
Quad Layouts – Generation and Optimization

of Conforming Quadrilateral Surface Partitions

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der

RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Marcel Campen
aus Viersen, Deutschland

Berichter: Universitätsprofessor Dr. Leif Kobbelt

Universitätsprofessor Denis Zorin, Ph.D.

Tag der mündlichen Prüfung: 01.12.2014

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

http://www.eg.org
http://diglib.eg.org

Shaker Verlag
Aachen 2015

Selected Topics in Computer Graphics

herausgegeben von
Prof. Dr. Leif Kobbelt

Lehrstuhl für Informatik 8
Computergraphik & Multimedia

RWTH Aachen University

Band 13

Marcel Campen

Quad Layouts

Generation and Optimization of
Conforming Quadrilateral Surface Partitions

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Zugl.: D 82 (Diss. RWTH Aachen University, 2014)

Copyright Shaker Verlag 2015
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 978-3-8440-3446-2
ISSN 1861-2660

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen
Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9
Internet: www.shaker.de • e-mail: info@shaker.de

Abstract

The efficient, computer aided or automatic generation of quad layouts, i.e. the parti-

tioning of an object’s surface into simple networks of conforming quadrilateral patches,

is a task that – despite its importance and utility in Computer Graphics and Geometric

Modeling – received relatively low attention in the past. As a consequence, this task is

most often performed manually by well-trained experts in practice, where quad layouts

are of particular interest for surface representation and parameterization tasks. Deeper

analysis reveals the inherent complexity of this problem, which might be one of the

underlying reasons for this situation.

In this thesis we investigate the structure of the problem and the commonly relevant

quality criteria. Based on this we develop novel efficient solution strategies and algo-

rithms for the generation of high quality quad layouts. In particular, we present a fully

automatic as well as an interactive pipeline for this task. Both are based on splitting the

hard problem into sub-problems with a simpler structure each. For each sub-problem

we design efficient, custom-tailored optimization algorithms motivated by the geomet-

ric nature of these problems. In this process we pay attention to compatibility, such

that these algorithms can be applied in sequence, forming the stages of efficient quad

layouting pipelines.

An important aspect of the quad layout problem is the complexity of the quality

objective. The quality typically is a function of the layout’s structural complexity, its

topological connectivity, and its geometrical embedding, i.e. of discrete, combinatorial,

and continuous aspects. Furthermore, application-specific demands can be quite fuzzy

and hard to formalize. Our automatic pipeline follows a generic set of quality criteria

that are common to most use cases. The best solution to make possible the optimization

with respect to more specific design intents is to include the user in the process, enabling

them to infuse their expert knowledge. In contrast to prevalent manual construction pro-

cesses our interactive pipeline supports the user to a large extent. Structural consistency

i

is automatically taken care of, geometrically appropriate design operations are automat-

ically proposed, and next steps that should be taken are indicated. In this way the

required effort is reduced to a minimum, while still full design flexibility is provided.

Finally, we present novel methods for the computation of geodesic distances and paths

on surfaces – for standard as well as anisotropic metrics. These play a critical key role

in several parts of our pipelines and shortcomings of available solutions compelled the

development of novel alternatives.

ii

Acknowledgments

This thesis originated from my work at the Visual Computing Institute at RWTH Aachen

University where I held a position as a doctoral researcher in the Graphics, Geometry,

and Multimedia group. Funding was generously provided by the DFG Cluster of Excel-

lence UMIC and the ERC Advanced Grant ACROSS.

First and foremost I want to express my gratitude to my advisor Leif Kobbelt for his

distinguished scientific guidance and support, and for always granting me the invaluable

freedom to investigate the topics that intrigued me the most. I am also deeply thankful

to Denis Zorin for bringing in his profound expertise in the role of the second referee.

For nearly endless discussions and common philosophizing about “everything quad” I

want to thank David Bommes. This ongoing dialog was a constant source of inspiration

for the many ideas that build the foundation for the contributions presented herein.

Henrik Zimmer, Hans-Christian Ebke, and Pierre Alliez likewise deserve my gratitude

for their dedication to the frank discussion and progression of ideas and for sharing their

valued thoughts.

It has always been a pleasure to collaborate with colleagues in the context of various

projects. In particular, I am obliged to Marco Attene for the superb collaboration

in the development of a state-of-the-art report and of conference and graduate school

courses. Darko Pavić deserves thanks for his great cooperative work on my first research

project. The supervision of undergraduate students likewise was a gratifying experience

that not rarely sparked new ideas. In this regard I am particularly indebted to Martin

Heistermann, Moritz Ibing, Max Lyon, and Patrick Schmidt. Jan Möbius deserves my

gratitude for his incessant technical support during all of my projects.

Finally, I would like to sincerely thank all of my colleagues at the institute, my family

and friends for providing the comfortable, winsome atmosphere – in work as in leisure –

that certainly conduced to the success of this work.

iv

Contents

1. Introduction 1

2. Quad Layouts 7

2.1. Foundations . 8

2.2. Quality Criteria . 13

2.3. Taxonomy . 15

2.3.1. Quad Meshes . 15

2.3.2. Subdivision Base Meshes . 16

2.3.3. T-Meshes . 17

2.4. State of the Art . 17

2.4.1. Quad Meshing . 18

2.4.2. Quad Layouting . 19

2.4.3. Base Complex Simplification . 20

3. Strategy 21

3.1. Automatic Approach . 22

3.1.1. Stage 1: Nodes . 22

3.1.2. Stage 2: Connectivity . 22

3.1.3. Stage 3: Embedding . 23

3.1.4. Forward Anticipation . 24

3.1.5. Backward Modification . 24

3.2. Interactive Approach . 24

I. Automatic Generation 27

4. Nodes 29

4.1. Connections . 30

v

Contents

4.1.1. Optimization . 31

4.2. Cross Fields . 32

4.2.1. Optimization . 34

4.2.2. Principal Direction Alignment . 35

4.3. Results . 35

4.4. Discussion . 36

5. Connectivity 39

5.1. Theory . 40

5.1.1. Dual Loop Arrangements . 41

5.1.2. Principal Curvature Fields . 42

5.1.3. Branched Coverings . 42

5.1.4. Loops on Branched Coverings . 43

5.1.5. Greedy Loop Selection Strategy 47

5.2. Discretization & Implementation . 50

5.2.1. Anisotropic Front Propagation . 51

5.2.2. Singularity Separation . 53

5.2.3. Layout Primalization . 56

5.3. Extensions . 57

5.4. Results . 59

5.5. Discussion . 62

6. Embedding 65

6.1. Overview . 67

6.2. Related Work . 68

6.3. Guiding Field . 70

6.3.1. Guiding Field Topology . 70

6.3.2. Guiding Field Smoothness . 72

6.4. Aligned Parameterization . 72

6.4.1. Node Connection Constraints . 73

6.4.2. Embedding Extraction . 76

6.4.3. Optional Extensions . 77

6.5. Node Optimization . 77

6.5.1. Gradient Descent . 79

6.5.2. Selective Optimization . 80

vi

Contents

6.5.3. Discussion . 81

6.6. Gradient Computation . 82

6.6.1. Efficient Estimator . 83

6.6.2. Step Length . 84

6.7. Quad Mesh Generation . 85

6.8. Results . 85

6.8.1. Comparison . 86

6.9. Discussion . 89

II. Interactive Design 95

7. Metaphors and Guides 99

7.1. Concept . 99

7.1.1. Dual Strips . 101

7.2. Interactive Workflow . 101

7.2.1. Tools and Metaphors . 102

7.2.2. Assessment & Feedback . 103

8. Elastica Strips 105

8.1. Elastica on Surfaces . 105

8.1.1. Field-Guided Geodesic Loops . 105

8.1.2. Elastica Loops . 106

8.1.3. Elastica Graph . 107

8.1.4. Constructing Discrete Elastica . 110

8.1.5. Principal Direction Alignment . 111

8.1.6. Feature Curves . 112

8.1.7. Boundaries . 112

8.1.8. Symmetries . 113

8.2. From Loop to Strip . 114

8.2.1. Global Parameterization . 115

8.2.2. Strip Compatibility . 117

8.3. Primalization . 117

8.4. Results . 118

8.5. Discussion . 119

vii

Contents

III. Geodesy 123

9. Anisotropic Geodesics 125

9.1. Basics . 125

9.2. Related Work . 128

9.3. Anisotropic Metrics . 129

9.4. Generic Adaptation . 130

9.4.1. Discrete Metric . 130

9.4.2. Intrinsic Delaunay Triangulation 131

9.5. Individual Adaptation . 132

9.6. Short-Term Vector Dijkstra . 136

9.6.1. Speed vs. Accuracy . 140

9.6.2. Genericity . 141

9.7. Results . 142

9.8. Discussion . 144

10.Meshless Geodesics 147

10.1. Overview . 150

10.2. Mesh Abstraction . 150

10.2.1. Initial Complex Construction . 151

10.2.2. Morphological Operations . 151

10.3. Geodesic Computations . 152

10.3.1. Fast Marching . 153

10.3.2. Polar Angle Propagation . 154

10.3.3. Interpolation . 155

10.3.4. Geodesic Paths . 155

10.4. Parameterization . 156

10.5. Implementation Details . 157

10.5.1. Cubical Complex Construction 157

10.5.2. Memory Efficiency . 159

10.6. Results . 161

10.7. Discussion . 164

11.Conclusion 167

Bibliography 173

viii

1. Introduction

The physical world surrounding us can be seen as a collection of a large number of

three-dimensional objects and subjects. Besides this physical world, an ever-growing

variety of virtual processes or even entire virtual worlds is leveraged by modern computer

technology. Examples range from systems for computer-aided design and manufacturing

over rapid prototyping to simulation, from e-commerce and product visualization to

games, movies, and other immersive entertainment applications. Not surprisingly, one of

the most fundamental ingredients in such virtual scenarios are three-dimensional objects

– whether virtual reproductions of physical entities or original representations of virtually

generated ones. In any case, these objects need to be represented digitally in some form.

p(θ,φ) =

⎛

⎜⎝
cos θ sinφ
sin θ sinφ

cosφ

⎞

⎟⎠

One of the most common types of representation is via for-

mal geometrical description of the object’s surface. While

the detailed internal, volumetric structure and constitution

of an object can well be of interest for certain advanced

applications, the surface is clearly the most prominent fea-

ture of an object: it is what we see of the object, it defines

its shape, it separates interior from exterior, i.e. it defines

the interface between the object and the surrounding world.

For primitive objects like spheres, cylinders, or tori a single

simple parametric expression suffices for its explicit repre-

sentation, as depicted on the right for the example of the

unit sphere. Other objects with more complex geometry or

more complex topology, however, typically cannot practi-

cally be expressed in such simple closed form. This led to the development of piecewise

surface representations, where each piece of a partition of a complex surface can be rep-

resented by a simple function. Analogously, this applies to maps from or onto complex

surfaces, which are handled more easily in a piecewise manner.

1

1. Introduction

This thesis is concerned with the partitioning of an object’s surface into pieces suit-

able for sophisticated forms of such surface and map representations, as detailed in the

following.

Piecewise Surfaces

Examples of very common piecewise surface representations are:

• Triangle meshes (piecewise linear)

• Quad meshes (piecewise bilinear)

• Multiblock grids (piecewise regular quad grid)

• Bézier/Spline/NURBS networks (piecewise polynomial)

conforming non-conformingIn the case of triangle meshes, the pieces (or

patches) are trilateral, in all other cases quadrilat-

eral, as illustrated in Figure 1.1. Furthermore, in

all these cases the partition is conforming, i.e. such

that patch corners coincide only with other patch

corners (no T-junctions) as illustrated here.

Building such piecewise representations for an object’s surface obviously involves two

aspects: suitably partitioning the surface into pieces and finding a suitable representation

for the geometry within each piece. For the case of triangle meshes, this is a well-

researched, well-understood problem and solutions have been proposed already some

time ago [AUGA08]. More recently, a lot of research has been devoted to the automatic

generation of quad meshes and significant advances have been made [BLP∗13]. For

the other cases, however, while methods for determining a suitable representation per

piece are available (e.g. on the basis of grid fitting or interval assignment [TA93, Mit00,

BVK08], spline fitting [EH96, KL96, MK95, MBVW95, AAB∗88], or subdivision surface

fitting [LLS01]), the generation of appropriate partitions in the first place proved to be

a hard problem which commonly implies tedious manual efforts in practice. In these

cases the required partition is a so-called quad layout – which, while formally being

structurally equivalent to a quad mesh, follows quite different geometric objectives. In

particular, this necessitates different generation strategies: while a quad mesh basically

2

resamples a surface and its quality can be assessed locally, in the case of a quad layout

the structural, topological aspect from a global point of view plays an important role.

It bears noting that there are further types of piecewise surface representation which

do not rely on a quad layout, but on simpler-to-construct partitions with triangular or

polygonal patches. Bézier triangles and certain types of box splines are examples of such

representations. Their popularity in practice and support in software tools, however, is

significantly lower compared to representations based on quadrilateral partitions. There

are multiple reasons for this circumstance. One can argue from a historic point of view

that in the early days of Computer-Aided Geometric Design in the automotive industry

tensor-product Bézier and B-Spline patches with their quadrilateral domains already

set the standard in this field [Far02]. But there are also solid theoretical reasons for

preferring quad structures over triangular structures: for instance, it is well known from

differential geometry that there are two orthogonal principal curvature directions at any

point on a surface, the one of minimal and the one of maximal curvature [dC76]. The

boundaries of quad layout patches can very naturally be aligned to these, with aesthetic

as well as practical advantages [BLP∗13].

Also several subdivision surface schemes are able to operate on complexes of arbitrary

polygonal patches, but quadrilateral patches are advantageous for the smoothness of the

resulting surfaces [Rei95] for prominent schemes [CC78, DS78].

Triangle mesh Quad mesh

Multiblock grid Spline net

Figure 1.1.: Illustration of different kinds of piecewise surface representations. In the

case of the triangle mesh the pieces are trilateral, in the other three cases quadrilateral.

3

1. Introduction

Piecewise Maps

Not only for the representation of a surface itself, also for the representation of maps

from or onto the surface (i.e. parameterizations, texture maps, displacement maps, etc.)

is a quad layout of great value. When dealing with surfaces of three-dimensional objects,

one most often deals with 2-manifold surfaces (with or without boundaries), i.e. they

are locally homeomorphic to a disc, thus amenable to (local) parameterization over R2.

The correspondences provided by such maps for instance allow to apply simpler 2D

operations to the surface, although it is embedded in R3.

For such use cases, however, often a global parameterization is necessary, for which

the whole surface needs to be homeomorphic to a disc. Hence, the surface needs to be

cut. While a minimal cut graph [EHP02] is topologically sufficient, the resulting metric

distortion in the map can be a problem for many applications.

Therefore, in practice often a chart atlas is used: the surface is cut (i.e. partitioned)

into multiple charts which can be parameterized with low metric distortion. For var-

ious reasons (domain simplicity, transition simplicity, continuity across chart borders

[RNLL10, MZ12]) it is advantageous if these charts are quads and these quads are con-

forming, i.e. again one is interested in quad layouts. Figure 1.2 illustrates a quad layout

based piecewise map from the plane onto the surface.

Domain Surface

Figure 1.2.: Illustration of a piecewise map from the plane onto a surface using a quad

layout based chart atlas.

4

Quad Layouts

The generation of such quad layouts, for purposes like surface or map representation, is

the main topic of this thesis. A major source of motivation for the investigation of this

field comes from the fact that the – often manual or at most semi-automatic – creation of

partitions, in particular quad meshes, multiblock grids, spline networks, or subdivision

base meshes, is an extremely time-consuming task in practice [HCB05, LRL06].

We will see that the mentioned hardness of the problem of automatic quad layout

generation comes from two facts:

1. the optimization problem for the generation of high quality quad layouts is of

mixed nature: it has continuous, discrete, and combinatorial or topological degrees

of freedom (cf. Chapter 3),

2. the notion of quality of a quad layout is application-dependent, sometimes fuzzy,

thus hard to formalize (cf. Section 2.2).

After we introduced foundations and requisite definitions in Chapter 2, we present our

strategy to tackle this problem in Chapter 3. It is based on dividing the problem into

three sub-problems whose degrees of freedom are more uniform and which can be solved

in a serial manner by specialized, geometrically motivated optimization strategies. In

order to deal with the variable notion of layout quality, we follow two different paths: in

Part I a fully automatic quad layout construction pipeline is described, which relies on a

very general notion of quality. We thus do not target a specific application, but present

a generic method – notwithstanding that based on this fundament also specializations

or adaptations to certain applications with their specific quality measures could be de-

veloped in the future. In some scenarios, however, the desired notion of quality can be

quite fuzzy and hard to formalize – for example it may only exist (subconsciously) in

some experts’ minds based on years of experience, or it may be influenced by aspects of

aesthetics. Therefore, in Part II we describe an interactive quad layout design system

which grants the user the flexibility to incorporate their specific design intents. At the

same time, the system highly supports and guides the user, taking care of consistency

aspects and assessing geometric quality.

5

1. Introduction

Thesis Structure and Contributions

Part I An efficient, specialized optimization strategy for each of the three sub-problems

is presented, based on the publications Dual Loops Meshing: Quality Quad Layouts on

Manifolds [CBK12] and Quad Layout Embedding via Aligned Parameterization [CK14b].

The resulting pipeline enables the automatic generation of quad layouts on surfaces.

Part II Alternative strategies are presented which allow for interactive design of quad

layouts, based on the publication Dual Strip Weaving: Interactive Design of Quad Lay-

outs using Elastica Strips [CK14a]. Putting the user into the loop enables respecting

application-dependent quality criteria which can be hard to formalize but easier to judge

for an expert user. We provide high-level interaction tools and visual guides which keep

the amount of user effort low, while providing full flexibility.

Part III We describe novel strategies for the efficient approximation of (anisotropic)

geodesic distances and paths on surfaces, based on the publications Practical Anisotropic

Geodesy [CHK13] and Walking on Broken Mesh: Defect-Tolerant Geodesic Distances

and Parameterizations [CK11]. Such computations are heavily made use of in our quad

layout generation and optimization algorithms. The shortcomings of existing approaches

compelled the development of novel techniques in this field.

Note The following chapters are largely based on the above mentioned articles

[CK11, CBK12, CHK13, CK14a, CK14b], which have been published before. Excerpts

thereof are used, enriched with additional information, and several aspects are elaborated

in more detail. In all of these works this thesis’ author, Marcel Campen, took the leading

role in developing the concept, performing the implementation, and writing the article.

6

2. Quad Layouts

Since the early days of Computer-Aided Geometric Design the partitioning of a complex

surface into quadrilateral patches (or conversely: its composition thereof) has been an

essential requirement and fundamental challenge. The tensor product nature of smooth

surface representations like Bézier, B-Spline, or NURBS patches [Far02] once established

the need for such structures. Especially for reverse engineering purposes, the efficient

creation of such partitionings has always been an important problem, as outlined by Li

et al. [LRL06].

Quad meshes, which have seen an increase in popularity in recent years, sparked

new interest in this problem [TPP∗11, BLK11, CBK12]. This is due to the fact that

semi-regular quad meshes (also known as multiblock grids [SB96]), which contain an

underlying coarse quadrilateral base structure, i.e. which are a regular refinement of a

quad layout, provide advantages for various application cases, as detailed in a recent

survey [BLP∗13] which deems them “the most important class [of quad meshes] in terms

of applications”. For instance, they enable the application of efficient adaptive and

multi-level solver schemes [BDL10, DHM09] in the context of quad-based Finite Ele-

ment simulation and the application of degree adaptation techniques in the context of

Isogeometric Analysis [HCB05, Bom12]. Their high level of structuredness is of benefit

for applications like mesh compression [AG03] and Fourier or Wavelet based processing

[AUGA08]. In the field of character animation designers are interested in quad meshes

with good so-called edge-flow [JLW10] (a concept closely related to a geometry-aware,

simple base structure) as these tend to reduce visualization artifacts and distortions dur-

ing deformation. In this context a simple layout can furthermore directly be exploited

as convenient domain for purposes of texture and detail mapping [Bom12].

From a technical point of view the process of quad layouting, i.e. the partitioning of

a surface into conforming quadrilateral patches, involves determining the layout’s com-

binatorial structure as well as its geometric embedding in the surface. The embedding

7

2. Quad Layouts

Figure 2.1.: A quad layout on a surface (left) and an iso-parameter line visualization of

the parameterizations which embed its patches (right).

describes the locations of the layout patches’ corners and borders on the surface as well

as parameterizations of the patches. Figure 2.1 shows an example quad layout.

2.1. Foundations

We are going to deal with quad layouts on 2-manifolds, typically surfaces of three-

dimensional objects:

Definition 2.1.1. (Surface) A compact orientable two-dimensional manifold M (with

or without boundary ∂M) we will call a surface.

For the purpose of discretization we will deal with a triangulation of a surface – to

which we refer by M, too, unless the context requires explicit distinction.

Layout Graphs and Embeddings

The notion of a quad layout, a conforming quadrilateral surface partition, is formalized

using the following definitions:

Definition 2.1.2. (Layout graph) A multigraph G = (N, A), which may contain

multiple arcs between pairs of nodes as well as dangling arcs which are incident to only

one node, defines the graph of a layout.

8

2.1. Foundations

Definition 2.1.3. (Graph embedding) Each node h of G is associated with a map

fh : 0 → M that assigns this node to a point on the surface. The image of this map

we call embedded node where distinction from the abstract graph node is necessary –

otherwise we simply call it node. Furthermore, each arc a of G is associated with a

continuous map fa : [0, la] → M, whose image is called embedded arc where distinction

is necessary. The maps are such that fa(0) = fh(0) and fa(la) = fg(0) if h and g are

the nodes incident to arc a, i.e. the curve formed by the embedded arc on the surface

starts and ends at the points onto which the incident nodes are embedded. Furthermore,

embedded arcs may only intersect at their endpoints and embedded dangling arcs end

on ∂M. The set of maps f then defines a graph embedding for G.

Figure 2.2 illustrates this. The embedded arcs partition the surface into regions (called

patches) bounded by embedded arcs, embedded nodes, and possibly segments of ∂M –

such patches bounded partially by ∂M are called trimmed, all others full. If all patches

are homeomorphic to discs, the graph embedding formally is a 2-cell embedding (with

boundary).

Definition 2.1.4. (Valence) The valence val(h) of a node h is the number of arcs

incident to it. Note that one arc can be incident to a node (and contribute to the

valence) two times. The valence val(p) of a patch p is the number of embedded nodes

along the patch border. Note that one node can occur multiple times along a patch

Figure 2.2.: Illustration of a layout graph (red nodes, black arcs) and an embedding of

this graph on a surface.

9

2. Quad Layouts

border. Nodes and patches of valence 4 are called regular, otherwise irregular. Trimmed

patches are considered regular if they could be completed to a patch of valence 4.

If all patches are regular, the 2-cell embedding of a layout graph can be extended to

a layout embedding1:

Definition 2.1.5. (Layout embedding) In addition to the node and arc maps, each

patch p can be associated with a continuous map fp : [0, wp] × [0, hp] → M (or a

restriction thereof in case of a trimmed patch) such that this map agrees with the maps

of the incident arcs, e.g. fp(x, 0) = fa(x) or fp(x, 0) = fa(la − x) (depending on the

orientation). The set of maps f then defines a layout embedding for G.

Figure 2.3 illustrates the embedding of a patch via its associated map fp.

Definition 2.1.6. (Quad layout) A layout graph G together with a layout embedding

f in surface M where all patches are regular is called a quad layout L.

Figure 2.1 shows an example of such a quad layout.

1A layout embedding could also be specified in the presence of irregular patches (using different
domains for the maps), but we do not need this more complex general case here.

Figure 2.3.: Illustration of an individual patch embedding map.

10

2.1. Foundations

Layout components
irregular node
regular node
arc
separatrix
chain
patch

Figure 2.4.: Illustration of a layout’s components.

Let us note that an alternative definition would be via cell complexes with quadrilat-

eral 2-cells [Hat02].

Structural Properties

At regular nodes the four incident arcs can be partitioned into two pairs

(depicted in red and blue on the right) of opposite arcs in the intuitive way.

Based on this, separatrices can be defined:

Definition 2.1.7. (Separatrix) A chain of successively opposite arcs which starts at

an irregular node and ends at a (not necessarily distinct) irregular node or ∂M is called

(discrete) separatrix.

Note that we will later also deal with separatrices of cross fields and separatrices of

parameterizations – concepts which are closely related but formally different.

Figure 2.4 illustrates the components of a quad layout.

Definition 2.1.8. (Layout minimality) If each arc of a quad layout is part of a

separatrix, the layout is called minimal.

In a minimal layout, there are no chains of arcs which are cyclic or start and end at

∂M.

11

2. Quad Layouts

Definition 2.1.9. (Base complex) The largest minimal sub-layout of a layout we call

its base complex.

The base complex of a quad layout (or quad mesh) can be obtained by tracing all

separatrices and then removing all untraced arcs.

Finally, besides the geometric representation of the layout via its embedding, a rep-

resentation of just its topology is of use:

Definition 2.1.10. (Rotation system) A compact representation of the topology of

θ

σ

a quad layout L is a pair (σ, θ) of permutations acting on

the set of half-arcs (for each arc there exist two directed

half-arcs, one attached to each incident node). σ is an

involution that maps one half-arc to the other one of the

same arc, and θ maps a half-arc to the next one in the

clockwise (with respect to the orientation of M) cyclic

order of half-arcs incident to the same node. The pair

(σ, θ) is called the layout’s rotation system.

Dual Layouts

For the description and modification of the layout structure it can be of benefit to

consider the dual layout:

Definition 2.1.11. (Dual) The combinatorial dual D of the cell complex specified by

the quad layout L is called the dual layout.

D contains a vertex for each patch of L, an edge for each arc of L, and a region for

each node of L.2 Except for boundary cases, D is a 4-regular cell complex, i.e. every non-

boundary dual vertex has four incident dual edges. Hence, at every non-boundary vertex

there are two pairs of opposite edges. The set of all edges uniquely decomposes into a

disjoint collection of cycles (and, when boundaries exist, boundary-to-boundary chains)

of successively opposite edges. Note that these dual edge cycles (chains) correspond to –

2We use the terms vertex, edge, and region for dual layouts in order to distinguish from nodes, arcs,
and patches of primal layouts.

12

2.2. Quality Criteria

Dual layout components
vertex
edge
region
loop

Primal layout components
irregular node
regular node
arc
separatrix
chain
patch

Figure 2.5.: Illustration of a layout’s primal and dual components.

possibly non-simple, i.e. self-crossing – cyclic (or boundary-to-boundary) quad strips in

L. Geometrically, these dual edge cycles (chains) correspond to an arrangement of loops

(or boundary-to-boundary curves) on the surface, cf. Figure 2.5; the loop intersections

define the vertices and the loop segments between any two intersections define the edges

of D. The induced partition of M consequently defines the regions of D (cf. Figure

2.5). Note that a specific embedding for D is not inherent to the topological concept of

duality.

2.2. Quality Criteria

As already mentioned, the quality of a quad layout is a measure that, at least to some

extent, depends on the intended application. However, we can identify some generic

aspects which are common to most application scenarios:

• Geometric fidelity: patches should map to planar rectangles with low parametric

distortion

• Structural simplicity: the number of patches should be small

The geometric fidelity generally promotes mapping or representation quality, because

the parametric distortion is a key factor in many applications, while the structural

13

2. Quad Layouts

simplicity gives preference to simpler surface representations, simpler mapping domains,

or more flexibility for hierarchical structures (e.g. in the context of multi-block grids).

Unfortunately, both aspects tend to be opposing objectives. For instance, a genus 1

surface can always be covered with just a single quad patch, but then the parametric

distortion can be arbitrarily high, depending on the geometric shape of the surface. On

the other hand, low distortion can be achieved at the expense of a large number of small

patches, as in the case of quad meshing [BZK09].

The general quality of the layout hence is a function of complexity and distortion,

and an appropriate trade-off needs to be made. How this relation looks like in detail

is application-dependent. Our automatic approach (cf. Part I) yields results where this

trade-off generally seems reasonable or natural – and often even optimal on models where

this can be judged objectively. Our interactive approach (cf. Part II) gives full flexibility

to the user to take application-dependent aspects, even those that are subjective or hard

to formalize, into account and to adjust this trade-off accordingly.

The two layout quality criteria geometric fidelity and structural simplicity imply local

π
2

3π
2

0
4π

2

−π
2

5π
2

criteria for individual nodes, arcs, and patches. For

instance, a patch corner ideally has an angle of π
2 .

Thus, a node of valence k ideally lies at a point

where the surface has Gaussian curvature 2π − k π
2

because around such a point the (cut) surface un-

folds to a sector with inner angle k π
2 [PS98] as de-

picted here. Furthermore, an arc is ideally embed-

ded as a geodesic curve, and arcs are short and few

in number. It is obvious that these ideal states typ-

ically cannot be achieved, especially not simultane-

ously, due to interdependencies between the nodes,

arcs, and patches and the surface geometry. These

local criteria can, however, be helpful guides in the

design of optimization strategies which then take the global interdependencies into ac-

count.

One further aspect is quite commonly of relevance for the layout quality:

14

2.3. Taxonomy

• Principal direction alignment: the arcs and also the iso-parametric curves of

the embedded patches should follow directions of principal curvature on the surface

with low deviation.

The importance of this aspect for prominent use cases of quad layouts is well known

[LRL06, ACSD∗03, CSAD04]. Depending on the application, it serves maximizing

surface approximation quality [D’A00], minimizing normal noise and aliasing artifacts

[BK01], optimizing element planarity [LXW∗11], or achieving smooth curvature distri-

bution (due to their tensor-product nature common spline surface representations are

prone to ripples (curvature oscillations) if aligned badly). Besides, principal direction

alignment can also be of interest for aesthetic reasons. Due to their specific symmetries

quad layouts and quad meshes have the natural ability to align to the orthogonal princi-

pal directions. In fact, this is one of the main reasons for preferring them over simplicial

layouts [BLP∗13].

The alignment of layout arcs or iso-parametric curves of the embedding maps to

feature curves on the surface may be seen as a special case of this principal direction

alignment, but it can be advantageous to consider this in a dedicated, stricter manner

and to take alignment to surface boundaries into account as well.

2.3. Taxonomy

Besides quad layouts there exist several other concepts – quad meshes, subdivision base

meshes, T-meshes – which are closely related but differ in terms of structure or quality

objectives. To clarify our objectives, we here elucidate the distinction between these.

2.3.1. Quad Meshes

Structurally a quad mesh does not differ from a quad layout: it consists of conforming

quadrilateral patches. The fundamental difference is the simplicity objective. When gen-

erating a quad layout the patch dimensions should be chosen automatically such that a

simple layout is achieved. This can lead to patches of arbitrarily varying sizes and aspect

ratios, depending on the geometry of the surface. Methods for generating quad meshes,

15

2. Quad Layouts

however, typically rely on a a priori specified target quad size and quad anisotropy (pos-

sibly varying over the surface) [RLL∗06, DBG∗06, KNP07, HZM∗08, BZK09, ZHLB10,

KMZ11, BCE∗13, PPTSH14]. This is motivated by the fact that the nodes of a quad

mesh are expected to already sufficiently encode the geometric information of the surface

via their 3D positions because arcs and patches are typically just (bi)linear interpolations

of this information. A quad mesh (e.g. for simulation or animation applications) thus

typically needs to be much finer than a quad layout who’s main purpose is to provide a

partition of the surface but not to immediately represent it geometrically.

Due to these differences, quad mesh generation methods are typically not suited for

the generation of quad layouts (cf. Section 2.4). Vice versa, however, quad meshes (in

particular: highly demanded semi-regular quad meshes) can easily be generated from

quad layouts generated by our algorithms (cf. Section 6.7).

2.3.2. Subdivision Base Meshes

Just like in the case of quad meshes, the complexity of base or control meshes for

subdivision surfaces is mainly mandated by the fact that the nodes are expected to carry

the full geometric information in their positions. However, the patch geometry is defined

via more sophisticated means than simple (bi)linear interpolation, e.g. via bi-quadratic

or bi-cubic splines in the case of the famous Doo-Sabin [DS78] and Catmull-Clark [CC78]

subdivision schemes. Hence, in practice subdivision base meshes are typically coarser

than quad meshes, but this of course depends on the concrete scenario and the underlying

shape.

Furthermore, some subdivision schemes can deal with base meshes that contain irreg-

ular non-quad patches and in this sense allow more flexibility in the construction. These

irregularities, however, lead to singularities with lower smoothness in the subdivision

limit surface [Rei95].

Note that, just like in the above case of quad meshes, a quad layout can easily be

refined (by splitting patches into regular grids of smaller patches) in order to achieve

the patch resolution suitable for a subdivision base mesh application. The opposite,

i.e. given a fine quad mesh, turn it into a coarser quad layout, by contrast, is highly

challenging and requires sophisticated algorithms [DSC09, PPT∗11, BLK11, TPP∗11],

which do not always manage to preserve a good patch quality and alignment.

16

2.4. State of the Art

2.3.3. T-Meshes

Dropping the requirement of conformity, i.e. that patch corners coincide only with other

patch corners, we arrive at the class of so-called T-meshes. The name stems from the

fact that a patch corner lying on the interior of an arc forms a T-junction. While such

partitions are not suitable for, e.g., B-Spline surface representations due to continuity

issues, generalized T-splines and T-NURCCs [SZBN03] build on exactly such meshes.

The option to have T-junctions in the mesh, where chains of arcs just end, allows to

more flexibly adjust the local resolution compared to a quad layout, where chains of

arcs always are either cyclic or fully extend to irregular nodes or boundaries. The

increased sparsity and compactness is an advantage for modeling and editing purposes

[SCF∗04, BVK08].

It is, however, important to note that this increased flexibility does not simplify the

construction of a T-mesh compared to a quad layout – at least not in the context of

T-spline related techniques. For this use case a T-mesh needs to be globally parameteriz-

able, i.e. the assignment of non-zero knot intervals to edges of the mesh must be possible

in a globally consistent manner [SZBN03]. This implies certain constraints regarding the

constellation of T-junctions. These can only be fulfilled if the T-mesh can be obtained

from a conforming partition (a quad mesh or a quad layout) by omitting a number

of arcs (and nodes). While we are not aware of an explicit mentioning of this in the

pertinent literature, existing approaches to automatic T-mesh construction respect this

implicitly: they obtain a T-mesh as a subset of a quad mesh [MPKZ10, LRL06, SCF∗04],

as a subset of the iso-parametric curves of a surface parameterization [HWW∗06], or by

partial regular refinement of a quad mesh or layout [WZXH12, SZBN03].

Hence it is not unnecessarily expensive to use quad layout construction methods like

ours to generate T-meshes, too, by (possibly after suitable refinement) removing nodes

and arcs from the result where they are not necessary to achieve the desired quality.

2.4. State of the Art

In industrial workflows quad layouting is often performed manually by skilled, well-

trained professionals in the animation and engineering sectors through the construction

17

2. Quad Layouts

of nets of surface curves. More recently, approaches that tackle (variants of) this problem

in a (semi-)automatic manner have been proposed. We discuss them in the following.

An inherent issue is that a good quad layout generally is a compromise balancing

layout simplicity, patch rectangularity, feature and principal direction alignment, and

possibly further objectives, as described in Section 2.2. Existing automatic methods do

not consider all of these aspects adequately, or appear to be strongly biased towards one

particular objective.

2.4.1. Quad Meshing

For the generation of quadrilateral surface meshes a number of methods have been pro-

posed. They are based on various principles, e.g., periodic parameterizations [RLL∗06],

Morse-Smale theory [DBG∗06, HZM∗08], or mixed-integer optimization [KNP07, BZK09,

BCE∗13]. These methods are mainly targeted at creating meshes with uniformly sized

elements. While extensions for the incorporation of sizing, skewness, and aspect ratio

fields have been presented [ZHLB10, KMZ11, PPTSH14], allowing to adjust the element

properties to local properties of the input geometry, these fields have to be specified a

priori. A recent survey [BLP∗13] gives an overview over all of these techniques.

The base complex of meshes generated with these techniques could potentially be

used as a quad layout. Unfortunately, most of these techniques do not provide means

to control the base complex structure and its simplicity (cf. Figure 2.6); meshes with

a two-level hierarchy, and thus a coarser base complex, are obtained by those mehods

based on spectral surface analysis [DBG∗06], but the coarser level is highly uniform by

design, which of course restricts its simplicity. With our recent method [BCE∗13] we

increased the robustness of the quad remeshing process so far that it allows to gener-

ate relatively coarse quad meshes which could effectively be “misused” as quad layouts.

When prescribing a very large target edge length, the correctness constraints implicitly

(anisotropically) reduce the size of the individual elements such that a valid mesh or

layout is obtained. The enforced small patches, however, conflict with the geometric

objective and it can be observed that for large prescribed target edge lengths, the op-

timization is dominated by the aim of fulfilling the involved constraints and geometric

quality occasionally suffers, resulting, e.g., in badly shaped patches and badly aligned

arcs.

18

2.4. State of the Art

Figure 2.6.: Quad meshes created by a field-guided parameterization approach [BZK09]

and their base complexes. On the left the arcs of the base complex are highlighted. In

the middle the base complex patches are visualized by individual colors – on the right

a very similar quad mesh of this object is depicted (same resolution, same number and

type of irregular vertices) refined from a quad layout created by the techniques presented

herein; it has a much simpler base complex.

2.4.2. Quad Layouting

Eck and Hoppe [EH96] proposed an early quad layout construction method for the pur-

pose of spline patch fitting. Essentially, it is based on pairing the faces of a triangular

layout. A similar approach is chosen by Boier-Martin et al. [BMRJ04]. Control over the

geometric fidelity and alignment is quite limited due to the nature of these approaches.

Daniels et al. [DSC09] propose to convert a triangle mesh to a quad mesh by one step

of Catmull-Clark subdivision and then simplify the result using quad mesh decimation

techniques. Driving this decimation in a way that the resulting coarse mesh is geomet-

rically faithful and irregular vertices end up in plausible locations similarly remains a

problem. In this context Panozzo et al. [PPT∗11] use special kinds of pre-computed

sizing fields (called fitmaps) to influence a decimation process.

Due to the complexity of the problem, several researchers proposed or assumed a

manual [BVK08, KL96, MBVW95, AAB∗88] or semi-automatic, assisted [TACSD06,

TDN∗12, JLW10] creation of quad layouts. This means the user (directly or indirectly)

places nodes onto the surface and delineates the patch borders inbetween. This approach

to the problem can be advantageous because layout design decisions might depend on

the intended use of the layout and cannot always be derived from geometry alone.

19

2. Quad Layouts

However, manually designing a good all-quadrilateral layout turns out to be an intricate

and cumbersome task even for experienced users due to the involved complex global

interdependencies and structural constraints that are to be considered. To cite Takayama

et al. [TPSHSH13] in this regard: “it is often quite challenging even for professional

artists to manually design a perfect quad mesh on the first try. Since the quality [...] is

a global property, the correction of a single mistake might require regeneration of the

entire mesh.”. They hence proposed a system which provides various helpful guides

and automatisms to reduce the user’s workload – for the case of subdivision base mesh

design.

Automatic methods have furthermore been presented for related, simpler variants of

the problem, like quad-dominant layouts [MK04, LKH08], polygonal layouts [CSAD04,

MK05], feature graph layouts [NSP10], or non-conforming partitions [EGKT08].

2.4.3. Base Complex Simplification

The problem of obtaining a simple layout has also been approached “reversely”: instead

of creating a layout from scratch, one starts from a fine quad mesh with a possibly very

complex base complex and attempts to successively simplify it by adjusting its structure.

The base complex could then be used as quad layout for various purposes. Bommes et

al. [BLK11] and Tarini et al. [TPP∗11] followed this path. The underlying observation

is that the separatrices (which form the base complex, cf. Section 2.1) of quad meshes

generated by the methods discussed in Section 2.4.1 often wind around the underlying

object many times, forming a rather fine base complex with many small patches as shown

in Figure 2.6. Using sets of operators that modify the mesh connectivity while preserving

the quad structure one can attempt to reduce the total length of these separatrices, thus

the complexity of the base complex. Tarini et al. [TPP∗11] build such operators from

separatrix removal and re-insertion steps, Bommes et al. [BLK11] focus on eliminating

certain helical configurations, which they identified as most relevant for base complex

simplicity. Using greedy strategies the underlying huge search spaces are then explored

in the search of modified meshes with a simpler base complex. In Section 5.4 we discuss

the respective advantages and disadvantages in comparison to our approach.

General decimation and editing methods for quad meshes, e.g. [DSSC08, PZKW11],

can also be seen as related, but they do not specifically target a coarse base complex.

20

3. Strategy

The problem of high-quality quad layout generation is hard to tackle using established

standard optimization techniques (“black box solvers”) due to its complicated nature:

there are discrete, continuous, and combinatorial or topological degrees of freedom

(DoFs):

• discrete: number and valence of nodes

• continuous: embedding of nodes, arcs, and patches

• combinatorial/topological: layout graph connectivity

This complexity requires us to design specialized, geometrically motivated strategies

to enable the efficient computation of good solutions.

Our underlying strategy is to split the problem into three sub-problems, each of which

has a simpler, more uniform (in terms of DoFs) structure. These sub-problems are then

solved in three sequential algorithmic stages. The division into sub-problems allows us

to rely on different optimization techniques (e.g. based on a linear equation system,

non-linear gradient descent, combinatorial optimization, or an eigenvalue problem) for

the different aspects of the problem.

If the DoFs were independent in between the sub-problems, the division would be

uncritical – in the sense that sequential optimal solution of the sub-problems would

yield the optimal solution of the entire problem. In the quad layout problem, however,

the DoF dependency graph can typically be assumed to be very dense or even complete

(unless the surface has multiple components). Therefore we have to take care in the

design of the individual optimization stages that the sub-solutions produced by the

early stages can still be completed to a full solution of high quality by the later stages.

To this end we follow two paradigms, a forward and a backward paradigm:

21

3. Strategy

• forward anticipation: anticipate how well later stages will be able to deal with

the sub-solution which is being produced.

• backward modification: modify a sub-solution of an earlier stage if it cannot

be dealt with well.

Obviously, this anticipation and modification can only be performed to a certain

extent for the sake of efficiency – full anticipation would correspond to solving the entire

problem already in the first stage, complete modification freedom would correspond to

solving the entire problem in the last stage (independent of what the previous stages

delivered).

3.1. Automatic Approach

The design of the individual stages of our automatic quad layout generation and opti-

mization pipeline is outlined in the following.

3.1.1. Stage 1: Nodes

In the first stage (Chapter 4) the discrete degrees of freedom, i.e. an appropriate number

of (irregular) nodes and their valences, are determined. It is based on constructing a

non-standard connection [CDS10] from a smooth, principal curvature guided direction

field on the surface. The irregular nodes and their valences are then derived from this

connection’s curvature distribution (or equivalently: the field’s singularities). Due to

the nature of such fields we achieve node configurations suitable for quad layouts and

due to the nature of the field smoothness functional we achieve node valences that are

geometrically appropriate. These properties have already been exploited in the related

field of quad meshing [KNP07, BZK09].

3.1.2. Stage 2: Connectivity

In essence, our stage 2 (Chapter 5), which determines the combinatorial or topological

degrees of freedom, is based on the careful construction of the combinatorial dual of

22

3.1. Automatic Approach

the quad layout from geodesic loops in a way that is sensitive to the input’s geometry

and ensures structural consistency. The process is driven by the objective of separating

the nodes determined in stage 1 by dual loops, such that they eventually lie in regions

with the desired valence. Dualization of the arrangement of dual loops then provides a

connectivity for the nodes which is guaranteed to form only quad patches.

Our key contributions are:

• A novel framework to describe, identify, and manipulate structurally valid and

geometrically faithful duals of quad layouts.

• Efficient methods for the geometry-aware construction of embedded loops that are

the key components of the dual layouts.

• A practical greedy algorithm based on the framework to automatically and effi-

ciently perform the layout construction.

3.1.3. Stage 3: Embedding

In stage 3 (Chapter 6) the continuous optimization is performed, i.e. the embedding of

nodes, arcs, and patches is optimized. As all these individual embeddings interdepend

(cf. Definition 2.1.5), we formulate an optimization problem based on a global, princi-

pal direction aligned parameterization which effectively combines all these embeddings.

This problem is solved using an efficient custom-tailored optimization strategy based on

alternating between global linear optimization and local non-linear optimization. The

individual embeddings can then be extracted from the parameterization.

Our key contributions are:

• a description of how to add structural constraints to established optimization sys-

tems for principal direction fields and parameterizations, such that they can be

used to optimize alignment-aware layout embeddings.

• a novel concept to continuously optimize layout node positions, directly driven by

embedding quality, based on an efficient meta-optimization strategy.

23

3. Strategy

3.1.4. Forward Anticipation

The paradigm of forward anticipation is implemented in the first two stages as follows:

Stage 1 → Stage 3 In stage 3 the embedding is optimized via a global parameteriza-

tion which is guided by a principal direction field. In stage 1 the nodes are determined

via exactly such a field, promoting suitability for the parameterization that is performed

in stage 3.

Stage 2 → Stage 3 In stage 2 dual loops are constructed based on objectives that

mimick those of the parameterization in step 3. For instance, principal direction align-

ment is taken into account and orthogonal loop crossings are favored.

3.1.5. Backward Modification

The paradigm of backward modification is taken into account as follows:

Stage 1 ← Stage 2 In stage 2 the dual loop construction algorithm has the possibility

to merge nodes determined in stage 1 if they turn out to be inseparable, or separable

only in geometrically inappropriate ways.

Stage 1 + 2 ← Stage 3 In stage 3 the algorithm has the possibility to perform so-

called poly-chord collapses, removing arcs and nodes created in the previous stages in a

structurally consistent manner, when they turn out to be superfluous.

3.2. Interactive Approach

Besides the automatic approach, we propose an interactive, computer-aided quad lay-

out design system (Chapter 7). It grants the user the flexibility to incorporate their

application-specific design intents but automatically takes care of consistency aspects

and of assessing the geometric layout quality. Our system features novel interaction

tools and provides guides to effectively support the design process. Just like the auto-

matic approach, it is fundamentally based on a dual perspective with its advantageous

consistency-ensuring aspects.

24

3.2. Interactive Approach

The three stage division, however, turns out to be unsuitable for the interactive sce-

nario. Keeping stage 1 automatic and making stage 2 interactive is not an option,

because the topology of the cross field from stage 1 already significantly restricts the

design freedom regarding the dual loops. Making stage 1 interactive, too, i.e. having the

user first create the field manually, would yield a very complicated, impractical workflow.

We thus combine stages 1 and 2, i.e. we derive the nodes as well as their connectivity

from the dual loops constructed by the user. In order to enable this modification, we

model the dual loops based on bending energy-minimizing elastica [BNR01] instead of

the simpler field guided geodesics used in stage 2 of the automatic approach. This

allows us to automatically propose geometrically and topologically suitable operations

to the user, enabling an efficient workflow. The automatic stage 3 can then be used

to determine an optimal embedding for the designed layout – but we also discuss an

interactive alternative that grants control in this stage, too.

The key contributions can be summarized as follows:

• A fast method for the construction of constrained elastica on surfaces, without any

restrictions on topology or homotopy.

• Support for symmetries in the dual loops/strips framework.

• Interaction tools and metaphors for incremental layout design, supported by au-

tomatic background computations.

• Evaluation of intermediate design states and visualization of the assessment to

guide the user.

25

3. Strategy

Figure 3.1 illustrates the automatic and interactive processing pipelines schematically.

Chapter 7 + 8 Section 8.3

Chapter 4 Chapter 5 Chapter 6

Nodes Connectivity Embedding

Automatic

Interactive

Figure 3.1.: Illustration of the automatic and interactive processing pipelines and their

stages. Note that automatic and interactive stages can be combined (dashed arrows),

i.e. the embedding of an interactively designed layout structure can be optimized auto-

matically and vice versa.

26

Part I.

Automatic Generation

27

4. Nodes

In this first stage of the automatic pipeline a suitable number of layout nodes and

their respective valences are to be determined. As discussed in Section 2.2 the ideal

situation would be that the surface has isolated points si with a Gaussian curvature that

is an integer multiple of π
2 while all other points of the surface have vanishing Gaussian

curvature. Then one could place an irregular node ni of valence val(ni) = ki onto each

point si with Gaussian curvature 2π− ki
π
2 (regular nodes could be placed anywhere else

as needed) and obtain developable (actually planar) patches with right angles. Obviously

this is only possible on an extremely restricted class of surfaces, namely those of unions

of boxes (in particular polycubes)1. On general surfaces this point-wise view of curvature

is not very helpful. For instance, on smooth surfaces it is neither scale-invariant nor,

in the discrete case, mesh resolution-invariant. A näıve approach in the style of “place

an irregular node of valence k where the Gaussian curvature is in some sense close to

2π − k π
2” is thus bound to fail. This holds even more due to the following important

observation: we are not entirely free in the choice of nodes and their valences (at least

for surfaces without boundary) – the topology of the surface implies a constraint via

Euler’s well known polyhedron formula, which likewise holds for the special case of quad

layouts (with nodes N , arcs A, and patches P):

Theorem 4.0.1. (Euler’s polyhedron formula)

|N |− |A| + |P | = χ(M) (4.1)

1In fact, one can try to find a union of boxes which approximates the given surface (together with a
continuous bijection), construct a quad layout on it, and map it onto the surface [HJS∗14]. However,
only a very restricted class of quad layouts can be obtained in this way: those whose set of dual
loops can be partitioned into three subsets such that no two loops from the same subset intersect.
Therefore the possibilities of achieving high patch quality and good alignment are limited.

29

4. Nodes

where χ(M) is the surface’s Euler characteristic, a topological invariant related to its

genus. Considering each arc as two directed half-arcs (their number denoted by |H|) and

exploiting the fact that in a quad layout there are exactly four times as many half-arcs

as patches, we arrive at

|N |− |H|/4 = χ(M). (4.2)

This can be restated in form of a sum over all vertices and their outgoing halfedges:

∑

ni∈N

1 − val(ni)/4 = χ(M). (4.3)

We note that summands corresponding to regular nodes of valence 4 vanish. The sum

over the irregular nodes’ terms, however, needs to match the surface’s Euler character-

istic. This constraint needs to be considered in the optimization because otherwise the

set of nodes does not admit a quad layout.

4.1. Connections

For these reasons a more global, integral view of curvature is necessary. This view is

provided by connections2 [CDS10]. A connection defines a notion of parallel transport

on a surface and thus implies a notion of curvature. In particular, the Levi-Civita

connection ∇LC – the unique metric connection that transports tangent vectors without

torsion – implies the usual Gaussian curvature. Intuitively, an arbitrary tangent vector

at a point p on the surface, parallel transported along any simple closed curve on the

surface using a connection, leads to another tangent vector at p. The accumulated angle

defect between these two vectors (holonomy) defines the total curvature of the region

enclosed by the curve. In this way the total curvature of any region is encoded in a

connection.

The idea now is to construct a connection ∇π
2

which A) is (in the least-squares sense)

as close as possible to Levi-Civita while B) implying a curvature which is an integer

2Formally, we are referring to metric connections, which preserve the surface’s metric under parallel
transport, i.e. an orthonormal frame is transported to an orthonormal frame.

30

4.1. Connections

multiple of π
2 everywhere (while it is 0 for all but a finite number of points si). Note

that in the case of a union of boxes we will obtain ∇π
2

= ∇LC . In any case, due to

condition (B), we can easily derive a set of irregular nodes and their valences from this

connection. Due to condition (A) we can expect that this irregular node configuration,

while not ideal, is in some sense as good as possible for the given surface geometry. Most

importantly, without need for any further measures, the set of irregular nodes derived

from such connections is guaranteed to fulfill (4.3). This is a direct consequence of the

Gauss-Bonnet theorem that states that the total curvature
∫∫

K of a surface without

boundary (implied by any connection) is related to its Euler characteristic via

Theorem 4.1.1. (Gauss-Bonnet theorem for closed surfaces)

∫∫
K = 2πχ(M). (4.4)

In the case of ∇π
2

we thus have χ(M) = 1
2π

∑
i K(si). This turns into (4.3) if

1
2πK(si) = 1 − val(ni)/4 for each point si and its corresponding node ni, and indeed

this is the case for our desired choice of val(ni) = ki for K(si) = 2π − ki
π
2 .

4.1.1. Optimization

αij

i

j

In the discrete setting, i.e. on a triangle mesh, a connection can be

expressed via adjustment angles α across the edges [CDS10], which

express the tangential rotation a tangent vector undergoes as it is

transported from one face to a neighboring face across an edge. The

discrete Levi-Civita connection is characterized by all these angles

being zero. As we are interested in a connection as close as possible

to Levi-Civita, our objective is ∥α∥2 → min, subject to condition

(B).

As detailed in [CDS10] condition (B) can be expressed via constraints for a set of basis

face cycles which enforce that the adjustment angles exactly cancel the curvature of the

Levi-Civita connection ±mi
π
2 . In that work the integers mi are prescribed, allowing this

optimization to be performed with a simple linear system solve. Here, we end up with a

mixed integer problem because we only have the constraint that the curvature is some

integer multiple of π
2 , i.e. the mi are free integer variables. Hence, a constrained mixed

31

4. Nodes

integer solver is necessary for this optimization. Bommes et al. [BZK12] presented an

efficient greedy solver strategy that could be applied here.

However, we are going to use an alternative formulation for the optimization, based on

tangent direction fields, which is essentially equivalent but provides additional interesting

insights and possibilities (in particular: consideration of principal direction alignment),

as detailed in the next section.

4.2. Cross Fields

θi

θj

Instead of representing the per-edge adjustment angles as explicit

variables, we can represent them implicitly as the angular differences

between variable tangent directions in the incident faces, i.e. αij =

θi − θj + κij, where θ are the angles of the tangent directions with

respect to a local per-face reference system and the constant κij aligns

the reference systems.

We could then perform the following optimization:

∑

eij∈E

(θi − θj + κij)
2 → min (4.5)

Due to the relation between α and θ this is essentially equivalent to the connection

based optimization problem – with one significant difference: constraints for a condition

akin to (B) are inherent to this formulation. The resulting connection obviously trans-

ports vectors to themselves along any curve (just notice that by construction the field θ

– and any constant rotation thereof – is parallel w.r.t. the connection given by α). Hence

the implied curvature must be an integer multiple of 2π everywhere. The multiplicity,

however, is fixed arbitrarily (formally and more precisely, it is implied by the indices of

the field of chosen local reference systems) and we are actually interested in multiples

of π
2 , not 2π. Both problems can be solved by adding integer variables m to the system

which allow to add any multiple of π
2 to the terms in (4.5):

32

4.2. Cross Fields

∑

eij∈E

(
θi − θj + κij + mij

π

2

)2

→ min (4.6)

Note that adding such a variable for each edge is redundant – just as in Section 4.1.1

it is sufficient to add one variable per cycle of a face cycle basis. This is the case if we

add a variable for each edge of a spanning tree of the edge graph, as also mentioned in

[BZK09].

The connection ∇π
2

resulting from this optimization then fulfills (A) and (B). In par-

ticular, a vector is not necessarily transported to itself along any curve by this connection

but may be off by a multiple of π
2 . A cross (a set of four di-

rections invariant to rotations by π
2), however, is always trans-

ported to itself, so we are in fact optimizing a cross field C
for smoothness – a cross field which by example represents ∇π

2
.

Therefore it comes as no surprise that exactly the same optimiza-

tion problem is used for the construction of smooth cross fields

[HZ00, LVRL06, PZ07, RVLL08, RVAL09, LJX∗10] for quad meshing purposes, e.g.

in [BZK09, MPKZ10, LLZ∗11, PTSZ11, ECBK14].

It is worth noting that from this perspective the inherent fulfillment of (4.3) is a

consequence of the Poincaré-Hopf theorem, relating a direction field’s singularities to

the surface’s Euler characteristic:

Theorem 4.2.1. (Poincaré-Hopf theorem) Let C be a direction field on M and si

its isolated singularities. Then
∑

i

indexC(si) = χ(M). (4.7)

The index of C at a point si is given by indexC(si) = 1
2πK(si), where K is the curvature

implied by ∇π
2
. In the case of a cross field it thus is a multiple of 1

4 . For details on tangent

direction fields, singularities and their indices we refer to [RVLL08, PZ07]. Relating (4.3)

to (4.7) reveals a close connection which implies that the choice of a set of irregular nodes

ni which correspond to the singularities si of a direction field, with valences chosen as

1 − val(ni)/4 = indexC(si), (4.8)

(which is equivalent to the choice discussed in Section 4.1) will always lead to a config-

uration fulfilling Euler’s polyhedron formula.

33

4. Nodes

These beneficial properties of cross fields have already successfully been eploited by

several methods in the related field of quad meshing, e.g. in [KNP07, BZK09, ECBK14],

which similarly derive irregular mesh vertices from cross field singularities – even though

the Euler characteristic relation and its importance have not explicitly been mentioned

in these works.

Note that the particular choice of relation between node valence and singularity index,

which we previously justified by patch corner angle considerations, can also be seen to be

natural in another way: the number sepC(si) of cross field separatrices [PZ07] emanating

from singularity si is related to the index in the same way, 1 − sepC(si)/4 = indexC(si),

as illustrated in Figure 4.1.

Figure 4.1.: Streamline visualization of a cross field in the neighborhoods of points with

index 1
2 ,

1
4 , 0, −1

4 , −
1
2 . Streamlines emanating from a singularity are called separatrices

and their number is related to the singularity’s index via 1 − sepC(si)/4 = indexC(si).

In regular regions (middle) streamlines cross orthogonally.

4.2.1. Optimization

The optimization problem (4.6) can be solved using an efficient greedy mixed integer

solver [BZK12] as described in [BZK09]. Recently, different formulations with alternative

optimization strategies that do not require a mixed integer solver have been proposed

[KCPS13, DVPSH14]. In these methods the integer degrees of freedom are essentially

expressed implicitly [PZ07] rather than explicitly [LVRL06]. This, however, limits the

types of singularities and thus node valences – in the case of a vertex-based formulation

as in [KCPS13] to valence 3 and 5 – while the explicit representation allows for arbitrary

valences. Furthermore, vector based interpolation [DVPSH14] can lead to degeneracies

(zero vectors which cannot be back-transformed to crosses), while the angle based for-

mulation always yields valid results. Hence we use the mixed integer formulation in our

method.

34

4.3. Results

Note, however, that indices should always be lower than 1 because otherwise the corre-

sponding (necessarily positive) valence cannot be chosen according to (4.8) in the desired

way. If singularities with index ≥ 1 occur (in pathological situations with Gaussian cur-

vature of nearly 2π concentrated on one vertex) they can easily be split into lower index

singularities [BZK09, PZKW11].

4.2.2. Principal Direction Alignment

The cross field perspective of the node optimization problem allows us to respect the

forward paradigm (cf. Section 3.1.4) in this stage. The cross field can be seen as a kind

of proxy for the parameterization (more precisely: its gradient field) that is going to be

computed in the third stage. As we are going to construct a principal direction aligned

parameterization, it is of benefit to likewise take an additional alignment objective into

account already in the cross field construction. This influences the resulting singularity

structure. In this way the nodes’ suitability for the third stage is already considered

here in the first stage. Specifically, we use the technique described in [BZK09] to select

principal direction constraints based on the local surface anisotropy, and fix the crosses

in the respective faces accordingly.

Note that one could go one step further and optimize a principal direction aligned

parameterization (including free singularities) instead of “just” a principal direction

aligned cross field (for instance in the spirit of [MZ13]). However, this would be more

expensive: a parameterization corresponds to an integrable 4-symmetric vector field,

and the integrability condition leads to a significantly harder problem. But even more

important, the benefit is questionable because a parameterization computed here would

still not match the one computed in stage 3: the connectivity information from stage 2,

which is not yet predictable here, will be taken into account in stage 3, and it often has

a larger effect than the integrability condition.

4.3. Results

Figure 4.2 shows the irregular nodes obtained for various models using the described

method with principal direction alignment constraints.

35

4. Nodes

4.4. Discussion

Regular Nodes Note that we, so far, only considered the irregular nodes – which play

by far the most important role. In fact, here we can actually neglect regular nodes,

which do not have any effect in (4.3) or on the geometric quality – they can emerge

freely in later steps (basically implied by crossing separatrices, cf. Section 5.2.3).

Node Positions The purpose of stage 1 is to fix the discrete degrees of freedom –

irregular node count and valences. As a by-product we get positions for these nodes.

We can conveniently exploit this information in the next stages, but it is considered

preliminary and we only use it as initialization – actual optimized positions are finally

obtained in stage 3.

Guarantees (4.3) implies a necessary, not a sufficient condition, i.e. a set of nodes

(derived from a cross field) which fulfill (4.3) does not generally admit a quad layout.

However, as shown by Jucovič and Trenkler [JT73] and recently discussed by Myles

et al. [MPZ14] only a single configuration fulfilling (4.3) but not admitting a quad

layout exists: one valence 3 and one valence 5 node on a genus 1 surface. While our

experiments as well as the lack of mention in the pertinent literature in the field-driven

quad meshing area suggest that this is not an issue in practice, one may simply modify

this problematic configuration, should it occur, e.g. by merging the two singularities

[BZK09], thus removing the two nodes.

Noise We assume the input triangle meshes we operate on are free from noise artifacts.

The Gaussian curvature variations on noisy surfaces can lead to an excessively large

number of cross field singularities. The abstraction from such artifacts or small-scale

geometric detail is beyond our scope, but the use of surface smoothing methods or

alternative, scale-aware objectives for the field construction [RVAL09, ECBK14] is surely

possible.

36

4.4. Discussion

Figure 4.2.: Irregular nodes computed for various example models. Valence 3 nodes are

displayed in red, valence 5 nodes in blue, and valence 6 nodes in cyan. Note how most

valence 3 nodes lie in regions with positive Gaussian curvature and valence 5+ nodes

in regions with negative Gaussian curvature, but where appropriate or necessary, e.g. in

order to fulfill the Poincaré-Hopf theorem, nodes can also arise in flat regions.

37

4. Nodes

38

5. Connectivity

Note: This chapter is based on [CBK12].

In stage 2 the connectivity of the irregular nodes created in stage 1 is to be determined.

Probably the most obvious attempt to construct a quad layout given a set of nodes

with prescribed valences consists in connecting these by incrementally constructing the

separatrices (i.e. arcs or arc chains) from node to node. It turns out, however, that

the structural consistency requirements (“only regular patches”) are hard to control

and satisfy when proceeding in this local, incremental manner: whenever a cycle in the

graph of nodes and separatrices is closed during the process, strict conditions relating

the valence of its patches to the number and valence of inlying nodes have to be met

– otherwise additional irregular nodes would have to be introduced in order to still be

able to obtain a quad-only layout. Besides the fact that these additional nodes might be

geometrically implausible (causing low geometric fidelity), they further imply additional

separatrices that are to be inserted. Hence, it can become difficult to generate a complete

layout without introducing an excessive number of irregular nodes (causing high layout

complexity). This primal, separatrix-based layout construction approach is furthermore

highly order-dependent: early greedy decisions can render a layout unacceptable long

before this is realized, as already discussed in Section 2.4.2. Takayama et al. [TPSHSH13]

and Bommes [Bom12] likewise note these problems.

The key observation that allows us to avoid the problems of separatrix-based ap-

proaches is the fact that the layout consistency is much easier ensured when not work-

ing in the primal but in the dual setting (cf. Definition 2.1.11). In more detail, this

means we do not directly construct the primal layout graph of separatrices connect-

ing irregular nodes but its combinatorial dual, which we eventually dualize to obtain

the primal. We construct this dual (embedded) graph from the arrangement of a set

of crossing loops (closed curves) on the surface (cf. Figure 5.1 b,c for an example).

39

5. Connectivity

Murdoch et al. [MBBM97] already emphasized that the dual view of a quad mesh as

intertwined loops is advantageous because these dual loops, due to their global nature,

directly exhibit the global connectivity constraints involved – in contrast to the local

primal arcs. Note that on surfaces with boundaries a dual layout contains boundary-to-

boundary curves in addition to loops (cf. Section 2.1). To keep our exposition focussed

we concentrate on the case without boundary first and elaborate on the general case in

Section 5.3.

The central question now is how such a dual layout can be generated from the infinitely

dimensional space of loops. In Section 5.1 we explain the theory behind our construction

of arrangements of loops on surfaces that allows us to achieve layouts with geometric

fidelity as well as structural consistency and simplicity. Afterwards, in Section 5.2, we

describe the implementation in a discretized setting on triangulated surfaces.

5.1. Theory

a) b) c) d)

Figure 5.1.: Overview of the connectivity determination stage. Guided by a field of

principal directions (a), a collection of transversally crossing loops on the surface is

generated in a geometry-aware manner (b, c). These loops partition the surface into

polygonal regions whose valences are intimately related to their total curvature. By

dualizing the graph formed by these loops, we obtain the connectivity of a quad layout

(d).

40

5.1. Theory

5.1.1. Dual Loop Arrangements

First, let us consider which properties an arrangement of loops needs to fulfill in order

to induce a valid dual layout:

(D1) loop intersections are transversal (i.e. non-tangential),

(D2) no three loops intersect in one point,

(D3) each region has a valence of at least 1,

(D4) each region has disc topology.

The first two properties guarantee that each intersection induces a unique valence

4 vertex, the third ensures that no dual region has valence 0, which would imply an

isolated primal node. The fourth point ensures a valid embedding with topologically

simple faces.

If these properties are fulfilled, at least a valid dual graph is induced. Additionally

we are interested in geometric fidelity. For this we need to take into account that a

loose geometric relation between dual loops and the corresponding primal arcs can be

assumed: because a dual loop runs through a strip of quad patches, the strip boundary

arcs are roughly parallel to the dual loop. Considering this the quality criteria listed in

Section 2.2 imply the following for the dual setting:

(D5) loop intersections should be close to orthogonal,

(D6) loops should follow principal curvature directions,

(D7) a region’s valence should reflect its total curvature,

(D8) loops should be short and few in number.

Item (D5) encourages rectangular patches, (D6) encourages principal curvature align-

ment, and (D7) states a dual region valence-curvature relation analogous to the primal

node valence-curvature relation (cf. Chapter 4), allowing for low patch-rectangle map-

ping distortion. Item (D8) directly translates into structural simplicity as the total

length of primal arcs and dual edges is closely related in practice. Note that these items

are soft requirements promoting quality while (D1)-(D4) are mandatory conditions.

41

5. Connectivity

5.1.2. Principal Curvature Fields

Constructing loops in a way that they are aligned with directions of minimal and max-

imal curvature directly serves fulfilling properties (D1), (D5), and (D6) (and indirectly

also (D7)). Therefore, we base our construction on the cross field C computed in stage

1, cf. Chapter 4. It not only conforms with principal curvature directions in anisotropic

regions, it furthermore is globally consistent and well-defined also in umbilic regions,

which provides benefits for the following considerations. We will see that this cross field

fundament also serves in fulfilling the other requirements because the irregular nodes

appear in the field in the form of singularities, which encode Gaussian curvature infor-

mation, as detailed in Section 4.1. In essence, the relation between node valence and

Gaussian curvature implied by (4.3), (4.7), and (4.8) will ultimately serve to fulfill (D7).

Figure 5.1 illustrates the basic idea of this stage.

5.1.3. Branched Coverings

Locally and away from singularities, the cross field C on M (which from now on we

call FC for distinction from a line field FL and a direction field FD) can be decomposed

into four direction fields. This does not hold globally. However, as shown by Kälberer

et al. [KNP07], we can construct a four-sheeted branched covering surface M4 of M
with branch points induced by the singularities, and canonically lift the cross field FC

on M to a single smooth direction field FD on M4. Analogously, we can construct

a two-sheeted branched covering surface M2 of M and lift the cross field to a single

smooth line field FL on it. Figure 5.2 illustrates this schematically. Note that M4 is

also a two-sheeted branched covering surface of M2. In the following we will deal with

curves and loops on M4; note that they project uniquely onto M2 and M by means

of the respective covering maps – for brevity we will not always mention this projection

explicitly but simply refer to these loops or curves and their projection images by the

same name. These covering concepts significantly simplify our further elaborations by

allowing us to work with cross, line, or direction fields as needed.

42

5.1. Theory

5.1.4. Loops on Branched Coverings

Now consider what happens when we attempt to create a principal direction aligned loop

through a point p on M by tracing. We choose one of the four directions from the local

cross field by lifting p onto one of the four sheets of M4, trace a curve through the direc-

tion field FD on M4 until we get back to the starting point1, and project the curve from

M4 to M. The obvious problems are that the curve might never return, and if it does, it

will probably be very long and far too complex to provide a

useful loop for our purpose – we have to trade some devia-

tion from the field for shortness. This is illustrated here on

a cylindrical structure: the blue curve exactly follows the

field and spirals over the surface, whereas the green curve

slightly deviates from the field so as to be able to form a

short loop.

Let l : [0, b] → M4 denote a regular curve in arc-length parameterization which does

not run exactly through a branch point (where the direction field is not defined). We

define a combined measure cα that rates such curves based on their direction fidelity

and shortness, balanced by the parameter α ∈ [1,∞):

cα(l) =

∫ b

0

√
cos2 θ(s) + α2 sin2 θ(s) ds

1Note that, by tracing on M4, the curve is able to intersect itself on M – this is a highly desired
behaviour, as quad meshes and layouts with non-intersecting dual cycles are only a restricted class.

M
M2

M4

Figure 5.2.: Illustration of a small region of M with its branched coverings M2 and

M4 and the cross, line, and direction field.

43

5. Connectivity

where θ(s) is the angle between the curves’ tangent and the desired direction FD(l(s))

at l(s). A similar measure has also been employed by Tarini et al. [TPP∗11] in the

primal setting to rate separatrices. We are interested in non-trivial loops (closed curves)

which minimize this measure for a prescribed α (called minimal loops) subject to certain

constraints that we introduce in the following. As extreme cases, α = ∞ leads to the

abovementioned complex minimal loops, whereas α = 1 leads to field oblivious geodesics.

Values around 30 proved to provide a good balance for our purpose.

In order to obtain loops which are not only short and field-aligned, but furthermore can

be combined to structurally valid loop arrangements we impose the following constraint:

we restrict the set of non-trivial regular loops on M4 to the set L of admissible loops

that fulfill θ(s)∈ [−π
4 , π

4), i.e. we limit tangent deviations from the principal curvature

directions. This effectively partitions the tangent space at each

point into four “sectors”, each describing the admissible loop

tangents on one of the four sheets of M4. For α ≫ 1 minimal

loops are very unlikely to violate this anyway, but imposing it as

hard constraint allows us to guarantee important properties in

the following. Furthermore, we define an arrangement of loops

on M4 that have no intersections on M2 to be M2-simple. Note

that M2-simple arrangements of loops meeting θ ∈ [−π
4 , π

4) contain no tangential inter-

sections, thus fulfill (D1). This is illustrated in Figure 5.3 and elaborated in the proof

of Theorem 5.1.1.

The following two theorems state the further beneficial properties of the θ(s) ∈ [−π
4 , π

4)

constraint in conjunction with M2-simplicity. Let indexC(R) denote the sum of singu-

larity indices lying in a region R:

Theorem 5.1.1. (Region valence-index relation) If a region R ⊂ M (bounded by

loop segments) with disc topology in an M2-simple arrangement of admissible loops has

k loop intersections on its boundary, then indexC(R) = 1 − 1
4k.

Proof. M2-simplicity and θ ∈ [−π
4 , π

4) guarantee transversality of all loop intersec-

tions on M: a tangential intersection would imply equal tangent lines of the two loops

at the intersection; as admissible tangent lines are disjunct on the two sheets of M2

above each point due to θ ∈ [−π
4 , π

4), this would imply the intersection happens on one

sheet of M2, contradicting M2-simplicity. Then, considering R is bounded by a cycle

44

5.1. Theory

M

M2

M4

Figure 5.3.: Left: two loop segments (red, blue) have tangential contact on M; this

is possible as M2-simplicity is violated. Middle: the loops are M2-simple, but the

θ ∈ [−π
4 ,π

4) constraint is violated allowing for a tangential intersection. Right: M2-

simplicity and the θ-constraint together only allow for transversal intersections.

formed by loop segments between k intersections (as de-

picted for the case k = 5), we determine the turning number

[RVLL08] of the cycle to show the relation to indexC(R).

Starting at an arbitrary intersection, we travel along the first

segment to the next intersection. At that point the inter-

mediate turning number t fulfills −1
4 < t < 1

4 since, due to

the θ ∈ [−π
4 , π

4) constraint, the segment cannot make more

than < 1
4th of a full turn w.r.t. the field. Now turning to the

next segment involves a rotation of the “sector” of allowed tangents by π
2 , leading to

−1
4 −

1
4 < t < 1

4 −
1
4 along this segment. Repeating this for all k segment switches to get

back onto the start segment, we obtain −1
4 − 1

4k < t < 1
4 − 1

4k for the turning number

of the whole cycle. As the turning number of a cycle necessarily is an integer multiple

of 1
4 , we have t = −1

4k. It is related to indexC(R) by t = indexC(R)− 1 [RVLL08], hence

indexC(R) = 1 − 1
4k.

This relation between singularity indices and region valences implies that whenever

only a single singularity lies in a region, the region valence matches that of the node

derived from the singularity in stage 1. It further shows that no further irregular nodes

will be implied by the dual layout because regions with index sum 0 are always regular

(i.e. bounded by four loop segments).

45

5. Connectivity

Now, the idea underlying the dual layout construction is to choose loops from the set

L of admissible loops such that singularities get separated from each other, aiming at

having each singularity lie in a separate irregular region – because then the primal layout

obtained from the dual loops will have exactly the desired irregular nodes as determined

in stage 1. We can achieve this separation in the following sense:

Theorem 5.1.2. (Singularity separation) In an M2-simple arrangement of loops

any region R with indexC(R) > 1
4 containing multiple singularities of index 1

4 or 1
2 , and

any region R with indexC(R) < −1
4 containing multiple singularities of index −1

4 can be

split into regions with smaller |indexC(R)| by adding further admissible loops, without

introducing irregular regions outside R and without violating M2-simplicity.

Proof sketch. Note that we can always add loops that (with infinitesimal distance) run

along existing loops without violating M2-simplicity and without introducing any new

irregular regions. The proof is based on the construction of one or more such loops that

are then cut and reconnected within R. Figure 5.4 illustrates these constructions for the

concerned cases. Note that reconnections inside the regions are possible in the shown

ways because each subregion fulfills indexC(R) = 1 − 1
4k.

This means we can guarantee that singularities can suitably be separated by admis-

sible loops for most practically relevant cases. The theorem further extends to several

a) b) c) d) e)

Figure 5.4.: Schematic illustration of the cases of Theorem 5.1.2: region with

indexC(R) = −1
2 (a), <−1

2 (b), 1
2 (c), 3

4 (d), 1 (e). Numbers indicate the indexC of

the subregions. The green curve is a single loop that splits the region while running

solely along other loops outside the region (a)-(d). In (e) the loop can be connected on

the outside due to symmetry (the outside region has this same boundary loop).

46

5.1. Theory

cases which include multiple higher-order singularities (which generally are quite rare in

practice). But note that even an exceptional case where singularities cannot be sepa-

rated completely does not cause a problem: the dual loops always imply a valid primal

quad layout – in which any non-separated nodes have effectively been merged (cf. Sec-

tion 5.2.3). This can be seen as a form of adjustment of the input which did not well fit

the current stage’s objective, as laid out in Section 3.1.5.

Let us briefly summarize which insights we gained regarding fulfillment of the eight

required/desired properties: (D1) and (D2) are ensured by M2-simplicity in conjunction

with the θ ∈ [−π
4 , π

4) constraint, (D5) and (D6) are respected by minimizing cα for

α ≫ 1, (D3) can be achieved due to Theorem 5.1.2 if there are no singularities of index

≥ 3
4 (which normally is the case in practice, and can even be ensured by dividing such

singularities), (D7) is fulfilled according to Theorem 5.1.1. The shortness part of (D8)

is governed by using cα-minimal loops.

For (D4) “each region has disc topology” there is no theoretical guarantee that this

can always be achieved on objects of non-zero genus; in fact, one can artificially create

pathological cross fields such that loops with arbitrarily large |θ| are necessary to cut the

surface to discs (cf. the cross field depicted in Figure 4 left in [KNP07] or the one depicted

in Figure 5 left in [MPZ14] for basic examples). According to all our experiments these

cases do not arise from the employed principal directions guided field construction in

practice. Nevertheless, holonomy constraints [LJX∗10] can be employed in the field

construction process to provide rigorous guarantees.

In conclusion, we know that it should be possible to construct desired dual layouts

from admissible loops, and the remaining question is how this can effectively be done,

i.e. how to choose few admissible loops from the set L that fulfill M2-simplicity and

suitably separate singularities. For this we propose a greedy strategy as described in the

following section.

5.1.5. Greedy Loop Selection Strategy

The primary objective for loop selection is the separation of cross field singularities.

In favor of layout simplicity this should be achieved with few loops. We construct the

arrangement of loops in an incremental manner by iteratively adding further loops that

47

5. Connectivity

do contribute to the goal of singularity separation. In this process, to ensure M2-

simplicity, a new loop may not intersect the previously constructed ones on M2. Let

L(A) denote the subset of loops from L which, on M2, do not intersect the loops of an

arrangement A.

For the purpose of deciding whether a loop contributes to singularity separation,

imagine the set of all paths on M connecting a pair (a, b) of singularities without crossing

any loop of an arrangement A (cf. Figure 5.5). As separation is a topological concept,

we are not interested in these paths’ geometry but solely in their homotopy classes. Let

H(A, a, b) denote the set of these classes, and H(A) = ∪a ̸=b∈SH(A, a, b), where S is the

set of all singularities. A loop l ∈ L(A) is said to be (A, h)-cutting if h ∈ H(A) but

h /∈ H(A ∪ {l}). Intuitively, l actively increases the “level of separation” by cutting

all connections of class h when adding it to A. Figure 5.5 illustrates this abstractly on

a simple torus; Figure 5.8 shows a less abstract yet simple example (in the discretized

setting).

Note that H(A) can be infinite (and a single loop can be (A, h)-cutting for an infinite

number of classes h). In Section 5.2.2, which deals with an implementation of the

following algorithm, we describe how this is handled in practice.

p1

p2

p3a b
p2

p3a b

s

a
b

s

t

h1/2/3∈H(∅, a, b) h2/3∈H({s}, a, b) H({s, t}, a, b) = ∅

Figure 5.5.: Left: three paths p1/2/3 of three exemplary homotopy classes hi = [pi]

connecting singularities a and b are depicted. The loop arrangement A is still empty. We

have h1/2/3 ∈ H(∅, a, b). Middle: All paths of h1 cross the loop s, thus h1 /∈ H({s}, a, b).

Hence, s is (∅, h1)-cutting. Right: All paths of h2 and all paths of h3 cross loop t, thus

h2/3 /∈ H({s, t}, a, b). Hence t is ({s}, h2)- and ({s}, h3)-cutting. Furthermore, now

H({s, t}, a, b) is empty, no more paths between a and b not crossing A = {s, t} exist.

48

5.1. Theory

Surely, we are not interested in arbitrary cutting loops but minimal ones: let lmin(A, h)

denote the cα-minimal (A, h)-cutting loop. Then, for some arrangement A, Lmin(A) =

∪h∈H(A) lmin(A, h) is the set of all minimal loops whose addition to A would contribute

to further singularity separation.

Algorithm: We iteratively add such minimal cutting loops to increase the level of

separation based on a greedy approach:

A0 = ∅
Ai+1 = Ai ∪ { argmax

l∈Lmin(Ai)
cα(l)}

The iteration is repeated until H(Ai) is empty or lmin(Ai, h) is undefined for each

h ∈ H(Ai) because there are no further cutting loops (in cases where not all singularities

are separable).

The greedy choice of the maximum instead of a minimum might seem unnatural, but

it typically leads to better results. First notice that even the maximum (with respect to

cα) out of the loops of Lmin(Ai) is still a minimal cutting loop – for each path homotopy

class the set Lmin(Ai) contains only the cα-minimal of the loops that cut it. Hence the

choice of the maximum does not lead to unnecessarily long and field-misaligned loops

as it might appear at first sight – it still selects from the best loops that are available

Figure 5.6.: Visualization of the maximum (green) and minimum (red) of all minimal

cutting loops Lmin(A0) in the RockerArm and Fertility examples from Section 5.4.

Notice that the longer loops are typically concerned with the global structure, whereas

the short ones capture rather local features. The maximum-first greedy approach thus,

in some sense, pursues a coarse-to-fine strategy.

49

5. Connectivity

to achieve separation of certain singularities. See Figure 5.6 to get an idea of how such

loops look like.

Consider the class hmax =arg maxh∈H(A0) cα(lmin(A0, h)), i.e. the class that, among all

homotopy classes, requires the cα-largest loop to get cut. This loop is lmin(A0, hmax) and

hmax cannot be cut by any cα-smaller loop; in fact, if we first add some loops cutting

other classes, then lmin(Aj, hmax) for j > 0, i.e. the best loop available to cut hmax after

j iterations, can easily be cα-larger due to L(Ai+1) ⊂ L(Ai) by definition. Following the

maximum-first strategy, the long loops necessary for separation of some singularities are

secured early, in contrast to a minimum-first strategy where other loops already restrict

the space of M2-simple loops available to cut hmax in the end. Hence, as confirmed

in our experiments, this maximum-first strategy typically leads to arrangements with a

smaller total sum as well as lower variance of the loops’ cα-values.

The objective of achieving regions with disc topology seamlessly integrates into this

algorithm: for each singularity a the set of homotopy classes of non-contractible paths

a

b

connecting a with itself, i.e. H(A, a, a) without the trivial

class of contractible loops, is simply included in the set

H(A). H(A) will then not become empty before in A all

singularities lie in disc topology regions. This is illustrated

here based on the example from Figure 5.5 right: two still

remaining non-contractible paths self-connecting a and b

are depicted.

5.2. Discretization & Implementation

We now present the techniques necessary for a practical implementation of the proposed

method on triangulated surfaces M. In this context the terms vertex, edge and face

will refer to the triangle mesh M rather than to dual layout components. The field FC ,

with its lifted variants FL and FD, is computed and represented discretely per face as

described in Chapter 4. To simplify parts of the implementation by avoiding special

cases, we assume no two singularities are directly adjacent, i.e. incident to a common

mesh edge – this can easily be ensured by splitting the edge, inserting another vertex.

50

5.2. Discretization & Implementation

The branched covering triangle meshes M2 and M4 are constructed as described by

Kälberer et al. [KNP07].

5.2.1. Anisotropic Front Propagation

Loops minimizing cα are anisotropic geodesics and, given a start point p, can efficiently

be computed by anisotropic front propagation on M4. In this setting α plays the role of

a global anisotropy coefficient that, together with the direction field, forms the tensors

defining an anisotropic local surface metric guiding the propagation. This process can

be understood as a “fuzzy” curve tracing: the fuzzy curve travels fast in the principal

direction and slower the more it deviates (cf. Figure 5.7). When the front reaches p

again, the minimal loop is found.

Sethian and Vladimirsky [SV04] presented a method for anisotropic front propagation

with nice convergence properties, but on coarse meshes the relative error as well as the

runtime is rather high for large anisotropy coefficients. Dijkstra’s classical shortest path

algorithm applied to the mesh graph of M4, with edge weights computed according to

the metric cα, is much faster, but the error is even worse for large anisotropy coefficients.

A detailed analysis of the quality and performance of available algorithms is given in

Chapter 9.

For this reason we created a novel variant, Short-Term Vector Dijkstra, which drasti-

cally increases the accuracy by propagating distances not only along edges, but rather

over vectorial chains of edges up to discrete length k. This conceptually increases the

angular resolution of the propagation process, as illustrated in Figure 5.7 left. We found

k = 4 to be sufficient, working very well for our purposes (cf. Figure 5.7 right). The

algorithm is presented in detail in Chapter 9. We here use a variant of this algorithm

which does not build the edge chains ad hoc. Instead we precompute all edge chains up

to length k and their weights and store these meta-edges in a graph P . On this graph

the algorithm reduces to Dijkstra’s original algorithm. Using this explicit representation

of the graph, we can take care of the propagation constraints more easily, as detailed in

the following. Furthermore, for each meta-edge in P we remember corresponding edges

in M4, such that a loop computed in P can then be represented as a cycle of edges in

M4.

51

5. Connectivity

Figure 5.7.: Left: 1-, 2-, 3-, and 4-disc edges of a vertex. Right: Distance visualization

of anisotropic propagation on a rounded cube mesh. Since we propagate on M4 the

front can cross over itself at the branchings and pursue different courses on the different

covering sheets, according to the respective field directions.

Propagation Constraints The θ ∈ [−π
4 , π

4) constraint is easily im-

posed by discarding those edges from the propagation graph P which

violate it. M2-simplicity of the layout is achieved by forbidding the

front to cross existing loops on M2. Additionally, M2-simplicity of the

new loop itself is to be ensured. In the continuous case this is guar-

anteed by its minimality, but in the discrete setting constructed loops

could have small local self-intersections on M2. These can easily be

resolved as depicted: at the intersections, the loop is cut, the parts al-

ternately reversed, and reconnected to a non-intersecting (just grazing)

one.

Preventing the front from crossing already existing loops could easily be accomplished

by removing the loops’ underlying vertices (and incident edges) from the propaga-

tion graph. This, however, directly limits the local maximum density of constructed

loops to the resolution of the triangulation. We avoid potential dead-ends in the

propagation by allowing multiple loops to run over the same graph edges locally –

they just may not cross in the sense of M2-simplicity: during front propagation each

graph vertex at the front memorizes for each already existing loop whether the path

to this vertex currently runs along the loop on M2 and whether it moved onto it

from the left or from the right. Propagation may then only proceed further along

the loop or back to the side it came from, effectively preventing crossing. This can

efficiently be implemented by equipping each constructed loop with so-called whiskers :

52

5.2. Discretization & Implementation

a b

c d

e

two sets of half-edges, those incident to the loops’ vertices from the

one and the other side, respectively, as illustrated on the right in

green and red. The “memory” per front vertex then consists of two

flags per existing loop, that are set or reset whenever propagation

proceeds over a green or red whisker, respectively, depending on the

half-edge orientation. As an example consider the case of the front

propagating from vertex a to b. The green flag is set at b due to

moving over a green whisker. This disallows further propagation

over a red whisker to e; propagation to d carries the green flag over

to d, and when propagating to c the flag is not carried on due to

moving over a green whisker reversely.

5.2.2. Singularity Separation

Being able to construct the loops of L in an M2-simple manner, we now implement the

greedy approach presented in Section 5.1.5. Recall that we need to consider an infinite

number of connecting paths in a potentially infinite number of homotopy classes. We

employ two efficient heuristics to make this tractable, and add a simple post-validation

procedure to be able to guarantee correctness even in case they fail. In practice, they

perform so well that post-validation is required to come into action only very rarely.

Even then, the worst case is that the result is not greedy-optimal in the described sense,

but still structurally correct.

In each step of the greedy construction we need to determine loops which cut certain

homotopy classes. To be able to do this efficiently, in the beginning we construct so-

called separation indicators (SIs) for each pair (a, b) of singularities – paths representing a

homotopy class each (discretely embedded in the mesh graph). Based on the intersection

constellation of a loop and an SI we are able to estimate whether the loop cuts the whole

homotopy class (heuristic I). Figure 5.8 shows an example of these SIs. While on genus

0 objects (with trivial homotopy group) we have a single SI for each pair, on objects

of genus g > 0 the homotopy group is infinite; for practicability we restrict ourselves

to 2g + 1 SIs constructed as described by Erickson and Whittlesey [EW05] for the case

of loop homotopy bases (cf. Figure 5.5 left for the simplest example of such 2g + 1 SIs

between two singularities on a genus 1 object).

53

5. Connectivity

The rationale behind this is the observation that SIs of further homotopy classes

(winding around surface handles multiple times, etc.) are very likely to be cut by loops

that cut their simpler siblings, anyway (heuristic II). The mentioned method [EW05] is

adapted from the loop case to our case of paths by not using the distance field of one loop

root point but two distance fields, one of each path end point, i.e. the two singularities

to be connected, in the maximum spanning tree construction (cf. [EW05] for details on

this). This yields 2g SIs. If a ̸= b, an additional one, not crossing the cutgraph involved

in the construction at all, is created simply by Dijkstra’s shortest path algorithm (a step

which is not necessary in the case a = b dealt with by the original method due to the

triviality of this one class).

Given an SI s and a loop l, we estimate whether l cuts all connections from s’s class [s]

(heuristic I). If l does not cross s, we can be sure that it does not; if it crosses s an odd

number of times, we can be sure it does. In the case of an even number of cross-

ings, we cannot definitely decide locally – whether [s] is cut completely depends

on the global interplay of multiple loops. Instead of performing expensive global

checks in this regard, a heuristic, exploiting that l is created on M4, proved to

be highly reliable: we check how many of the four pre-images of s on M4 are

crossed by l. If only one is crossed we consider s not cut, if more are crossed

we consider s cut. The rationale is that between two crossings, l has to travel

around multiple singularities for these two crossings to lie on different sheets

– implying intersections of l with further loops in between. If all crossings are

on the same sheet, we usually have a situation as depicted on the right, not

signifying a true cut.

Figure 5.8.: Visualization of separation indicators (pink) between 8 singularities on a

cube: all, and those that remain uncut after the addition of the first, second, and final

third loop, respectively.

54

5.2. Discretization & Implementation

Now, for each SI s, we aim at finding the minimal loop lmin cutting it. As this loop

necessarily crosses s, we can start a front propagation from each graph vertex v on s

and compute the minimal loop through each of them. More precisely, we start from two

of the four pre-images of v on M4 – the two other sheets with opposite directions only

lead to the same loops in reverse. The cα-smallest of those that cut s then is lmin of s,

called the candidate for s.

Instead of computing the candidate for each SI, i.e. the whole set Lmin (cf. Section

5.1.5), we can heavily increase efficiency in the spirit of lazy evaluation by exploiting

the fact that we are always interested in the cα-largest candidate in each greedy step.

If a candidate of s cuts other SIs, their candidate does not (yet) need to be computed

as it can only be equal or smaller. To provide an example of the gain in efficiency

typically provided by this optimization: for instance on model Fertility only 30 can-

didates are computed in the beginning, they already cut all 10,152 SIs; 11 more are later

(re)computed (in repetitions of step 4 of the following algorithm).

Algorithm: With the initial set of candidates C we can then perform an iteration of

the greedy algorithm, starting with an empty arrangement A, in the following manner:

1. Add the largest candidate c: A ← A ∪ {c}, C ← C \ {c},

2. remove all SIs that are cut by c,

3. discard candidates from C that are no longer M2-simple with respect to A,

4. for SIs that are not cut by any curve from C compute new candidates (again in a

lazy manner) and add them to C.

These four steps are repeated until no more candidate is available.

To appropriately handle rare cases where in the end some singularities remain un-

separated due to the two heuristics, we perform a post-validation: we iteratively check

whether paths between two singularities still exist by simple flood-filling within the re-

gions of A (not crossing any loop of A), add these paths as new SIs, and perform further

greedy steps (beginning with step 4 to compute new candidates) until no more paths or

candidates exist.

55

5. Connectivity

5.2.3. Layout Primalization

The constructed dual layout implies the topological structure of the primal layout: each

dual region corresponds to a primal node, and region adjacency implies node connectiv-

ity.

Note that this connectivity is not of purely combinatorial nature, but in addition

has a topological aspect: two nodes cannot only be connected or not connected, the

connection’s homotopy (with respect to M punctured at the irregular nodes [MPKZ10])

also plays a role. In particular, two nodes can be connected by multiple arcs from

different homotopy classes. This information needs to be encoded properly, such that

the following stage can rely on an unambiguous representation.

To this end we select one arbitrary vertex ν(h) per region as representative for the

corresponding primal node h – in irregular regions containing one singularity it is of

course natural to chose the corresponding vertex. Then, for each pair of adjacent regions,

we compute a chain γ(a) of successively adjacent mesh faces2 connecting the nodes of

these regions, representing the corresponding primal arc a. A simple breadth-first search

on the dual mesh graph, restricted to two adjacent regions and only allowed to cross

the separating dual loop once, is sufficient to generate these face chains – because their

geometric quality does not matter for the subsequent stage, only their homotopy class.

The maps ν and γ then completely encode the layout’s topological structure – via a

prototypical, discrete embedding of the layout graph in M.

For the purpose of visualization of the layout connectivity, it can be useful to take the

geometry into account in the computation of representative arc paths. Instead of using

the simple breadth-first search, we can compute the connection as a region-restricted

geodesic path with respect to the anisotropic curvature-driven metric (cf. Section 5.1.4).

Furthermore, instead of computing paths for the indi-

vidual arcs, we can compute paths for whole separatri-

ces (sequences of arcs from irregular node to irregular

node) through the corresponding dual corridors as de-

pcited alongside. The regular nodes can then be posi-

2The choice of a face chain instead of a perhaps more intuitive edge chain simplifies the handling of
arcs in the next stage.

56

5.3. Extensions

tioned onto the intersections of these separatrix paths, leading to a smoother geometric

representation for visualization purposes. The actual global optimization of the geomet-

ric embedding (based on ν and γ), however, is dealt with in Chapter 6.

5.3. Extensions

Boundaries On surfaces with boundaries, dual layouts contain dual curves which run

from boundary to boundary in addition to dual loops. In order to enable the automatic

construction of such curves where appropriate we simply modify the loops construction

procedure described in Section 5.2.1: instead of propagating the front on M4 from the

seed into the field direction until it hits the seed again, we propagate two fronts in

opposite directions (i.e. on two different sheets of M4) until they either hit each other

on M2 or both hit the boundary – whatever happens first. Tracing back through the

two distance fields yields a loop in the former case and a boundary-to-boundary curve

in the latter case. The separation concept that drives the loops selection strategy is

also easily extended to the boundary case: in addition to the separation indicators for

singularities we include boundary separation indicators (shortest paths between each

pair of boundary loops) such that no two boundaries lie within the same region in the

end, as this would topologically merge them in the layout.

Feature Curves For cases where M contains feature curves, we can make a simple

extension to the algorithm to allow for better alignment of arcs to features. Given a set

of curves representing the features (e.g. selected using dihedral angle thresholding for

the simplest case of sharp features) we use them as directional constraints in the cross

field construction as described by Bommes et al. [BZK09] such that the cross field is

aligned with the features. We then lift each curve to the one sheet of M2 the line field

of which is aligned with the curve tangent, and modify the definition of M2-simplicity

to include that loops may also not intersect these lifted feature curves on M2. This

prevents loops from crossing feature curves in a manner that these curves would not lie

within a dual corridor in the final loop arrangement – which would make aligning some

separatrix to the feature impossible. After performing the greedy algorithm with this

change, separatrices are then not constructed as geodesics but constrained to features

where applicable.

57

5. Connectivity

It is worth noting that, while this procedure prevents arcs from crossing features

unsuitably, it does not guarantee that each feature segment is captured by a layout arc

in the final layout. In fact, different strategies would be necessary already in the node

determination stage in order to enable complete alignment in the presence of complex

global feature configurations as recently shown by Myles and Zorin [MZ13, MPZ14].

The evaluation of possibilities to combine their ideas with the dual loops concept for

the generation of quad layouts with full control over alignment to complex features and

boundaries is an interesting avenue for future investigation.

Additional Loops The presented algorithm creates layouts A that are topologically

minimal in the sense that no loops are added that do not contribute to singularity

separation. This is a desirable property, allowing us to obtain simple layouts. But

depending on the geometry of M, the addition of some further loops can potentially have

a much larger impact on the improvement of geometric fidelity than on the concomitant

decrease of simplicity as it can alter the node connectivity in the primal layout – which

might allow for better curvature and feature alignment. Loops whose addition to A can

cause such changes can be identified in the following way: each SI lifts to two curves on

M2; we say an SI is doubly-cut if both of these are cut by the loops of A on M2. A

further loop causes a change to node connectivity if its addition to A doubly-cuts an SI

that, so far, was only singly-cut. This is based on the observation that singly-cut SIs

might appear in the primal layout as separatrices (in the form of curves homotopic to

the SI), while doubly-cut SIs do not. Figure 5.9 shows a prototypical example of the

situation.

Figure 5.9.: Left: Primal quad layout (black) induced by a loop arrangement (yellow).

Right: Adding a further loop (green) alters the irregular node connectivity: the dashed

connections vanish, caused by the cuts (by yellow and green loops) on both sheets of

M2.

58

5.4. Results

In order to exploit this possibility, after the greedy algorithm has been performed, we

can, where possible, construct candidate loops doubly-cutting the SIs that, so far, are

not. Then the quality improvement can be assessed for each of these loops by rating

the separatrices in the corresponding primal layouts based on their cross field deviation.

Starting with the one providing the highest improvement, loops can then iteratively be

added until no further loop is admissible or no further gain possible. The assessment

can quickly be made based on the initial embedding, or, more accurately, based on the

final improved embedding. Notice that it is also possible to remove a loop from A if, by

the addition of others, it becomes redundant (= all SIs cut by the loop are also cut by

other loops).

5.4. Results

In this section we show some exemplary results obtained by our implementation of

the presented method. Figure 5.11 depicts the result layouts, the statistical facts are

summarized in Table 5.1.

For the mere purpose of comprehensible layout connectivity visualization, the arcs and

nodes shown in Figure 5.11 have been smoothed using a simple variant of the approach

presented in [TPP∗11], which is based on iterated parameterizations (cf. Figure 5.10), as

detailed in [CBK12]. In the next chapter our novel, more sophisticated layout geometry

optimization is presented.

Figure 5.10.: A quad layout with initial embedding (shortest paths on the mesh graph),

an initial harmonic per-patch parameterization, and the final optimized parameterization

from which smooth arcs can be derived to more clearly visualize the connectivity.

59

5. Connectivity

Model Singularities Loops Nodes Patches

TetraThing 24 18 80 84

Fertility 48 24 92 98

Block 48 20 72 76

3Holes 16 12 16 20

Elk 52 22 86 86

Joint 24 16 77 79

Guy 40 18 170 168

RockerArm 30 15 115 115

Botijo 72 36 213 221

Lever 83 36 269 275

Table 5.1.: Statistics of the constructed quad layouts shown in Figure 5.11.

With our current implementation the processing from the initial construction of the

coverings with the fields, over creation of SIs and execution of the greedy algorithm,

to the primalization of the layout takes from a few seconds to a few minutes on a

commodity PC (model complexities between 20K and 122K faces). The processing is

clearly dominated by the front propagations performed to construct candidate loops –

which can easily be parallelized.

As feature constraints (cf. Section 5.3) only the trivially detectable sharp edges on

Joint and Lever have been used – advanced detection techniques for smooth feature

edges were not employed.

Comparison We applied our method to several datasets also taken as input by Tarini

et al. [TPP∗11] and Bommes et al. [BLK11] for their simplification methods. While on

model RockerArm the patch count of our result is higher by a factor of 1.17 compared

to the result of Tarini et al., on model 3Hole the same obvious layout was achieved, and

our layouts of models Joint, Botijo, Fertility, and Lever are simpler by factors of

1.4, 2.1, 2.6, and 2.8, respectively (the Botijo and Lever results of Tarini et al. can

be found in their supplemental material). In comparison to Bommes et al. the layout

complexities in terms of patch count achieved by our Dual Loops Meshing approach

are even simpler by factors of 1.5, 3.3, 4.7, and 5.4 on models RockerArm, Lever,

Botijo, and Fertility, respectively. This generally large difference is explained by

60

5.4. Results

the fact that their method is based on removing only certain helical configurations from

the base complex.

Surely, the possibility cannot be ruled out that the greater layout simplicity might

come at the expense of geometric quality to some extent, but visual inspection and

comparison of the results does not reveal distortions which would generally be considered

intolerable or out of proportion.

The general advantage of the simplification-based methods is their explicit control

of the geometric quality: the deviation from the start configuration can be kept track

of and be limited as desired. Furthermore, any previous state can always be used as

a fallback solution. In this sense such methods can be considered safer than from-

scratch-construction approaches like ours – especially when geometric fidelity is of higher

importance than simplicity.

On the downside, it is not easy to drive such simplification processes in a well-targeted

manner; roll-back mechanisms can be necessary to undo series of previous steps in order

to escape from dead-ends. The robust automatic generation of the quad meshes taken

as input is a further non-trivial subtask. These input meshes’ edge directions are then

implicitly taken as geometrically optimal reference and structural simplification aims

at minimal deviation from that. However, assuming the input mesh is generated in

a common field-guided manner, e.g. driven by principal directions, this reference will

often already deviate from the original field (in the sense that quad mesh edges are not

well-aligned with the field everywhere) as such fields rarely are integrable and can only

be aligned to approximately during meshing. The finite density of the mesh further

contributes to this deviation.

The Parameter α While variation of α could be expected to be useful for controlling

the layout complexity to some extent, it should be mentioned that this relation is not

linear (nor fully monotonic) due to the discrete decisions implicitly made by the routing

of the loops. Especially for small α (<10) loops tend to become too unaligned with

the field, this incompatibility sometimes leading to less plausible, complex loops being

necessary towards the end of the algorithm. On the other hand, increasing α beyond ∼70

usually does not lead to any more changes due to accuracy limitations of the discrete

propagation process. The setting α = 30 proved to work very well quite generally and

all the presented layouts have been obtained with this fix setting.

61

5. Connectivity

5.5. Discussion

The presented method allows for the creation of simple all-quadrilateral patch layouts

by means of the construction of loop arrangements as duals of these layouts. This dual

perspective beneficially exhibits the global structural implications involved in quad lay-

outs more directly. Our method is built on a theoretical framework based on suitably

restricted loop spaces on branched coverings of the underlying surface induced by princi-

pal curvature cross fields. It allows us to guarantee valid dual layouts which furthermore

show good geometric fidelity. In the end, the primal layout connectivity can easily be

derived from the dual layout.

The proposed approach employs a greedy strategy for practicability. Employing a

non-greedy, globally optimizing loop selection would be very attractive – but is not

straightforward due to the interdependencies caused by the necessary M2-simplicity.

Further, while control over the simplicity of the primal layout is directly given in the

dual setting, control over the geometric fidelity is, to some extent, indirect due to the

loose relation between dual and primal geometry.

62

5.5. Discussion
T

e
t
r
a
T

h
in

g
F
e
r
t
il

it
y

B
lo

c
k

J
o
in

t

R
o
c
k
e
r
A

r
m

E
lk

3
H

o
le

s
G

u
y

B
o
t
ij
o

L
e
v
e
r

Figure 5.11.: Quad layout connectivity generated by our method. The inset at example

TetraThing shows the result before an additional loop which increased separatrix/field

alignment was added after the greedy algorithm (as described in Section 5.3). The

Fertility and Botijo insets show bottom views of the models.

63

5. Connectivity

64

6. Embedding

Note: This chapter is based on [CK14b].

In the third and last stage of our method the layout’s geometry, i.e. its embedding in

the surface is to be optimized. As input from the previous stage we take the created

layout graph G with its prototypical discrete embedding given by ν and γ (cf. Section

5.2.3).

It is worth noting that this input may also be taken from a manual layout construction

process, based on drawing a sketch on the surface, potentially supported by assisting

systems (cf. Section 6.2). With this generic setup, our stage 3 cannot only be used in

Figure 6.1.: Given a rough layout graph partitioning a surface into quadrilateral regions

(top), our stage 3 creates a quad layout embedding and patch parameterization optimized

for low distortion and alignment to principal directions and surface features.

65

6. Embedding

automatic scenarios, it can likewise support the process of manual layouting, which is

still very common in the industry, as outlined by Li et al. [LRL06]. Starting from an ini-

tial embedding roughly sketched by the user, who can now focus more on the structural

aspect and less on geometric precision, our method takes on the process of meticulously

positioning the layout’s nodes and routing its arcs across the surface so as to achieve low

overall patch distortion. Figure 6.1 shows an example input layout graph with rough

embedding and the result of our optimization. This is in contrast to simpler aids which

operate in an isolated manner, like automatically straightening jaggy arcs to geodesics

[LRL06], neglecting the complex consequences for patch distortion. The potential prob-

lems are illustrated in Figure 6.2 on the layout from Figure 6.1. Hence, our method

takes an integrated, global approach, that takes the interdependencies between adjacent

arcs and patches into account. It is based on optimizing a global parameterization of the

surface, structurally constrained by the layout topology. This parameterization can be

seen as the union of the individual node, arc, and patch maps f (with suitable transition

functions) which specify the layout’s embedding as described in Section 2.1. They are

thus optimized in a combined manner. In the end the individual embedding maps can

be extracted from the global parameterization.

The most important, essential difference of our method compared to previous ap-

proaches to layout embedding optimization is the fact that our formulation takes align-

ment to principal curvature directions into account (cf. Figures 6.1 and 6.11). In Section

2.2 we already described the importance of this aspect.

Figure 6.2.: The input layout graph from Figure 6.1 with geodesic arcs. Such isolated

per-arc optimization can clearly lead to problems.

66

6.1. Overview

6.1. Overview

Our method takes as input a quad layout graph with an initial embedding on a sur-

face. The requirements on the initial embedding’s quality are very weak: from the arcs’

embedding we only derive topological properties of the layout, i.e. their routes over the

surface are not crucial, only their homotopy, as detailed in Section 5.2.3.

Guiding Field (Section 6.3) In order to achieve alignment to principal curvature di-

rections (where reliable), we build upon field-guided parameterization. In order to also

support the case where the input layout comes from other sources than our stages 1 and

2 described in the last chapters, we do not rely on reusing the cross field used in these

stages, but describe how to compute one which is compatible with the input layout,

independent of its origin. We examine the structure of the input layout graph and build

a topologically compatible space of cross fields on the surface. In this space we then find

a smooth cross field which aligns to specified directions.

Aligned Parameterization (Section 6.4) Based on this we globally parameterize the

surface subject to connectivity constraints that enforce the given layout structure, such

that an optimized embedding for the layout’s arcs and patch interiors could be extracted

from the parameterization – layout nodes, however, so far remain fixed.

Node Optimization (Section 6.5) A meta-optimization strategy then optimizes the

embedding of the layout’s nodes: these are relocated based on the gradient of the pa-

rameterization’s objective functional with respect to their positions, so as to arrive at a

local optimum of global embedding quality. We describe how this repositioning can be

performed continuously, not restricting node positions by the underlying triangulation.

It is demonstrated that this concept is beneficial for general quad meshing applications,

too.

Gradient Computation (Section 6.6) Compelled by the complexity of the objective

functional’s true gradient, we describe a fast, easy-to-implement estimator and demon-

strate its effectiveness.

In Figure 6.3 these stages of our algorithm are illustrated.

67

6. Embedding

(a) (b) (c) (d) (e) (f)

Figure 6.3.: Given a rough (manually or automatically generated) sketch of a layout

with quadrilateral patches (a), the space of topologically compatible cross fields with

suitable singularities is determined (b). Based on reliable principal curvature directions

(and possibly feature information) a smooth, interpolating cross field is then created

(c). Guided by this field and constrained by the layout connectivity, an aligned global

parameterization is generated (d). After optimization of the layout node positions by a

non-linear gradient descent strategy (e), the optimized embedding for the layout can be

extracted, including smooth patch parameterizations (f).

6.2. Related Work

So far, the specific problem of optimizing and parameterizing a given layout while con-

sidering alignment to principal directions has not been addressed in the literature. There

are, however, several related works which address either layout parameterization without

alignment or aligned parameterization without underlying layout structure.

Aligned Parameterization

Numerous methods for global surface parameterization have been presented [FH05].

Most related to our work are more recent methods that aim for alignment (of iso-

parametric curves) to specified directions on the surface. Ray et al. [RLL∗06] introduced

a method from this class, which minimizes the deviation between the parameterization

functions’ gradients and a cross field representing principal directions. The same goal

can be achieved based on a Hodge-type decomposition of the field [KNP07].

Furthermore, there are concepts for parameterization-based quad meshing; we refer to

a recent survey [BLP∗13]. They are related in that they obtain an (aligned) parameter-

ization with conforming quadrilateral patches, but are best suited for the generation of

68

6.2. Related Work

fine quad meshes (except for, to some extent, our recent [BCE∗13]) and, even more im-

portant, the structure is a product of the algorithm itself. We strive for parameterization

with a predetermined, potentially coarse layout structure.

Layout Parameterization

While already some time ago approaches to automatic quad layout generation have been

made [EH96, BMRJ04, DSC09], quad layouting is still often performed manually by

skilled professionals in order to inject the subtle domain-specific requirements [LRL06].

This process involves positioning nodes and connecting them using paths across the

surface, thus specifying the layout graph’s structure and embedding through delineation

of its patch boundaries [AAB∗88, MBVW95, KL96, TPSHSH13].

To at least alleviate the burden of having to tediously specify nice arcs which form

patches that can be parameterized with low distortion, several methods for layout pa-

rameterization [TACSD06, DBG∗06, BVK08] allow for the optimization of the layout’s

arcs’ embedding during their parameterization process. More problematic are the nodes:

suboptimal placement not only causes unnecessarily high mapping distortion, it can also

give rise to local non-injectivity.

For improvement, node relocation based on iterated relaxation of local neighborhoods

can be used – for simplicial [GVSS00, PSS01, KLS03, SAPH04, KS04, PTC10] as well as

quad layouts [DBG∗06, THCM04, TPP∗11, CBK12]. While this approach is sufficient on

very smooth surfaces, anisotropically curved regions certainly call for explicit alignment

of the parameterization with principal directions as already detailed in Section 2.2. A

comparison of alignment-oblivious and alignment-aware layout optimization is provided

in Section 6.8.1. Note that it is not straightforward to exchange the functionals used

by these local relaxation strategies for alignment-aware ones. For reasons of compu-

tational tractability, auxiliary constructs like guiding fields are necessary to allow for

the efficient formulation of functionals for aligned parameterization [BLP∗13], which the

abovementioned frameworks are unprovided for. Hence, the quest for alignment-aware

quad layout embeddings calls for a novel strategy.

In addition to explicitly addressing this, our method further handles (aligned and

unaligned) surface boundaries and can deal with certain partially specified layouts. This

is not immediately possible with most of the above methods.

69

6. Embedding

6.3. Guiding Field

In order to obtain a guiding field for the subsequent parameterization step, we con-

struct a smooth cross field C on M that topologically conforms with the quad layout L
(Section 6.3.1) and geometrically follows principal directions and sharp features of M
(Section 6.3.2).

Let g denote the genus and b the number of boundaries of M. Further, s is the number

of irregular (valence ̸= 4) nodes in G.

6.3.1. Guiding Field Topology

For each irregular node of L we need one irregular point (singularity) in C at the position

of the node. The space of cross fields with these singularities has 2g+b+s−1 topological

degrees of freedom [RVLL08] which we need to fix in order to restrict to cross fields

topologically compatible with L, otherwise no non-degenerate parameterization will be

possible. The degrees of freedom are the turning numbers of C along 2g homology

generator cycles, b boundary cycles, and around s singularities – minus one, which

depends on the others via the Poincaré-Hopf theorem.

In the discrete setting one specifies the turning numbers for cycles of faces (or equiv-

alently dual edges) of M. For an irregular node h, the turning number t necessary for

the face cycle clockwise around ν(h) (cf. Figure 6.4 left) is simply determined from the

valence val(h) of h as t = −1
4val(h). For nodes on boundary vertices no turning number

needs to be prescribed.

A set of 2g homology generator cycles of L can easily be computed using the homotopy

basis construction algorithm for combinatorial surfaces described in [EW05]: A spanning

tree T of the layout graph G and a spanning tree T ∗ of the dual graph which does not

cross T are computed. 2g edges of G will then not be contained in T nor crossed by

edges of T ∗. Connecting these 2g edges to the root vertex of T through T yields the

2g arc cycles. For a cycle of arcs c = a1a2 · · · an (with consistent orientation of the ai)

we concatenate the corresponding face chains γ(ai) (red in Figure 6.4), while inserting

clockwise face fans (blue in Figure 6.4) in between (i.e. at the nodes) to make the

resulting face cycle γ(c) continuous. As the combinatorial surface L is homotopic to M,

70

6.3. Guiding Field

these face cycles are homology generator cycles of M. We count the number na of arcs

(emanating from the n involved nodes) this cycle crosses. The turning number of the

cycle then is fixed to t = 1
4(n − na); in Figure 6.4 bottom left the depicted face cycle

c crosses 2 arcs (dashed) which emanate from the 2 involved nodes, thus t = 0 in this

case.

For each boundary loop d of M we find the cycle of arcs c = a1a2 · · · an closest to d,

i.e., such that no node lies between c and d, and choose its orientation such that d lies

right of c when traveling along c (in order to avoid the need for special case handling

when nodes of the cycle lie on the boundary). We then determine the turning number for

γ(c) as in the previous case. Figure 6.4 right illustrates this for the gray mesh boundary

loop d: t = 1
4(4 − 4) = 0 in this case.

These turning numbers implicitly define the cross field’s topology. It can explicitly

be expressed using period jumps on M’s edges. Ray et al. [RVLL08] present a zipping

algorithm (Crane et al. [CDS10] an alternative formulation) that, given the above turning

numbers, determines all period jumps accordingly. Exactly the requested cross field

topology (in particular no additional singularities) arises from this algorithm. Setting

period jumps along the initial arcs according to their continuity type [TACSD06] is an

c

c

d

Figure 6.4.: Visualization of the face cycles used for fixing the turning numbers of sin-

gularities (top left), homology generators (bottom left), and of boundaries of the mesh

(right).

71

6. Embedding

equivalent alternative (which, however, only works for complete layouts, not partial ones,

cf. Section 6.9).

6.3.2. Guiding Field Smoothness

Within this topologically fixed space we now strive to find a smooth C that interpo-

lates sparse directional constraints, corresponding to reliable principal directions, feature

curve directions, or user-specified design intents. Like in Chapter 4 we use the strat-

egy described by Bommes et al. [BZK09] for determining regions with reliable principal

directions.

It is not inherently clear by which of C’s four directions a directional constraint is to be

interpolated. If this information is available, as could be for user-specified constraints,

the smoothest interpolating cross field (i.e. the one with minimal discrete field curvature

energy [RVLL08]) is obtained by solving a simple linear system as described by [RVLL08]

(which we modify to use soft constraints [RVAL09], with a high penalty factor of 100

which, while mostly achieving accurate alignment to constraint directions, provides some

freedom around singularities). Otherwise, we have to do the assignment of the field to

the constraints “modulo rotation by multiples of π
2”, which is easily expressed using

additional integer variables in the system. A mixed-integer solver is then initially used

to obtain a suitable assignment.

6.4. Aligned Parameterization

Now we formulate a global parameterization problem to simultaneously optimize the

embedding maps fa and fp (cf. Section 2.1) of arcs and patches guided by C – the

optimization of the nodes’ embedding is described in Section 6.5. The parameterization

P = (u, v) is represented piecewise linearly using three (u, v) parameter tuples per

triangle – one for each corner. Let ut and vt denote the orthogonal unit tangent vectors

in triangle t which correspond to the first and second direction of the cross field C in t.

The objective functional [BZK09] we use to obtain P is

E =
∑

t∈T

(
||∇tu − ut||2 + ||∇tv − vt||2

)
At → min (6.1)

72

6.4. Aligned Parameterization

where T are M’s triangles, At the area of t, and (∇tu,∇tv) the (per-triangle) gradi-

ents of the sought parameterization. The per-triangle parameterizations are interlinked

via transitions, which we require to be rigid transformations. Across an edge between

triangles s and t we thus have a constraint

(u, v)t = R(rst)(u, v)s + (jst, kst) (6.2)

with a rotation R by angle rst and a translation (jst, kst). The rotation angles r are

deduced a priori directly from the period jumps [KNP07], naturally as multiples of π
2 .

The transitions (6.2) with fixed r and variables (j, k) are then incorporated as linear

constraints into (6.1) using elimination of variables.

Note that in contrast to related quad meshing methods it is unnecessary to impose

integer constraints, which require mixed integer optimization strategies, neither on (j, k)

nor on the singularity parameters. Hence the parameterization P can be obtained using

a single linear system solve.

A parameterization of this kind induces a base complex, which can be extracted by

tracing iso-parametric curves (separatrices) from the nodes (cf. Figure 6.5). With iso-

parametric we mean that either the u or v parameter is constant along the curve when

taking transitions into account. We now further constrain the parameterization problem

(6.1) using node connection constraints, derived from the structure of the layout, to

accomplish that this induced base complex is structurally equivalent to L (cf. Figure 6.5

right). This ultimately allows us to derive an embedding for L from P .

6.4.1. Node Connection Constraints

We have to ensure for each arc that the two incident nodes lie on a common iso-

parametric curve of P – the restriction of P to this curve then gives us the arc embedding

map fa. For this we need to consider the transition functions along the face sequence

γ(a) representing an arc a. Let γ(a)⊢ denote the first face in the sequence, γ(a)⊣ the

last one. Further, let γ′(a) be the sequence of edges in between the faces of γ(a). Let

τ(a) be the concatenation of transition functions of the edges in γ′(a), i.e. τ(a) maps

from the patch s = γ(a)⊢ to the patch t = γ(a)⊣ along arc a. Then we need to require

[
τ(a)(u, v)s

]
λ(a)

=
[
(u, v)t

]
λ(a)

(6.3)

73

6. Embedding

for either λ(a) = u or λ(a) = v, where this subscript extracts the u- or v-component of

the tuple. This can be incorporated into (6.1) as linear constraint [MPKZ10]; we only

need to determine the arc labeling λ, i.e. whether an iso-u or an iso-v constraint should

be used for an arc.

We could make this decision by rating an arc’s alignment to the u- and v-directions

in an unconstrained parameterization [MPKZ10] or based on local angle considerations

[TACSD06]. While this can be sufficient locally for single arcs, we need to setup con-

straints for all arcs. If even just a single decision is inconsistent with the others, the

constrained problem would admit only degenerate solutions.

Consistent Arc Labeling

In order to ensure global consistency, we do not consider each arc individually, but first

construct a complete, consistent prototypic {ū, v̄} labeling λ̄ of the arcs based solely on

the combinatorial structure of L. Then only one global geometric decision is necessary:

check whether the total alignment of all ū-arcs to the u-direction and v̄-arcs to the v-

direction of C is better than the opposite choice, and exchange the prototypic labels for

{u, v} labels λ accordingly.

Figure 6.5.: Left: input layout. Middle: intermediate state of tracing iso-parameter

curves from the singularities in an unconstrained parameterization to obtain the base

complex. Right: base complex of a parameterization with node connection constraints;

now structurally equivalent to the input.

74

6.4. Aligned Parameterization

The prototypic arc labeling is a map λ̄ : H→{ū, v̄} which assigns symbols ū and v̄ to

the set H of half-arcs. The idea is to basically assign the same label to both half-arcs of

an arc (each representing one end of the arc) and alternating labels to half-arcs incident

to the same node in cyclic order. Here the notions of “same” and “alternating” are

again meant to take transitions into account. This is formalized as follows for a half-arc

a using the rotation system (σ, θ) of L:

λ̄(σ(a)) = τσ(a) λ̄(a) (6.4)

λ̄(θ(a)) = Rot(π/2) τθ(a) λ̄(a). (6.5)

where τσ and τθ are the respective transitions: let a+ and a− be the two half-arcs of

an arc a, a+ attached to the node at a’s beginning, a− attached to the end node. a×

denotes an arbitrary half-arc. Let τσ(a+) = τ(a), i.e. the concatenation of transition

functions of the edges in γ′(a), and τσ(a−) = τ(−a). Let τθ(a×) be the concatenation

of the transition functions of the edges between faces γ(a×)⊢ and γ(θ(a×))⊢ in clockwise

order around the incident vertex. We let these transitions act on the symbols ū and v̄

in the intuitive manner: the symbols are mapped to themselves if the rotational part is

an even multiple of π
2 , and to each other if it is an odd multiple. The translational part

is ignored.

When we now assign λ̄(a) = ū to one half-arc a (or one half-arc per component if G

is not connected), the labeling can be extended to all half-arcs by recursive application

of equations (6.4) and (6.5). It is due to the intimate connection between the turning

numbers of L, the period jumps of C, the transition functions, and τσ / τθ (which are all

built upon each other) that the resulting labeling is independent of the label propagation

order, thus globally consistent with respect to (6.4) and (6.5).

With constraints (6.3) in effect, we then compute P (6.1) whose base complex is now

structurally equivalent to L (cf. Figure 6.5 right). Notice that using this particular

setup (global parameterization with layout structure constraints) optimal parametric

extents of the individual patches emerge freely. This is in contrast to all previous layout

parameterization approaches (cf. Section 6.2), which rely on fixed (unit) patch extents

or initial estimates, followed by an iterative adjustment procedure. In particular, we

thus do not depend on the quality of the arcs’ initial embedding; it is only the arcs’

path homotopy classes (with respect to the surface punctured at the singularities) that

matters [MPKZ10].

75

6. Embedding

6.4.2. Embedding Extraction

A global parameterization P with a base complex structurally equivalent to L naturally

induces an embedding for L (cf. Figure 6.5 right). The embedded arcs are found as

iso-parametric curves starting from the nodes until another node is reached.

The individual patch parameterizations, i.e. the maps fp, over rectangular domains

[0, wp]× [0, hp] can be derived easily: if no non-trivial transitions lie in the patch region

it can directly be read from P as the surface between the four bounding iso-parametric

curves emanating from the corner nodes is parameterized over some rectangle [a, b]×[c, d]

by P , thus only a translation and possibly a scaling is necessary. If transitions are

involved, we need to express all parameter values with respect to a common chart –

as each patch is disc-homeomorphic and contains no singularities in its interior, this is

possible without ambiguity. We start from an arbitrary triangle seed lying within the

patch and from there conquer all others while transferring them to seed’s parameter

system. Let fst be the transition from face s to face t, Id the identity transformation,

s.uv the set of (u, v) parameters of the corners of s, and Q a simple FIFO queue.

Q.push([seed, Id])

while not Q.empty

[t, f] ← Q.pop()

for s ∈ T | adjacent to t and not yet processed

g ← f ◦ fst

s.uv ← g(s.uv)

Q.push([s, g])

Note that if instead of individual patch parameterizations one global parameterization

without transitions within the patches is desired (e.g. for visualization purposes), the

transitions must necessarily be located at the patch borders. This is achieved by making

the mesh conform with the layout by splitting the faces crossed during the arc tracing,

effectively inserting edge strips that coincide with the arcs. Then performing the above

procedure for one seed per patch directly results in all transitions getting shifted to the

patch borders.

76

6.5. Node Optimization

Figure 6.6.: Typical parameterization distortions due to suboptimal node singularity

positions. Most problematic are non-injectivities due to fold-overs, i.e. triangles param-

eterized with reverse orientation (shaded darker). Intuition already suggests that moving

the nodes towards the bottom left would improve parameterization quality.

6.4.3. Optional Extensions

We would like to point out that the functional (6.1) can be extended in several ways.

For instance, an anisotropic norm can be used for improved field alignment [BZK09] –

we generally use an anisotropy ratio of 10. Furthermore, a sizing field, computed so as

to reduce the curl of the sized cross field to allow for better alignment [RLL∗06], can be

taken into account – we used this option for all examples.

6.5. Node Optimization

While the described constrained parameterization procedure optimizes the embedding

of arcs and patches, the nodes remain fixed due to the very nature of the setup. This

not only restrains the achievable quality of the resulting embedding, it further gives

rise to large distortions or even local non-injectivities due to fold-overs, i.e. triangles

parameterized with inverse orientation (cf. Figures 6.6, 6.7, and 6.9). This is because

fixed nodes in our setup behave much like isolated point constraints in, e.g., harmonic

parameterizations – which are well known for their problematic effects on distortion and

injectivity [YLY∗12].

77

6. Embedding

Figure 6.7.: Visualization of the trajectory (red) of a node (blue) as it moves in negative

gradient direction d. In the beginning severe distortions and inversions are present which

successively vanish in the course of the movement.

A popular approach to this problem is the use of stiffening [BZK09, MPKZ10]. It

tries to iteratively remove non-injectivities by increasing a penalty factor for the affected

regions in the objective functional. While this reduces the problematic effects, it does

this at the cost of actually increasing the residual, i.e. the parameterization is pushed

away from the least-squares solution deemed optimal by (6.1) – higher overall distortion

is traded for local improvements (cf. Section 6.5.3). We advocate a strategy that instead

moves the nodes so as to arrive at a solution with lower residual. Thus, while taking care

of the distortion problems, this strategy simultaneously optimizes the nodes’ embedding,

basically by exploiting the information the distortion provides. Figure 6.7 demonstrates

this proposition’s reasonability. This basic idea of node relocation has been made use

of in previous methods – however, these are not suited for our setting using an aligned

parameterization as detailed in Section 6.2.

Technically speaking, we are going to optimize (6.1) not only w.r.t. the parameters u

and v (thus the patches’ and arcs’ embedding) but also w.r.t. the geometric positions of

nodes on M. We tackle this non-linear problem using a strategy which optimizes A) with

respect to u and v (with fixed nodes) and B) with respect to the node positions (with

fixed u,v) in an alternating manner. In this way the large problem A (O(|M|) variables)

can still be solved as a simple linear problem as described in the previous sections. The

smaller non-linear problem B (O(|L|) variables) we address using a gradient descent

strategy, as detailed in the following.

78

6.5. Node Optimization

6.5.1. Gradient Descent

In order to locally move a node h in such a way that the residual of (6.1) (which we now

just call E for brevity) decreases, we need to move this node in direction

d(h) = −
(

∂
∂xE(hx, hy),

∂
∂yE(hx, hy)

)
(6.6)

i.e. in a gradient descent manner. Here (x, y) are 2D coordinates in some local coordinate

chart of M around h and (hx, hy) expresses the current position of node h accordingly.

Note that E depends on x and y because nodes are embedded in vertices, i.e. node

positions are vertex positions. In Section 6.6 we address the computation of d(h) as well

as of a suitable corresponding descent step length l(h) in detail.

Node Movement

Assume node h is currently at position p. To determine the new position p′ on M
we trace a straightest geodesic g of length l(h) starting at p in direction d(h) [PS98]

(stopping if a boundary is reached). If h lies on a feature curve, we first project d(h)

onto it and restrict the tracing to this curve.

Remember that nodes need to be mapped to vertices, but p′ does

in general not lie on a vertex. Snapping the node to the closest

vertex is not a good solution as it provokes discontinuous behavior

and hampers convergence. Instead we enable a virtually continuous

movement by (temporarily) relocating one of the vertices incident

to the face on which p′ lies, so as to provide a suitable support for

h. In contrast to the insertion of a new vertex this does not intro-

duce low valence vertices and leaves the mesh structure unchanged.

The choice among the incident vertices is made such that geometric

alteration of M caused by the relocation is minimal. Vertices that

have another node embedded in them and vertices on sharp features

are excluded from the choice.

Let v be the vertex at position p onto which h is mapped before the move and v′ be

the vertex chosen to be relocated to p′. If v = v′, we simply relocate it to p′. If v ̸= v′,

the original position of v is restored and v′ moved to p′. In this case further adjustment

79

6. Embedding

is necessary: the cross field singularity corresponding to the node needs to be moved

to v′. In detail, we determine an edge chain c connecting v with v′ along the geodesic

g. We then adjust the chain’s edges’ period jumps so as to reflect the new singularity

location.

γ⊢

γ⊢

v′

v c

Furthermore, the connection constraints (6.3), i.e. the compos-

ite transitions τ and labels λ, have to be updated so as to reflect

the new situation. For simplicity we assume all arcs incident to a

node start in the same face, i.e. γ⊢ of all incident arcs (oriented in

outgoing direction) is the same. To now update the current τ and

λ we select an arbitrary face incident to v′ as new γ⊢, accumulate

the transitions of the edges (dashed in the inset figure) crossed

when going from the old to the new face along the edge chain c,

and apply them to τ and λ.

Iteration Strategy

We solve problem A (optimizing cross field and parameterization), determine gradient

and step length for each node, and move them one step as described in the previous

section. This is iterated. We stop when the next step would increase the residual, i.e. we

execute the step, and output the previous solution in case the residual increased. Further

fine-tuning of the node positions can be achieved by repeating this with decreased step

size. We used this option for the shown examples, halving the step size each time and

stopping after max. 5 halvings or 25 total steps.

6.5.2. Selective Optimization

At the user’s discretion (or based on additional information) we can selectively exclude

nodes as well as arcs from the automatic optimization process to keep them in their

intended original state. For a node this is as easy as disregarding it in the gradient

descent. For an arc we need to ensure that the corresponding iso-parametric curve

coincides. We achieve this using constraints similar to the node connection constraints:

we do not just require the arc’s end points to lie on a common iso-parametric curve,

but also all the points where the arc crosses mesh edges. The parameters of these

80

6.5. Node Optimization

crossing points are easily expressed as linear (convex) combinations of the parameters of

the edges’ incident vertices. In a completely analogous manner the parameterization can

also be forced to align to given feature curves, surface boundaries, or other user-specified

curves on the mesh.

6.5.3. Discussion

The key features of our node relocation approach are the largely triangulation-invariant

movement and continuous positioning of nodes. This is in contrast to the discrete singu-

larity relocation mentioned by Bommes et al. [BZK09] which has the “obvious drawback

of heavy computational cost” and can get stuck in situations where all possible moves to

neighbor vertices lead to a higher residual although a continuous path of decreasing resid-

ual exists inbetween. Both aspects can be seen in the following table comparing runtime t

Ours Bommes et al.
Model t (s) Efinal t (s) Efinal

Trihole 24 430 742 457
Rockerarm 75 842 >3600 1099
Elk 18 751 >3600 762
Fertility 40 522 >3600 648
Block 42 140 >3600 182

and final residual Efinal (after max 1h) of

both relocation methods applied to exam-

ples from Figure 6.10.

Nieser [Nie12] proposes a variant that

efficiently estimates parameterization im-

provement based on the cross field’s curl

improvement. Note that this is not appro-

priate for our highly constrained problem

where a major part of the residual is caused by the constraints, not the field’s curl.

Notice that our relocation strategy does not rely on a layout – it can likewise be used

for singularity relocation in general quad meshing scenarios based on energy (6.1). In

this context singularity locations are typically determined a priori [KNP07, BZK09], with

only limited awareness of implications for the parameterization. Figure 6.8 demonstrates

the advantage of relocating them (directly driven by parameterization quality) over the

alternative of using stiffening.

Limitations of Node Movement No matter which node relocation strategy is used,

potentially some fold-overs (i.e. non-injectivities) remain after convergence, especially

when the layout is coarse and ignores significant geometric features, or when nodes or

81

6. Embedding

MIQ
result

E =1112, 55 folds

with
stiffening

E =1289, 0 folds

our
relocation

E =507, 0 folds

Figure 6.8.: Left: Parameterization computed using the MIQ approach [BZK09]. The

residual is 1112 and there are 55 fold-over triangles. Middle: Stiffening is able to get rid

of the folds while increasing the residual by 16%. Right: Our relocation is likewise able

to get rid of the folds while beneficially decreasing the residual by 54%.

arcs are fixed by the user in bad positions. Subsequent stiffening proved to often be a

helpful remedy in such case. A more reliable solution, however, is to use strict triangle

orientation constraints, e.g. as in [Lip12] or [BCE∗13]. We employ the latters’ linear

tri-sector constraints to get rid of folds in the last iteration.

6.6. Gradient Computation

The gradient (6.6) of (6.1) depends on x and y in multiple ways: they appear directly

in the discrete gradient operator ∇ and in At, but indirectly also in the cross field,

i.e. in u and v, as well as in the parameterization (u, v). As these dependencies are

via the solution of (constrained) minimization problems, a closed-form expression of

gradient d(h) is not available. One possibility to compute (or approximate) it is to use

numerical differentiation, e.g. using finite differences: ∂
∂xE(hx, hy) ≈ (E(hx + ε, hy) −

E(hx, hy))/ε. This amounts to moving vertex ν(h) by a small ε, re-solving the cross

field and parameterization systems, and evaluating the residual. While simple, this

needs to be done two times (∂x and ∂y) per node in each step, thus clearly is a costly

procedure. Another option is to use exact algorithmic differentiation. Exploiting recent

results which allow for the efficient differentiation of functions involving systems of linear

equations [NL12], we are able to handle our E. This technique only requires the equation

82

6.6. Gradient Computation

systems to be solved two times per step (once normal, once adjoint) yielding the gradient

w.r.t. all nodes at once. Implementation, however, is relatively demanding.

As practical alternative we devised a gradient estimator, described in the following,

which is both, easy to implement and very efficient, avoiding additional system solves

altogether.

6.6.1. Efficient Estimator

Let’s consider the energy functional (6.1) again. The position (x, y) of a node appears

directly in ∇t and At, but also in the cross field and the parameterization. If we neglect

these indirect dependencies, i.e. consider Ẽ where u and v as well as (u, v) are fixed, we

can analytically derive

∂

∂x
Ẽ =

∑

t∈T (h)

2

(
∂∇t

∂x
u

)T(
∇tu − ut

)
At +

∂At

∂x
||∇tu − ut||2+ · · ·

where we omitted the second analogous half. Note that the sum is only over triangles

T (h) incident to node h, as all other terms vanish due to independence from x. The

corresponding approximate gradient d̃(h) can thus very efficiently be evaluated based

on only the 1-ring neighborhood.

To obtain a local 2D (x, y) coordinate system for h’s 1-ring, we employ the commonly

used geodesic polar map [WW94], effectively flattening the 1-ring to the plane while pre-

serving radial lengths and relative angles by uniformly scaling the inner angles incident

to h such that they sum to 2π; origin and axes in the plane can be chosen arbitrarily.

The approximate gradient d̃(h) is surprisingly well-behaved in terms of gradient direc-

tion, even in configurations with strong distortions and inversions where one could easily

expect the local per-triangle gradients to be severely perturbed and non-informative.

Tests on several hundreds of nodes in numerous layouts showed that the average angular

deviation between d and d̃ is around 4◦, with very few outliers (typically rather small

gradients) which showed deviations up to 35◦. Figure 6.9 gives an impression of the

amount of deviation. We observed the magnitude of d̃ to be around 1.5 times larger

than that of d (caused by neglecting the dependence of the parameterization on (x, y)).

The average magnitude deviation between 2
3 d̃ and d was only 6% in our tests.

83

6. Embedding

Figure 6.9.: Visualization of descent directions: negative gradient d (yellow) and our

estimator d̃ (red). The angular deviation is typically very low, even in complicated

regions with severe distortions and inversions (shaded darker).

6.6.2. Step Length

In addition to the gradient direction, we also need to determine an appropriate step

length for the iterative gradient descent procedure. We empirically found that E(hx, hy)

grows roughly quadratically with the geodesic distance of node h from the position where

||d(h)||

distance

E(hx, hy) attains a minimum – at least in the range of

relevance, i.e. unless we maliciously move h way beyond

its adjacent vertices, twisting the layout. This means

||d(h)|| is approximately proportional to the distance of

h from its locally optimal position – as can be seen in the

inset graph for 20 different nodes in an example layout.

Note that the proportionality factor between ||d(h)|| and

the distance is scale independent: if we scale a model by

a factor f , its area and the residual E are scaled by f 2

– distances and d(h) are both scaled by f . Hence we can directly rely on the gradient

magnitude to determine a suitable step length.

We observe in the graph that there is some variation among the nodes – different

slopes. These are not due to the model’s scale or varying local density of the layout,

but depend on variations in local surface and layout region shape in a complex manner.

As the range of variation is not very large (the graph already shows a rather extreme

84

6.7. Quad Mesh Generation

case), we can easily account for this using a conservative global damping factor, i.e. we

use l(h) = α||d(h)|| (respectively: α2
3 ||d̃(h)||) as step length for node h. A value of

α = 0.75 proved to perform very well in practice – we used it in all the examples. As a

safeguard, we limit each node’s movement to its current cell in a simple Dijkstra-based

node Voronoi diagram on M.

6.7. Quad Mesh Generation

One particular use case of quad layouts is the generation of quad meshes via subsequent

refinement, as the block structure of the resulting meshes provides specific advantages

[BLP∗13]. One option is a posteriori subdivision of each patch parameterization into an

m× n grid, where m and n comply between neighboring patches. This is the case if we

choose m = ⌈w/q⌉ and n = ⌈h/q⌉, where (w, h) is the patch’s parametric extent and q

the quad mesh target edge length.

Mixed-Integer Option When rather coarse meshes are to be generated it is advan-

tageous for uniformity to require the parameterization to yield patch sizes (w, h) such

that w and h are integer multiples of q (sparing the above rounding) already during the

optimization. This is accomplished by requiring the parameters (u, v) of nodes and the

translations (j, k) of transitions (6.2) to be integer multiples of q, resulting in a mixed

integer problem [BZK09]. It proved advantageous to first optimize node positions in

the relaxed (non-integer) setting, then solve for the integers, and then further optimize

nodes with respect to the fixed integers. This avoids discontinuities during the gradient

descent. Finally, a quad mesh can be extracted from the parameterization [EBCK13].

6.8. Results

We applied the proposed method (using the efficient gradient estimator) to input layouts

computed by stage 1 and 2 described in the previous chapters, as well as to some

manually sketched layouts (Fertility a, Face, Mask, Elephant, and Botijo).

Figure 6.10 shows the input and output layouts, Table 6.1 the corresponding statistics.

85

6. Embedding

The patch parameterizations are visualized using m × n grid textures (as described in

Section 6.7).

We used Cholmod [CDHR08] for the equation systems and Ipopt [WB06] to handle

the anti-fold constraints. Runtime is dominated by the repeated systems solving –

the initial one-time work concerning lay-

out parsing, cross field topology, and con-

nection constraints, as well as the per-step

gradient estimation and node movement

carry no significant weight. The complex-

ity of the layout has only little influence

(cf. Table 6.1, Bunny), as we move all

nodes at once between two solves.

We observed nice convergence proper-

ties of the node optimization strategy: in every case more than half of the total decrease

in residual happened during the first three steps.

6.8.1. Comparison

Most previous approaches to complete embedding optimization are based on the con-

cept of fixing a node’s 1-link and relaxing the interior [GVSS00, PSS01, KLS03, SAPH04,

KS04, DBG∗06, TPP∗11]. We compare the results of an implementation of the most

recent one (TPP, the final stage of [TPP∗11]) to ours. TPP has some restrictive require-

ments that prevented us from applying it to all examples, e.g. patches must nowhere be

narrow (below 1-2 triangle mesh edge lengths), neither initially nor during the course of

the optimization, unaligned boundaries cannot be handled, etc.

Table 6.2 shows the conformal energy Econfor = 1
A

∫
M

(
σ1
σ2

+ σ2
σ1

)
[FH05] (A being M’s

surface area, σ1 and σ2 the singular values of the parameterization’s Jacobian), aver-

age angular deviation E◦ between ∇u and ∇v and the principal directions weighted

by squared principal curvature difference (κ1 − κ2)2, and conjugacy error Eplanar =
1√
A

∫
M II

(
∇u/||∇u||,∇v/||∇v||

)
which, based on the surface’s second fundamental form

II [LXW∗11], quantifies how non-planar the (infinitesimal) elements of a quad mesh

generated from the parameterization would be.

86

6.8. Results

Figure 6.10.: Input and result layouts. Feature alignment has been used for models

Joint (yellow) and Lever (pink), boundary alignment on eyes and mouth of the Mask

model (blue). Irregular nodes are displayed as little spheres for visual orientation.

87

6. Embedding

Model faces patches time (s) Einit Efinal folds∗

Trihole 30K 20 24 1087 430

Elk 18K 86 18 3058 751 1

Joint 43K 79 31 221 167

Rockerarm 70K 115 75 2669 842 1

Face 25K 50 11 1531 588

Fertility a 28K 72 40 1889 522

Fertility b 28K 98 33 4538 662 5

Block 36K 76 42 1523 140

Mask 9K 30 8 3709 2732

Elephant 40K 104 69 3336 1398 2

Lever 20K 275 18 2092 1055 2

Botijo 30K 167 37 1946 675

Bunny 51K 1063 67 8033 3935

Table 6.1.: Statistics: mesh and layout complexity, total optimization time, residual

before and after node optimization (note the significant decrease in each case), ∗number

of fold-over faces if orientation constraints would not have been used; with them (or

stiffening) all results are fold-over free.

Ours TPP

Model Econfor Eplanar E◦ Econfor Eplanar E◦

Trihole 2.047 1.40 6.2 2.026 2.12 9.5

Rockerarm 2.069 1.93 5.8 2.085 2.62 8.7

Fertility 2.049 1.57 4.2 2.066 2.57 7.4

Block 2.013 1.24 3.2 2.022 2.39 7.2

Elk 2.065 1.29 4.3 2.106 2.56 8.6

Botijo 2.060 1.57 3.3 2.074 2.72 5.6

Elephant 2.145 2.71 7.4 2.109 4.16 12.0

Table 6.2.: Comparison of the results of our method and TPP of [TPP∗11] based on

conformal energy Econfor, average angular misalignment E◦, and conjugacy error Eplanar.

Note that a “random” parameterization would have E◦ around 22.5◦; as the input

layouts have been constructed with principal directions in mind, also TPP shows smaller

deviations, but the alignment-awareness of our method consistently led to lowest E◦

(note that non-integrability of the cross field prevents E◦=0 in general). In combination

88

6.9. Discussion

Figure 6.11.: Zoom-ins comparing TPP (red) and our method (green). Some isocurves

are highlighted to ease visual alignment quality comparison.

with good conformality (no large difference between both methods) our method also

generally achieved better Eplanar values. Figure 6.11 illustrates the differences.

6.9. Discussion

Our stage 3 simultaneously performs a geometric optimization and parameterization of

quad layouts on surfaces. What sets our approach apart from related methods is its

unique property of yielding aligned layout parameterizations, taking surface anisotropy

and features into account. A key contribution is a novel efficient technique to continu-

ously optimize node positions, directly driven by the objective of minimizing distortion

and misalignment. We have seen that its applicability extends to related areas like

quadrangular remeshing.

89

6. Embedding

Alignment

The presented method assumes that the input layout is intended for a principal direction

aligned embedding. While this clearly is the case when our stages 1 and 2 are used, a

designer who manually sketches a layout might arbitrarily (depending on the application

intentionally) deviate from that. In such cases our method might not be the ideal choice,

as demonstrated in the following.

Principal direction conflict Figure 6.12c/d shows an input layout which largely

contradicts the principal directions. The conflict between the objectives of layout struc-

ture preservation and alignment leads to large distortions.

High valence nodes Around nodes with high valence (in regions without corre-

spondingly high Gaussian curvature) there are typically quite some distortions. While

the valence 8 node in Figure 6.12a is surrounded by a distorted but still valid parame-

terization, there are fold-overs around the valence 12 node in Figure 6.12b – fold-overs

which cannot be prevented even by orientation constraints: the six triangles surround-

ing the valence 12 node need to span an angle of 6π in parameter space, but in a valid

piecewise linear (PL) parameterization all inner angles are less than π. Note that this is

a general problem of PL triangle parameterizations [NP09] (however, only a local one,

restricted to the 1-ring of singularities).

b)

a)

d)

c)

e)

Figure 6.12.: Problematic input configurations: high valence nodes, principal direction

conflicts, overly coarse structure.

90

6.9. Discussion

Overly coarse structure The layout in Figure 6.12e is much coarser than the feature

structure of the underlying model. This necessarily causes large alignment deviations,

thus distortions or even fold-overs. In this example still a valid embedding was found,

but there is no general guarantee.

Notice that in these cases it is questionable whether a method aiming for principal

direction alignment is the right choice. It seems unlikely that such layouts are actually

intended to be aligned, or that there even exists a solution with reasonable alignment.

Optimization methods not aiming for alignment (cf. Section 6.2) are then preferable.

Structure Modification

In a few cases we observed adjacent nodes ending up quite close together (cf. the green

Face model). Typically not only individual pairs move towards each other, but rather

all pairs bordering a dual loop or poly-chord. This is plausible, considering that the

parametric distance of each such pair is equal. As the resulting narrow patches can

be undesirable depending on the application, node spacing constraints – similar to the

node connection constraints (6.3) – can be of value. For each arc a from s to t the

parametric distance of its end nodes can be computed as
∣∣[τ(a)(u, v)s

]
i
−

[
(u, v)t

]
i

∣∣ with

i ∈ {u, v}, i ̸= λ(a). If this drops below a desired minimal spacing ϵ (e.g. dictated by

the quad mesh target edge length) during the gradient descent, one can add a constraint[
τ(a)(u, v)s

]
i
=

[
(u, v)t

]
i
± ϵ to ensure that this distance is kept in following iterations.

Alternatively, one could understand the narrowing as indication that merging the

approaching nodes is advanta-

geous. We can constrain the

parametric distance to zero when

it drops below ϵ, effectively en-

forcing a poly-chord collapse.

Like the node merging in Section

5.1.4 this can be seen as a form

of adjustment of the intermediate

result from stage 2, as motivated

in Section 3.1.5. Both options are

illustrated here next to the standard solution (left).

91

6. Embedding

Partial Layouts

It is also worth noting that partial layouts, where only a subset of all arcs is

specified (together with irregular nodes and

their valences), can be taken as input, too.

Missing arcs then naturally emerge from the

parameterization (as shown in the inset) and

their routes may indicate suitable layout com-

pletions. Considering this in conjunction with

the fast convergence properties, we imagine

using the presented techniques in an assisted

(primal) layout drawing system with interac-

tive feedback.

Regular Node Optimization

Let us mention an option concerning the optimization of regular nodes in a layout. While

irregular nodes (implying singularities) have an essential influence on the field construc-

tion and parameterization system structure, regular nodes do not. Using a simple modi-

fication, the optimization of the embedding of regular nodes can thus already be achieved

during the parameterization step. We can simply remove a regular node’s

explicit occurrence in the node connection constraints by instead concate-

nating the four involved connection constraints in two pairs (unless this

concatenates a constraint with itself), just as if the regular node was not

present in the layout, but two arcs crossing in its place. The regular nodes’

embedding is then optimized implicitly in the parameterization process: a

node’s new position can be found at the intersection of the two respective

iso-parametric curves.

As the number of nodes to be moved in the gradient descent procedure does not

significantly affect the total runtime, this option does not necessarily increase efficiency.

It can, however, speed up convergence when the initial embedding of regular nodes is

worse than that of irregular nodes – which can, for instance, be the case if it is a mere

byproduct of the rough initial embedding of crossing arcs – as in our stage 2.

92

6.9. Discussion

It is important to notice that when this option is used the structure of the resulting

layout is not guaranteed to be equivalent to the input. One can think of constellations

where the arcs in the final parameterization could cross in another way than they do in

the input (except for layouts involving numerous dangling arcs, we have not come across

such a situation). This can be seen as a form of implicit structure optimization, but can

be undesirable if preservation of the structure is mandatory.

Directional vs. Positional Alignment

Our layout embedding optimization process generally aims for alignment of iso-parametric

curves (hence also arcs and final patch parameterizations) to principal directions on the

surface. Another form of alignment is that of positional alignment: one might want to

fit an arc or a specific iso-curve of the parameterization to a specifically located curve

on the surface. We described how to do this for the cases of fixing arcs to feature curves

(cf. Section 6.5.2).

The optimization does, however, not explicitly aim at specifically positioning arcs

onto non-sharp, smooth features or similar curvature extrema (unless fixed manually).

While such alignment might be desirable from an aesthetic point of view, let us point

out that it would often be suboptimal in terms of isometry and alignment. The inset

demonstrates this on the Block model which has numerous smooth feature curves:

On the left is the result of our op-

timization where some arcs align to

smooth features, some do not – be-

cause this is the optimum in terms

of isometry and principal direction

alignment (as measured in a combined

form by the parameterization energy

functional). On the right we show a

version where the nodes have manu-

ally been repositioned so as to achieve

further arc-to-feature alignment, in

particular around the holes. While this can be of interest for certain applications, in a

general sense the left result is to be considered better: the parameterization residuum,

93

6. Embedding

reflecting isometric distortion and misalignment, is higher by a factor of 2.3 on the right.

In particular, forcing an irregular node and two incident arcs to lie on a smooth feature

curve implies patch corner angles of ≤ 60◦ at valence 5 nodes and of 180◦ at valence 3

nodes – far from the general optimum of 90◦.

94

Part II.

Interactive Design

95

6.9. Discussion

Note: This part is based on [CK14a].

In Section 2.2 we discussed the issue of layout quality objectives which can be hard

to formalize, subjective, driven by aesthetics, etc. The related field of quad mesh gener-

ation faces a very similar issue: based on some quality measure a compromise between

alignment, orientation, and element shape needs to be made [BZK09]. A solution which

found success in practice in this field was the inclusion of the user in the process – instead

of aiming for full automation. Major 3D sculpting packages like Pixologic’s ZBrush or

Pilgway’s 3D-Coat have recently been equipped with quad remeshing features which fol-

low this paradigm and rely on high-level user interaction, e.g. regarding the specification

of alignment and element sizing. This allows the user to tune the result to meet the

given requirements – even if no formal description thereof, or no specialized optimization

method therefor is available.

Unfortunately, while methods for quad mesh generation allow for user influence (re-

garding edge flow, irregular vertex configurations, element sizing, element anisotropy,

etc.) [BZK09, ZHLB10, KMZ11], even though not always at interactive rates, this is

not provided for in the automatic pipeline presented in Part I, nor in other methods

targeted at the problem of quad layout generation (e.g. [EH96, BMRJ04, TPP∗11]).

In this part we present an interactive quad layout design system that explicitly takes

the user into the loop and grants full flexibility to incorporate application-specific design

intents.

97

6. Embedding

98

7. Metaphors and Guides

Figure 7.1.: Overview of our Dual Strip Weaving approach for the design of quadrilat-

eral patch layouts. a) When hovering over the object, the user is immediately presented

with the best elastica strip (visualized using a stripe pattern) at the current pointer

position. It can be selected and fixed with a single click. b) Fixed strips (blue) constrain

the design space; only compatible strips are offered next (green). c) Indicators based

on color-coding and stripe patterns guide the user to regions where modifications are

recommended for the benefit of layout quality. d) Finally, a quad layout structure can

be derived from a collection of strips.

a) b) c) d)

7.1. Concept

A design process with a user in the loop necessarily proceeds incrementally. This raises

the question of what nature the increments should be, or in other words:

What should be the atomic operations provided to the user?

99

7. Metaphors and Guides

In established modeling tools (mainly for subdivision base meshes) this is often an-

swered like: the user can create nodes, arcs, and patches, and on a somewhat higher level

multiple patches can be created at once using splitting, extrusion, and similar operators.

In these cases, the user deals directly with the individual elements of the layout.

A drawback of this approach is its fine granularity: the operators are very local. Quad

meshes and quad layouts, however, generally have a rather constrained global structure

[MBBM97]. As this fact is not reflected in the local operators, it is up to the user to

plan ahead such that in the end all the locally constructed elements meet up globally in

a desirable manner. Large parts of the design might have to be redone when the set of

created quads comes to form a non-quad region which cannot be quadrangulated without

adverse side-effects (irregular vertices, excessive refinement, etc.). To cite Takayama et

al. [TPSHSH13]: “it is often quite challenging even for professional artists to manually

design a perfect quad mesh on the first try. Since the quality [...] is a global property,

the correction of a single mistake might require regeneration of the entire mesh.”

For this reason, in stage 2 of our automatic pipeline (cf. Chapter 5) we made use

of global dual loops, which allowed us to ensure layout consistency more easily. We

here propose to use the creation of an entire dual loop as the atomic operation

also for interactive design purposes. In order to make the interaction more intuitive

and comprehensible we, however, equip the topological dual loops with a geometric

dimension, turning them into dual strips. In contrast to the established local operators,

this operator has a kind of built-in global consistency (no non-quad patches are ever

generated), effectively reducing the burden of “planning ahead” for the user.

Figure 7.2.: Basic concepts: quad layout, dual loops, dual strips.

100

7.2. Interactive Workflow

7.1.1. Dual Strips

A dual loop corresponds to a cyclic chain of quads in the primal layout, cf. Section 2.1.

The union of all the quad patches of such chain we call dual strip, cf. Figure 7.2. We

may say a dual loop is the spine of its dual strip. Note that a quad patch of the primal

layout corresponds to an intersection region of two dual strips, crossing transversally.

From this point of view our goal of partitioning a surface into quad patches is equivalent

to doubly-covering the surface with dual strips where all strip intersections are

transversal.

A practical analogon which illustrates this idea is basketry, i.e. the weaving, or more

specifically plaiting, of baskets from strips of plant

materials like bark, straw, or flax. The figure on the

left (courtesy of Jonas Hasselrot) shows an example.

Notice how every quad is covered by two crossing

strips. At the bottom corners of the basket it can

be observed that irregular “nodes” (here of valence

3) can be formed using this technique, too. In this

sense, the underlying conceptual idea of our system

can be seen as weaving dual strips on a given surface

until it is covered. Note, though, that our strips

are of variable width and the layer-alternation of the

woven strips, which serves stability in practice, is of no meaning in our case. This process

of Dual Strip Weaving is computationally supported in our system, e.g. by proposing

optimal routes or choosing appropriate widths for strips.

Note that building the layout based on dual loops or strips does not restrict the class

of designable layouts in any way – for every quad-only layout there is an equivalent

collection of dual loops/strips.

7.2. Interactive Workflow

We begin by describing the design workflow in order to provide a high-level understand-

ing of the system and its core concepts. As stated above, the creation of a dual strip is

101

7. Metaphors and Guides

the fundamental operation in our system. Instead of having the user draw such strips

by hand, the central idea of our system is to compute suitably optimized dual strips

automatically and propose them to the user. Intuitive tools to select, edit, or model

these strips are then made available to provide full flexibility, while still keeping the user

workload low. Technical details of the involved algorithms for dual strip computation

follow in Chapter 8.

7.2.1. Tools and Metaphors

Simply hovering over the surface with the mouse pointer, the user is immediately

presented with the best possible dual strip which runs through this point. This dual

strip is constantly updated as the user moves the pointer. See Figure 7.1a.

Using the mouse wheel the user can furthermore browse good alternative dual strips

which run through the same point but take different routes over the surface, in order of

descending quality.

These automatically proposed strips (computed and rated as described in Section 8.1),

provide a rich fundament already sufficient for the construction of complete dual layouts.

In order to provide full design flexibility to the user we furthermore enable the modeling

and editing of dual strips using the following metaphors. In these manipulation modes

it proved advantageous for clarity to display the strip in form of its representative spinal

loop (the automatically chosen strip extent is not subject to user modification anyway;

it serves purposes of “coverage” visualization).

By clicking, the user creates an anchor point and the best dual strip through this point

is shown (the one which was already shown

when the user hovered over this point).

By dragging a directional anchor is cre-

ated instead, producing a dual strip which

runs through this point, interpolating the

specified direction. The direction can also

be altered interactively in order to explore

the space of possible dual strips through

the anchor point.

102

7.2. Interactive Workflow

By clicking (or dragging) at further points on the surface, additional anchors (of

positional or directional kind) can be placed. The best dual loop interpolating these

anchors is then shown.

Another metaphor that can be used to conveniently edit the shape of a dual loop is

grabbing. The user can grab the current loop at any point and drag it to another

position, implicitly creating an additional anchor to be interpolated. This can be seen

in analogy to modern route planning applications whose interfaces offer similar grab-

and-drag tools to manipulate proposed routes.

When the user begins creating a new dual strip, the existence of already created

strips is taken into account. The best way for two strips to cross is orthogonally; at

least they should be crossing transversally, not touching tangentially, cf. Section 5.1.1.

The system only proposes strips which respect this, favoring orthogonality, and which

are furthermore not topologically equivalent to already existing ones, cf. Figure 7.1b.

7.2.2. Assessment & Feedback

The provided tools enable the flexible design of dual strip collections, which via du-

alization imply a primal quad layout structure (determination of its actual geometric

embedding in detail is considered in Section 8.3). Especially when designing rather

coarse layouts it can, however, be quite hard to visually judge the appropriateness and

quality of the dual strip collection during design, because large patches that wrap around

103

7. Metaphors and Guides

the underlying object are not visible in their entirety. We thus equip our system with

visual indicators guiding the user in this regard.

The dual strips are visualized by a pattern of quasi-parallel loops in order to indicate

their orientation (“edge flow”). Where two strips cross, these patterns overlap, forming

a grid. This indicates that the corresponding region is doubly-covered as desired.

The user does not need to doubly-cover every part of the surface – uncovered regions

only hint at sub-optimally shaped quads in the primal layout, but this can be a desired

trade-off for layout simplicity. However, every

region enclosed by loops at least needs to be

homeomorphic to a disc, otherwise no valid pri-

mal layout is implied. Regions with non-disc

topology are hence highlighted in red to indi-

cate that further strips need to be added.

When no region is red anymore, the set of

dual strips is topologically sufficient and implies

a valid primal quad layout. The addition of

further strips is, however, often desired in or-

der to refine the layout and achieve better ge-

ometric layout quality. Our system guides the

user to those regions where this is particularly

advisable. Regions which contain multiple pro-

nounced local extrema of Gaussian curva-

ture are highlighted in orange, indicating that

it would be beneficial (though not mandatory) to add further strips there. This is moti-

vated by the fact that such extrema are best represented by separate (irregular) nodes of

the quad layout (thus separate dual regions) – having (some of) them lie in the interior

of a quad patch would lead to low geometric patch quality.

In addition, we highlight in yellow those regions with a mismatch between cur-

vature and valence: Ideally, the valence v of a region should be related to its total

curvature K by K = (4 − v)π
2 for the sake of patch quality, cf. Chapter 4. If the actual

valence differs by more than 1, we indicate this for information. Note that this is mainly

relevant for highly edited strips – the automatically proposed strips rarely lead to such

situations due to the inherent favoring of orthogonality and alignment (cf. Section 8.1).

104

8. Elastica Strips

The practicality and efficiency of the described interactive workflow depends on the

geometric and structural quality of the automatically generated loops and strips. Given

a surface M, a dual loop on it should ideally (cf. Section 5.1.1)

1) be aligned with principal directions of M and

2) have low geodesic curvature to facilitate a good quad shape.

Furthermore, for the sake of layout coarseness, it should rather

3) be short than wind around the whole object several times.

It should further respect, i.e. interpolate, the specified anchors of positional and di-

rectional kind (cf. Section 7.2). We generate dual strips in two steps: a dual loop is

constructed to serve as spine (Section 8.1) and is then extended to an appropriate dual

strip (Section 8.2).

8.1. Elastica on Surfaces

8.1.1. Field-Guided Geodesic Loops

In stage 2 of our automatic pipeline, cf. Chapter 5, we modeled dual loops as anisotropic

geodesics with respect to a prescribed guiding cross field, which was computed in stage

1. This field is aligned to stable principal directions and smooth otherwise, and in this

way jointly promotes the alignment (1) and low geodesic curvature (2) of the constructed

loops.

105

8. Elastica Strips

Unfortunately, this approach is not amenable to interactive user-guided design. The

prescribed field already considerably restricts the space of representable layouts: dual

loops constructed by this approach are essentially “bound” to the field. Hence, the user

is not free to create loops as desired – geometrical as well as topological restrictions

apply. While there seems to be enough flexibility to automatically find a reasonable

result layout, chances are that the layout intended by the user is not representable.

In particular, the singularities of the field already completely define the number and

approximate position of the result layout’s nodes (up to local merging). But not only

the number and configuration of nodes is fixed, also the connectivity of these nodes,

i.e. the arcs of the layout, is subject to restrictions induced by the fixed underlying field.

In detail, only those loops along which the prescribed field has zero holonomy can be

created [LJX∗10].

For design purposes such broad restrictions are hardly communicable to the designer.

In the following we hence present a field-less approach that allows for arbitrary dual

loops. It is furthermore able to take multiple user design constraints (the specified

anchors) into account.

8.1.2. Elastica Loops

A suitable model for the (closed) curves ℓ : [0, L] → M in arc-length parameterization

we are looking for is the objective

c(ℓ) =

∫ L

0

1 + α qℓ(t)(ℓ
′(t)) + β κℓ(t)

2dt → min (8.1)

subject to (positional and directional) constraints. Here the term 1 penalizes length,

q : TM → R penalizes deviation from principal directions (cf. Section 8.1.5), and the

last term penalizes geodesic curvature κℓ(t). A curve minimizing the bending energy∫
κℓ(t)2dt subject to positional and directional constraints is called elastica (or, depend-

ing on the context, spline), going back to Leonhard Euler and Jacob Bernoulli. Our

functional in addition includes means to soft-constrain local direction via q, with the

parameters α and β expressing the relative weighting of these objectives.

On surfaces, embedded elastica can be found using various methods of variational

nature, like Active Contour and Snake models [LL02, BWK05] or the constrained spline

optimization of [HP04]. These methods, however, require an initialization and then

106

8.1. Elastica on Surfaces

Figure 8.1.: Our optimization algorithm for elastica on surfaces has free homotopy :

depending on the orientation of the directional constraint (red dot with arrow), loops

from differing homotopy classes are obtained because the optimum is searched over all

classes.

strive to find a local optimum in the same homotopy class as the initial curve or loop1.

To maximally support the user, we want to avoid the need for an initialization and would

in particular like to find the optimum over all homotopy classes.

Hence, we design an algorithm, based on combinatorial optimization, which is able

to find (approximations of) global optima of certain curve functionals, and this over all

curve homotopy classes, i.e. without prescribed homotopy (cf. Figure 8.1). It is based

on finding constrained minimum weight cycles in special graph structures.

To this end, all metric information must be modeled as graph edge weights. Unfortu-

nately, in the case of a surface graph (e.g. a triangulation of the surface) only first-order

differential quantities can be taken into account in such an approach: the weight of an

edge has to be computed in advance from local information only, i.e. we can at most

build the difference of its two end node positions and compute the weight from this

vector’s length and direction (and the node positions). Curvature, as in our objective

(8.1), obviously is not accessible per-edge in this way.

8.1.3. Elastica Graph

If, however, we take a graph whose nodes are not a sample of the surface M, but of the

tangent bundle TM of M, the nodes already contain first-order information, such that

1The spline method of [PBDSH13] does not require initialization, but is essentially based on (pseudo)
geodesics, leading to similar homotopy class restrictions. In particular, it cannot construct (non-
degenerate) loops from just one constraint point – the most relevant case here.

107

8. Elastica Strips

second-order properties, i.e. curvature, can be computed per edge: given two adjacent

nodes with position and tangential direction each, we are able to evaluate
∫
κ(t)2dt for

an imagined connecting curve interpolating this Hermite data.

We are free to choose any sampling of TM and a connectivity to construct a graph

approximation of the tangent bundle. A natural and intuitively accessible way is to

take some digraph g approximating M and then form its derivative g′ (also called line

graph or adjoint) [Bei68]. A node of this graph is a directed edge of g and can hence

readily be identified with a point p ∈ M (the edge’s midpoint) and a direction d ∈
TpM (the directed edge’s direction). Two g′-nodes are connected iff the corresponding

directed g-edges are adjacent, forming a directed path of length two. For the special

case of planar regular grid graphs such line graph or related product graph constructions

have successfully been applied for curvature-regularized image segmentation purposes

[SC07, SMC11].

As underlying graph g we choose an extended neighborhood graph built from a tri-

angulation T = (V, E, F) of M, where two nodes are connected (by two directed edges,

realized as geodesics) iff they have graph distance ≤ k in T . We found k = 4 to

sufficiently increase the angular resolution such that the resulting elastica are visually

smooth. In this case, the cardinality of the node sets is related as follows: |Vg| = |V |,
with an average valence of 60, and |Vg′| ≈ 60|V |, with an average valence of 60. Note that

g′-edges connecting g-edges which form a large geodesic angle can be omitted (e.g. the

red and purple ones in Figure 8.2) – the corresponding curves have large geodesic cur-

vature, thus are expendable in light of the bending energy minimization goal. We use a

generous limit of 30◦, reducing the average valence of g′-nodes to 10.

Curved Edges The question remains how a g′-edge e′ = (e0, e1) should be interpreted

geometrically, i.e. which curve’s geodesic curvature should be measured to obtain edge

weights for e′. Let’s first assume a planar configuration. One option is to compose a

circular arc of maximal radius and a straight line segment, connecting the midpoints of e0

and e1 (cf. Figure 8.2). For this unique curve we calculate
∫
κ2 = 2γ tan γ

2/ min(|e0|, |e1|),
where γ is the angle between g-edges e0 and e1 at their common node, | · | the length of

an edge. As for its approximation

γ2

min(|e0|, |e1|)
=: κ2(e′)

108

8.1. Elastica on Surfaces

Figure 8.2.: Illustration of one directed node’s (black) incoming and outgoing curved

edges in the elastica graph g′. The underlying surface graph g is shown dashed. The

g′-nodes lie at g-edge centers.

(using Taylor expansion tan(γ) = γ+O(γ3)) favorable convergence properties have been

proved (i.e. using graph refinement, continuous elastica can be approached) [BNR01], we

opt for this choice. To generalize to non-planar configurations we only need to measure

γ as geodesic angle on M, i.e. in a tangent plane at the common node of e0 and e1. This

effectively unrolls the configuration to the tangent plane, masking out normal curvature,

such that only the geodesic curvature is measured as intended.

The length of a g′-edge e′ realized as described above evaluates to

|e′| =
γmin(|e0|, |e1|)

2 tan γ
2

+
||e0|− |e1||

2
.

The function q from (8.1), promoting principal direction alignment, we evaluate for e′

using the trapezoid rule, sampling at the incident g′-nodes n0, n1 (midpoints of g-edges

e0 and e1), leading to

q(e′) :=
1

2
(qn0(e0) + qn1(e1)) |e′|.

Using these definitions we can build a discrete version of (8.1) for the closed curve formed

by a cyclic chain E of g′-edges:

c(E) =
∑

e′∈E

|e′| + α q(e′) + β κ2(e′) =:
∑

e′∈E

w(e′) (8.2)

109

8. Elastica Strips

8.1.4. Constructing Discrete Elastica

Minimizers of (8.2) are minimum weight cycles in the elastica graph g′. The global op-

timum can hence for instance be found using a variant of the Floyd-Warshall algorithm.

However, we are not interested in this unconstrained optimizer, but would like the loop

to interpolate the specified anchors to account for user influence. Therefore, we design

an algorithm based on nested minimum weight path problems which can very efficiently

be solved using Dijkstra’s algorithm.

In detail, we would like to take into account an arbitrary number of positional and

directional constraints to be fulfilled by a loop ℓ. Let Φ = (φ0, . . . ,φn−1) with φi =

(pi, di) ∈ TM be a list of n > 0 constraint points that shall be passed by ℓ in order,

with tangent parallel to di where di ̸= 0 (di = 0 signifies a purely positional constraint).

Let vi be the g-node closest to pi and ξi the set containing just the outgoing g-edge of vi

closest to parallel with di if di ̸= 0, and the set of all outgoing g-edges of vi otherwise.

For each two subsequent constraints φi, φi+1 (all indices taken mod n), we compute

intermediate elastica curves according to (8.2): for each pair (a, b) ∈ ξi×ξi+1 (remember:

a, b are edges in g and nodes in g′) we compute the shortest path (taking the g′-edge

weights w into account) from a to b in g′ and record its cost as w̄(a, b). Note that if

|ξi| = 1 or |ξi+1| = 1, the shortest paths for all pairs can be computed with just one run

of Dijkstra’s algorithm2 (being a single-source all-destinations type algorithm). Only if

both constraints have unspecified direction, min(|ξi|, |ξi+1|) runs are necessary. Being

independent, all runs can conveniently be performed in parallel.

Then we form a metagraph. Its set of nodes is ∪0≤i<nξi, and the set ∪0≤i<n(ξi × ξi+1)

specifies its edges (cf. Figure 8.3). These metaedges are weighted by w̄. In this metagraph

we find the minimum-weight cycle. Due to the special structure of the metagraph, we

can do this more efficiently than by using the Floyd-Warshall algorithm. If at least one

ξ is a singleton, the cycle is found using a run of Dijkstra’s algorithm on the metagraph

from this one element back to itself. Otherwise, this is done for each element of the

smallest ξ and the minimum taken. In any case, for fixed n and k, the complexity of the

complete elastica construction algorithm is O(|V | log |V |), V being the set of vertices of

M’s triangulation.

2A variant that does not return the empty path if a = b must be used.

110

8.1. Elastica on Surfaces

ξ0 ξ1

ξ2 ξ3

ξ4

∂

Figure 8.3.: Metagraph construction for multi-constraint elastica. Example with 2 po-

sitional (ξ2, ξ3) and 3 positional+directional (ξ0, ξ1, ξ4) constraints. The boundary node

∂ allows for the construction of dual curves in addition to dual loops.

Concatenation of the intermediate elastica which correspond to the metaedges of the

minimum-weight cycle yields the optimal loop interpolating Φ: in case that di ̸= 0 at each

constraint, the metagraph is a single cycle and the optimal loop trivially composed of all

the pairwise elastica curves; otherwise, if there are constraints with unspecified direction,

this algorithm finds the minimum over all (combinations of) possible directions. In the

case of one positional constraint only, the |ξ0| trivial runs of Dijkstra’s algorithm on the

metagraph yield |ξ0| loops (all crossing the anchor point in different directions), which

can be offered as alternatives to the user.

It is worth noting that there are quad layouts which contain dual loops crossing

themselves. Also such loops can readily be obtained using the described algorithm

without any additional measures.

8.1.5. Principal Direction Alignment

The functional q : TM → R is used to penalize deviation of loop directions from principal

directions. We compute (unit) principal direction vectors dmin, dmax and principal cur-

vatures κmin,κmax from the eigenvectors and eigenvalues of the shape operator [CSM03].

The alignment of a unit tangent vector t with a principal direction can naturally be

111

8. Elastica Strips

measured using the inner product |⟨t, d⟩| on M , the deviation using the reciprocal. We

measure deviation to either principal direction using

devp(t) := max (|⟨t, dmin⟩p|, |⟨t, dmax⟩p|)−1 − 1,

which is zero in case of perfect alignment.

We weight this deviation with the local shape anisotropy factor (|κmin| − |κmax|)2 as

in [KCPS13] and obtain

qp(t) := (|κmin|− |κmax|)2devp(t),

which suitably vanishes in umbilic regions with ill-defined principal directions.

8.1.6. Feature Curves

It is usually desirable to align patch boundaries of a quad layout to sharp feature

curves on the surface. To enable this, dual loops should not cross such features with

small crossing angles, but ideally orthogonally. We replace dev(p, t) defined above by

dev(p, t) := |⟨t, dmax⟩p|−1 − 1 on feature curves to achieve this. Now orthogonally cross-

ing loops are favored, and the penalty increases to infinity as the crossing angle goes to

zero.

8.1.7. Boundaries

So far we considered dual loops, i.e. closed curves. On surfaces with boundary ∂M,

we also need to deal with non-closed curves which end at ∂M. For this, we add one

additional node ∂ representing all boundaries to the above metagraph construction.

Edges (a, ∂) and (∂, b) are added for each a ∈ ξn−1 and each b ∈ ξ0, weighted by the

cost of the shortest path between a/b and any g′-node in E∂, where E∂ is the set of

all g-edges incident to a boundary vertex of M’s triangulation T . Where distinction is

necessary, we call the resulting elastica dual curves instead of dual loops.

The user can choose whether the final quad layout should be aligned to the boundary,

or whether non-aligned (trimmed) patches are acceptable. In the first case, dual curves

should meet the boundary orthogonally. This is achieved by treating the boundary as a

feature curve, using the weighting described in Section 8.1.6.

112

8.1. Elastica on Surfaces

8.1.8. Symmetries

In case M has a global (exact or approximate, extrinsic or intrinsic) symmetry, it is likely

that the user wishes to design an accordingly symmetric layout. Global symmetry can be

of reflectional or rotational kind. In the first case, M consists of two, in the latter of two

or more symmetric parts Mi. We provide the convenient option to perform the design

on only one part, M0, automatically transferring the layout to the other parts. We make

no assumptions about the symmetry transformations ψi mapping M0 onto Mi except

for continuity; they can be specified by the user or be determined using (semi-)automatic

methods [MPWC13]. Note that the dual curves on M0 must meet certain constraints

such that they merge into continuous smooth loops on M. We achieve this as follows,

see also Figure 8.4.

Rotational In case of rotational symmetry, the boundary ∂M0 has two symmetric

parts which are identified by the map ψ1. In g′ we realize this identification by means

of virtual edges, connecting respective g′-nodes adjacent to ∂M0. A loop found in g′

containing one or more of these virtual edges then represents one or more dual curves

on M0 whose ends lie on positions on ∂M0 which are identified by ψ1 in a pairwise

manner (cf. Figure 8.4d). Hence, mapped to all parts via ψ, these curves join seamlessly

(cf. Figure 8.4e).

a) b) c) d) e)

x ψ1(x)

y
ψ1(y)

Figure 8.4.: Symmetry: (a) shows one representative half of the reflectionally symmetric

object (c), dual curves end orthogonally on its boundary and thus form smooth loops

when mapped to both halves. In (b) one half for another reflectional symmetry is shown,

the blue curve is reflected on the boundary and thus forms two smooth crossing loops

on (c). (d) shows one of four parts of a rotational symmetry, left and right halves of its

boundary are identified, thus technically the two red curves are one loop, as is the blue

curve. Mapped to all four parts, continuous loops are formed (e).

113

8. Elastica Strips

Reflectional In case of reflectional symmetry we can make the following observation:

a symmetric loop on M must either cross ∂M0 orthogonally, or it must cross another

(not necessarily distinct) loop on ∂M0 – an analogous property was recently discussed

for symmetric cross fields [PLPZ12]. The orthogonal case can be handled just like

an aligned boundary as described above. For the other case we must ensure the ex-

istence of both crossing curves at once. Conceptually, instead of letting a curve end

∂M0M0 M1

e

d

ψ(e)

at ∂M0, we reflect it at this boundary and let it also form

the second curve. Technically, weights of g′-edges between

g-edges incident to ∂M0 are computed differently: the red

g′-edge (d, e) in the figure on the right is assigned the weight

computed for the blue curve (d,ψ(e)) formed with the re-

flection of the g-edge e. In this way, curves resulting from

the Dijkstra approach are either closed and contained in

M0, meet ∂M0 orthogonally and end there, or meet ∂M0

non-orthogonally and are reflected. Mapped to both halves

of M via ψ, these curves form symmetric loops (or curves),

smoothly crossing the symmetry’s stationary line.

8.2. From Loop to Strip

While (infinitesimal) dual loops are sufficient to define the layout’s topological structure,

the lack of a geometric dimension may overly stress the user’s imaginative powers. Hence,

we appropriately expand dual loops, constructed as described in the previous section, to

dual strips in order to better visualize the state and to guide the process of interactive

design as described in Section 7.2.

Formally, in analogy to a dual loop (cf. Section 8.1.2), a dual strip is a continuous

map s(u, v) : [-l, r] × [0, L] → M of a rectangle (or a subset thereof in case of surface

boundaries) onto the surface, with s(·, 0) = s(·, L) in case of a closed dual strip. Its

dual loop/curve (spine) is its zero-u-isocurve s(0, ·). An alternative intuitive view of a

dual strip is as a continuum of adjacent dual loops – which represent the one-parameter

family of u-isocurves of s. The stripe pattern used to illustrate the strips (cf. Figure 7.1)

simply represents a regular sampling of this continuum.

114

8.2. From Loop to Strip

Conceptually, we build a dual strip by taking a dual loop and broadening it by ex-

tending the map up to appropriate bounds l and r, i.e. up to the point where the shape

of M causes too large distortions in s. As the acceptable degree of distortion depends

on the user’s intent, the boundaries of the dual strips are to be seen as fuzzy indicators

rather than definite patch borders. Because, a priori, the bounds l and r are unknown

we compute an unbounded, global, distortion-minimizing map S :M→R2 (cf. Section

8.2.1) from which all individual strip maps s can be extracted. This common map S is

recomputed whenever the user inserts a new strip.

Note that one could follow the simpler strategy of expanding strips in a local, in-

cremental manner – until some stopping criterion is met – e.g. based on a geodesic

wavefront emanating from the loop [Sch13]. Besides the difficulty of defining a suitable

local stopping criterion, this would result in u-isocurves with a constant spacing, im-

plied by the constant gradient magnitude of a geodesic distance field. Depending on the

model’s shape this leads to isocurves with high geodesic curvature, thus to unnatural

stripe patterns and strip boundaries (e.g. on the arc of model Five or the arms of model

Fertility in Figure 8.5). The global map based approach, by contrast, yields stripes

which much better resemble the edge flow of a globally coherent quad mesh by its very

nature.

8.2.1. Global Parameterization

We require the global map S to be aligned with all dual loops, i.e. the loops should

be isocurves of S. This implies that, in general, S needs to have singularities. Such

parameterization with alignment and singularities can automatically be computed using

an instance of cross field based parameterization [KNP07].

For the generation of a suitable globally smooth cross field we make use of the represen-

tation vector concept [PZ07], which allows for smoothness optimization via simple sparse

linear system solves [KCPS13, DVPSH14] – in contrast

to the popular angle-based formulation [BZK09] with-

out any integer constraints. In each triangle of the

triangulation T of M which is crossed by a dual loop

we set a unit representation vector which represents a

cross aligned with the loop. These representation vec-

115

8. Elastica Strips

tors are then harmonically interpolated over T , a cross for each triangle recovered from

the result, and the field singularities extracted, analogous to the recent description as a

special case (4-RoSy) in [DVPSH14].

Then we compute a global, chart-based parameterization which is optimized for isome-

try and alignment of isocurves to the constructed cross field. This can be done efficiently,

again using a single sparse linear system solve, in a least-squares manner as described

in [KNP07, BZK09] (note that in contrast to these works we do not have to perform

any integer rounding). To achieve exact alignment to the dual loops we add (linear)

alignment constraints to the optimization problem, forcing all edge intersections of a

loop to lie on a common isocurve as described in Section 6.5.2.

By construction, each dual loop is an isocurve3 of S. To both sides of a loop ℓ

sS

ℓ

we then conquer the continuum of adja-

cent isocurves, effectively extracting the

strip map s as illustrated on the right. We

stop when a singularity in S is reached

(or, in the extreme case of a singularity-

free field, the entire surface is conquered).

The singularities quite naturally indicate

appropriate bounds for the strips because

they represent portions (±k π/2) of total

Gaussian curvature, in particular extrema

like corners – which should not come to

lie in the interior of quad patches for the

benefit of patch developability (e.g. en-

abling low-distortion patch parameteriza-

tion). Encountered degeneracies or fold-overs, which can sometimes appear in S, can

gracefully be dealt with by simply stopping there, too. As these appear adjacent to

singularities on principle, the impact is minuscule. Note that the field singularity con-

stellation can also be exploited to easily perform the region coloring related to Gaussian

curvature extrema (cf. Section 7.2.2).

3Formally, the chart-based parameterization S has transition functions across chart boundaries implied
by the cross field. The term “isocurve” is implicitly meant to take these transitions into account.

116

8.3. Primalization

Note that the cross field has no influence on the dual loop construction (in contrast

to the approach described in Chapter 5); it merely serves the strip map creation for

visualization purposes – and helps to ensure loop and strip transversality as described

next.

8.2.2. Strip Compatibility

Whenever a strip has been created by the user, it should constrain the design space

appropriately, as already mentioned in Section 7.2. Within the area covered by the strip

we thus remove (i.e. disable) all those nodes from the elastica graph whose associated

direction forms an angle ≤ 45◦ with the isocurves of the strip map s. Now, when the user

hovers over the area covered by the strip, 1) no strips which are topologically equivalent

are proposed, and 2) the underlying dual loops do only cross transversally, as required

for validity.

8.3. Primalization

The collection of dual strips defined by the user uniquely determines the structure of

the primal quad layout. For the determination of the layout’s detailed geometry, i.e. its

actual embedding in M, we then have multiple (automatic, manual, assisted) options.

The method described in Chapter 6 can of course directly be applied for this task. It,

however, assumes the layout is intended for principal direction alignment. If this is not

the case, a method which does not aim for alignment could be the solution of choice.

For instance, in the final stage of their method, [TPP∗11] apply a technique to optimize

the embedding of a quad layout in such a manner. Like our embedding optimization, it

is driven by a quality metric based on parameterization of the layout’s patches. These

approaches proceed in a fully automatic manner.

Alternatively, in order to give control to the user also in this stage, a manual strategy

can be followed: the user positions the layout’s nodes in the regions inbetween the

dual loops and draws layout arcs through the corridors formed by the loops in order to

connect them. Note that no hard topological decisions need to be made in this context,

the question is only where a node should be positioned within a region and where within

117

8. Elastica Strips

a dual loop corridor a patch boundary should lie. Nevertheless, this can be a tedious

task.

We provide assistance by automatically proposing good node positions and arc routes

– which may serve as starting point for adjustments through the user. Each region

(enclosed by dual loops) of valence ̸= 4 contains at least one cross field singularity.

We initially position a region’s primal node onto this singularity if there is just one,

otherwise into the geodesic center of the

region. We then compute elastica curves

within the corridors between the dual

loops and use them as routes for the

connecting arcs. This is illustrated here

schematically. The manipulation tools

from Section 7.2.1 can be applied for these

curves, too. The use of elastica is motivated by the fact that the objectives stated for

dual loops in Section 8.1 often hold for primal arcs, too. Note that in regions of valence

4 two curves cross, implying a natural position for the corresponding regular node. This

latter approach was used for the examples shown in the following.

8.4. Results

Figure 8.5 shows layouts designed by non-expert users with the described system. The

video accompanying the article [CK14a] gives further impressions of the design process.

Parameters We normalized all input models (to bounding box diagonal 1), such that

model-independent parameters can be used. We used α = 1 and β = 0.25 in (8.2) for

all examples.

Timings We run our design system on a commodity PC. To get an impression of the

system’s performance, let’s consider the practical scenario of an input mesh with 30,000

faces for example. The elastica loop construction is output sensitive: good dual loops

with low cost are found within a few milliseconds; when multiple anchors induce very high

cost, construction time can increase to around 1 or 2 seconds. The subsequent generation

of the cross field takes around 200 ms, the parameterization and strip extraction around

118

8.5. Discussion

400 ms. For optimal responsiveness, we display a loop immediately after its computation,

while the field and strip generation is performed asynchronously in a background thread.

In total, this allows to provide an interactive interface – only expensive loops restrain

fluency to some extent. The user interaction time per model of Figure 8.5 for the design

of all strips was between 10 seconds and 5 minutes.

8.5. Discussion

We proposed a novel, alternative concept for the design of quad layouts. In contrast

to established systems it builds upon global operators based on dual loops and strips.

The core technical component of our approach is a novel combinatorial algorithm for the

constrained optimization of elastica loops embedded in surfaces. We further described

how our system can support the designer in the presence of symmetries, boundaries, and

feature curves.

In our system, optimal dual loops are constructed and then extended to dual strips.

It could be of benefit if the strip geometry, in particular its width, could also already be

considered in the loop optimization: wide strips could be favored over very narrow ones

to the benefit of layout coarseness. However, it is unclear how this problem could be

tackled algorithmically, and currently it seems unlikely that such integrated optimization

could be performed at interactive rates, as desired in our system.

While we ensure that each loop crosses all other loops transversally, favoring orthogo-

nality, a loop can be brought to cross itself with arbitrary angles; there is no mechanism

in the loop optimization algorithm that could provide control over self-crossings and

prevent small angles there. This is not a noticeable hurdle in practice because the prin-

cipal direction alignment term in (8.1) favors orthogonality also in this situation, but

depending on the anchors set by the user, self-crossing with bad angles cannot be ruled

out. However, it is easy to automatically detect such a loop and highlight it accordingly,

asking for adjustment.

Our current implementation offers a fully interactive workflow on models with several

tens of thousands of triangles. In practice sometimes models with hundreds of thousands

or millions of triangles are to be dealt with. The geometric fidelity of these complex

models, however, is not relevant for the layout in many use cases – at least not for

119

8. Elastica Strips

its topological structure. This opens the door for an efficient employment of simplified

proxies. The layout design could be performed on a decimated model version and the

result mapped back to the detailed original. This could even be done in a transparent

manner, i.e. the elastica construction and strip expansion is performed on a coarse

model in the background but the (interpolated) result displayed to the user on the

original model. The final embedding optimization would be done on the detailed model

again. We leave in-depth investigation of suitable simplification and mapping strategies

(e.g. along the lines of [LSS∗98]) and the analysis of the resulting interaction quality

to future research. While, as a sideline, this proxy strategy offers a way to abstract

from small-scale geometric detail, it could also be valuable to investigate ways to offer

scale control for the layout design process independent of the model resolution. For this

the shape operator could be computed with a correspondingly large integration radius,

the curvature of elastica be measured based on analogously smoothed tangent planes,

and scale-aware methods for cross field and parameterization construction [RVAL09,

ECBK14] be employed for the strip expansion on the desired level of detail.

120

8.5. Discussion

Figure 8.5.: Quad layouts designed with our interactive method. Shown are intermedi-

ate design stages with dual strips and region coloring, followed by the final quad layout.

Next to each layout the number of dual strips and the (typically much larger) number

of primal layout arcs is specified.

121

8. Elastica Strips

122

Part III.

Geodesy

123

9. Anisotropic Geodesics

Note: This chapter is based on [CHK13].

A fundamental operation made use of in the presented quad layout construction

method is the computation of geodesic distances and geodesic paths. For instance,

it occurs in the computation of separation indicators (cf. Section 5.2.2) or Voronoi re-

gions (cf. Section 6.6.2), but most importantly and fundamentally in the computation

of dual loops (cf. Section 5.1.4). In the latter case, distances are to be measured, and

paths to be constructed, with respect to a non-Euclidean, anisotropic metric.

In the following we show how (and how well) known distance computation methods

proposed for the isotropic standard scenario can deal with such general metrics, analyze

the inherent issues, and discuss the results that can be achieved. For metrics with a

high degree of anisotropy (like the one used in the dual loops construction, cf. Section

5.1.4) it turns out: typically either the runtime gets impractically high or the accuracy

low. This is problematic for our use case because we rely on the anisotropic distance

computation as the most fundamental operation – and it is used a large number of times.

For improvement we propose Short-Term Vector Dijkstra: an algorithm that can in-

tuitively be understood as Dijkstra’s classical shortest path algorithm equipped with a

vector-valued short-term memory. It is fast and easy to implement while providing a

practical level of accuracy even for metrics with a high degree of anisotropy.

9.1. Basics

We consider a 2-manifold M (possibly with boundary) equipped with smoothly varying

norms ∥ · ∥gx on the tangent spaces TxM. As these norms allow us to infinitesimally

125

9. Anisotropic Geodesics

measure distances on M, for a continuously differentiable curve ζ : [0, 1] → M we can

define its total length through integration as ℓ(ζ) =
∫ 1

0 ∥ζ ′(t)∥gζ(t)
dt. With this we can

define the intrinsic metric g measuring geodesic distances between two points p, q ∈ M
as the infimum over the lengths of all curves ζ on M connecting p with q, i.e.

g(p, q) = inf
ζ
{ℓ(ζ) : ζ(0) = p, ζ(1) = q},

and in this way obtain a so-called length metric space (M, g).

Note that in the special but common case that ∥ ·∥gx is induced by some inner product

⟨· , ·⟩x on TxM for each x ∈ M, i.e. ∥v∥gx =
√
⟨v, v⟩x, g is a Riemannian metric. If M

is further embedded in Euclidean space – as is the case in most geometry processing

scenarios – the Euclidean dot product implies a natural inner product via its restriction

to TxM. We call the corresponding norm standard norm, denoted ∥ ·∥x, and the induced

Riemannian metric standard metric.

Relative to the standard metric and norm we characterize a metric g and its underlying

norm based on their quotient r(v, x) = ∥v∥gx/∥v∥x (for v ̸= 0) as follows:

• If r(v, x) ≡ r(x), i.e. it is independent of v, we call the metric g isotropic as there

is no directional dependency.

• If r(v, x) ≡ r(x) ̸≡ 1, we call the metric g weighted by the weight field r(x).

• If r(v, x) ̸≡ r(x), i.e. there is some directional dependency, we call the metric g

anisotropic.

The value γ(x) = maxv r(v, x)/ minv r(v, x) defines the local degree of anisotropy or

simply local anisotropy and γ = maxx γ(x) is the maximum anisotropy.

While the standard norm realizes the intuitive notion of geodesic distance and is

most common in applications, more general anisotropic norms that incorporate di-

rectional dependencies gained increasing interest in recent years. Applications range

from Meshing [BPC08, CBK12] and Segmentation [BPC08, SJC09], over Path Plan-

ning [RR90, LMS99] and Shape Matching [SJC09], to (mainly in 3D) Medical Imaging

[PWKB02, PWT05, BCLC09, BC11]. The anisotropy can be related to principal cur-

vature directions, terrain steepness, surface vector fields, or MRI diffusion tensors, to

name some examples (cf. Section 9.3).

126

9.1. Basics

R
ef

er
en

ce

D
ij
k
st

ra

F
as

t
M

ar
ch

in
g

H
ea

t
M

et
h
o
d

O
u
r

S
T

V
D

30%

20%

10%

0%

error

Figure 9.1.: Visualization of a geodesic distance field with respect to an anisotropic

metric (shown by tensor ellipses on the left; field source on top). Next to a reference

solution, we show the results and approximation errors of various adapted known algo-

rithms applied for the distance computation. Our novel Short-Term Vector Dijkstra on

the far right shows the best results.

Such applications typically operate in a discrete setting, e.g. on triangle meshes ap-

proximating manifolds. Numerous methods for approximate computation of (mainly

isotropic) distances in such settings have been proposed. Their accuracy and efficiency

typically depends on the quality of the triangulation: intuitively, the “rounder” the in-

dividual triangles, i.e. the closer to equilateral, the better. While working with rather

nice triangulations is quite common in the digital geometry processing field (leveraged

by powerful remeshing techniques), a problem emerges when anisotropic distances are

dealt with: the notion of “roundness” is metric dependent! This means a perfectly round

triangle which is equilateral in the standard metric can be a “cap” or “needle” far from

round when viewed under another, anisotropic metric.

Unfortunately, when näıvely adapting traditional methods to non-standard metrics,

they expect element roundness with respect to these metrics, while the meshes typically

used in applications are optimized with respect to the standard metric – as often favored

by the other processing steps. Hence, in practice anisotropic distance computations

quickly arrive at inacceptably low accuracy with increasing degree of anisotropy, as

illustrated in Figure 9.1 for γ = 20.

127

9. Anisotropic Geodesics

9.2. Related Work

Exact Distances Sophisticated methods using window propagation or sequence trees

[MMP87, CH90, SSK∗05, XW09] allow for the computation of exact geodesic distances

on triangulated surfaces. Note that this exactness is with respect to the piecewise-linear

surface specified by the mesh M. In geometry processing scenarios where M itself is an

approximation of a (piecewise) smooth manifold, the expense of employing such exact

algorithms can be futile depending on the application. This holds even more when we

turn our focus to non-standard metrics which are also specified only approximately,

e.g. discretely per mesh element.

Graph Approximation Dijkstra’s classical shortest path algorithm computes short-

est paths and distances in graphs. By choosing an appropriate graph and suitable

edge weights we can use the corresponding weighted graph distance to approximate dis-

tances on M. In the simplest case this graph is the 1-skeleton, i.e. the edge graph,

of the mesh M, where the edges are weighted by their length. Higher accuracy, and

actually an arbitrary balance between speed and accuracy, can be achieved by construct-

ing a graph with additional Steiner vertices on M’s edges and edges across M’s faces

[Lan99, LMS97, KS00]. The addition of edges between non-adjacent but nearby vertices

[CBK12] allows for faster computations and (at comparable graph size) higher accuracy,

but on the downside no arbitrary balancing is possible.

Consistent Approximation In contrast to these Dijkstra-based approaches, so-

called Fast Marching methods compute and propagate distances not only along edges of

a graph, but also “continuously” across the faces of a triangle mesh [KS98, SV00, Tsi95].

By appropriate choices of the per-face propagation rules the approximation can be made

consistent – in the sense that the results could be driven towards the exact solution by

refining the mesh. For this, M needs to be an acute triangulation, no obtuse inner

angles are allowed. As this is hardly ever the case for unstructured meshes in practice,

techniques that add additional virtual edges/triangles to be considered during the com-

putation have been presented as a remedy [KS98, SV04, YSS∗12]. Alternative non-linear

propagation rules have been proposed [NK02, TWZZ07], which can typically increase

accuracy in practice – although at the expense of losing consistency [WDB∗08].

128

9.3. Anisotropic Metrics

Non-Propagative A very different approach has been presented by Crane et al.

[CWW13]. An approximation to the intrinsic distance field of a source is computed by

means of solving two global linear systems instead of explicitly propagating distances

from the source over the surface. An interesting property is leveraged by the infor-

mation about sources appearing only on the right hand side of the system: after a

pre-factorization, distance fields for different sources can be computed very efficiently

(basically in linear time).

9.3. Anisotropic Metrics

We consider a discretized setting where, on a triangle mesh M, an (anisotropic) norm

∥ · ∥g is specified in a sampled manner. The samples can be given per vertex, edge, or

face of M, denoted as ∥ · ∥gv , ∥ · ∥ge , or ∥ · ∥gf
, respectively – where necessary, we can

approximate one form from another via averaging/interpolation.

Looking at the application scenarios of anisotropic metrics which appeared in the

literature so far, most often Riemannian metrics are dealt with. In such case, the

corresponding norms can conveniently be expressed through a tensor field G as ∥v∥gx =√
vT Gxv. Popular examples include:

• Vector field tensor: using the vectors of a tangent vector field as first eigenvector

and given two (global) coefficients to be used as eigenvalues, tensors “aligned” with

the field can be constructed. This is the scenario in the dual loops construction

process (cf. Section 5.1.4).

• Curvature tensor: using the shape operator, tensors whose eigenvectors are

aligned with directions of minimal and maximal curvature of M and whose eigen-

values are related to the magnitude of minimal and maximal curvature can be

constructed. Figure 9.1 exemplarily visualizes such curvature-related tensors us-

ing ellipses.

• Diffusion tensor: the characteristics of the water diffusion process in biological

tissue can be estimated from magnetic resonance imaging (MRI) acquisitions and

be expressed as a tensor field. Note that this is typically applied in 3D volumes.

129

9. Anisotropic Geodesics

While we focus on 2-manifolds here, we show in Section 9.6.2 that our novel method

is as well applicable to volumetric meshes or grids.

While such tensor based metrics are widely used, it bears noting that also more gen-

eral metrics, based on non-elliptic norms, are of interest. Examples are terrain steepness

profiles [LMS99], curvature (variation) minimizing metrics [YSS∗12], or high angular res-

olution diffusion imaging (HARDI) metrics [PWT05]. We will hence keep the exposition

general instead of restricting to Riemannian metrics.

9.4. Generic Adaptation

Before elaborating on the possibilities for individual adaptation of the available algo-

rithms to a non-standard norm ∥ · ∥g in Section 9.5, we discuss a generic way (with

certain limitations) in the following.

9.4.1. Discrete Metric

Typical implementations of the abovementioned distance computation algorithms use

the vertex coordinates to derive metric dependent properties like edge lengths, angles,

and areas. In this way computations implicitly rely on the standard metric induced by

M’s embedding in Euclidean space.

By not taking any extrinsic vertex coordinates into account, but instead relying on

intrinsic edge lengths, computed according to ∥ · ∥g as ℓg(e) = ∥e∥ge , most distance

computation algorithms can directly be adapted to non-standard norms. To that end

one, where required, computes angles and areas based on the intrinsic edge lengths. The

intrinsic area A of a triangle with edge lengths a, b, c can be computed using Heron’s

formula

A =
1

4

√
(a + b + c)(−a + b + c)(a − b + c)(a + b − c) (9.1)

and the inner angle α opposing the edge with length a using the half-angle theorem

tan
α

2
=

√
(a − b + c)(a + b − c)

(a + b + c)(−a + b + c)
. (9.2)

While being extremely simple, this generic strategy has a few disadvantages:

130

9.4. Generic Adaptation

Loss of fidelity The metric information is injected solely via the intrinsic edge

lengths, which specifiy the so-called discrete metric1 of the mesh. While such a discrete

metric captures all the information of a (sampled) Riemannian metric, we inevitably

lose fidelity when discretizing a more general (non-elliptic) norm in this way.

Violation of triangle inequality The computed intrinsic edge lengths might not

fulfill the triangle inequality everywhere (strictly speaking, they do not form a discrete

metric in this case). We found this to rather be the typical behavior than the exception,

especially for high degrees of anisotropy, as also described by Kovacs et al. [KMZ11].

For some algorithms this can be unproblematic, for others (which need to derive angles

or areas from these lengths) this is catastrophic. Edge lengths ℓ′(e) fulfilling all triangle

inequalities closest to the desired lengths could in such cases be found via a suitable

inequality-constrained least-squares system:

∑

e

(ℓ′(e) − ℓ(e))2→ min s.t. ℓ′(ei) ≤ ℓ′(ej) + ℓ′(ek) − ε (9.3)

for all edge triples ei, ej, ek incident to a common face, i.e. we have three inequality

constraints per face.

Low triangulation quality The intrinsic roundness of the triangles is typically very

bad, especially for higher degrees of anisotropy, i.e. there are angles close to 180◦ as well

as angles close to 0◦. For some algorithms this implies a low accuracy, for others a higher

runtime. A remedy can be to retriangulate the mesh by means of an intrinsic Delaunay

triangulation as detailed in the following.

9.4.2. Intrinsic Delaunay Triangulation

Using a Delaunay retriangulation algorithm which is based on an intrinsic discrete metric

[FSSB07] we can adjust the connectivity of the mesh so as to obtain a mesh whose

elements are nice with respect to this intrinsic metric (cf. Figure 9.2) – to the degree

permitted by the given vertex set. A complete intrinsic remeshing, which not only adjusts

1In literature not related to meshes the term discrete metric by contrast homonymously refers to a
metric which is 0 or 1 everywhere.

131

9. Anisotropic Geodesics

Figure 9.2.: Left: Anisotropic Riemannian metric, visualized through inverse tensor

ellipses (intuitively showing the “speed profile” of the metric). Middle: Isotropic input

mesh. Right: Corresponding intrinsic Delaunay retriangulation.

the connectivity but also redistributes vertices, is a theoretical option that could lead to

even better results but would be rather problematic depending on the application.

While this intrinsic Delaunay Triangulation (iDT) can significantly improve the dis-

tance computation results of several algorithms, there are some drawbacks, too:

• Numerical inaccuracies can hinder the iDT’s correct execution and termination,

thus demand epsilon tweaking,

• The application and underlying data structures must support non-regular meshes

[FSSB07] (or the algorithm must be relaxed to avoid such configurations),

• The input edge lengths must fulfill the triangle inequality everywhere,

• The worst case runtime complexity is quadratic in the mesh size.

9.5. Individual Adaptation

We now outline the algorithm specific effects when using the generic adaptation pos-

sibilities presented in the previous section and show options for improved, individual

adaptation where possible.

132

9.5. Individual Adaptation

Dijkstra

Clearly, the simplest solution to compute approximations to distances with respect to

non-standard metrics is to apply Dijkstra’s algorithm, taking the intrinsic edge lengths

of the discrete metric into account. Note that, due to the graph nature of the algorithm,

fulfillment of the triangle inequality is not required. Unfortunately, the (already in

the isotropic case relatively high) average approximation error increases with increasing

anisotropy, quickly leading to unacceptably low accuracy. Using the iDT, however,

accuracy can be brought closer to the level of the isotropic case. Figure 9.3 illustrates

this using the setup from Figure 9.2 with anisotropy γ = 20.

The Dijkstra-based method of Lanthier [Lan99] which considers additional vertices and

edges across faces can be adapted to the anisotropic case as follows: instead of deriving

the intrinsic lengths of the additional edges from the discrete metric, we calculate the

length of an edge across face f directly using ∥ · ∥gf
. This allows for higher fidelity in

the case of non-Riemannian metrics. Figure 9.4 illustrates the behavior for increasing

numbers of added vertices and edges.

Fast Marching

The Fast Marching approach [KS98] can be applied in the case of a non-standard metric

by relying on the corresponding discrete metric (which must fulfill the triangle inequality

everywhere as we need to derive, e.g., angles from it). The general problem is that in

this metric the number of obtuse triangles is often enormous, requiring the considera-

tion of a vast number of virtual edges. An iDT can be used to avoid this – but has its

own abovementioned shortcomings. Figure 9.5 illustrates the qualities of these options.

Another option is to deal with the inaccuracies due to obtuse angles using recursive im-

provement techniques [KSC∗07]; however, this means losing consistency and convergence

properties.

Sethian and Vladimirsky [SV04] proposed a more general Ordered Upwind method

(OUM) which is already specifically designed for non-standard metrics. It is able to

consistently deal with arbitrary anisotropy, i.e. one, in theory, has the possibility to

arbitrarily increase accuracy through mesh refinement. In comparison to the other dis-

cussed algorithms, the implementation is probably the most complex one and runtime

133

9. Anisotropic Geodesics

Reference Dijkstra Dijkstra iDT

Figure 9.3.: Anisotropic distance field (up to a fixed maximum distance, so as to en-

hance clarity). Left: Highly accurate reference solution. Middle: Dijkstra result on an

isotropic mesh. Right: Dijkstra result computed on the iDT.

5 Steiner 10 Steiner 20 Steiner

Figure 9.4.: Lanthier’s method’s distance field (on the iso-tropic mesh). Left: computed

with 5 Steiner vertices per edge. Middle: 10 Steiner vertices. Right: 20 Steiner vertices.

and memory consumption is relatively high (cf. Section 9.7). A main factor is that,

in addition to the actual anisotropic distance propagation, as an ingredient isotropic

distances from every single vertex of the mesh to all of its neighbors within a radius

of ∥emax∥γ need to be computed. Here emax is the longest edge of the mesh and γ the

anisotropy, i.e. the radius can become quite large for high anisotropies. While simple

extrinsic distances can be used for efficiency, higher accuracy on non-planar meshes is

achieved by computing intrinsic isotropic distances.

134

9.5. Individual Adaptation

FM w/o virt. edges FM FM iDT

Figure 9.5.: Fast Marching distance field based on the discrete metric. Left: without

virtual edges. Middle: with 13k virtual edges. Right: on the iDT, where only 6k virtual

edges are necessary.

OUMIt is worth noting that, while other methods typically

overestimate distances, OUM can also heavily underesti-

mate distances, as can be seen when comparing the inset

figure to the reference solution. This is due to the fact

that distances are propagated over virtual triangles that

span a long distance across the mesh. While the norm

potentially varies on the mesh under these virtual trian-

gles, the propagation across them is computed atomically

using only the norm at one end point, easily allowing for

too long as well as too short results.

Heat Method

Just like the other algorithms discussed so far, the heat method [CWW13] can be adapted

to non-standard metrics by formulating it in terms of the discrete metric, i.e. based on

the intrinsic edge lengths. This amounts to calculating the cotangent weights, element

areas, and divergence values involved in the Laplacian and the Poisson system accord-

ingly.

135

9. Anisotropic Geodesics

Heat Heat iDT tuned time step

Figure 9.6.: Heat Method distance field based on the discrete metric. Left: computed

on the isotropic mesh. Middle: computed on the iDT. Right: computed on the isotropic

mesh but with individually tuned heat integration time step.

Unless the anisotropy is very moderate, the low intrinsic element roundness, how-

ever, does negatively affect robustness. The resulting distance fields then often show

distortions and degeneracies like local minima. We observed that improved results can

be achieved by individually tuning the heat integration time step instead of using the

standard c = 5 proposed in the original publication, but found no general rule for a

good automatic choice. Again, an iDT can be an option to remedy these problems

(cf. Figure 9.6).

9.6. Short-Term Vector Dijkstra

We now present a novel method for the approximate computation of distances with

respect to arbitrary metrics. In order to develop an intuitive understanding of the

underlying principle, let us consider Dijkstra’s classical algorithm again. Due to its

graph nature, the distance approximations resulting from this algorithm are the lengths

of edge paths that meander over the surface (cf. Figure 9.7 left) – not the lengths of true

geodesic paths. They are thus rather inaccurate and also very triangulation dependent.

Instead of first measuring lengths of edges and then (scalarly) summing these, an

interesting alternative is to first (vectorially) sum edges and then measure the length

136

9.6. Short-Term Vector Dijkstra

of the sum. This vector-valued Dijkstra algorithm has been employed by Schmidt et

al. [SGW06] to obtain geodesic distances for the purpose of local surface parameteriza-

tion. Figure 9.7 illustrates the principle in the plane. In this planar case and with the

standard metric the resulting distances are actually exact – as, independent of the path,

the result is the Euclidean length of the vector pointing from source to target point.

The concept can be transferred to 2-manifold meshes by performing vector addition af-

ter transferring the vectors into a common 2D reference system, which can be done in

different ways [SGW06, Sch13]. In any case, a major problem is that this method is

basically oblivious to holes, obstacles, and, when applied in a non-planar setting, geo-

metric variations in the surface. Figure 9.7 right demonstrates this issue. Hence, while

being adequate and efficient for computations in a local neighborhood, it is unsuitable

for global distance computations on manifolds.

The idea underlying our Short-Term Vector Dijkstra (STVD) is to form a hybrid out

of the classical scalar-valued variant and the vector-valued variant so as to combine the

respective advantages. Conceptually, we equip the scalar-valued variant with a vector-

valued short-term memory. In this way the meanders of the edge paths through the

triangulation can locally be smoothed out without globally disregarding the surface

geometry. The following pseudo code clarifies the details.

Figure 9.7.: Left: distance computation using Dijkstra’s classical algorithm. Middle:

computation using a vector-valued Dijkstra variant. Right: shortcomings of the vector-

valued Dijkstra variant: it is oblivious to holes, obstacles, and geometric variations.

137

9. Anisotropic Geodesics

Algorithm: Short-Term Vector Dijkstra (STVD)

Input: polygon mesh, metric g, a vertex designated source

Output: vertex based field of geodesic distances to source

source.dist ← 0 all other distance values initially ∞
Q.insert(source) priority queue Q ordered by distance

while not Q.empty

v ← Q.extract minimum() get min. dist. vertex out of Q

v.final ← true

for all w adjacent to v where not w.final

if update dist(v,w) < w.dist

w.dist ← update dist(v,w)

w.pred ← v

if not w in Q

Q.insert(w)

This looks very much like the standard Dijkstra algorithm and indeed, if we use the

following version of the update dist function this is exactly what we get.

Function: update dist(v,w) original Dijkstra version

return v.dist + ℓg(v, w) add length of edge (v,w) w.r.t. g

By instead exploiting a vector-valued short-term memory (a window of k preceding

edge vectors), we obtain our STVD algorithm using the following variant of the distance

update function:

Function: update dist(v,w) our STVD version

tmp ← w.pred

w.pred ← v

dist← mink
i=1 w.predi.dist+ ℓg

(∑i
j=1(w.predj−1, w.predj)

)

w.pred ← tmp

return dist

138

9.6. Short-Term Vector Dijkstra

100◦

200◦

120◦

240◦

E

êj

ej

Figure 9.8.: Unfolding of edge chains to the plane. Edge lengths and relative 1-ring

angles are preserved. The sum vector E (red) is then subdivided according to the ortho-

projection of the individual edges. The resulting portions are measured by the respective

norms ∥ · ∥ge – here visualized as tensor ellipses (blue) – and their lengths summed to

get ℓg.

where the predecessor relation is recursively defined as w.predi+1 = w.predi.pred, with

w.pred0 = w. It remains to be clarified how the edges ej = (w.predj−1, w.predj) are

summed vectorially and how the length ℓg of the sum with respect to g is measured:

The norms ∥ · ∥ge live in tangent planes, i.e. they allow to measure vector lengths in

2D. We thus unfold the chain of (directed) edges ej into a common plane (R2) while

preserving edge lengths and relative 1-ring angles. Figure 9.8 illustrates this. Note that

no actual embedding of the mesh is required for this. The norms ∥ · ∥ge (represented

relative to their corresponding edges) now allow us to approximately measure the length

of the sum E =
∑

j êj of the unfolded edge vectors êj in 2D. As these norms can differ,

we decide how large portion of E is measured by which norm based on the edges’ (signed)

orthogonal projections onto E. Concretely, we use ℓg(
∑

j ej) =
∑

j ê⊤j Ē ∥Ē∥gêj
(clamped

to R≥0), where Ē = E/∥E∥, in the above distance update function.

It is worth noting that we can choose between two alternatives regarding the repre-

sentation of the conceptual memory. It can be represented either explicitly by storing

vectors of the last k − 1 edges (v.predj, v.predj+1) at each front vertex v (in its local 2D

coordinate system), or implicitly by gathering these vectors using a short back-trace via

the predecessor relation when we need them in the distance update function.

139

9. Anisotropic Geodesics

STVD
With an appropriate choice of the short-term mem-

ory’s depth k, the accuracy of the results is immensely

improved. The inset illustrates this for k = 10 (detailed

quantitative results are provided in Section 9.7). Despite

the lack of smoothness in some regions, the result is closer

to the reference than the alternatives from Section 9.5

(except Figure 9.4 middle, right).

Note that for k = 1 STVD is equivalent to Dijkstra’s

classical algorithm (generally overestimating distances),

while for k → ∞ it becomes an all vector-valued vari-

ant (which tends to underestimate unless the surface is

developable and free of holes). This can also be observed in the following histograms

which show the signed relative error distribution over all vertices of all examples from

Section 9.7 (for γ = 10):

80%

40%

0%

– 40%
k = 1 k = 2 k = 4 k = 6 k = 8 k = 10

9.6.1. Speed vs. Accuracy

Some of the discussed algorithms allow to trade speed for accuracy at the user’s dis-

cretion. By using a higher number of Steiner vertices in the edge-subdivision approach

[Lan99], or by refining the input triangle mesh using some steps of 1-to-4 splits prior to

the application of the Ordered Upwind method [SV04] (or, in the case of a Riemannian

metric, also the Fast Marching adaptation) higher accuracy can be achieved – at the cost

of quickly increasing runtime. Note that such property is not to be taken for granted:

for instance the accuracy of distance computations using Dijkstra’s algorithm does not

generally increase under mesh refinement.

140

9.6. Short-Term Vector Dijkstra

We empirically observed that such property can also be established for our STVD. To

this end we need to achieve two seemingly contradicting goals: k needs to be increased

so as to increase the angular resolution of the distance propagation, while the lengths

of the used vector sums need to be decreased so as to reduce the approximation errors

of the unfolding-based measurement. We can achieve both by refining the mesh using

1-to-4 splits (reducing edge lengths by a factor of 2) while increasing k by a factor < 2.

The following table shows the decreasing mean error for increasing levels of refinement

on three exemplary models (γ = 20):

Level k Elk Gargoyle RockerArm

0 7 9.8% 25.7% 15.3%

1 10 5.1% 13.4% 11.6%

2 14 2.5% 8.2% 6.5%

3 20 1.5% 4.3% 3.9%

More interesting than this possibility, however, we deem that, even in the case of

strong anisotropy, STVD achieves reasonable, relatively good results already on unre-

fined meshes of resolutions typically encountered in the Computer Graphics and Geom-

etry Processing field (cf. Section 9.7).

9.6.2. Genericity

Polygonal Meshes It is worth noting that STVD does not rely on the property that

M is a triangle mesh, i.e. it can also be applied to general polygonal meshes. Many other

methods are designed specifically for triangle meshes and would need to be adapted –

or the polygon mesh be triangulated.

3D Meshes While our focus here is on 2-manifold surface meshes, an interesting

fact about STVD is that it can directly be applied also to volumetric meshes in R3 –

whether they consist of tetrahedral, hexahedral, or general polyhedral cells. We simply

skip the edge vector unfolding to the plane and sum the 3D edge vectors directly (cf.

Figure 9.9). While also other methods can potentially be generalized to this setting,

this is less trivial. Challenges lie in the correct determination of virtual simplices for the

141

9. Anisotropic Geodesics

Dijkstra STVD Dijkstra STVD

Figure 9.9.: Volumetric distance fields computed in a hexahedra and a tetrahedra mesh

(sliced open to expose the interior). The constant Riemannian metrics used (depicted

by ellipsoids next to the models) have an anisotropy of 12. Just like in the surface mesh

case, Dijkstra’s algorithm heavily overestimates distances, especially in vertical direction

where true distances are shorter due to the anisotropy.

OUM or FMM, establishing an intrinsic Delaunay tetrahedralization or fixing violated

tetrahedra inequalities, or in handling the large number of additional edges, which in

the case of straightforward generalization of Lanthier’s concept to 3D grows quartically

with the number of Steiner vertices per edge.

9.7. Results

In the previous sections we have discussed the qualitative differences of the approaches

that are available for the computation of anisotropic distances. In order to get a quan-

titative understanding for the accuracy and runtime performance of all these options,

we implemented all variants and performed extensive experiments using various kinds of

input meshes (cf. Figure 9.10, 9K-183K triangles), metrics (vector field based as well as

curvature tensor based), anisotropies (uniform as well as varying γ(x)), and algorithm

parameters.

142

9.7. Results

The reference solutions we compare against have been computed using the edge-

subdivision method of Lanthier [Lan99] with 200 Steiner vertices per edge (and runtimes

of up to several hours for a single distance field). In this setting for every single triangle

there are more than 120,000 virtual edges crossing it, resulting in a highly accurate ap-

proximation of the true distances. We show the results using error-over-runtime plots in

Figure 9.11 (and using error histograms in the supplemental material). Intuitively, the

closer a method lies to the bottom left, the better – as this means that a low error (high

accuracy) is achieved in a short time. These plots further allow to quickly see what

other options apart from the “best one” are available, e.g. how much more accuracy can

be achieved by spending how much more time.

Regarding our STVD algorithm, we see that it lies in the bottom left region across the

different levels of anisotropy, i.e. it achieves good results in short time when compared

to the other options – especially for higher anisotropies. Good standard values for k

can also be read from these plots: from around 5 for low anisotropy to around 10 for

anisotropy 50. Note that such high anisotropy is not only of theoretical interest. In

fact, an anisotropy of 30 is the standard we made use of in the dual loops construction

process.

For lower anisotropies, the Fast Marching method applied to the intrinsic Delaunay

triangulation of a subdivided version of the input mesh is very competitive. Note that

this strategy requires several steps of preprocessing: 1) mesh subdivision, 2) discrete

metric computation, 3) reestablishing triangle inequality fulfillment, and 4) iDT con-

struction. This also implies the drawbacks discussed in Sections 9.4.1 and 9.4.2 and can

take a considerable amount of (possibly amortizable) time. By contrast, STVD operates

Figure 9.10.: Models used for the evaluation, depicted with example fields.

143

9. Anisotropic Geodesics

directly on the input mesh without the need for any preprocessing and without implying

additional complexity.

When a higher level of accuracy is required and more time is available, the edge

subdivision method of Lanthier [Lan99] proves to consistently provide a good option.

In isotropic scenarios the advantage of STVD over, e.g., Fast Marching or the Heat

Method diminishes. However, we observed that it is typically still very significant when

dealing with meshes with badly shaped elements. This is illustrated here on an example

mesh (γ = 1), where the error (w.r.t. exact geodesic distances [SSK∗05]) is visualized:

Dijkstra FM Heat
(tuned time step)

STVD
(k=5)

12%

9%

6%

3%

0%

9.8. Discussion

We have explored and discussed numerous options for the computation of distance fields

with respect to general anisotropic metrics, based on generic as well as specific adap-

tations of known algorithms. We compared all these in terms of their accuracy and

runtime performance and enriched this zoo of methods with our Short-Term Vector Di-

jkstra. Despite its simplicity, this method proved to provide a very interesting novel

option, allowing to quickly compute results with practical accuracy without the need for

complex optimization or costly preprocessing.

In the future ways to enhance the smoothness of the results could be explored. Pos-

sibilities could be the use of averaging schemes during propagation [Sch13] or of a kind

of “gradually fading memory” instead of a hard limit k. The use of a locally varying k

(based on local feature size, anisotropy, mesh density) is another interesting direction.

144

9.8. Discussion

γ = 5 γ = 10

γ = 20 γ = 50

Figure 9.11.: Error-over-runtime plots of the results for various degrees of anisotropy

(γ). Shown is the mean rel. abs. error (computed over all vertices) on the vertical axis,

and the summed runtime (sec.) for the computation of a complete distance field per

input test case (14 mesh/metric combinations). Mesh subdivision (1-to-4 split) levels

are indicated by I and II ; numbers indicate the STVD parameter k or the number of

edge Steiner vertices, respectively. Preprocessing time (shown by dashed bars) includes

triangle inequality fixing and (where applicable) subdivision and iDT. For the Heat

method the first segment of the bar additionally indicates the time for setup and pre-

factorization of the employed linear systems. Violated triangle inequalities have been

fixed 1) for the heat method as described in Section 9.4.1 using Ipopt [WB06]; 2) for

the FMM using a simpler (not least-squares optimal) strategy of iteratively adjusting

individual triangles, as on the subdivided meshes the solver takes unacceptably long.

145

9. Anisotropic Geodesics

146

10. Meshless Geodesics

Note: This chapter is based on [CK11].

A basic assumption we made in all the presented algorithmic parts is that the input

surface is given in form of a triangle mesh. When the ultimate goal is to generate a

structured representation for digitized (e.g. scanned) surfaces, for instance in form of a

quad mesh, multiblock grid, or spline network (cf. Chapter 1), one might ask whether

it is reasonable or necessary to first construct a triangle mesh out of a point cloud or

a set of range images. This question has already been asked for the case of quad mesh

generation and solutions been presented [LLZ∗11, PTSZ11] that circumvent the triangle

mesh construction by directly operating on a point cloud or range images, i.e. geometry

without complete mesh connectivity information.

While the generalization of the entire ensemble of our pipelines’ algorithmic parts to

such inputs is beyond the scope of this thesis, in the remainder of this chapter we show

how geodesic distances and paths can be computed on point clouds or incomplete meshes

as this is the next most important step towards the goal of being able to perform layout

construction directly on such data: the most common building blocks in our algorithms

are cross field generation, global parametrization, and geodesic computations – where

adaptations of the former two have already been described [LLZ∗11, PTSZ11].

Note that this generalization does not only leverage the use of scanned point cloud

data: “real-world” triangle meshes, i.e. meshes that user’s encounter in practice, do

not always fulfill the basic assumptions we made about our methods’ input meshes,

namely that they are well-structured and manifold with complete connectivity informa-

tion. Depending on their origin they may exhibit several kinds of defects – holes, gaps,

(near-)degenerate polygons; or they might even be just a soup of polygons, completely

lacking connectivity information. While a considerable number of methods that aim at

repairing mesh defects have been presented, unfortunately there is no general solution.

147

10. Meshless Geodesics

As detailed in our recent survey [ACK13] the automatic repair problem is hard, am-

biguous, and naturally ill-posed in most cases. Hence all repair approaches have certain

advantages and disadvantages and often user interaction and tedious manual effort is

required to obtain a clean mesh in the end. The fact that our adaptation does not

rely on explicit connectivity information enables its application to the general class of

“imperfect meshes” – of which point clouds and range image sets are basically special

cases.

In detail, we present a computational framework that allows for the computation

of meaningful approximate intrinsic distances and geodesic paths on meshes with all

kinds of defects in a way tolerant to these defects (cf. Figure 10.1). We do this without

explicitly repairing the mesh, circumventing the abovementioned problems. In the case

of severe mesh defects, e.g. large missing parts, the computed distance fields might of

course be inconsistent with those of the object that is actually meant to be represented

by the partial data – in particular we do not propose new disambiguation or “defect

hole” – “feature hole” distinction strategies.

Figure 10.1.: An intrinsic distance field and a geodesic path computed on an imperfect

mesh in a defect-tolerant way.

148

a) b) c) d) e)

Figure 10.2.: Overview of our approach: a) Input mesh with defect (large artificial

hole for demonstration), rendered with backface culling. b) Initial cubical complex con-

structed for this mesh (at a low resolution of 163 for illustration). c) Complex after

applying topology-sensitive morphological operators; the hole is now bridged. d) Vi-

sualization of a geodesic distance field (with isolines) emanating from a point source,

computed on the complex (at a resolution of 643), and mapped to the input mesh by

interpolation. e) Application example: defect-tolerant decal textured onto the surface

using a local geodesic parameterization.

The basic idea is to abstract from the mesh structure (and all its potential defects)

and to perform all computations discretely in a crust volume tightly restricted to the

spatial regions occupied by elements of the input. It has been proven that the extrinsic

distance field in such crust volumes converges uniformly to the intrinsic distance field of

the surface they bound with increasing tightness [MS01]. We show ways to perform the

necessary computations in a memory-efficient manner such that tightness can be achieved

by using high resolutions. The discrete structure readily allows for the application of

topology-sensitive morphological operations [BK05] to make computations tolerant to

gaps and holes. The 3D variant of the STVD algorithm described in Section 9.6.2 or

the Fast Marching method [Set95] can then be applied to efficiently generate distance

fields. The examples shown in the following have been generated using the Fast Marching

method. Due to the abstraction from the input, applicability is not limited to polygon

meshes; other representations like point sets, implicit functions, or NURBS patches can

be handled as well.

149

10. Meshless Geodesics

10.1. Overview

The framework we present takes inconsistent raw polygon meshes (cf. Figure 10.2 a)

as input and allows for the computation of (1) intrinsic distance fields with point or

polygonal sources, (2) geodesic paths between surface points, and (3) various types of

local surface parameterizations. Independent of which computations are to be performed

for a specific application, the first step is to abstract from the mesh representation to a

cubical complex, i.e. a Cartesian grid tightly restricted to the spatial regions occupied

by the mesh elements (cf. Figure 10.2 b). To make further computations tolerant to

gaps and holes we next apply topology-sensitive morphological operations [BK05] to

this complex. This closes all gaps and holes of sizes up to a user-specified tolerance

threshold and yields the final complex (cf. Figure 10.2 c). Details on this construction

are presented in Section 10.2.

Source points or curves for the computation of distance fields and geodesic curves are

mapped into the complex (cf. Section 10.3) to obtain initial conditions for the subsequent

Fast Marching (cf. Section 10.3.1). Finally the mapping of the results back onto the

input mesh is detailed in Section 10.3.3 (cf. Figure 10.2 d). In Section 10.4 we present

several ways to construct local surface parameterizations in defect-tolerant ways using

the introduced framework and show application to texturing of arbitrary meshes (cf.

Figure 10.2 e). Further results and analyses are provided in Section 10.6.

10.2. Mesh Abstraction

Given an input mesh M = (F, E, V) consisting of sets F , E, V of faces, edges, and

vertices respectively. We do not want to make any assumptions about the integrity of

M, i.e. it may contain holes, gaps, singularities, degeneracies, or missing connectivity

information. Hence, we first abstract from this mesh to a cubical complex representa-

tion. The idea of using some kind of discrete abstraction of polygonal geometry has

been applied for the same reason in various fields, from simplification [ABA02] over

vectorization [MZL∗09] to model repair [BPK05], to name only a few.

150

10.2. Mesh Abstraction

10.2.1. Initial Complex Construction

The cubical complex we use is essentially a cut-out of a three-dimensional Cartesian grid

such that all elements of F , E, and V are contained in the union of its cells. It should

be minimal, i.e. restricted to the regions occupied by the mesh elements as tightly as

possible. Hence, the construction of this initial minimal complex CI basically corresponds

to the three-dimensional rasterization (or “voxelization”) of the mesh elements, since the

obtained voxels directly correspond to the 3-cells of the desired complex CI . Details on

efficient implementation are postponed to Section 10.5. We base the further description

on the cubical complex notation since also the 0-cells and 1-cells of the complex are

involved in the computations. In the following we will refer to the 0-cells of the complex

as nodes, to the 1-cells as arcs, to the 2-cells as walls, and to the 3-cells simply as cells.

Further, by N(c), c being a cell of C, we denote the set of nodes incident to c, and

N(C) =
⋃

c∈C N(c) for a set C of cells.

Some computations can benefit from normal information at the nodes. For each node

we average the normal vectors of the faces (or vertices) intersecting the eight incident

cells to obtain an estimated normal vector. Since this is only meaningful if the set of

normal vectors is coherent at least to some extent, we do only store such an estimated

normal vector at nodes where the cone spanned by the set of normal vectors has a non-

reflex opening angle – which can conservatively be estimated by all pairs of these vectors

spanning angles smaller than 2/3π for simplicity. For the estimation process the normal

vectors of the input have to be oriented consistently. If this is not the case it can for

instance be enforced by the method of Borodin et al. [BZK04].

10.2.2. Morphological Operations

Bischoff et al. [BK05, BPK05] successfully applied morphological operations to voxel

representations in the context of 3D model repair. By applying the discrete morphologi-

cal dilation operation to our initial complex CI we can easily close holes and bridge gaps

up to a user-specified width. In principle holes of any size can be bridged in this way,

however, note that intentional feature holes, constrictions, or tunnels up to the chosen

size are also closed. If these can safely be distinguished from defect holes in a specific

151

10. Meshless Geodesics

scenario, dilation can of course be restricted to defect hole boundaries, e.g. as done in

[BPK05], to alleviate this behavior.

Performing distance computations on the resulting dilated complex CD would, how-

ever, result in significantly lowered accuracy [MS01, MS05]. Hence we apply a morpho-

logical erosion operation on CD to obtain the final complex C. To prevent this operation

from tearing closed holes and gaps open again, a topology-preserving variant [BK05] is

employed. This operation removes cubes only if this does not change the digital topol-

ogy (defined via wall-adjacency, or 6-neighborhood) of the complex thereby leaving a

minimal sheet of cubes in holes and gaps. The entire process is illustrated in Figure

10.3, implementation details are given in Section 10.5.

Figure 10.3.: 2D schematic example of the employed morphological operators dilation

(middle) and topology-preserving erosion (right), filling holes up to a specified size.

10.3. Geodesic Computations

Having obtained the computational domain in form of a cubical complex C as described

in the last section, we can now perform approximate geodesic distance computations by

Fast Marching (FM) [Set95, DC00]. This method, applied to the complex, will compute

a distance field d : N(C) → R+.

A distance field d usually emanates from (a set of) source points or curves on the

input surface, i.e. on M (but sources in free space can be handled as well). To set

initial values for the front propagation of the FM method this information needs to be

transferred into C.

152

10.3. Geodesic Computations

For the set S of all specified point and curve sources of d we determine the set CS of

cells of C they intersect and initialize the distance values d(n) for all n ∈ N(CS). We

set d(n) = mins∈S dist(n, s). If an averaged normal vector is not available we choose

dist(·, ·) to be the Euclidean distance. Otherwise we can enhance accuracy by calculating

dist(n, s) as the Euclidean distance between n and the orthogonal projection of s onto

the tangent plane Tn at n. This suppresses the surface-orthogonal distance component

merely introduced by the nodes not lying directly on the surface. The distance value of

all other nodes is yet undefined, i.e. we initially set d(n) = ∞ for all n /∈ N(CS).

10.3.1. Fast Marching

Starting from the initialized nodes N(CS) the FM method [Set95, DC00] can now be

applied to perform a front propagation over all other nodes of C in order to determine dis-

tance values d(n) for all nodes n that closely approximate their defect-tolerant geodesic

distance to the set S of sources. The FM method keeps the nodes that are part of the

current front in a priority queue, sorted by d(·), and always removes the node with low-

est distance while updating the distance values of its adjacent nodes and adding them

(back) to the queue. Since this propagation is done in upwind direction, distance values

of cells removed from the queue can justly be considered final.

In the FM front propagation process a distance value update for a node is computed

from the distance values at up to three adjacent nodes by a form of extrapolation.

Originally, a gradient-based first-order update rule was proposed. Higher-order [Set99,

HF07] rules can be employed to increase accuracy. Especially for the case of circular

distance fields of point sources the first-order rules overestimate distances as pointed out

by Novotni and Klein [NK02]. They show that higher accuracy is achieved by rules that

take the particular circular nature of the front into account. We next extend these rules

to our three-dimensional setting.

On a triangle mesh, given two vertices of a triangle with known intrinsic distances

to the source, [NK02] determine a virtual point source in the plane of the triangle that

maintains these distances. The distance value of the third vertex can then be updated

to its Euclidean distance to this virtual source. In our three-dimensional domain, to

update the distance value d(n) of a node n from three adjacent nodes n0, n1, n2 with

already computed distance values, we determine a virtual point source s in space by

153

10. Meshless Geodesics

trilateration: the points s1 and s2 are found as the two points satisfying the three

sphere equations d(ni)2 = ||x − ni||2, 0 ≤ i ≤ 2. Since propagation proceeds in upwind

direction, the one with larger distance has to be chosen, i.e. we apply the update d(n) =

max(||n− s1||, ||n− s2||). When less than three adjacent nodes have distances available

we fall back to lower dimensional lateration.

10.3.2. Polar Angle Propagation

Additionally to computing a distance field d of a point source an angular coordinate field

θ can be constructed to obtain a (local) polar surface parameterization (d, θ). Schmidt

et al. [SGW06] construct both fields on meshes approximately by a modified version of

Dijkstra’s shortest path algorithm, essentially unwrapping the surface into the tangent

plane at the source. The accuracy of the radial coordinate computed in this way, how-

ever, usually cannot compete with that of the FM method. We incorporate the general

idea into the FM method to simultaneously construct angular coordinates θ. For this

construction normal vector information must be available (cf. Section 10.2.1). Nodes

that lack normal information simply inherit the normals from their predecessors in the

front propagation process. This proved to be sufficient in our experiments and com-

pared to more sophisticated global normal diffusion methods does not hinder a sweeping

implementation (cf. Section 10.5.2).

Let Ts be the tangent plane of the surface at the source point s and a the polar axis in

that plane, defining the orientation of angle 0. Furthermore let uv(d, θ) = (d cos θ, d sin θ)

denote the 2D Cartesian vector defined by d and θ in Ts and angle((u, v)) = arctan(v/u)

the angular coordinate of the vector (u, v) in the polar system defined by Ts and a.

During an update step of the FM method, updating node n based on the distance

values of one, two, or three adjacent nodes n0, . . . , nm as described in the last section,

θ(n) is set as follows: we first choose one of the updating nodes ni and take its so-

called inverse exponential map vector exp−1
s (ni) = uv(d(ni), θ(ni)). The ideal choice

is nmin = argmini∈{0,...,m}d(ni) since this can be expected to have lowest accumulated

error in its d and θ values. Then we “unwrap” the vector n − nmin into the tangent

plane Ts by first projecting it orthogonally onto Tnmin (to get rid of the orthogonal

component merely introduced by n not lying directly on the surface), then rotating it

into Ts around the axis orthogonal to the normals at s and nmin (hinge map), and finally

154

10.3. Geodesic Computations

transforming it into a 2D vector in the coordinate sys-

tem of Ts. By adding these two vectors we obtain an

approximation for the angular component of exp−1
s (n),

i.e. we set θ(n) = angle(exp−1
s (nmin)+TRP (n − nmin)),

where T , R, and P are the transformation, rotation,

and projection operations. d(n) is computed by the

FM update rules as before for accuracy. The adjacent

figure shows a visualization of such an angular field on

a curved surface, including isolines in radial and axial

directions.

10.3.3. Interpolation

After distance values and possibly angular values have been computed at the nodes of

C we want to transfer this information back onto the input mesh M. Let P be the set

of points on M at which these values shall be made available (in most applications this

is simply the set V of vertices). While it can be expected that most accurate results are

achieved by integrating the points of P into C as virtual nodes to compute the values

by the described FM update rules, this proved to result in slight discontinuities between

points that are nearby but fall into different cells. By contrast, the application of trilinear

interpolation leads to smooth results due to its very nature. Hence, we interpolate the

values at a point p of P from the eight nodes incident to the cell of C that includes p.

In case a Cartesian (u, v) parameterization is to be constructed from a computed

polar parameterization, it is beneficial to perform the transformation already at the

nodes and then interpolate the (u, v) coordinates. This avoids special case handling

near the singularity at the field’s pole where trilinear interpolation is unsuited for angles

and distances.

10.3.4. Geodesic Paths

Shortest geodesic paths between two points p and q on the surface can be constructed

using a gradient descent procedure. First the distance field for source p is computed.

Then, starting from q, a piecewise linear path through C can be constructed by pro-

155

10. Meshless Geodesics

ceeding stepwise in direction of the negative gradient of this field. The constructed path

lies in C, i.e. in the surrounding space of M; if a path on M is desired, we perform a

projection where possible – in hole regions the path simply remains in the cell sheet that

survived erosion.

10.4. Parameterization

Geodesic computations have proven to be a valuable tool to constructively generate

local surface parameterizations [ZG04, GGGZ05, SGW06, BMBZ02]. We now present

various methods to construct such parameterizations as they allow us to comprehensibly

visualize the strengths of our method in Section 10.6. Figure 10.4 shows examples for

comparison.

Center Point Parameterization A parameterization around a point can be con-

structed by computing a radial and angular coordinate field for this source. The resulting

polar parameterization can be transformed into a Cartesian (u, v) parameterization with

a user-specified orientation and scale, e.g. for applying decals onto curved surfaces in

an intuitive way [SGW06]. Due to the defect-tolerance of our approach such decal ap-

plication can be performed across non-connected mesh components, bridging gaps and

holes, thus on a much broader range of meshes. The distortion – necessarily introduced

on surfaces with non-zero Gaussian curvature – is minimal in the center and typically

grows with increasing distance depending on the curvature distribution.

Boundary Curve Parameterization More flexibility and a less center-biased dis-

tortion distribution is achieved by specifying four curves u0, v0, u1, v1 forming a quadri-

lateral on the surface and for each computing the distance field emanating from it. The

distance fields du0 and du1 of opposite curves u0, u1 can then be blended into du by

du = du0/(du0 + du1), analogously for dv, and these two resulting fields du and dv be

taken as u and v coordinates of a parameterization that is aligned with the surface

quadrilateral, mapping this region to the domain [0, 1]2 ⊂ R2.

Corner Point Parameterization Specifying desired parameterization boundary

curves on a surface can be tedious. Furthermore, in order to reduce distortions in

the parameterization generated as described in the last section these curves should be

geodesic paths between their endpoints. We can simplify the specification task to choos-

156

10.5. Implementation Details

ing the four corner points of the desired quadrilateral and then automatically determine

geodesic paths between the points (cf. Section 10.3.4) to construct a geodesic quadrilat-

eral as basis for the boundary curve parameterization.

Figure 10.4.: Parameterization examples: center point parameterization (left), bound-

ary curve parameterization from user-specified quadrilateral (middle), and corner point

parameterization from automatically determined geodesics (right).

10.5. Implementation Details

We now provide some details on the efficient implementation of the computations de-

scribed in the last sections. In order to enable broad applicability an implementation

variant optimized for performance as well as one optimized for memory efficiency is

presented.

10.5.1. Cubical Complex Construction

To allow for high resolutions without excessive memory requirements we employ an oc-

tree O that is adaptive in multiple ways. This further allows for the efficient establish-

ment of correspondences between elements of M and C, required to transfer information

between the two representations.

We start by defining the cubical root cell of O to include the bounding box of M.

The elements of M are then “inserted” into O, intersected cells are refined up to a

user-specified maximum level l and marked as solid. The set of these solid cells then

forms the voxel representation of M. The vertices of V (or the set P of points for which

157

10. Meshless Geodesics

distance field values shall be computed, cf. Section 10.3.3) can optionally be recorded

in the containing leaf cells, allowing for direct access during interpolation. Methods for

the efficient traversal of octrees have been presented [FP02, Sam89], and by installing

so-called ropes to explicitly link neighboring cells [MB90], the computational cost of cell

navigation can be reduced, trading memory requirements for efficiency.

Efficient dilation operators for octrees with on-demand refinement of cells to level l

are presented by Bischoff et al. [BPK05]. Let λ denote the width of a cell on level l.

Given that holes and gaps up to a width of ρ shall be considered unwanted, we need

to determine how many layers of cells need to be added to close these. Due to the

discrete setting the dilation process has a directional bias. Slowest growth happens in

space-diagonal direction where γ dilation steps bridge gaps of widths up to 2 γ λ/
√

3.

Hence, to ensure closing of all holes of widths up to ρ we choose γ = ρ/(2 λ/
√

3).

To now remove all dilated cells except for thin hole and gap bridging sheets we perform

a topology-preserving erosion [BK05]. In contrast to the original description we do not

only apply γ erosion steps but keep eroding until no more dilated cells can be removed

without changing the digital topology of the voxel set specified by solid and dilated cells.

This eliminates the “closing” character of the operations. Afterwards the set of solid

and remaining dilated cells corresponds to the desired complex C.

Instead of extracting the desired cubical complex C from O to represent it by a sepa-

rate data structure we directly represent it by the octree. Unfortunately the FM front

propagation operates on the graph of nodes and arcs of C – which are not explicitly

represented in the octree data structure. However, we can establish a graph isomor-

phism between the nodes and a certain set of octree cells. This isomorphism identifies

an octree cell with the node in its upper-right-back corner. The set of octree cells that

is required for this purpose contains the solid cells, the dilated cells, and all cells which

are incident to the lower-left-front corner (any other pair of opposite corners could have

been chosen as well) of a solid or dilated cell (refined to level l if not yet the case). The

6-neighborhood graph of these cells, directly represented by the ropes, can then be used

instead of the nodes-arcs graph.

158

10.5. Implementation Details

10.5.2. Memory Efficiency

The memory requirements of the entire procedure are mainly determined by the number

of cells that are constructed and hence heavily depends on the resolution chosen for

processing. High resolutions can be desirable since then the cell set bounds the mesh

elements tighter and resolves finer features. The number of cells of the final octree

of course depends on the geometry of the input, but in our experiments we observed

that on average roughly 50 million cells are generated at a resolution of 40963. Since

about 20-50 bytes need to be stored per cell (for index pointers to the parent cell and

one child, location codes [FP02], state codes, a distance value, optionally a normal

vector, an angle value, and ropes) this allows us to rasterize models at resolutions up

to 40963 without exceeding today’s PCs’ main memories. However, the application of

morphological operations results in a higher peak cell count. For instance, performing a

dilation at the abovementioned resolution of 40963 to close holes and gaps up to a size

of 3% of the bounding box diagonal increases the number of cells from 50 million to over

1000 million, clearly constraining applicability to lower resolutions in such cases.

Tiling

To avoid this high memory peak we can perform the dilation and erosion process in a

tiled fashion. The dilation and erosion operators are local in the sense that they only

affect a local neighborhood of cells they are applied to, i.e. when applying γ dilation

steps followed by γ erosion steps, the final state of a cell does not depend on cells

farther away than 2γ in the 6-neighborhood graph of the cell set. Hence, when we apply

these operations to one tile (the cell set clipped to an axis-aligned rectangular box)

the resulting state of all cells except those in the outer 2γ cell layers of the tile is not

affected by this clipping. By covering the bounding box with tiles overlapping by 4γ cells

layers, the correct cell states can be obtained for all cells by applying the morphological

operations to each tile separately. As pointed out in the last section restricting the

erosion to γ steps results in a morphological closing of cavities in addition to gaps and

holes, lowering the accuracy of distance computations. By applying γ + δ erosion steps

(and choosing an overlap of 4γ + 2δ) this can be alleviated to any desired degree. In

our experiments δ = 3 γ was the maximum encountered that was necessary to achieve

the same results as with unlimited non-tiled erosion.

159

10. Meshless Geodesics

Since in each tile cells can be collapsed again after erosion, the peak cell count can be

reduced significantly. Due to the required overlap this reduction is bounded depending on

γ (and δ), but since the presence of large holes (requiring large γ) introduces significant

uncertainties, the appropriateness of using very high resolutions to achieve high accuracy

seems to be questionable in such cases anyway.

Sweeping

Despite the tiling approach the final cell set still has to fit into memory entirely. To

allow for even higher resolutions we introduce a sweeping variant of our method. In

this implementation variant cells are dynamically created by octree refinement when

they are reached by the FM front propagation process and deleted by collapsing when

the front has passed them. For this purpose we separate the morphological hole filing

from the distance propagation process. We perform the morphological operations in a

tiled fashion as described above but discard the cells of each tile after its construction

– we only record the center point of each non-solid cell that survived the erosion. This

yields a set of points which effectively “fill” gaps and holes of M up to voxel resolution.

The sweeping can then be performed with-

out complex in-line morphological opera-

tions by considering the union of M and

this point set as input. The adjacent fig-

ure shows this sweeping in action: the oc-

tree is visualized at an intermediate state

– only at the current front of propagation

cells are at the finest level, away from it

they are as coarse as possible.

In the following description of this

sweeping, by the term “(octree) cell” we

also refer to the node that is identified

with the respective cell by the underlying

graph isomorphism. In order to directly obtain the set of octree cells that are required to

establish the isomorphism we do not consider cells whose volume is intersected by mesh

elements (or hole-filling points) as solid, but cells whose volume extended by cell size λ

in upper, right, and back direction is intersected. This avoids the subsequent additional

160

10.6. Results

refinement of cells incident to the lower-left-front corner – which would be cumbersome

to manage in this sweeping variant. Cells record contained vertices as described in the

previous section.

Initially only cells containing sources are refined to level l, initialized, and inserted

into the front propagation queue. During the propagation, whenever a value is to be

propagated into a solid neighboring cell (resp. node) this cell is refined to level l. When

a cell c is removed from the queue (i.e. its distance and angle values are final) interpo-

lation has to be performed (cf. Section 10.3.3). Due to the extended virtual cell size

exactly those vertices whose interpolated values depend on the node corresponding to

c are recorded at c. Hence we can easily add the values computed for c, multiplied

by the trilinear interpolation factors, to the (zero-initialized) values of these vertices

(“transposed interpolation”).

Afterwards, since it is not needed for interpolation anymore, c can be marked collapsi-

ble – unless there is a neighboring solid cell that is not yet finalized and hence might

need the values of c for an FM update triggered by another cell. To cover this case we

also call the collapsibility check for neighbor cells of c that are finalized but could not get

marked collapsible so far. Whenever a cell gets marked collapsible its parent cell checks

whether all children are collapsible and performs the collapse by deleting them. The

parent cell is then marked collapsible and this process is invoked recursively to always

obtain a maximally sparse octree.

10.6. Results

We now present some results generated with our implementation including runtime mea-

surements. Experiments have been performed on a PC with 2.8 GHz Intel Core i7 CPU.

Figure 10.5 shows distance fields, geodesic paths, and parameterizations computed on

a scanned model (358K polygons) which contains holes (partly non-simple, with islands).

By choosing the dilation distance such that these holes are bridged the computed intrinsic

distance approximations tolerate these defects. Computation times are presented in

Table 10.1.

161

10. Meshless Geodesics

Figure 10.5.: Defect-tolerant computations on a raw scanned mesh Face containing

holes due to occlusion effects. Left: without morphological operations. Right: with

morphological operations for hole bridging. The results of computations at resolution

2563 are depicted.

Figure 10.6 depicts another mesh as it commonly appears in practice. This mesh was

created by a commercial CAD tool, by inconsistent tessellation of NURBS patches. It

consists of nearly 1 million polygons in more than 11,000 non-aligned connected compo-

nents (see the close-up). Converting such models into manifold one-component meshes

usually requires computationally intensive global repair methods. Using our framework

the model can be handled directly. Timings are presented in Table 10.2. Since the

162

10.6. Results

Resolution 643 1283 2563 5123 10243

γ 2 4 8 16 32

Voxelize 1.12 1.40 2.0 3.3 6.1

Dilate 0.01 0.07 0.5 4.0 31.4∗

Erode 0.02 0.09 1.0 9.4 80.2∗

FM 0.02 0.09 0.3 1.4 5.6

Table 10.1.: Timings (in seconds) for distance field computation on model Face (cf.

Figure 10.5). *) Here tiling has been used (with δ = 0; for δ = 1.2γ, which sufficed to

remove every unnecessary dilated cell, morphology took about 20% longer).

Resolution 2563 5123 10243 20483 40963 81923

Voxelize 4.3 5.8 8.8 18.4 - -

FM 0.2 1.0 4.7 22.3 - -

Sweeping 8.6 12.9 27.1 82.2 314.1 1370

Table 10.2.: Timings (in seconds) for one distance field computation on model Car (cf.

Figure 10.6). With the sweeping implementation higher resolutions can be handled (the

peak cell count at 81923 is only 305K).

processing is blind to gaps and holes below leaf cell size the application of morphologi-

cal operators was unnecessary in this case. Note that once rasterization, dilation, and

erosion have been performed the obtained cubical complex (resp. octree) can be used for

the quick computation of multiple distance fields etc. – it does not have to be rebuilt

each time.

Figure 10.7 exemplifies the behavior on a polygon soup and shows how the morpho-

logical operators handle large holes/gaps.

Due to the finite resolution distances computed by our method of course usually

deviate from actual intrinsic distances (on consistent models). Figure 10.8 illustrates

how the deviation decreases with increasing resolution.

163

10. Meshless Geodesics

Figure 10.6.: Defect-tolerant texturing of an inconsistently tessellated NURBS model

car by a boundary curve parameterization. The insets depict the color-coded individual

connected components. As exemplified in the close-up, lots of non-trivial gaps, double-

walls, and complex self-intersections are contained, essentially disqualifying boundary-

snapping based algorithms for easy repair. The result of computation with resolution

1283 is depicted.

10.7. Discussion

We presented a method that abstracts from the topological structure of a given input

mesh, bridges gaps and holes up to a user-specified width, and thereby allows for the

computation of plausible intrinsic distances and geodesic paths on meshes with all kinds

of defects.

164

10.7. Discussion

Figure 10.7.: Inconsistent polygon soup with a slice cut out. Dilated cells that survived

erosion, a distance field, and two geodesic paths are visualized. Increasing the gap

width at some point leads to the morphological operators closing the two holes instead

of bridging the gap, as depicted on the right.

Based on this, the most fundamental operation of our stage 2, the dual loops con-

struction, could be performed also on imperfect meshes. Together with techniques for

the computation of cross fields and parameterization on such meshes, it is imaginable to

extend our whole quad layout generation and optimization pipeline to imperfect meshes.

But also many further existing methods and applications that rely on geodesic distance

computations can be extended to deal with such meshes by employing the presented

framework.

Due to the automaticity and generality of the method, it is naturally not able to

resolve ambiguities that are inherent in the input due to large missing parts. Hence, the

computed distance fields might be inconsistent with those of the object that is actually

meant to be represented by input. Additional knowledge about the represented object

165

10. Meshless Geodesics

+10%

+5%

0%

−5%

−10%

643 1283

2563 5123

Figure 10.8.: Visualization of the error to ground truth distances on an exemplary sur-

face, clearly decreasing with increasing resolution.

or manual interaction would be required to more plausibly handle the hole bridging in

such cases.

166

11. Conclusion

To conclude we summarize our findings and contributions and provide an outlook on

open problems and potential future research directions in the field of quad layouting.

Summary

In this thesis we investigated the problem of fully automatic or semi-automatic interac-

tive quad layout generation. After an analysis of the problem structure and the involved

quality criteria, revealing continuous, discrete, and topological degrees of freedom, we

designed strategies for the subsequent optimization of these different aspects of a quad

layout.

In Part I, which was devoted to the automatic pipeline, we specifically contributed a

novel framework to describe and process structurally valid and geometrically faithful du-

als of quad layouts. We developed efficient methods for the geometry-aware construction

of embedded loops that are the key components of the dual layouts in this framework.

Using a practical greedy algorithm based on the topological concept of singularity sep-

aration the quad layout structure could automatically and efficiently be generated. We

then showed how the embedding of nodes, arcs, and patches can be optimized in an

integrated, global manner using an efficient alternating optimization strategy that sep-

arates linear and non-linear aspects of the optimization problem such that they can be

handled using appropriate techniques each. To this end we extended established op-

timization techniques for cross fields and parameterizations by structural constraints,

such that they can be used to optimize quad layout embeddings, with a particular focus

on alignment to principal directions. In this context we furthermore introduced a novel

concept for the quasi-continuous layout node position optimization, whose applicability

extends to related fields such as global parametrization and quad meshing.

167

11. Conclusion

In Part II, where the interactive pipeline was described, we proposed a new quad

layout design operator: the construction of dual strips. To enable its efficient use we

described a novel, fast method for the construction of constrained elastica on surfaces,

without any restrictions on topology or homotopy. Based on this we have been able to

provide intuitive interaction metaphors to the user, granting full design flexibility, while

the system automatically ensures structural consistency and promotes geometric quality

by evaluating the intermediate design states and visualizing the assessment to guide the

user. Furthermore, we developed means to further reduce the user’s interaction efforts,

for instance by automatically ensuring symmetric results on symmetric surfaces.

Finally, in Part III we introduced novel techniques for the efficient computation of

geodesic distances and geodesic paths/loops. Specifically, we described a novel method

for the computation of distance fields with respect to anisotropic metrics as required

by the dual loops construction. We extensively compared its performance to that of

existing options and demonstrated its efficiency in terms of run time and accuracy.

Finally, towards the adaptation of the described algorithms to raw point cloud data or

imperfect meshes, we elaborated on a concept for meshless geodesic computations.

In summary we have developed two pipelines, one for the automatic, one for the in-

teractive, assisted generation of quad layouts on surfaces. All algorithmic parts are built

directly on the three generic layout quality objectives (structural simplicity, geometric fi-

delity, principal direction alignment) and we demonstrated that in this way high-quality

quad layouts can be created, while additional or deviating intents can be infused using

the efficient interaction techniques. The advantages over the few previous approaches

have been discussed and been demonstrated in comparisons. In this sense our work

provides important contributions to the field of quad structures and has been able to

advance the state-of-the-art in this relatively young field.

Outlook

Despite these advances there are still a lot of opportunities for future research in this

field – a field to which, apart from a few early approaches, only very recently deeper

investigation has been devoted. We outline our thoughts about the most promising and

most valuable directions in the following.

168

Specialization

The automatic pipeline is based on generic quality criteria assumptions. The special-

ization to specific use cases would of course be very valuable in practice. To this end

a first important step would be the investigation and formulation of concrete quality

measures. For instance, if the target application is NURBS fitting, how does one rate

the quality of the layout? It is most probably a function of fitting accuracy (surface

approximation error, normal approximation error) as well as of layout complexity. But

the concrete nature of this function is not obvious and the trade-off between accuracy

and complexity surely dependent on the specific application scenario. The availability

of such concrete measures would furthermore be of great benefit for the quantitative

comparison of results of future approaches to the quad layout problem.

Sub-Problem Coupling

When splitting the quad layout problem into sub-problems and developing optimization

strategies for these, we followed the paradigms of forward anticipation and backward

modification. It would be interesting to explore further possibilities in this regard, e.g.

enabling a broader range of modification operators (not only merging nodes, but also

splitting them, not only collapsing poly-chords but more general quad decimation or

refinement).

Regarding the forward anticipation, there is a particular lack between stage 1 and 2 of

the automatic pipeline – the node generation stage is not aware of the nodes’ suitability

for a good connectivity. It is actually hard to imagine how this could be estimated at

all in the first stage. For this reason it could be of benefit for the final layout quality

if the first two stages were not separated but integrated. In fact, just this is the case

in our interactive pipeline: nodes and connectivity emerge from the same process. It

would hence be very interesting to investigate whether it would be possible to design

an automatic algorithm based on elastica loops instead of cross field guided loops. The

singularity separation concept that drives the loops selection strategy in stage 2 could

potentially be adapted to rely on the singularities of the dynamically changing cross field

that is used for the strip region computation.

169

11. Conclusion

Alignment

In our methods we favored alignment to principal curvature directions. The numerous

advantages of that were outlined in Section 2.2. Depending on the application it can

be interesting to investigate the use of alternative alignment objectives. The alignment

to Langer’s lines (capturing the fiber directions of the human skin) could be of benefit

for character animation purposes, the alignment to (estimates of) characteristic lines of

differential equations could provide advantages for simulation accuracy, and the align-

ment to principal directions of stress or strain tensor fields is of interest for architectural

applications.

Hex Layouts

In this thesis we focussed on quad layouts for surfaces. While the surface indeed is

the most important feature of an object, some applications require a three-dimensional

(piecewise) representation of its solid interior volume – for instance realistic simulations

that involve an object’s stability, rigidity, or conductivity. The representations discussed

in Chapter 1 (quad mesh, multiblock grid, spline net) naturally extend to this volumetric

setting. In this case, we are dealing with hex(ahedral) layouts of volumes, where each

cell of the layout maps to a three-dimensional cuboid. A generalization of our automatic

and interactive pipelines to this hex layout case would be of high value. Unfortunately,

while the final stage (embedding optimization) could be adapted quite easily based on

three-dimensional field-guided parameterization [NRP11], the other stages turn out to

require a different approach – straightforward generalization is not possible.

The first problem is the generation of three-dimensional analogues of cross fields,

sometimes termed frame fields [NRP11] or 3D cross-frame fields [HTWB11]. While

cross fields have isolated point singularities, such fields have an entire network of inter-

connected point and line singularities. Just like in the cross field case, these singularities

can be represented using a generalization of the period jump concept [LVRL06]. Unfor-

tunately, validity is no longer inherent and additional constraints need to be met such

that a valid singularity network is implied. So far thus manual singularity specification

[NRP11] has been used, or attempts been made to repair invalid configurations in a post-

process [LLX∗12, JHW∗14]. However, to cite Jiang et al. [JHW∗14], “it remains an open

170

problem to give a sufficient condition on singularity graphs compatible to non-degenerate

hexahedral meshing”.

The concepts of dual loops and dual strips extend to the three-dimensional case in the

form of dual sheets and dual layers [MBBM97]. The efficient generation of candidate dual

sheets for the automatic pipeline and of dual layers for the interactive pipeline is another

unsolved problem. While minimal loops can be generated using efficient Dijkstra-type

techniques (cf. Section 5.2.1, Section 8.1, Chapter 9), minimal surfaces (as natural model

for good dual sheets) are not amenable to such efficient generation [Gra10], especially

when only a seed point is given as constraint. A particular challenge is that dual sheets

of unknown topology (arbitrary genus, arbitrary number of boundaries) must be dealt

with, while dual loops are always simple curves.

Another, though less elegant and powerful, option for generalization to the hexahedral

layout case is the use of a technique along the lines of [MH98, KBLK13]. In these works

surface quad meshes are taken as input and extended to volume hex meshes. A similar

approach could be taken to extend surface quad layouts to hex layouts. These techniques

are, however, only applicable to a certain restricted class of quad layouts [Eri13] e.g.

without self-crossing dual loops. The investigation of possibilities to adapt our methods

to such restricted classes of connectivity that are of interest in certain applications is

another interesting avenue for future work.

171

Bibliography

[AAB∗88] Andersson E., Andersson R., Boman M., Elmroth T.,

Dahlberg B., Johansson B.: Automatic construction of surfaces with

prescribed shape. Comput. Aided Des. 20, 6, 1988, 317–324.

[ABA02] Andújar C., Brunet P., Ayala D.: Topology-reducing surface sim-

plification using a discrete solid representation. ACM Trans. Graph. 21,

2, 2002, 88–105.

[ACK13] Attene M., Campen M., Kobbelt L.: Polygon mesh repairing: An

application perspective. ACM Comput. Surv. 45, 2, 2013, 15.

[ACSD∗03] Alliez P., Cohen-Steiner D., Devillers O., Lévy B., Desbrun

M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22, 3, 2003,

485–493.

[AG03] Alliez P., Gotsman C.: Recent advances in compression of 3D meshes.

In Proceedings of the Symposium on Multiresolution in Geometric Model-

ing, 2003, pp. 3–26.

[AUGA08] Alliez P., Ucelli G., Gotsman C., Attene M.: Recent advances

in remeshing of surfaces. In Shape Analysis and Structuring, Mathematics

and Visualization, 2008, Springer, pp. 53–82.

[BC11] Benmansour F., Cohen L. D.: Tubular Structure Segmentation Based

on Minimal Path Method and Anisotropic Enhancement. Int. J. of Com-

puter Vision 92, 2, 2011, 192–210.

[BCE∗13] Bommes D., Campen M., Ebke H.-C., Alliez P., Kobbelt L.:

Integer-Grid Maps for Reliable Quad Meshing. In ACM Trans. Graph.,

2013, vol. 32, pp. 98:1–98:12.

173

Bibliography

[BCLC09] Benmansour F., Cohen L. D., Law M. W. K., Chung A. C. S.:

Tubular anisotropy for 2D vessel segmentation. In CVPR, 2009, pp. 2286–

2293.

[BDL10] Brakhage K.-H., Dahmen W., Lamby P.: A Unified Approach to

the Modeling of Airplane Wings and Numerical Grid Generation Using

B-Spline Representations. Notes on Numerical Fluid Mechanics and Mul-

tidisciplinary Design 109, 2010, 239–263.

[Bei68] Beineke L. W.: Derived graphs of digraphs. Beiträge zur Graphentheo-

rie, 1968, 17–33.

[BK01] Botsch M., Kobbelt L.: Resampling Feature Regions in Polygonal

Meshes for Surface Anti-Aliasing. Comput. Graph. Forum 20, 3, 2001,

402–410.

[BK05] Bischoff S., Kobbelt L.: Structure Preserving CAD Model Repair.

Comput. Graph. Forum 24, 3, 2005, 527–536.

[BLK11] Bommes D., Lempfer T., Kobbelt L.: Global Structure Optimization

of Quadrilateral Meshes. Computer Graphics Forum 30, 2, 2011, 375–384.

[BLP∗13] Bommes D., Lévy B., Pietroni N., Puppo E., Silva C., Tarini M.,

Zorin D.: Quad-Mesh Generation and Processing: A Survey. Computer

Graphics Forum 32, 2013.

[BMBZ02] Biermann H., Martin I. M., Bernardini F., Zorin D.: Cut-

and-paste editing of multiresolution surfaces. In SIGGRAPH ’02, 2002,

pp. 312–321.

[BMRJ04] Boier-Martin I. M., Rushmeier H. E., Jin J.: Parameterization

of Triangle Meshes over Quadrilateral Domains. In Proc. SGP ’04, 2004,

pp. 197–208.

[BNR01] Bruckstein A., Netravali A., Richardson T.: Epi-Convergence of

Discrete Elastica. Applicable Analysis 79, 2001, 137–171.

[Bom12] Bommes D.: Quadrilateral Surface Mesh Generation for Animation and

Simulation. PhD thesis, RWTH Aachen University, 2012.

174

Bibliography

[BPC08] Bougleux S., Peyré G., Cohen L. D.: Anisotropic Geodesics for

Perceptual Grouping and Domain Meshing. In ECCV ’08, 2008, pp. 129–

142.

[BPK05] Bischoff S., Pavic D., Kobbelt L.: Automatic restoration of polygon

models. ACM Trans. Graph. 24, 4, 2005, 1332–1352.

[BVK08] Bommes D., Vossemer T., Kobbelt L.: Quadrangular parameter-

ization for reverse engineering. Mathematical Methods for Curves and

Surfaces, 2008, 55–69.

[BWK05] Bischoff S., Weyand T., Kobbelt L.: Snakes on Triangle Meshes.

In Bildverarbeitung für die Medizin, 2005, pp. 208–212.

[BZK04] Borodin P., Zachmann G., Klein R.: Consistent Normal Orienta-

tion for Polygonal Meshes. In CGI ’04: Proc. Computer Graphics Inter-

national, 2004, pp. 18–25.

[BZK09] Bommes D., Zimmer H., Kobbelt L.: Mixed-Integer Quadrangula-

tion. In ACM Trans. Graph., 2009, vol. 28, pp. 77:1–77:10.

[BZK12] Bommes D., Zimmer H., Kobbelt L.: Practical Mixed-integer Opti-

mization for Geometry Processing. In Proc. Curves and Surfaces, 2012,

pp. 193–206.

[CBK12] Campen M., Bommes D., Kobbelt L.: Dual Loops Meshing: Quality

Quad Layouts on Manifolds. ACM Transactions on Graphics 31, 4, 2012,

110:1–110:11.

[CC78] Catmull E., Clark J.: Recursively Generated B-spline Surfaces on

Arbitrary Topological Meshes. Computer-Aided Design 10, 6, 1978, 350–

355.

[CDHR08] Chen Y., Davis T. A., Hager W. W., Rajamanickam S.: Algo-

rithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and

Update/Downdate. ACM Trans. Math. Softw. 35, 3, 2008, 22:1–22:14.

[CDS10] Crane K., Desbrun M., Schröder P.: Trivial Connections on Dis-

crete Surfaces. Computer Graphics Forum 29, 5, 2010, 1525–1533.

175

Bibliography

[CH90] Chen J., Han Y.: Shortest Paths on a Polyhedron. In Proc. Symp.

Comp. Geom., 1990, pp. 360–369.

[CHK13] Campen M., Heistermann M., Kobbelt L.: Practical Anisotropic

Geodesy. In Computer Graphics Forum, 2013, vol. 32, pp. 63–71.

[CK11] Campen M., Kobbelt L.: Walking On Broken Mesh: Defect-Tolerant

Geodesic Distances and Parameterizations. In Computer Graphics Forum,

2011, vol. 30, pp. 623–632.

[CK14a] Campen M., Kobbelt L.: Dual Strip Weaving: Interactive Design of

Quad Layouts using Elastica Strips. In ACM Trans. Graph., 2014, vol. 33,

pp. 183:1–183:10.

[CK14b] Campen M., Kobbelt L.: Quad Layout Embedding via Aligned Pa-

rameterization. Computer Graphics Forum 33, 2014, 69–81.

[CSAD04] Cohen-Steiner D., Alliez P., Desbrun M.: Variational shape ap-

proximation. In Proc. SIGGRAPH 2004, 2004, pp. 905–914.

[CSM03] Cohen-Steiner D., Morvan J.-M.: Restricted Delaunay Triangula-

tions and Normal Cycle. In Proc. Symp. Comp. Geom., 2003, SCG ’03,

pp. 312–321.

[CWW13] Crane K., Weischedel C., Wardetzky M.: Geodesics in Heat.

ACM Trans. Graph. 32, 2013.

[D’A00] D’Azevedo E. F.: Are Bilinear Quadrilaterals Better Than Linear Tri-

angles? J. Sci. Comput. 22, 1, 2000, 198–217.

[DBG∗06] Dong S., Bremer P.-T., Garland M., Pascucci V., Hart J. C.:

Spectral surface quadrangulation. In Proc. SIGGRAPH 2006, 2006,

pp. 1057–1066.

[dC76] do Carmo M. P.: Differential Geometry of Curves and Surfaces.

Prentice-Hall, Englewood Cliffs, NJ, 1976.

[DC00] Deschamps T., Cohen L. D.: Minimal Paths in 3D Images and Appli-

cation to Virtual Endoscopy. In ECCV, 2000, pp. 543–557.

176

Bibliography

[DHM09] Dahmen W., Hovhannisyan N., Mller S.: Adaptive Multiscale Meth-

ods for Flow Problems: Recent Developments, IGPM Report #293. Tech.

rep., RWTH Aachen, 2009.

[DS78] Doo D., Sabin M.: Behavior of recursive division surfaces near extraor-

dinary points. Computer-Aided Design 10, 6, 1978, 356–360.

[DSC09] Daniels J., Silva C. T., Cohen E.: Semi-regular Quadrilateral-only

Remeshing from Simplified Base Domains. Comput. Graph. Forum 28, 5,

2009, 1427–1435.

[DSSC08] Daniels J., Silva C. T., Shepherd J., Cohen E.: Quadrilateral

mesh simplification. ACM Trans. Graph. 27, 5, 2008, 148.

[DVPSH14] Diamanti O., Vaxman A., Panozzo D., Sorkine-Hornung O.: De-

signing N -PolyVector Fields with Complex Polynomials. Computer Graph-

ics Forum 33, 5, 2014.

[EBCK13] Ebke H.-C., Bommes D., Campen M., Kobbelt L.: QEx: Robust

Quad Mesh Extraction. In ACM Trans. Graph., 2013, vol. 32, pp. 168:1–

168:10.

[ECBK14] Ebke H.-C., Campen M., Bommes D., Kobbelt L.: Level-of-Detail

Quad Meshing. In ACM Trans. Graph., 2014, vol. 33, pp. 184:1–184:11.

[EGKT08] Eppstein D., Goodrich M. T., Kim E., Tamstorf R.: Motorcycle

Graphs: Canonical Quad Mesh Partitioning. Computer Graphics Forum

27, 5, 2008, 1477–1486.

[EH96] Eck M., Hoppe H.: Automatic reconstruction of B-spline surfaces of

arbitrary topological type. In Proc. SIGGRAPH 96, 1996, pp. 325–334.

[EHP02] Erickson J., Har-Peled S.: Optimally cutting a surface into a disk.

In Proc. Symp. on Computational Geometry, 2002, pp. 244–253.

[Eri13] Erickson J.: Efficiently Hex-Meshing Things with Topology. In Proc.

Symp. Comp. Geom. (SoCG ’ 13), 2013, pp. 37–46.

[EW05] Erickson J., Whittlesey K.: Greedy optimal homotopy and homol-

ogy generators. In Proc. 16th Ann. ACM-SIAM Symp. Discrete Algo-

177

Bibliography

rithms, 2005, pp. 1038–1046.

[Far02] Farin G.: Curves and Surfaces for CAGD. A Practical Guide. Morgan-

Kaufmann, 2002.

[FH05] Floater M. S., Hormann K.: Surface Parameterization: a Tuto-

rial and Survey. In Advances in Multiresolution for Geometric Modelling.

Springer, 2005, pp. 157–186.

[FP02] Frisken S. F., Perry R. N.: Simple and Efficient Traversal Methods

for Quadtrees and Octrees. Journal of Graphics Tools 7, 3, 2002, 2003.

[FSSB07] Fisher M., Springborn B., Schröder P., Bobenko A. I.: An

algorithm for the construction of intrinsic delaunay triangulations with

applications to digital geometry processing. Computing 81, 2-3, 2007,

199–213.

[GGGZ05] Gatzke T., Grimm C., Garland M., Zelinka S.: Curvature Maps

for Local Shape Comparison. In Shape Modeling International, 2005,

pp. 244–256.

[Gra10] Grady L.: Minimal Surfaces Extend Shortest Path Segmentation Meth-

ods to 3D. IEEE Trans. Pattern Anal. Mach. Intell. 32, 2, 2010, 321–334.

[GVSS00] Guskov I., Vidimce K., Sweldens W., Schröder P.: Normal

meshes. In Proc. SIGGRAPH 2000, 2000, pp. 95–102.

[Hat02] Hatcher A.: Algebraic Topology. Cambridge University Press, 2002.

[HCB05] Hughes T. J. R., Cottrell J. A., Bazilevs Y.: Isogeometric anal-

ysis: CAD, finite elements, NURBS, exact geometry and mesh refine-

ment. Computer Methods in Applied Mechaniccs and Engineering 194,

2005, 4135–4195.

[HF07] Hassouna M. S., Farag A. A.: MultiStencils Fast Marching Methods:

A Highly Accurate Solution to the Eikonal Equation on Cartesian Do-

mains. IEEE Trans. Pattern Analysis and Machine Intelligence 29, 2007,

1563–1574.

178

Bibliography

[HJS∗14] Huang J., Jiang T., Shi Z., Tong Y., Bao H., Desbrun M.: ℓ1-

Based Construction of Polycube Maps from Complex Shapes. ACM Trans.

Graph. 33, 3, 2014, 25:1–25:11.

[HP04] Hofer M., Pottmann H.: Energy-minimizing splines in manifolds.

ACM Trans. Graph. 23, 3, 2004, 284–293.

[HTWB11] Huang J., Tong Y., Wei H., Bao H.: Boundary Aligned Smooth 3D

Cross-frame Field. ACM Trans. Graph. 30, 6, 2011, 143:1–143:8.

[HWW∗06] He Y., Wang K., Wang H., Gu X., Qin H.: Manifold T-Spline. In

Proc. Geometric Modeling and Processing, 2006, pp. 409–422.

[HZ00] Hertzmann A., Zorin D.: Illustrating smooth surfaces. In Proc. SIG-

GRAPH 2000, 2000, pp. 517–526.

[HZM∗08] Huang J., Zhang M., Ma J., Liu X., Kobbelt L., Bao H.: Spectral

quadrangulation with orientation and alignment control. ACM Trans.

Graph. 27, 5, 2008, 147.

[JHW∗14] Jiang T., Huang J., Wang Y., Tong Y., Bao H.: Frame Field

Singularity Correction for Automatic Hexahedralization. Transactions on

Visualization and Computer Graphics, 20, 8, 2014, 1189–1199.

[JLW10] Ji Z., Liu L., Wang Y.: B-Mesh: A Modeling System for Base Meshes

of 3D Articulated Shapes. In Proc. Pacific Graphics ’10, 2010, pp. 2169–

2178.

[JT73] Jucovič E., Trenkler M.: A theorem on the structure of cell-

decompositions of orientable 2-manifolds. Mathematika 20, 1973, 63–82.

[KBLK13] Kremer M., Bommes D., Lim I., Kobbelt L.: Advanced Automatic

Hexahedral Mesh Generation from Surface Quad Meshes. In Proceedings

of the 22nd International Meshing Roundtable, 2013, pp. 147–164.

[KCPS13] Knöppel F., Crane K., Pinkall U., Schröder P.: Globally optimal

direction fields. ACM Trans. Graph. 32, 4, 2013, 59.

[KL96] Krishnamurthy V., Levoy M.: Fitting Smooth Surfaces to Dense

Polygon Meshes. In Proc. SIGGRAPH 96, 1996, pp. 313–324.

179

Bibliography

[KLS03] Khodakovsky A., Litke N., Schröder P.: Globally smooth param-

eterizations with low distortion. ACM Trans. Graph. 22, 3, 2003, 350–357.

[KMZ11] Kovacs D., Myles A., Zorin D.: Anisotropic quadrangulation. Comp.

Aided Geom. Design 28, 8, 2011, 449–462.

[KNP07] Kälberer F., Nieser M., Polthier K.: QuadCover – Surface Pa-

rameterization using Branched Coverings. Computer Graphics Forum 26,

3, 2007, 375–384.

[KS98] Kimmel R., Sethian J. A.: Computing geodesic paths on manifolds.

Proc. Natl. Acad. Sci. 95, 15, 1998, 8431–8435.

[KS00] Kanai T., Suzuki H.: Approximate Shortest Path on Polyhedral Surface

Based on Selective Refinement of the Discrete Graph and its Applications.

In Geometric Modeling and Processing, 2000, pp. 241–250.

[KS04] Kraevoy V., Sheffer A.: Cross-parameterization and compatible

remeshing of 3D models. In Proc. SIGGRAPH 2004, 2004, pp. 861–869.

[KSC∗07] Konukoglu E., Sermesant M., Clatz O., Peyrat J.-M.,

Delingette H., Ayache N.: A Recursive Anisotropic Fast Marching

Approach to Reaction Diffusion Equation: Application to Tumor Growth

Modeling. In IPMI, 2007, pp. 687–699.

[Lan99] Lanthier M.: Shortest Path Problems on Polyhedral Surfaces. PhD

thesis, School of Computer Science, Carleton University, 1999.

[Lip12] Lipman Y.: Bounded Distortion mapping spaces for triangular meshes.

In Proc. SIGGRAPH 2012, 2012, pp. 108:1–108:13.

[LJX∗10] Lai Y.-K., Jin M., Xie X., He Y., Palacios J., Zhang E., Hu

S.-M., Gu X.: Metric-Driven RoSy Field Design and Remeshing. IEEE

Trans. Vis. Comput. Graph. 16, 1, 2010, 95–108.

[LKH08] Lai Y.-K., Kobbelt L., Hu S.-M.: An Incremental Approach to Fea-

ture Aligned Quad Dominant Remeshing. In Proc. Symp. Solid and Phys-

ical Modeling 2008, 2008, pp. 137–145.

180

Bibliography

[LL02] Lee Y., Lee S.: Geometric Snakes for Triangular Meshes. Comput.

Graph. Forum 21, 3, 2002, 229–238.

[LLS01] Litke N., Levin A., Schröder P.: Fitting Subdivision Surfaces. In

IEEE Visualization 2001, 2001, pp. 319–324.

[LLX∗12] Li Y., Liu Y., Xu W., Wang W., Guo B.: All-hex Meshing Using

Singularity-restricted Field. ACM Trans. Graph. 31, 6, 2012, 177:1–177:11.

[LLZ∗11] Li E., Lévy B., Zhang X., Che W., Dong W., Paul J.-C.: Meshless

quadrangulation by global parameterization. Computers & Graphics, 2011,

992–1000.

[LMS97] Lanthier M., Maheshwari A., Sack J.-R.: Approximating weighted

shortest paths on polyhedral surfaces. Proc. Symp. Comp. Geom. (SCG

’97), 1997, 274–283.

[LMS99] Lanthier M., Maheshwari A., Sack J.-R.: Shortest Anisotropic

Paths on Terrains. ICAL 26, 1999, 523–533.

[LRL06] Li W.-C., Ray N., Lévy B.: Automatic and interactive mesh to T-

spline conversion. In Proc. SGP ’06, 2006, pp. 191–200.

[LSS∗98] Lee A. W. F., Sweldens W., Schröder P., Cowsar L., Dobkin

D.: MAPS: Multiresolution Adaptive Parameterization of Surfaces. In

Proc. SIGGRAPH ’98, 1998, pp. 95–104.

[LVRL06] Li W. C., Vallet B., Ray N., Lévy B.: Representing Higher-Order

Singularities in Vector Fields on Piecewise Linear Surfaces. IEEE TVCG

12, 5, 2006, 1315–1322.

[LXW∗11] Liu Y., Xu W., Wang J., Zhu L., Guo B., Chen F., Wang G.: Gen-

eral Planar Quadrilateral Mesh Design Using Conjugate Direction Field.

ACM Trans. Graph. 30, 6, 2011, 140:1–140:10.

[MB90] MacDonald D. J., Booth K. S.: Heuristics for ray tracing using space

subdivision. Vis. Comput. 6, 3, 1990, 153–166.

[MBBM97] Murdoch P., Benzley S., Blacker T., Mitchell S. A.: The

spatial twist continuum: a connectivity based method for representing

181

Bibliography

all-hexahedral finite element meshes. Finite Elem. Anal. Des. 28, 1997,

137–149.

[MBVW95] Milroy M. J., Bradley C., Vickers G. W., Weir D. J.: G1

continuity of B-spline surface patches in reverse engineering. Computer-

Aided Design 27, 6, 1995, 471–478.

[MH98] Müller-Hannemann M.: Hexahedral Mesh generation by Successive

Dual Cycle Elimination. In Int. Meshing Roundtable 98, 1998, pp. 379–393.

[Mit00] Mitchell S. A.: High Fidelity Interval Assignment. Int. J. Comput.

Geometry Appl. 10, 4, 2000, 399–415.

[MK95] Ma W., Kruth J.-P.: Parametrization of randomly measured points

for least squares fitting of B-spline curves and surfaces. Computer-Aided

Design 27, 1995, 663–675.

[MK04] Marinov M., Kobbelt L.: Direct Anisotropic Quad-Dominant

Remeshing. In Proc. Pacific Graphics ’04, 2004, pp. 207–216.

[MK05] Marinov M., Kobbelt L.: Automatic Generation of Structure Pre-

serving Multiresolution Models. Computer Graphics Forum 24, 3, 2005,

479–486.

[MMP87] Mitchell J. S., Mount D. M., Papadimitriou C. H.: The Discrete

Geodesic Problem. SIAM Journal on Computing 16, 4, 1987, 647–668.

[MPKZ10] Myles A., Pietroni N., Kovacs D., Zorin D.: Feature-aligned T-

meshes. In Proc. SIGGRAPH 2010, 2010, pp. 117:1–117:11.

[MPWC13] Mitra N. J., Pauly M., Wand M., Ceylan D.: Symmetry in 3D

Geometry: Extraction and Applications. Comput. Graph. Forum 32, 6,

2013, 1–23.

[MPZ14] Myles A., Pietroni N., Zorin D.: Robust Field-aligned Global

Parametrization. In Proc. SIGGRAPH 2014, 2014, pp. 135:1–135:14.

[MS01] Mémoli F., Sapiro G.: Fast Computation of Weighted Distance Func-

tions and Geodesics on Implicit Hyper-surfaces. J. Comput. Phys. 173, 2,

2001, 730–764.

182

Bibliography

[MS05] Mémoli F., Sapiro G.: Distance Functions and Geodesics on Subman-

ifolds of Rd and Point Clouds. SIAM Journal of Applied Mathematics 65,

4, 2005, 1227–1260.

[MZ12] Myles A., Zorin D.: Global parametrization by incremental flattening.

In Proc. SIGGRAPH 2012, 2012, pp. 109:1–109:11.

[MZ13] Myles A., Zorin D.: Controlled-distortion Constrained Global

Parametrization. ACM Trans. Graph. 32, 4, 2013, 105:1–105:14.

[MZL∗09] Mehra R., Zhou Q., Long J., Sheffer A., Gooch A., Mitra

N. J.: Abstraction of Man-Made Shapes. ACM Transactions on Graphics

28, 5, 2009, 137:1–137:10.

[Nie12] Nieser M.: Parameterization and Tiling of Polyhedral Surfaces. PhD

thesis, Freie Universität Berlin, 2012.

[NK02] Novotni M., Klein R.: Computing Geodesic Paths on Triangular

Meshes. In WSCG, 2002, pp. 341–348.

[NL12] Naumann U., Lotz J.: Algorithmic differentiation of numerical meth-

ods: tangent-linear and adjoint direct solvers for systems of linear equa-

tions. Tech. Report AIB-2012-10, RWTH Aachen, 2012.

[NP09] Nieser M., Polthier K.: Parameterizing Singularities of Positive In-

tegral Index. In 13th IMA Int. Conf. on Mathematics of Surfaces, 2009,

pp. 265–277.

[NRP11] Nieser M., Reitebuch U., Polthier K.: CubeCover – Parameteri-

zation of 3D Volumes. Comput. Graph. Forum 30, 5, 2011, 1397–1406.

[NSP10] Nieser M., Schulz C., Polthier K.: Patch layout from feature

graphs. Computer-Aided Design 42, 3, 2010, 213–220.

[PBDSH13] Panozzo D., Baran I., Diamanti O., Sorkine-Hornung O.:

Weighted Averages on Surfaces. ACM Trans. Graph. 32, 4, July 2013,

60:1–60:12.

[PLPZ12] Panozzo D., Lipman Y., Puppo E., Zorin D.: Fields on symmetric

surfaces. ACM Trans. Graph. 31, 4, 2012, 111.

183

Bibliography

[PPT∗11] Panozzo D., Puppo E., Tarini M., Pietroni N., Cignoni P.: Au-

tomatic Construction of Quad-Based Subdivision Surfaces Using Fitmaps.

IEEE Trans. Vis. Comput. Graph. 17, 10, 2011, 1510–1520.

[PPTSH14] Panozzo D., Puppo E., Tarini M., Sorkine-Hornung O.: Frame

Fields: Anisotropic and Non-Orthogonal Cross Fields. ACM Transactions

on Graphics 33, 4, 2014, 134.

[PS98] Polthier K., Schmies M.: Straightest Geodesics on Polyhedral Sur-

faces. In Vis. and Math. ’97. Springer, 1998, pp. 135–150.

[PSS01] Praun E., Sweldens W., Schröder P.: Consistent mesh parameter-

izations. In SIGGRAPH 2001, 2001, pp. 179–184.

[PTC10] Pietroni N., Tarini M., Cignoni P.: Almost Isometric Mesh Param-

eterization through Abstract Domains. IEEE Trans. Vis. Comput. Graph.

16, 4, 2010, 621–635.

[PTSZ11] Pietroni N., Tarini M., Sorkine O., Zorin D.: Global Parametriza-

tion of Range Image Sets. ACM Trans. Graph. 30, 6, 2011, 149:1–149:10.

[PWKB02] Parker G. J. M., Wheeler-Kingshott C. A. M., Barker G. J.:

Estimating Distributed Anatomical Brain Connectivity Using Fast March-

ing Methods and Diffusion Tensor Imaging. IEEE Trans. Med. Imaging

21, 5, 2002, 505–512.

[PWT05] Pichon E., Westin C.-F., Tannenbaum A. R.: A Hamilton-Jacobi-

Bellman approach to high angular resolution diffusion tractography. Medi-

cal image computing and computer-assisted intervention 8, Pt 1, Jan. 2005,

180–7.

[PZ07] Palacios J., Zhang E.: Rotational symmetry field design on surfaces.

In Proc. SIGGRAPH 2007, 2007, pp. 55:1–55:10.

[PZKW11] Peng C.-H., Zhang E., Kobayashi Y., Wonka P.: Connectivity

editing for quadrilateral meshes. ACM Trans. Graph. 30, 6, 2011, 141.

[Rei95] Reif U.: A Unified Approach to Subdivision Algorithms Near Extraor-

dinary Points. Comput. Aided. Geom. Des. 12, 1995.

184

Bibliography

[RLL∗06] Ray N., Li W. C., Lévy B., Sheffer A., Alliez P.: Periodic global

parameterization. ACM Trans. Graph. 25, 2006, 1460–1485.

[RNLL10] Ray N., Nivoliers V., Lefebvre S., Lévy B.: Invisible Seams. In

Proc. Eurographics Symposium on Rendering, 2010.

[RR90] Rowe N. C., Ross R. S.: Optimal grid-free path planning across

arbitrarily-contoured terrain with anisotropic friction and gravity effects.

IEEE Trans. Robot. Autom, 1990.

[RVAL09] Ray N., Vallet B., Alonso L., Lévy B.: Geometry-aware direction

field processing. ACM Trans. Graph. 29, 1, 2009, 1:1–1:11.

[RVLL08] Ray N., Vallet B., Li W. C., Lévy B.: N-symmetry direction field

design. ACM Trans. Graph. 27, 2008, 10:1–10:13.

[Sam89] Samet H.: Neighbour finding in images represented by octrees. In Vision,

Graphics & Image Proc., 1989, pp. 367–386.

[SAPH04] Schreiner J., Asirvatham A., Praun E., Hoppe H.: Inter-surface

mapping. In SIGGRAPH 2004, 2004, pp. 870–877.

[SB96] Spekreijse S., Boerstoel J. W.: Multiblock Grid Generation. Part 2:

Multiblock Aspects. In VKI Lecture Series 1996-06. von Karman Institute

for Fluid Dynamics, 1996, pp. 1–39.

[SC07] Schoenemann T., Cremers D.: Introducing Curvature into Globally

Optimal Image Segmentation: Minimum Ratio Cycles on Product Graphs.

In ICCV, 2007, IEEE, pp. 1–6.

[SCF∗04] Sederberg T. W., Cardon D. L., Finnigan G. T., North N. S.,

Zheng J., Lyche T.: T-spline Simplification and Local Refinement.

ACM Trans. Graph. 23, 3, 2004, 276–283.

[Sch13] Schmidt R.: Stroke Parameterization. Comp. Graph. Forum 32, 2, 2013.

[Set95] Sethian J. A.: A Fast Marching Level Set Method for Monotonically

Advancing Fronts. In Proc. Nat. Acad. Sci, 1995, pp. 1591–1595.

185

Bibliography

[Set99] Sethian J. A.: Fast Marching Methods. SIAM Review 41, 1999, 199–

235.

[SGW06] Schmidt R., Grimm C., Wyvill B.: Interactive decal compositing

with discrete exponential maps. In Proc. SIGGRAPH 2006, 2006, pp. 605–

613.

[SJC09] Seong J.-K., Jeong W.-K., Cohen E.: Curvature-based anisotropic

geodesic distance computation for parametric and implicit surfaces. The

Visual Computer 25, 8, 2009, 743–755.

[SMC11] Schoenemann T., Masnou S., Cremers D.: The Elastic Ratio: In-

troducing Curvature Into Ratio-Based Image Segmentation. IEEE Trans.

Img. Proc. 20, 9, 2011, 2565–2581.

[SSK∗05] Surazhsky V., Surazhsky T., Kirsanov D., Gortler S. J.,

Hoppe H.: Fast exact and approximate geodesics on meshes. In

Proc. SIGGRAPH 2005, 2005, pp. 553–560.

[SV00] Sethian J. A., Vladimirsky A.: Fast methods for the Eikonal and

related Hamilton-Jacobi equations on unstructured meshes. Proc. Nat.

Acad. Sci. 97, 11, 2000, 5699–5703.

[SV04] Sethian J. A., Vladimirsky A.: Ordered Upwind Methods for Static

Hamilton-Jacobi Equations: Theory and Algorithms. SIAM J. Num. Anal.

41, 1, 2004, 325–363.

[SZBN03] Sederberg T. W., Zheng J., Bakenov A., Nasri A.: T-splines and

T-NURCCs. ACM Trans. Graph. 22, 3, 2003, 477–484.

[TA93] Tam T. K. H., Armstrong C. G.: Finite element mesh control by

integer programming. Int. J. Numerical Methods in Engineering 36, 1993,

2581–2605.

[TACSD06] Tong Y., Alliez P., Cohen-Steiner D., Desbrun M.: Designing

quadrangulations with discrete harmonic forms. In Proc. SGP ’06, 2006,

pp. 201–210.

186

Bibliography

[TDN∗12] Tierny J., Daniels J., Nonato L. G., Pascucci V., Silva C.:

Interactive quadrangulation with Reeb atlases and connectivity textures.

IEEE TVCG 18, 2012, 1650–1663.

[THCM04] Tarini M., Hormann K., Cignoni P., Montani C.: PolyCube-Maps.

In Proc. SIGGRAPH 2004, 2004, pp. 853–860.

[TPP∗11] Tarini M., Puppo E., Panozzo D., Pietroni N., Cignoni P.: Sim-

ple Quad Domains for Field Aligned Mesh Parametrization. Proc. SIG-

GRAPH Asia 2011 30, 6, 2011.

[TPSHSH13] Takayama K., Panozzo D., Sorkine-Hornung A., Sorkine-

Hornung O.: Sketch-Based Generation and Editing of Quad Meshes.

In Proc. SIGGRAPH 2013, 2013, pp. 97:1–97:8.

[Tsi95] Tsitsiklis J. N.: Globally Optimal Trajectories. IEEE Transactions on

Automatic Control 40, 9, 1995, 1528–1538.

[TWZZ07] Tang J., Wu G.-S., Zhang F.-Y., Zhang M.-M.: Fast approximate

geodesic paths on triangle mesh. International Journal of Automation and

Computing 4, 1, 2007, 8–13.

[WB06] Wächter A., Biegler L. T.: On the Implementation of an Interior-

point Filter Line-search Algorithm for Large-scale Nonlinear Program-

ming. Math. Program. 106, 1, 2006, 25–57.

[WDB∗08] Weber O., Devir Y. S., Bronstein A. M., Bronstein M. M.,

Kimmel R.: Parallel algorithms for approximation of distance maps on

parametric surfaces. ACM Transactions on Graphics 27, 4, 2008, 104:1–

104:16.

[WW94] Welch W., Witkin A. P.: Free-form shape design using triangulated

surfaces. In Proc. SIGGRAPH ’94, 1994, pp. 247–256.

[WZXH12] Wang W., Zhang Y., Xu G., Hughes T.: Converting an unstruc-

tured quadrilateral/hexahedral mesh to a rational T-spline. Computational

Mechanics 50, 1, 2012, 65–84.

187

Bibliography

[XW09] Xin S.-Q., Wang G.-J.: Improving Chen and Han’s algorithm on the

discrete geodesic problem. ACM Trans. Graph. 28, 4, 2009, 104:1–104:8.

[YLY∗12] Yu H., Lee T.-Y., Yeh I.-C., Yang X., Li W., Zhang J.: An

RBF-Based Reparameterization Method for Constrained Texture Map-

ping. IEEE TVCG 18, 7, 2012, 1115 –1124.

[YSS∗12] Yoo S. W., Seong J.-K., Sung M.-H., Shin S. Y., Cohen E.: A

Triangulation-Invariant Method for Anisotropic Geodesic Map Computa-

tion on Surface Meshes. IEEE Trans. Vis. Comput. Graph. 18, 10, 2012,

1664–1677.

[ZG04] Zelinka S., Garland M.: Similarity-based surface modelling using

geodesic fans. In Proc. Symposium on Geometry Processing, 2004, pp. 204–

213.

[ZHLB10] Zhang M., Huang J., Liu X., Bao H.: A wave-based anisotropic

quadrangulation method. In Proc. SIGGRAPH 2010, 2010, pp. 118:1–

118:8.

Model Sources

The models used herein to demonstrate our techniques have been obtained from the

AIM@SHAPE repository, the Stanford 3D Scanning Repository, and the Image-based

3D Models Archive, Télécom Paris. The Guy model was initially created using Cosmic

Blobs® by Dassault Systèmes Solidworks Corp.

188

Publications
of Marcel Campen, 2009-2014

Marcel Campen, Leif Kobbelt: Dual Strip Weaving: Interactive Design of Quad Layouts

using Elastica Strips. In Proc. SIGGRAPH Asia, 2014.

Hans-Christian Ebke, Marcel Campen, David Bommes, Leif Kobbelt: Level-of-Detail

Quad Meshing. In Proc. SIGGRAPH Asia, 2014.

Marcel Campen, Leif Kobbelt: Quad Layout Embedding via Aligned Parameterization.

In Computer Graphics Forum, 33(8), 2014.

Marcel Campen, Martin Heistermann, Leif Kobbelt: Practical Anisotropic Geodesy. In

Proc. Eurographics Symposium on Geometry Processing, 2013.

David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, Leif Kobbelt:

Integer-Grid Maps for Reliable Quad Meshing. In Proc. SIGGRAPH, 2013.

Hans-Christian Ebke, David Bommes, Marcel Campen, Leif Kobbelt: QEx: Robust

Quad Mesh Extraction. In Proc. SIGGRAPH Asia, 2013.

Henrik Zimmer, Marcel Campen, Leif Kobbelt: Efficient Computation of Shortest Path-

Concavity for 3D Meshes. In Proc. IEEE Conference on Computer Vision and Pattern

Recognition, 2013.

Marco Attene, Marcel Campen, Leif Kobbelt: Polygon Mesh Repairing: An Application

Perspective. In ACM Computing Surveys, 45(2), 2013.

Marcel Campen, David Bommes, Leif Kobbelt: Dual Loops Meshing: Quality Quad

Layouts on Manifolds. In Proc. SIGGRAPH, 2012.

Henrik Zimmer, Marcel Campen, David Bommes, Leif Kobbelt: Rationalization of

Triangle-Based Point-Folding Structures. In Proc. Eurographics, 2012.

Henrik Zimmer, Marcel Campen, Ralf Herkrath, Leif Kobbelt: Variational Tangent

Plane Intersection for Planar Polygonal Meshing. In Proc. Advances in Architectural

Geometry, 2012.

Marcel Campen, Leif Kobbelt: Walking On Broken Mesh: Defect-Tolerant Geodesic

Distances and Parameterizations. In Proc. Eurographics, 2011.

Marcel Campen, Leif Kobbelt: Polygonal Boundary Evaluation of Minkowski Sums and

Swept Volumes. In Proc. Eurographics Symposium on Geometry Processing, 2010.

Marcel Campen, Leif Kobbelt: Exact and Robust (Self-)Intersections for Polygonal

Meshes. In Proc. Eurographics, 2010.

Darko Pavic, Marcel Campen, Leif Kobbelt: Hybrid Booleans. In Computer Graphics

Forum, 29(1), 2010.

Marcel Campen: Ein Framework für Geometrieverarbeitung basierend auf hybriden

Oberflächendarstellungen. In Informatik Spektrum, 33(1), 2010.

Marcel Campen: A Framework for Geometry Processing based on Hybrid Surface Rep-

resentations. In GI Lecture Notes in Informatics, Volume S-8, 2009.

