. To add non-conservative

external forces, such as wind, we proceed as in Projective Dynamics [BML∗14] and change the

additional term to 1
2‖x− (xn +hvn +h2M−1fext)‖2

M. Here fext ∈R3 is the external force vector,

e.g., a wind force is a function of triangle normal, area, and wind direction.

Plasticity. To support effects such as fattening or slimming, we use a standard model

of plastic deformations. Specifically, each total deformation gradient Ftotal(x) is assumed

to be composed of an elastic deformation component and plastic deformation component,

i.e., Ftotal(x) = Felast(x)Fplast or, equivalently, Felast(x) = Ftotal(x)F−1
plast. Note that Fplast does not

depend on the current deformed state x. The deformation gradient Fi (x) used in Eq. 6.1 and

Eq. 6.2 corresponds to the elastic deformation component, because plasticity is a separate

process, e.g., tissue growth, which is decoupled from elastic deformations. Therefore, the

only modification we need to make to account for plasticity is to replace the Fi (x) in Eq. 6.1

and Eq. 6.2 by Fi (x)F−1
plast,i , where Fplast,i describes the plastic deformation of the i -th tet. In

our system, we use only uniform scaling, i.e., Fplast,i = si I, where si > 0 is a scaling coefficient

(corresponding to growth for si > 1 and shrinking for 0 < si < 1). The settings of the si

parameters for each tet depend on the effect we wish to achieve as discussed in Section 6.8.

Plasticity, as well as inertia and external forces are applied in forward physics only.
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Figure 6.9 – Our 6-DoF muscle activation model (middle) leads to more accurate reconstruc-
tion of the target expression (right) than previous 1-DoF fiber-aligned activations models
(left).

6.7 Evaluation

Before showing application results of our method in Section 6.8, we evaluate the behavior of

our optimization algorithms and provide comparisons to previous work.
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Muscle activation model. As mentioned in Section 6.4, previous methods constrain the de-

formation along muscle fibre directions [TSB∗05, SNF05, LST09, SZK15]. In our experiments

we found that muscle fiber directions can be unreliable and lack the flexibility to accurately

reproduce all facial expressions. This insight triggered the design of our more general acti-

vation model. In Figure 6.9 we compare the results of inverse physics with our method and

the previous fiber-restricted model, where fiber directions are computed from our geometric

muscle models using the method of [CB13] (these directions are shown in Figure 6.7). As

Figure 6.9 illustrates, muscle activations constrained to the fiber directions fail to closely

match the desired target shape, while our activation model leads to a much more accurate

reconstruction of the target expression.

Comparison to volumetric blendshapes. Defining a deformation model that is invariant

under rigid motions is essential for correct tissue behavior. The volumetric blendshape

approach of Ichim et al. [IKNDP16] lacks rotation invariance, which can lead to artifacts, e.g.,

when large rotation of the soft tissues are induced by external forces, such as the boxing punch

shown in Figure 6.10. We propose rotation-invariant models for both passive and active soft

tissue, leading to more realistic results. While we distinguish between passive and active tissue,

previous work [IKNDP16] assumes that all soft tissue can activate. In addition, our approach

includes a kinematic model for the jaw, whereas Ichim et al. [IKNDP16] only approximated

the jaw by using a more stiff (but not exactly rigid) material. Finally, our method also allows

for skin sliding, facilitating more realistic flesh deformations especially in areas such as the

forehead (Figure 6.5).

Model adaptations. Our approach supports animating a character after significant modifica-

tions of the neutral pose (e.g. slimming/fattening, bone modifications, see Section 6.8) using

the same muscle activation patterns. One might argue that the same effects could be obtained

by using deformation transfer [SP04] on traditional linear animation models. For example,

similar modifications as the ones we propose could be applied on the surface mesh of the

neutral blendshape. Deformation transfer on all expression blendshapes will then yield new

face rig that incorporates the desired changes. However, this approach has the significant

drawback that the new blendshapes are not necessarily consistent with the same blendshape

weights, e.g., self-intersections easily occur as shown in Figure 6.11.

In addition, direct transfer of modifications to the neutral pose cannot account for the

complex force interactions in the elastic tissue. For example, when increasing the volume

of the lips, the expression dynamics will change as a consequence of the changed stress
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Figure 6.10 – A boxing punch to the nose results in artifacts with an elastic model lacking
rotation invariance as in [IKNDP16] (left). More realistic deformations are obtained with our
rotation-invariant model (right).

distribution. Our indirect approach, that solves for the facial pose given muscle activations,

can accommodate such scenarios and leads to more natural expressions.

Statistics. The interior point solver of the forward physics optimization requires on average

8 iterations per frame to converge. This takes approx. 22 seconds including the collision

detection update on a consumer laptop with a 3.1 GHz Intel Core i7 processor and 16GB

of main memory. The inverse problem needs approx. 15 iterations to compute the jaw

transformation and muscle activations, averaging at about 3 minutes per target shape. The

volumetric face template model of the passive flesh and active muscles used for the results

presented in this paper has 8098 vertices and 35626 tetrahedra. The active muscle layer covers

approx. 27% of the entire flesh. The surface mesh model of the entire skin has 6393 vertices

and 12644 faces.

6.8 Application Demos

We present a series of application demos to highlight the versatility of our approach. A

key benefit of our physics-based simulation is that we can modify the static and dynamic

parameters of the model to achieve a number of advanced animation effects that would

132



6.8. Application Demos

Figure 6.11 – Model adaptations such as increased lip volume are handled accurately in our
approach, while deformation transfer [SP04] leads to self-intersections.

be difficult to obtain with purely generative geometric methods. Please also refer to the

accompanying video to better appreciate the dynamics of the animations.

All animation examples were driven by a temporal sequence of blendshape weights ob-

tained from the performance capture system of Weise et al. [WBLP11]. The tracking software

also provides a rigid body transformation T ∈ SE(3) corresponding to the global rotation and

translation of the head, as well as pitch and yaw for each of the eyeballs, which are parented to

the head transformation T.

Body mass index changes. Figure 6.12-a illustrates how an animated avatar can be modified

to slim or fatten the person’s face by adapting the plasticity scale for the soft tissue tets. As

this adaptation alters the face geometry, simply re-animating the blendshape model would

lead to unnatural expressions and visual artifacts caused by self-intersections. Our simula-

tion approach avoids self-collisions and balances the stress distribution in the facial tissue
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Figure 6.12 – Application Demos I: a) Body mass index changes and their impact on expressions.
The original avatar is highlighted with dashed lines. More intense red in the fat map means
more volume change of the corresponding face region. b) Results of lip injection, where
affected tets are shown in green on the right. c) Effects of modifying the rigid bone structure of
the chin.

while preserving the actuation forces, which leads to more plausible expressions and natural

dynamics.

To create the scaling parameters si > 0, we start from a surface “fat map” painted by the user

that specifies which areas of the face are more prone to fat accumulation. The values of the fat

map are propagated into the volumetric tet-mesh by a diffusion process, similar to standard

polygon-mesh diffusion flow ([BKP∗10], Chapter 4.2), but using the volumetric Laplacian

instead of the surface Laplace-Beltrami. We apply forward Euler integration with time step

and number of steps adjusted by the user in an interactive graphical tool to achieve the desired

volumetric propagation effect. We used the same fat map for both characters in Figure 6.12-a,

uniformly scaled to achieve slimming or fattening. To account for the increased fat content in

the soft tissue, we lower the stiffness µ to 0.8,0.5,0.3 for the three levels of fattening shown in
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Figure 6.13 – a) Simulating inertia under sudden motion changes (e.g., jumping). b) Dynamic
deformations in a wind force field. c) Simulating Bell’s Palsy affecting half of the face of an
actor. d) VR headset obstructing the full motion of expressions on the face. e) Artistic editing
to create a zombie character by adapting the mass and stiffness distribution as indicated in
the color-coded maps.

Figure 6.12-a. For slimming, we keep the default stiffness µ= 1.

Facial surgery. Figures 6.12-b and 6.12-c demonstrate potential applications in visualizing the

possible outcomes of facial surgery, helping patients to choose between different versions of

corrective or cosmetic procedures. Our method allows direct manipulation of the deformable

soft tissue (e.g. lip fat injection) or the rigid bones (e.g. chin displacement). The simulation

then provides a detailed visual preview of such interventions on the expression dynamics of

the animated person. We modeled the lip fat injection using our plasticity model and diffusion

tool, simulating the process of injecting filler material with a syringe through several points on

the skin. To simulate the lower stiffness of the fat-like filler material, we decreased the soft

tissue stiffness µ to 0.8 for the medium, and to 0.5 for the high lip volume effect (Figure 6.12-b).

For the chin displacement we directly edited the bone using an interactive mesh modeling

tool.
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Inertia. Figure 6.13-a shows how our method incorporates inertial deformations in the dy-

namic simulation. Such secondary motion becomes particularly important in animations

with strong accelerations, such as jumping, head shaking, or boxing.

Interaction with external forces and objects. Figure 6.13-b shows how an animation can

be augmented with complex external force interactions produced by a dynamic wind field.

Figure 6.13-d illustrates how a speech animation is affected when the subject is wearing a

VR headset. Our contact resolution method adapts the face deformations to account for the

collisions with the headset, creating non-linear bulging and wrinkling effects due to volume

preservation of the facial tissue.

Simulation of muscle paralysis. In Figure 6.13-c, we show how muscle activations can be

modified to simulate Bell’s palsy syndrome, where the affected person is unable to activate

certain facial muscles. In this example, we marked the active muscles of the left half of the

face to behave like passive tissue, which simulates the effect of partial facial paralysis.

Extreme face modifications. To push the limits of facial modifications, we created a virtual

zombie character in Figure 6.13-e. We designed two texture maps to modulate the mass and

stiffness (see Figure 6.13-e) and extrapolated their values into the volume using our diffusion

tool. The idea was to increase the mass of the cheeks to create a flesh sagging effect, while

increasing stiffness around the lips and the eyes to avoid excessive pulling of the flesh. The

final µ values vary between 0.7−5.7 and the density varies between 1−3g /cm3, achieving

artistic “undead” effects.

6.9 Limitations and Future Work

In our approach we rely solely on a generic volumetric template and a set of surface scans of

the modeled person to derive the interior facial structure. This inherently limits the accuracy

of our approach in terms of the true facial dynamics of the scanned actor. Getting access

to the internal structure through volumetric scanning devices would allow building more

faithful simulation models, but incurs a high acquisition cost. A potentially more practical

approach for future work is to build a statistical model of the bone and tissue structures from
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a sufficiently large set of volumetric scans, similar to the morphable face models that have

been successfully applied for the skin surface [BV99].

Detailed physical simulation is computationally involved and our method is currently not

suitable for realtime animation. While computational efficiency was not the main focus of our

work, we believe that significant speedups can be achieved, in particular by more explicitly

exploiting spatial and temporal coherence. In the context of realtime animation, our approach

could potentially be used to automatically create corrective shapes for a given blendshape

basis in an offline process. How to select an optimal set of such correctives based on a given

simulation is an interesting avenue for future research.

Our tet-mesh discretization is currently too coarse to correctly model small-scale effects

such as skin wrinkles. However, increasing the resolution to the appropriate scale would

lead to prohibitive computation times. Therefore, in future work, we want to explore ways to

combine our simulation model with procedural or data-driven methods for wrinkle generation

to further increase the visual realism of the animations.

Other avenues for future work include modeling and simulating hair, adding person-

specific teeth models and a simulation of the tongue, and generalizing our model to full body

simulations.

6.10 Conclusion

We propose a physics-based simulation approach to face animation that complements exist-

ing generative methods such as blendshapes. These purely geometric methods can produce

artifacts such as self-intersections in facial poses that were not specifically considered during

the modeling of the blendshape basis – ensuring consistency in all possible linear combina-

tions quickly becomes intractable. Even more challenging is the correct handling of dynamic

effects such as interactions with external objects or inertial deformations.

We advocate the use of physics-based simulation as a principled solution to these issues.

Our experiments validate that this approach leads to high-quality facial animations and

facilitates new editing capabilities, e.g., by manipulating the face model’s physical structure or

its dynamic behavior. These advanced effects come at the cost of increased computational

overhead. However, as computational power increases and algorithms are improved, we

believe that the simulation-based approach to facial animation will become more and more

viable in the future. This path certainly offers a rich set of opportunities for future research

with applications not only in movies and games, but also in surgery simulation, interactive
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therapy, sports, or biomedical research.
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Retrospective

This latest publication of my PhD can be seen as the culmination of my recent work on physics-

based facial animation. It combines numerous concepts we have developed in all the previous

projects, as it will be succintly explained in the next paragraphs.

First of all, in terms of input data, this last project showed results by using data collected in

previous projects. We have used blendshape models created from smartphone images and

videos, as presented in Chapter 2 [IBP15]. For higher quality data we turned to our homebrew

stereo scanner from Ichim et al. [IKNDP16]. The registration technique was also the one based

on Projective Dynamics FEM, as in Chapter 5.

The inverse physics mathematical formulation was inspired by and improved upon our

previous work on anatomical bodies from Chapter 4 [KIL∗16].
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7 Conclusions

7.1 Summary

The work that has been presented in this thesis can be split into two themes:

• human face and body avatar creation using lightweight acquisition approaches. This

part focused on the computer vision problems around extracting as much information

as possible from noisy low-quality optical data.

• physics-based anatomically-inspired animation models for digital human avatar re-

construction and animation. This second part introduced novel physics optimization

techniques in order to represent the avatars as simulation-ready objects, and then obtain

compelling animations through a physics optimization process.

In Chapter 2 we have looked into a complete pipeline for reconstructing fully rigged,

personalized 3D facial avatars using image and video data coming from an off-the-shelf

smartphone. We have shown how a blendshape template can be adapted to the video recording

through an optimization that includes multiple types of visual cues. Furthermore, we have

integrated wrinkles as UV detail maps using a regression technique.

Chapter 3 presented a complete framework for tracking and modeling articulated human

bodies from RGB-D video data. We have investigated how L1 regularization can help generate

a sparse description of the body shape by using a blendshape body model.

The first approach corresponding to physics-based animation was explained in Chapter

5. We argued that linear animation models have a lot of limitations when the application

requires features such as dynamics, collision response, or incompressibility of the flesh. For

this reason, we propose a volumetric head template model and show how this can be used to

register facial scans and produce realistic animations, while automatically fixing issues such
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as the ones coming from volume loss or collisions.

Turning to full-body avatars, in Chapter 4 we presented a method for creating personalized

anatomical models that can be animated through physics simulation. We have explained our

key contribution, which is formulating and solving a large-scale optimization problem that we

dubbed inverse physics.

Finally, Chapter 6 extended the mathematical concepts from inverse physics for usage with

facial animation. In this project, the digital heads produce expressions actuated by active

volumetric elements as well as bone kinematics. We showed how we can incorporate complex

physical effects such as non-linear interactions between bones, passive fat and active muscles,

as well as skin sliding and collisions. Lastly, we showed how easy it is to generate complex

animations by artistically altering elements in the physics-domain, as opposed to traditional

keyframing and mesh editing.

7.2 Future Work

We believe this thesis opens up a lot of interesting possibilities for future work directions, and

here we make some suggestions.

Regarding lightweight acquisition, the presented work relied only on optical sensor infor-

mation for the reconstruction and tracking of the user. By using the other sensors commonly

available on smartphones (e.g., compass, accelerometer) should help improve the reconstruc-

tion performance and quality. Moreover, by making use of inertial data, the multiview stereo

problem posed for the neutral reconstruction could be initialized with a good guess of the

camera motion and the performance is expected to improve dramatically.

An immediate criticism to the physics-based animation work is the lack of a quantitative

evaluation. In the corresponding publications it has been shown that the proposed physics-

based approaches are able to generate all the animations that their linear counterparts were

able to. In addition, they bring the big advantage that the new models can perform very well

under extrapolation with external forces. Those extrapolations have only been evaluated

qualitatively in this work, as the main target application was in the entertainment sector (i.e.,

video games, movie special effects). We believe exploring medical directions is of great interest.

For this we will need a better evaluation with a tight feedback loop with real-world measure-

ments. E.g., measure muscle fiber directions for a specific person, muscle contraction shapes

under different expressions using MRI volumetric scans, muscle contraction patterns with

electrodes etc.. Along the same lines, an important possible venue is to build a complete avatar

140



7.3. Final Remarks

of a single subject by using recent volumetric measurement techniques. It would partially

involve re-creating the seminal work of Teran and Sifakis, but with access to modern scanning

techniques, better understanding of numerical optimization, as well as more computing

power.

Recently, it has been proven that deep learning is able to solve multiple of the longstanding

machine learning and computer vision problems. Recent literature proposes machine learning

approaches for improving the performance of fluid or general physics simulation [TSSP16,

JSP∗15]. Moreover, [WBGB16] suggest a method to encode subspaces for patches of face skin

to be used for mononcular tracking. We believe that our physics-based animation models can

be sped up or used as training for learning-based techniques, which is essential for realtime

applications.

Another possible research direction would be to better simulate the interactions between

clothes and bodies. Usually bodies are used as collision proxies to compute the sliding

constraints for the clothes to drape on them [KKN∗13, BMF03], but the bodies never respond

to interactions with the clothes. Now that we have proposed good approximations of the

different elastic components of human bodies, an immediate application would be to look

into simulating tight-fitting and body-shaping clothes such as sportswear.

7.3 Final Remarks

To conclude, this thesis proposes an approach to the lightweight digital human reconstruction

and animation problem, as well as methods for compelling physics-based character animation.

We believe that simulation-based systems like ours will become more viable in the future

as hardware performance increases and the algorithms become more efficient. This path

certainly offers a rich set of opportunities for future research with applications not only in

movies and games, but also in surgery simulation, interactive therapy, sports, or biomedical

research.
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