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Fig. 1. (Left) A coupled simulation using the elasticity model of Peer et al. [2018] and the viscosity model of
Takahashi et al. [2015] with Kernel Gradient Correction. In this simulation an elastic bunny is spun around
in a washing machine drum, which is filled with viscous soap and water. (Right) Viscous buckling being
observable when using Kernel Gradient Correction for the method of Takahashi et al. [2015]. This buckling
effect could not be observed for the non-corrected version using the same parameters.

Awell-known issue with the widely used Smoothed Particle Hydrodynamics (SPH)method is the neighborhood
deficiency. Near the surface, the SPH interpolant fails to accurately capture the underlying fields due to a lack
of neighboring particles. These errors may introduce ghost forces or other visual artifacts into the simulation.

In this work we investigate three different popular methods to correct the first-order spatial derivative
SPH operators up to linear accuracy, namely the Kernel Gradient Correction (KGC), Moving Least Squares
(MLS) and Reproducing Kernel Particle Method (RKPM). We provide a thorough, theoretical comparison in
which we remark strong resemblance between the aforementioned methods. We support this by an analysis
using synthetic test scenarios. Additionally, we apply the correction methods in simulations with boundary
handling, viscosity, surface tension, vorticity and elastic solids to showcase the reduction or elimination of
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common numerical artifacts like ghost forces. Lastly, we show that incorporating the correction algorithms in
a state-of-the-art SPH solver only incurs a negligible reduction in computational performance.
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Additional Key Words and Phrases: smoothed particle hydrodynamics, computer animation, moving least
squares, reproducing kernel particle method
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1 INTRODUCTION
Smoothed Particle Hydrodynamics established itself in the computer graphics community as an
essential method due to its flexibility in simulating various physical phenomena. Recent research
include the simulation of fluids, deformable solids, granular materials, snow and their interaction
with each other. As a meshless, Lagrangian method, SPH determines the required properties like
density or pressure by interpolating between unstructured sampling points which we call particles.
These particles represent a certain volume of the underlying continuum and thus also carry our
field quantities, which we need to solve the desired differential equations. The interpolated value is
determined by summation over neighboring particles weighted by their volume and by the so-called
kernel function which both together form the SPH shape function.
In practice, the SPH interpolation works well in densely sampled regions. However, in sparse

regions where there are less particles, the accuracy of the SPH interpolant may deteriorate. This
phenomenon is known as the neighborhood deficiency problem. Its origin lies in the shape function
employed by SPH, which fails to accurately restore the underlying fields if not enough particles
are present to meet the normalization condition of the kernel function. As a consequence, various
spurious boundary effects like ghost forces may appear if the inherent problem is not addressed.
These ghost forces can lead to visual artifacts, artificial damping or hinder a physical accurate
depiction altogether. These issues are especially prominent in the first-order derivatives from which
many forces are derived.
Different approaches have been proposed to address the neighborhood deficiency problem.

Among others, this includes the Kernel Gradient Correction which reweights the existing sampling
points to reduce the introduced error. Thus, it can be viewed as a correction function for the SPH
interpolant. Additionally, other interpolation methods have been included into the SPH pipeline
like Moving Least Squares or the Reproducing Kernel Particle Method. Usually, these are used as
drop-in replacements for the SPH interpolant.

In our work, we analyze three important interpolation methods for first-order derivatives, namely
Kernel Gradient Correction (KGC), Moving Least Squares (MLS) and Reproducing Kernel Particle
Method (RKPM). While many authors already employed these methods to, e.g., accurately capture
rotational motion, our work provides an in-depth comparison of the aforementioned methods. This
includes the following contributions:
• A mathematical investigation of KGC, MLS and RKPM as correction methods to the SPH
interpolant.
• A derivation of linear consistent, first-order SPH operators with the aforementioned methods.
• A reduction of visual artifacts stemming from the neighborhood deficiency in application
examples of boundary handling, viscosity, surface tension, vorticity and elastic solids with
negligible, additional computational effort.
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2 RELATEDWORK
Originally formulated by Gingold and Monaghan [1977], Smoothed Particle Hydrodynamics is
a meshless, Lagrangian simulation technique which was introduced into the field of computer
graphics by Desbrun and Gascuel [1996]. Since then, many physical effects have been successfully
simulated solely using SPH which include fluids [Bender and Koschier 2015; Ihmsen et al. 2014a],
highly viscous materials [Peer et al. 2015; Takahashi et al. 2015; Weiler et al. 2018], surface tension
effects [Akinci et al. 2013; Becker and Teschner 2007], granular materials [Alduán and Otaduy
2011; Ihmsen et al. 2013], snow [Gissler et al. 2020], turbulent flows [Bender et al. 2017], and elastic
solids [Kugelstadt et al. 2021; Peer et al. 2018]. An extensive overview over the current research in
SPH can be found in the State-of-the-Art reports of Ihmsen et al. [2014b] and Koschier et al. [2022].
While SPH works great for simulating the aforementioned effects, visual artifacts can occur

due to the error-prone interpolation in sparsely sampled regions. An overview of the errors
accompanying the different state-of-the-art SPH interpolants can be found in the work of Price
[2012]. Furthermore, Violeau and Fonty [2019] provide an investigation of the error introduced by
the smoothing in relation to the standard deviation of the kernel. To mitigate these issues, different
correction methods and alternative, meshless shape functions have been proposed. One approach
is to sample the void region and extrapolate the fluid’s properties on the new sampling points,
which is used by Schechter and Bridson [2012]. However, this method introduces a significant
computational overhead by the necessity to introduce and distribute additional particles instead of
just using the existing ones. Apart from the correction methods we will investigate in this work —
namely KGC, MLS & RKPM — there also exists Corrected SPH (CSPH) by Bonet and Lok [1999]
which directly corrects the kernel function instead of its gradient to be first-order consistent in a
similar manner as Liu et al. [1995] propose for RKPM. Constant rank MLS, also known as Shepard
interpolation [Shepard 1968], has been applied to the density computation in SPH by Reinhardt
et al. [2019]. Extensions have also been proposed like Generalized Moving Least Squares (GMLS)
[Atluri et al. 1999] to MLS and hermite RKPM [Liu et al. 1996] to RKPM. Finally, the works of
Belytschko et al. [1998] and Fries and Matthies [2004] provide a great overview over other meshless
approaches using the aforementioned shape functions. We focus on using the KGC, MLS & RKPM
since they have efficiently computable, linearized versions and can be directly integrated into the
SPH pipeline.

In computer graphics, many approaches already use the presented techniques. In SPH, MLS has
been used to correct the spurious interface artifacts towards particle-based boundaries [Akinci
et al. 2012]. Band et al. [2017] propose its application for the normal calculation of the boundary.
Thus, when a particle is close to the boundary, a prototype particle pattern can be constructed for a
smooth pressure force independent of the underlying particle sampling. Likewise, Band et al. [2018]
use MLS to extrapolate the fluid’s pressure onto boundary particles for a more accurate pressure
force. However, their method requires an additional neighborhood search on the boundary particles.
We will later show that MLS can be directly integrated into particle-based boundaries without the
need of prototype particle patterns or additional neighborhood information while retaining the
same advantages.

Spurious boundary effects also hinder the simulation of elastic solids and solid-fluid interaction
using SPH.Most authors employ KGC like in the works of Ganzenmüller [2015] and Peer et al. [2018].
These propose a linear elasticity model which uses a corrected kernel function for calculating
the deformation gradient using SPH. As we show later, KGC is used to eliminate ghost forces
appearing for rigid-body deformations like rotations. Likewise, Kugelstadt et al. [2021] apply the
same kernel gradient correction matrix to their corotated elasticity model. For the simulation of
snow, Gissler et al. [2020] follow another approach in advecting the deformation gradient through
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time. This requires the estimation of the velocity gradient which the authors correct using KGC as
well. Coupling fluids and solids, Joubert et al. [2020] also employ KGC to apply Neumann boundary
conditions to couple a DEM simulation with SPH using pressure fields.

Lastly, MLS and RKPM have already been used in conjunction with other discretization methods
for simulating various effects in computer animation. Müller et al. [2004] use MLS for the simulation
of deformable solids and incorporate effects like melting. Pauly et al. [2005] extend this model to
allow the simulation of fracturing. Additionally, Adams and Wicke [2009] provide a tutorial on
meshless methods which focuses on the applications of MLS and comparison to SPH. Outside the
research of SPH, first- and second-order MLS has been used by Wang et al. [2020] for the simulation
of surface tension. Hu et al. [2018] extend the Material Point Method (MPM) with MLS to simulate
effects like cutting and fracturing while being faster than traditional MPM. Finally, Chen et al.
[2020] use RKPM with a Galerkin discretization for the simulation of various effects like wetting,
fracturing, mixing and for the simulation of snow and deformable solids.

3 SPH DISCRETIZATION
In this paper we are interested in the simulation of physical phenomena using Smoothed Particle
Hydrodynamics. We will introduce SPH at the example of incompressible fluids and in this context
discuss its issues at the free surface. Note that these effects also appear when simulating, e.g. ,
deformable solids which we will also analyze over the course of this paper.
For the simulation of free-surface flows, we will employ the Navier-Stokes equations as our

mathematical model. These consist of the continuity equation and the momentum equation. The
former is given for incompressible fluids by

𝐷𝜌

𝐷𝑡
= −𝜌∇ · v = 0, (1)

where 𝜌 is the density of the fluid and v the velocity. Further, Eq. (1) is given in Lagrangian
coordinates, thus 𝐷

𝐷𝑡
denotes the material derivative. The second Navier-Stokes equation can be

derived from the Cauchy momentum equation by inserting the stress tensor for Newtonian fluids

𝜌
𝐷v
𝐷𝑡

= ∇ · P + f (2)

P = 𝑝I + 2𝜇E (3)

E =
1
2

(
∇v + (∇v)𝑇

)
. (4)

Here P denotes the Piola-Kirchhoff stress tensor, f external body forces, 𝑝 the internal pressure, 𝜇
the dynamic viscosity and E the viscous strain rate tensor. Inserting Eq. (3) into Eq. (2) yields the
well-known second Navier-Stokes equation for incompressible fluids

𝐷v
𝐷𝑡

= −∇𝑝
𝜌
+ 𝜈∇2v + f

𝜌
, (5)

where 𝜈 = 𝜇/𝜌 is the kinematic viscosity. The advection of the fluid is governed by the acceleration
terms on the right hand side of Eq. (5), which represent from left to right the pressure force, the
viscous force and external forces like gravity.

For simulating the fluid flow according to Eqs. (1) and (5), we use Smoothed Particle Hydro-
dynamics (SPH) [Gingold and Monaghan 1977]. Discretizing the continuum, SPH samples the
desired domain by particles which represent the body’s volume. Each particle 𝑖 contains data like
mass𝑚𝑖 , density 𝜌𝑖 or position x𝑖 . A quantity 𝐴 for particle 𝑖 can be determined by using the SPH
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interpolation
⟨𝐴 (x𝑖 )⟩ =

∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

𝐴
(
x𝑗

)
𝑊

(
x𝑖 − x𝑗 , ℎ

)
. (6)

In Eq. (6), the value of 𝐴 (x𝑖 ) is determined as the weighted sum of the property 𝐴 at neighboring
particle positions x𝑗 , where the weighting is determined by the product of the volume the particle
represents, i.e. 𝑚 𝑗

𝜌 𝑗
, and the kernel function𝑊

(
x𝑖 − x𝑗 , ℎ

)
. The latter can be understood as a Gaussian-

like function with smoothing length ℎ.N𝑖 denotes the set of particles which are inside the compact
support region of particle 𝑖 which is called the neighborhood. In the following, we will use the
abbreviations 𝐴𝑖 = 𝐴 (x𝑖 ) and𝑊𝑖 𝑗 =𝑊

(
x𝑖 − x𝑗 , ℎ

)
.

Note that apart from the density, which is usually computed using Eq. (6), the Navier-Stokes
equations (see Eqs. (1) and (5)) and most of the employed non-pressure forces (e.g., surface tension
forces) predominantly contain derivative terms. Focusing on the spatial derivative operators, the
SPH interpolant of the gradient of a property 𝐴 is given by

⟨∇𝐴𝑖⟩ =
∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

𝐴 𝑗∇𝑊𝑖 𝑗 . (7)

Similarly, one can derive the divergence and curl operator in the same fashion [Koschier et al. 2019].
The SPH gradient gives a good estimate for densely sampled regions as Koschier et al. [2019]

show, but at sparse regions, e.g. near the free surface, the lack of particles in the neighborhood
reduces the interpolation accuracy. While this is hardly a problem for most SPH simulations, there
are use cases where neglecting the neighborhood deficiency problem can lead to ghost forces and
therefore to visual artifacts. Mathematically, one can derive the interpolation accuracy according
to Price [2012] by using a Taylor expansion of 𝐴 𝑗 around x𝑗 in Eq. (7):

∇𝐴𝑖 ≈ ⟨∇𝐴𝑖⟩ =
∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

𝐴𝑖∇𝑊𝑖 𝑗 +
∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

𝜕𝐴𝑖

𝜕x𝑖

𝑇 (
x𝑗 − x𝑖

)
∇𝑊𝑖 𝑗

+ O
(
| |x𝑗 − x𝑖 | |2

)
.

(8)

From Eq. (8), it becomes apparent that in order to guarantee an accurate interpolation estimate, the
first and last term of the right hand side must vanish while the middle term should equal ∇𝐴𝑖 . The
interpolation is called 𝑘-th order consistent if it is exact for an input field containing a polynomial
with maximum degree of 𝑘 . Analyzing Eq. (8), Eq. (7) may not even be 0-th order consistent
depending on the choice of the kernel function and the particle arrangement. By enforcing∑︁

𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

𝐴𝑖∇𝑊𝑖 𝑗 = 0 (9)

one can eliminate the constant error, which can be done by subtracting Eq. (9) from Eq. (7), which
yields the so-called difference formula

∇𝐴𝑖 = ⟨∇𝐴𝑖⟩ −𝐴𝑖 ⟨∇1⟩ =
∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

(
𝐴 𝑗 −𝐴𝑖

)
∇𝑊𝑖 𝑗 . (10)

Eq. (10) works well in practice and improves the accuracy.
Another prominent alternative to Eq. (10) is the symmetric formula

∇𝐴𝑖 = 𝜌𝑖

∑︁
𝑗∈N𝑖

𝑚 𝑗

(
𝐴𝑖

𝜌2
𝑖

+
𝐴 𝑗

𝜌2
𝑗

)
∇𝑊𝑖 𝑗 . (11)

As Price [2012] shows, Eq. (11) has the advantage of conserving linear and angular momentum as
well as energy.
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4 LINEAR CONSISTENT CORRECTION METHODS
4.1 Correcting the SPH interpolant
In the following we investigate correcting SPH with the approaches KGC, MLS and RKPM which
aim to reduce the errors at the free surface introduced by the classic SPH interpolation. In detail,
SPH uses the shape function

ΦSPH
𝑗 (x𝑖 ) =

𝑚 𝑗

𝜌 𝑗

𝑊𝑖 𝑗 (12)

for computing interpolated values 𝐴𝑖 =
∑

𝑗∈N𝑖
𝐴 𝑗Φ

SPH
𝑗
(x𝑖 ). However, Eq. (12) fails to build a

partition of unity as shown by Dilts [1999]. Thus, SPH categorically underdetermines values near
the boundary. This introduces spurious boundary effects into the simulation which mostly manifest
themselves as ghost forces. The previously mentioned correction algorithms focus on correcting or
replacing the basis functions to achieve a partition of unity with linear consistency for the gradient
operators. One can reformulate the SPH gradient using its shape function as:

∇𝐴𝑖 =
∑︁
𝑗∈N𝑖

𝐴 𝑗∇ΦSPH
𝑗 (x𝑖 ) (13)

∇ΦSPH
𝑗 (x𝑖 ) =

𝑚 𝑗

𝜌 𝑗

∇𝑊𝑖 𝑗 . (14)

Thus, we can apply many shape functions of other meshless methods as drop-in replacements for
the SPH interpolant as long as we can formulate the gradient in the same fashion. Furthermore, we
can also write the difference (Eq. (10)) and symmetric formula (Eq. (11)) using shape functions

∇𝐴𝑖 =
∑︁
𝑗∈N𝑖

(
𝐴 𝑗 −𝐴𝑖

)
∇Φ𝑗 (x𝑖 ) (15)

∇𝐴𝑖 = 𝜌𝑖

∑︁
𝑗∈N𝑖

𝑚 𝑗

(
𝐴𝑖

𝜌 𝑗

𝑚 𝑗
∇Φ𝑗 (x𝑖 )
𝜌2
𝑖

−
𝐴 𝑗

𝜌𝑖
𝑚𝑖
∇Φ𝑖

(
x𝑗

)
𝜌2
𝑗

)
. (16)

Note that we derived Eq. (16) to be symmetric and thus it conserves linear and angular momentum.
As possible shape functions, we will employ KGC for correcting the original SPH interpolant and
MLS and RKPM as replacements.

4.2 Linear consistent shape functions
4.2.1 Kernel Gradient Correction. The kernel gradient correction as proposed by Bonet and Lok
[1999] aims to eliminate the linear error in SPH formulations while also preserving angular mo-
mentum. Analyzing Eq. (8), one can see that for linear accuracy the middle term of the right hand
site should be equal to ∇𝐴𝑖 . The corrected interpolant is based on enforcing this condition by
multiplication of the kernel with the matrix L defined by

L (x𝑖 ) =

∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

(
x𝑗 − x𝑖

)
⊗ ∇𝑊𝑖 𝑗


−1

. (17)

This yields a first-order consistent shape function gradient ∇ΦKGC compliant to Eq. (14)

∇ΦKGC
𝑗 (x𝑖 ) =

𝑚 𝑗

𝜌 𝑗

L𝑖∇𝑊𝑖 𝑗 . (18)

In 3D, the kernel gradient correction requires to store a 3 × 3-matrix per particle. Furthermore, a
matrix inversion is required which fails if the matrix in Eq. (17) becomes singular. This is usually
the case if the particles are arranged in a plane or a line or for single particles in, e.g., splashes.
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An approach for tackling this issue which works well in practice is to perform the inversion only
on the non-singular matrix spanning its associated subspace. Therefore, we use a singular value
decomposition and only calculate the reciprocal values for singular values 𝜎 which are bigger than
a threshold 𝜀. If a singular value is smaller than 𝜀, then we replace it with a 1 thus leaving the
corresponding directions uncorrected.

4.2.2 Moving Least Squares. First introduced by Lancaster and Salkauskas [1981], Moving Least
Squares replaces the error-prone interpolants by a shape function which form a partition of unity.
An advantage of MLS over SPH is that the interpolant can be derived to have the desired consistency
given the dimension of the polynomial basis functions b. Thus, even in sparsely sampled regions,
MLS can reconstruct a reasonable solution. MLS has been widely adopted in the graphics community
by many authors [Adams and Wicke 2009; Band et al. 2018; Hu et al. 2018; Müller et al. 2004].

In detail, the MLS interpolant of a property 𝐴 can be derived as

A𝑖 =
∑︁
𝑗∈N𝑖

ΦCMLS
𝑗 (x𝑖 ) A𝑗 (19)

ΦCMLS
𝑗 (x𝑖 ) =𝑊𝑖 𝑗b (x𝑖 )𝑇 M (x𝑖 ) b

(
x𝑗

)
(20)

M (x𝑖 ) =

∑︁
𝑗∈N𝑖

𝑊𝑖 𝑗b
(
x𝑗

)
b
(
x𝑗

)𝑇 
−1

, (21)

where ΦCMLS
𝑗 denotes the (classic) MLS weighting function and M the so-called momentum matrix.

Note that𝑊𝑖 𝑗 denotes the same kernel function as for SPH. For linear consistency in 3D, the
polynomial basis is given by b (x𝑖 ) = [1 𝑥𝑖 𝑦𝑖 𝑧𝑖 ], where x𝑖 = (𝑥𝑖 𝑦𝑖 𝑧𝑖 )𝑇 .

Similarly to SPH, the gradient operator can be computed by taking the gradient of the weighting
function:

∇A𝑖 =
∑︁
𝑗∈N𝑖

∇ΦCMLS
𝑗 (x𝑖 ) A𝑇

𝑗 . (22)

The lengthy expression for the gradient of the MLS shape function as well as the MLS interpolants
for divergence and curl can be derived from Eq. (19) and found in the work of Adams and Wicke
[2009].
Computing the MLS gradient requires a substantial amount of operations and therefore is

computationally expensive. Thus for computer graphics, Müller et al. [2004] propose a linear
consistent alternative:

∇A𝑖 = K (x𝑖 )
∑︁
𝑗∈N𝑖

𝑊𝑖 𝑗

(
A𝑗 − A𝑖

)
x𝑖 𝑗 (23)

K (x𝑖 ) =

∑︁
𝑗∈N𝑖

𝑊𝑖 𝑗x𝑖 𝑗x𝑇𝑖 𝑗


−1

, (24)

where x𝑖 𝑗 = x𝑖 −x𝑗 . Both versions of MLS in Eqs. (22) & (23) visually yield the same result for linear
accuracy. Thus, for the rest of this work we will only investigate the latter version for performance
reasons. Its shape function gradient ∇ΦMLS is given by:

∇ΦMLS
𝑗 = −K (x𝑖 ) x𝑖 𝑗𝑊𝑖 𝑗 . (25)

4.2.3 Reproducing Kernel Particle Method. Instead of replacing the SPH interpolant completely,
the Reproducing Kernel Particle Method by Liu et al. [1995] can be viewed as an extension to the
classic SPH formulation. Based on the wavelet analysis of SPH, the authors suggest a corrected
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kernel function in a continuous sense. Discretizing it and choosing a polynomial basis yields the
(classic) RKPM interpolation

A𝑖 =
∑︁
𝑗∈N𝑖

ΦCRKPM
𝑗 (x𝑖 ) A𝑗 (26)

ΦCRKPM
𝑗 (xi) =

𝑚 𝑗

𝜌 𝑗

𝑊𝑖 𝑗b (x𝑖 )𝑇 N (x𝑖 ) b
(
x𝑗

)
(27)

N (x𝑖 ) =

∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

𝑊𝑖 𝑗b
(
x𝑗

)
b
(
x𝑗

)𝑇 
−1

. (28)

According to Fries and Matthies [2004], RKPM offers the same advantages as MLS. Note that the
choice of nodal volumes 𝑉𝑗 is free in RKPM. For seamless integration into the SPH pipeline, we
choose it to be the same as the SPH volume. The same considerations for stability and the derivative
operators as for MLS also apply to RKPM. Additionally, we derive the same linearized formulation
for the gradient as we did for MLS. To our knowledge, this formulation has not been used in
computer graphics and offers the same performance benefits while still being linearly correct as
we will see later. Analogous to the derivation of Müller et al. [2004] we get

∇A𝑖 = J (x𝑖 )
∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

𝑊𝑖 𝑗

(
A𝑗 − A𝑖

)
x𝑖 𝑗 (29)

J (x𝑖 ) =

∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

𝑊𝑖 𝑗x𝑖 𝑗x𝑇𝑖 𝑗


−1

, (30)

which again is our preferred option for linear consistent interpolation and what we will investigate
in the following sections. Incorporating it into Eq. (13) yields

∇ΦRKPM
𝑗 = −J (x𝑖 )

𝑚 𝑗

𝜌 𝑗

x𝑖 𝑗𝑊𝑖 𝑗 . (31)

4.3 Comparison of KGC, MLS & RKPM
Inserting these shape functions gradients to, e.g., the difference formula in Eq. (10) directly yields a
first-order consistent solution. Taking a deeper look at the correction matrices L, K and J for KGC,
MLS and RKPM in Eqs.(17), (24) and (30), respectively, one can directly draw parallels between the
different formulations.

First, when comparing RKPM and MLS, we see that they only differ by the volume factor used in
SPH, i.e. 𝑉𝑖 = 𝑚𝑖

𝜌𝑖
. Note that we explicitly chose to use the standard SPH volume since the original

formulation of RKPM of Liu et al. [1995] leaves the question for nodal volumes open. We can also
choose 𝑉𝑖 = 1 which results in MLS and RKPM to be identical. In fact, Aluru [2000] denotes the
following. For any collocation method — which SPH belongs to as well — the nodal volumes can be
chosen completely arbitrarily since they do not deteriorate the solution. When using different nodal
volumes both methods will yield different corrections, but they still yield linear correct results.

Second, we compare KGC to RKPM. Inspecting Eqs. (30) and (17), they differ in the computation
of the kernel gradient. While KGC employs the standard kernel gradient ∇𝑊𝑖 𝑗 , RKPM uses a first-
order approximation, i.e. ∇𝑊𝑖 𝑗 ≈ x𝑖 𝑗𝑊𝑖 𝑗 . This is not a significant change since we strive for linear
correctness anyway and the approximation as well as the kernel gradient both point in exactly the
same direction. Thus, both methods also correct the gradient in a similar way.
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Fig. 2. Interpolation errors when computing the gradient of a linear (Fig. 2a) and non-linear velocity field
(Fig. 2b). Each subfigure shows the following: Left: 2D plot of the velocity field vrot. / vtrigonom. . Middle:
Frobenius norm of the error between the analytical solution and the results of the difference formula (Eq. (10)).
Right: Frobenius norm of the error between the analytical solution and the results of the corrected difference
formula (Eq. (15)).

Table 1. Timings for the computation of the correction matrices 𝑇mat and the evaluation of the gradient 𝑇grad
of 1 million particles using the difference formula with SPH, KGC and the classic and linearized versions of
MLS and RKPM.

SPH KGC CMLS MLS CRKPM RKPM

𝑇mat [ms] − 11.23 28.98 11.29 29.18 12.31
𝑇grad [ms] 12.08 13.00 41.95 12.42 44.80 13.94

Conclusively, all methods perform equally well from a theoretical viewpoint. Although KGC, MLS
and RKPM all yield slightly different results for correcting the underlying fields, in our experiments
they all produced mathematically similar and visually indistinguishable results.
To validate the effectiveness of the aforementioned methods, we compare them in a synthetic

scenario. This consists of a square domain filled with particles arranged in a dense, square lattice.
We use the difference formula to calculate the values of the gradient of different velocity fields
∇v (𝑥,𝑦).

First, we analyze the rotational field vrot. (𝑥,𝑦) = (−𝑦, 𝑥)𝑇 depicted in Fig. 2a. As already outlined
by Weiler et al. [2018], SPH fails to accurately reconstruct the field at the boundaries, which can be
seen from the plotted error. Using KGC the underlying velocity field can be perfectly recreated up
to numerical precision. Applying MLS or RKPM yields similar results and validates the first-order
correctness of the approaches.

Second, wewant to investigate whether the correctionmethods also offer an advantage for higher-
order functions since fluid behavior is usually highly non-linear. Thus, we use vtrigonom. (𝑥,𝑦) =
(cos(2𝑥),− sin(3𝑥) + cos(𝑦)) which can be seen in Fig. 2b. Comparing the results of the standard
SPH interpolant with the corrected one using KGC, one can remark that the errors at the boundary
are drastically reduced. Still, there remains a small, higher-order error at the boundary. Likewise,
using the proposed MLS or KGC variants produce similar results. For further reducing the error at
the boundary one would need to use a higher-order interpolation method. These could be achieved
by using classic MLS as in Eq. (19) or RKPM in Eq. (26) with higher-order polynomial basis functions
at the cost of additional computational effort.

Note that for the linear consistency, the classic MLS and RKPM approaches and their linearized
versions produce comparable results. However, in terms of runtime, the classic formulations of MLS
and RKPM are expected to be significantly slower than their linearized equivalents. We benchmark
their performance using a synthetic scenario consisting of a cube sampled with 1 million particles
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Fig. 3. Normal computations of an irregularly sampled boundary. Top: SPH normal computation using Eq. (33).
Bottom: Corrected normal computation using MLS.

arranged in a regular cubic lattice. The average timings for evaluating the gradient computation
for all particles using the difference formula in Eq. (10) and its corrected versions can be seen in
Tab. 1. CMLS is 3.22 times slower than the linearized MLS and CRKPM is 3.61 times slower than
the linearized RKPM. Additionally, we remark that there is hardly any runtime difference between
KGC, MLS and RKPM both in terms of the matrix computation and the gradient evaluation. In
particular, the gradient evaluation is even not significantly more expensive than the standard SPH
interpolant.

Overall, our analysis shows that for correcting the linear error all investigated methods perform
equally well. This result also corresponds to our mathematical investigation which shows that all
corrections work in a similar fashion.

5 APPLICATIONS
Apart from theoretical and mathematical improvements we analyzed in the previous section, we
now investigate the visual benefits of correcting the derivative operations in SPH to be first-order
correct. We show that correcting the errors arising through the neighborhood deficiency improves
visual fidelity in the application examples of boundary handling, viscosity, surface tension, vorticity
and elastic solids.

5.1 Boundary Handling
Different boundary handling methods have been proposed for SPH. These include particle-based
approaches [Adami et al. 2012; Akinci et al. 2012; Band et al. 2018, 2017] and implicit boundary
representations [Bender et al. 2019b; Koschier and Bender 2017]. A popular, particle-based approach
is given by Akinci et al. [2012]. Their method samples boundary models and rigid bodies with
particles which interact with the fluid by being included into the density and pressure force
computation. The authors derive the boundaries contribution to the pressure force as

f𝑝
𝑖←𝑘

= −Ψ𝑘
𝑝𝑖

𝜌2
𝑖

∇𝑊𝑖𝑘 , (32)

where 𝑘 denotes a boundary particle, Ψ𝑘 = 𝜌0𝑉𝑘 its pseudo-mass and𝑉𝑘 = 1/∑𝑘 ′𝑊𝑘𝑘 ′ the boundary
particle’s volume. While this directly allows for rigid-fluid coupling, using the same error-prone
SPH interpolant leads to artifacts in the computation. These errors become apparent when taking a
look at the direction of the pressure force contribution, which is indicated by the normal field. As
Band et al. [2017] derive from Eq. (32), the normal of the boundary is computed as

n𝑖 =
∑︁
𝑘

Ψ𝑘∇𝑊𝑖𝑘 . (33)

In a regularly ordered, symmetric scenario, SPH calculates the correct normal using Eq. (33), but
even a small misalignment or non-regular particle sampling of the boundary will lead to errors.
This behavior can be seen in Fig. 3 which depicts the computation of the normal of an exemplary
boundary sampling using Eq. (33). The introduced errors lead to a normal estimate deviating from
the correct normal of the boundary and thus create ghost forces leading to drift or bouncing [Bender
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et al. 2019b; Koschier and Bender 2017]. We now replace the SPH interpolation with the MLS shape
function. To account for the contributions of the boundary, we subsequently have to include the
boundary particles into the computation of the correction matrix Eq. (24) and the MLS interpolant .
As a linear, least-squares method, the MLS interpolation can be treated like fitting a hyperplane
through the boundary sampling. Since all particles of the boundary object lie in one plane, the
fit exactly equals the surface. Thus, the resulting normal direction also equals the normal of the
underlying geometry. To be specific, the accurate normal field in Fig. 3 is constant for any particle
on top of it. Since the corrected interpolants have linear consistency, we receive the correct normal
estimate.

Applying the shape function in Eq. (14) to Eq. (32) yields

f𝑝
𝑖←𝑘

= −𝜌0
𝑝𝑖

𝜌2
𝑖

∇Φ𝑘 (x𝑖 ) . (34)

On flat surfaces, this completely eliminates any non-physical drift or jumping introduced by the
particle-based sampling.

5.2 Viscosity
To simulate viscous flow, one needs to solve the viscous force in the second term of Eq. (5). There
are two state-of-the-art approaches in computing this force. These include either evaluating the
divergence of the viscous strain rate tensor, i.e. avisco = 2𝜈∇ · E [Takahashi et al. 2015] or directly
computing the Laplacian of the velocity field, i.e. avisco = 𝜈∇2v [Müller et al. 2003; Weiler et al.
2018]. Weiler et al. [2018] report that the former approach may introduce visual artifacts since the
strain rate tensor is often computed with an error-prone SPH formulation.

As an example, we will analyze the implicit, strain rate-based approach of Takahashi et al. [2015].
Their model solves the backward Euler equation for the current velocities advected by the viscous
acceleration. Let v∗𝑖 denote the velocities after applying external forces like gravity, then the implicit
system is given by

v(𝑡+Δ𝑡 )
𝑖

= v∗,(𝑡+Δ𝑡 )
𝑖

+ 2𝜈 Δ𝑡
𝜌𝑖
∇ · E𝑖

(
v(𝑡+Δ𝑡 )

)
, (35)

where the viscous stress rate tensor E is given by Eq. (4). To fully build the linear system, ∇ · E
and ∇v must be determined for which the authors employ the symmetric and difference formula,
respectively:

∇ · E𝑖 = 𝜌𝑖

∑︁
𝑗∈N𝑖

𝑚 𝑗

(
E𝑖
𝜌2
𝑖

+
E𝑗

𝜌2
𝑗

)
∇𝑊𝑖 𝑗 (36)

∇v𝑖 =
𝑚 𝑗

𝜌 𝑗

(
v𝑗 − v𝑖

)
∇𝑊𝑇

𝑖 𝑗 . (37)

Both equations are subject to errors at the free surface as we have shown in Sec. 4.1. Using the
corrected formulations in Eqs. (16), (15) and applying them on Eqs. (36) and (37) yields

∇ · E𝑖 = 𝜌𝑖

∑︁
𝑗∈N𝑖

𝑚 𝑗

(
𝜌 𝑗E𝑖∇Φ𝑗 (x𝑖 )

𝑚 𝑗𝜌
2
𝑖

−
𝜌𝑖E𝑗∇Φ𝑖

(
x𝑗

)
𝑚𝑖𝜌

2
𝑗

)
(38)

∇v𝑖 =
∑︁
𝑗∈N𝑖

(
v𝑗 − v𝑖

)
∇Φ𝑗 (x𝑖 )𝑇 . (39)

Since both formulations are first-order consistent, they eliminate all ghost forces introduced by
rotational motion, which makes the resulting model momentum conserving. Additionally, the
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double smoothing employed by Takahashi’s model propagates and amplifies any error present after
the first interpolation. Further reducing these errors by the correction reduces numerical artifacts
like tearing which have also been reported by Weiler et al. [2018].

5.3 Surface Tension
Another important phenomena to capture while simulating fluids is surface tension. This effect is
particularly interesting for simulating fluid droplets, soap bubbles or adhesion effects between a
fluid and a solid surface. Since surface tension forces arise near the free surface, the neighborhood
deficiency problem also affects their computation using SPH. Many popular approaches use the
normal field for calculation [Akinci et al. 2013; He et al. 2014; Morris 2000], which is needed to,
e.g., calculate the mean curvature [Müller et al. 2004]. As we have seen in Sec. 5.1, the normal
field computation using SPH is particularly error-prone. Here, we will analyze the surface energy
approach at the example of the method of He et al. [2014]. This uses the surface tension energy
created by the local surface area approximation:

𝐸surface =

∫
𝑉

𝜅

2
∥ ∇𝑐 ∥2 𝑑𝑉 , (40)

where 𝜅 denotes the surface tension coefficient and 𝑐 the color field, i.e. a field that is 1 inside and 0
outside the fluid domain. The authors propose to compute the color field as the interpolation of the
constant field of unity:

𝑐𝑖 =
∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

𝑊𝑖 𝑗 . (41)

Note that this representation of the color field relies on the neighborhood deficiency problem.
Taking the gradient of it is similar to calculating the normal with Eq. (33) and thus also inherits
all of its accompanying issues. Thus, the authors propose to include a renormalization factor in
computing the gradient:

∇𝑐𝑖 =
∑

𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗
𝑐 𝑗∇𝑊𝑖 𝑗∑

𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗
𝑊𝑖 𝑗

, (42)

which accounts for the missing contributions near the free surface. While this reweighting of the
particles helps to adjust for the missing contribution, the direction and the norms are still erroneous.
Finally, spatially deriving and discretizing Eq. (40) yields the surface tension force, for which the
authors use the following, symmetrized version:

fST𝑖 =
𝜅

2

∑︁
𝑗∈N𝑖

𝑚 𝑗

𝜌 𝑗

∥ ∇𝑐𝑖 ∥2 + ∥ ∇𝑐 𝑗 ∥2

2
∇𝑊𝑖 𝑗 . (43)

In summary, the model requires two SPH gradient operations which are both subject to errors
at the free surface. The authors try to mitigate these issues by the inclusion of an atmospheric
pressure computation. During the rest of this work, we will exclude this correction and focus on
correcting the underlying model by the introduced correction methods.

Similar to the computation of the boundary pressure force, the gradient of the color field can be
computed as

∇𝑐𝑖 =
∑︁
𝑗∈N𝑖

𝑐 𝑗∇Φ𝑗 (x𝑖 ) . (44)

Note that we exclude the renormalization factor used in Eq. (42) since the corrected shape functions
already account for missing particles. Thus, we achieve a linear accurate color field gradient which
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Fig. 4. Interpolation errors when computing ∇ × v of a linear velocity field. Left: 2D plot of the velocity
field vrot. . Middle: Vector norm of the error between the analytical solution and the results of the difference
formula (Eq. (46)). Right: Vector norm of the error between the analytical solution and the results of the
corrected difference formula (Eq. (47)).

also propagates less errors to the second interpolation. For the force formulation we use Eq. (13)
with the averaged norm of the neighboring color field gradients as in Eq. (43)

fST𝑖 =
𝜅

2

∑︁
𝑗∈N𝑖

∥∇𝑐𝑖 ∥2 +


∇𝑐 𝑗

2

2
∇Φ𝑗 (x𝑖 ) . (45)

These changes enable us to, e.g., recreate a fluid droplet in zero gravity without needing an additional
atmospheric pressure since we account for the neighborhood deficiency in the desired formulas.

5.4 Vorticity
Recent advancements in SPH also include the preservation and augmentation of turbulent motion
created by unsteady vorticies. These are needed since SPH suffers from numerical diffusion and
thus looses vorticity over time. Therefore, models have been proposed that employ an additional,
velocity adjustment based on the current vorticity [Liu et al. 2021; Peer and Teschner 2016] or
replace the stress tensor of the Navier-Stokes equations with a micropolar one [Bender et al. 2017].
Both models have in common that the vorticity 𝝎 is explicitly computed using SPH:

𝝎𝑖 = ∇ × v𝑖 =
1
𝜌𝑖

∑︁
𝑗∈N𝑖

𝑚 𝑗

(
v𝑖 − v𝑗

)
× ∇𝑊𝑖 𝑗 . (46)

Note that the vorticity directly relates to the angular velocity by a scalar factor. As Bender et al.
[2019a] denote, Eq. (46) and its corresponding symmetrically discretized formulation using Eq. (11)
are subject to errors at the free surface. With the introduced correction methods, we can account
for these errors by replacing the shape function with the linear accurate ones, which yields

∇ × v𝑖 =
∑︁
𝑗∈N𝑖

(
v𝑖 − v𝑗

)
× ∇Φ𝑖

(
x𝑗

)
. (47)

This is shown in Fig. 4.

5.5 Elastic Solids
Exchanging the Piola-Kirchhoff stress tensor P for fluids in Eq. (2) by

P = 2𝜇𝜺 + 𝜆tr(𝜺)I (48)

𝜺 =
1
2

(
F + F𝑇

)
− I, (49)

where 𝜀 is the Cauchy strain measure and F the deformation gradient, yields the formulation for
linear elastic materials. This enables us to simulate deformable solids using SPH. However, as
we have seen in the case of viscosity in Sec. 5.2 the inability of the SPH interpolant to capture
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rotational motion introduces the same ghost forces into the simulation of elastic solids. There have
been multiple methods proposed for elastic solids. Popular approaches include a corotated material
model which allows the usage of a linear material model for better computational efficiency. Since
extracting the rotation using solely SPH yields erroneous results, previous methods either compute
the rotation using shape matching [Becker et al. 2009] or extract it from the deformation gradient
while already applying KGC as a correction method [Kugelstadt et al. 2021; Peer et al. 2018]. We
will investigate the latter using the approach of Peer et al. [2018]. In particular, we investigate
which errors appear if the correction step is omitted.

In each time step, the authors extract the rotation from the deformation gradient by a polar
decomposition and then calculate the elastic force from the linear Cauchy strain measure using an
updated, co-rotated deformation gradient. Thus, for the first step the deformation gradient must be
calculated from the deviation of the rest configuration x0 to the current one x

F𝑖 =
∑︁
𝑗∈N0

𝑖

𝑉 0
𝑗

(
x𝑗𝑖

) (
∇𝑊 0

𝑖 𝑗

)𝑇
, (50)

where 𝐴0 denotes a property 𝐴 in rest configuration. Since Eq. (50) cannot capture rigid body
rotations, which requires first-order consistency, one can apply our shape functions which yields

F𝑖 =
∑︁
𝑗∈N0

𝑖

x𝑗𝑖∇Φ0
𝑗

(
x0𝑖

)𝑇
, (51)

from which the rotation matrix R can be successfully extracted. Next, the evaluation of the strain
measure requires the updated deformation gradient F∗𝑖 . A generalization of Peer et al.’s method
with the generalized corrected kernel gradients can be determined as

F∗𝑖 = I +
∑︁
𝑗∈N0

𝑖

(
x𝑗𝑖 − R𝑖x0𝑗𝑖

) (
R𝑖∇Φ0

𝑗

(
x0𝑖

) )𝑇
. (52)

With the evaluated strain measure, the Piola-Kirchhoff stress tensor can be evaluated for the final
force computation. Inserting Eq. (48) into Eq. (2) yields the elastic body force which the authors
discretize in accordance to Ganzenmüller [2015]. Using the corrected kernel gradients yields the
general formulation:

felastic𝑖 =
∑︁
𝑗∈N0

𝑖

(
P𝑖R𝑖∇Φ0

𝑗

(
x0𝑖

)
− P𝑗R 𝑗∇Φ0

𝑖

(
x0𝑗

))
. (53)

6 RESULTS
In this section we will analyze and compare the efficacy of applying any correction algorithm in
regard to the neighborhood deficiency problem. Thus, we provide practical insights by showcasing
the reduction of various spurious artifacts appearing in the computation of boundary handling,
viscosity, surface tension, vorticity and elastic solids. Furthermore, we show that the increased
runtime of computing the correction matrices is negligible in comparison to the whole SPH pipeline.

The following example scenes and benchmarks have been simulated on an AMD Ryzen Thread-
ripper PRO 5975WX CPU with 32 cores and 3.60 GHz equipped with 256 GB of RAM. Further, we
used the open-source SPH framework SPlisHSPlasH [Bender 2023], and the contained implementa-
tions of the previously presented methods, in conjunction with TreeNSearch [Fernández-Fernández
et al. 2022] for the neighborhood search. We also optimized the computation of the correction
algorithms using OpenMP for parallelization and AVX2 for vectorization. If not otherwise stated,
we employed Divergence-Free SPH (DFSPH) [Bender and Koschier 2017] as our pressure solver
and the viscosity model of Weiler et al. [2018] for every scene.
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Fig. 5. A grid of particles dropped on an inclined plane. Their movement is influenced by the particle-based
boundary handling in Eqs. (32) and (34). From left to right, the results are shown using the uncorrected and
corrected versions with KGC, MLS and RKPM, respectively. While the corrected versions compute the correct
normals, the uncorrected version introduces non-physical drift.

Fig. 6. A particle sampled cube placed in an external, rotational velocity field. Only the viscous force model
by Takahashi et al. [2015] affects the particle’s motion. From left to right: uncorrected, KGC, MLS, RKPM.
Only the uncorrected version introduces ghost forces which disintegrate the cube. The particles are shaded
according to the velocity magnitude, with increasing values from dark to light.

Grid Model. To showcase the efficacy of the corrected boundary pressure force in Sec. 5.1, we
analyze the trajectories of single fluid particles using Akinci’s boundary handling approach [Akinci
et al. 2012]. The test scene consists of fluid particles arranged in a 20 × 20 grid dropping onto an
inclined plane which can be seen in Fig. 5. Apart from itself, the neighborhood of each particle
consists of only boundary particles. As we have already outlined, the normal computation using
the standard SPH interpolant leads to tiny imperfections in the direction of the boundaries normals
which manifest themselves in drift and small particle jumps which can be seen in the leftmost
image. Applying any of the aforementioned correction algorithms yields a perfect recreation of the
flat surface and thus the grid model stays intact while sliding down. Note that we see no difference
between KGC, MLS and RKPM in the remaining images since although the correction methods all
work slightly different, the resulting plane normals are identical.

Rotating Cubes. In this experiment we showcase the effect of ghost forces caused by the neigh-
borhood deficiency. Thus, we placed a particle-sampled cube in a rotational velocity field and only
applied Takahashi et al.’s viscosity model which we analyzed and corrected in Sec. 5.2. Since the
cube is advected inside a linear velocity field, any linear errors introduced by the evaluation of the
gradient and the divergence operator will cause a force to be applied to the particles. Fig. 6 shows
the results of this experiment. As can be seen in the left most image, the uncorrected viscosity
model introduces non-physical drift which leads to a disintegration of the cube’s shape over time.
The corrected versions in the remaining images correctly reconstruct the underlying velocity field.
This yields a viscous strain rate which is zero and thus no force is applied during the simulation. As
a result for all corrected methods, the cube spins indefinitely while conserving angular momentum.

Buckling. This scene shows the buckling behavior exhibited by highly viscous fluids. We again
employ the model of Takahashi et al. [2015]. Note that the authors show that simulating the buckling
effect is entirely possible with their method. However, we deliberately chose a set of parameters and
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Fig. 7. Showcasing the buckling effect of highly viscous fluids using Takahashi et al.’s viscosity model. The
fluid on the left fails to buckle given the set of input parameters. Using, e.g., KGC as depicted in the right
image, can extend the range of admissible parameters by reducing the errors near the free surface. The
particles are shaded according to the velocity magnitude, with increasing values from dark to light.

Fig. 8. Droplet formation in zero gravity using the surface tension model of He et al. without atmospheric
pressure. The uncorrected version on the left suffers from artifacts through the double interpolation and the
erroneous normal estimation while the corrected version on the right successfully forms a sphere.

input geometry for which this effect fails to be simulated due to the errors arising at the free surface.
The buckling is dependent on the ability to fold the highly viscous fluid stream which includes
rotational motions. As we mentioned before, these get damped using an uncorrected model. Thus
by applying, e.g., KGC we can restore the buckling effect and thus extend the parameter range of
Takahashi et al.’s model. A comparison between corrected and uncorrected results can be seen in
Fig. 7.

Zero Gravity Droplet. In this experiment we show that we can form a water droplet in zero
gravity while using He’s surface tension model by solely using corrected SPH interpolants. The
original method — as we have discussed in Sec. 5.3 — includes a renormalization of the color field
gradient and an atmospheric pressure computation to reduce errors stemming from the free surface.
This allows the original authors to also simulate droplets as well as other surface tension effects.
However, omitting the additional, atmospheric pressure computation reveals the errors introduced
by the underlying SPH operators. Fig. 8 shows the uncorrected solution which indicates numerical
errors introduced by the erroneous color field gradient estimation as well as double interpolation.
Applying any correction algorithm significantly reduces these errors and thus permits the model
to form a sphere, even without atmospheric pressure.
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(a) Uncorrected (b) Corrected

Fig. 9. A spinning top is simulated using Peer et al.’s elasticity model with a high initial angular velocity. Not
accounting for the errors estimating the rotation matrix and in the force computation (a) stops the rotation
after a short time. Including KGC in the computations (b) lets the top spin indefinitely. The particles are
shaded according to the velocity magnitude, with increasing velocity values from dark to light.

Table 2. Average timings per step for the computation of the washing machine scene. This includes the
timings for the neighborhood search𝑇ns, the non-pressure forces𝑇np, the pressure solver𝑇p, the computation
of the correction matrices 𝑇mat and the total time for a single simulation step 𝑇total.

𝑇ns [𝑚𝑠] 𝑇np [𝑚𝑠] 𝑇p [𝑚𝑠] 𝑇mat [𝑚𝑠] 𝑇total [𝑚𝑠]
8.86 58.52 5.74 0.23 83.19

Spinning Top. While Peer et al. [2018] already show the influence of their co-rotated, corrected
kernel function, we are particularly interested in the function of the kernel gradient correction
applied throughout the model. Thus, we simulate a spinning top visible in Fig. 9 with and without
applying the kernel gradient correction. The results are depicted in Figs. 9a & 9b. When omitting
the correction, we notice that the top loses angular momentum and will eventually stop rotating.
The reason for this behavior is twofold. Firstly, the deformation gradient computed in Eq. (50) fails
to capture the rotational motion near the free surface. This leads to an erroneous, extracted rotation
matrix which secondly is propagated to the computation of the updated deformation gradient and
the force formulation. Altogether, the resulting ghost forces counteract the spinning motion which
violates the conservation of angular momentum. In contrast to the results of the aforementioned
investigations of Peer et al. [2018] and also Becker et al. [2009], the rotation of the elastic bodies
is not completely hindered since in densely sampled regions, the rotation matrix is still correctly
computed.

Washing machine. Finally, we showcase the corrected methods of Peer et al. [2018] and Takahashi
et al. [2015] in a coupled multi-phase simulation, as seen in Fig. 1. This simulation contains an
elastic bunny, viscous soap, water and a rotating washing machine drum. The bunny is dropped
into a pool of water and subsequently the washing machine starts rotating while water and
soap are continuously added. This shows that it is still possible to use the corrected methods in
complex and versatile ways. Furthermore, the additional computational overhead through the
matrix computation only accounts for 0.27% of the total runtime for this particular scenario as
can be seen in Tab. 2. Note that the computation is heavily dominated by the non-pressure force
evaluations. However, we notice that the computation of the correction matrices only take around
4% of the time of the pressure solver. With an average of 3.77 iterations for the constant density
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and 1 iteration for the divergence-free solver of DFSPH in this scene, we deduce that the overhead
of our first-order corrections is negligible in comparison to the full SPH simulation loop.

7 CONCLUSION & FUTUREWORK
We analyzed the benefits of correcting the spatial first-order derivatives using KGC, MLS and RKPM
up to linear consistency. In context of the neighborhood deficiency problem, we reduced the ghost
forces and numerical artifacts which usually appear when using the standard SPH interpolant.
Furthermore, we provided a thorough comparison showcasing the similarities between the different
approaches. Analyzing the corrections in different synthetic scenarios, we concluded that all
methods perform equally well in reducing the errors near the free surface, even for non-linear
fields. The application of the methods showed a significant improvement in visual fidelity. Finally,
we discovered that the additional overhead of computing the corrected interpolants in comparison
to the uncorrected ones is negligibly small.

Since the neighborhood deficiency problem is fundamentally linked to SPH, current and future
methods may benefit from adopting a linear consistent formulation. In that regard, our work
provides theoretical and practical insights when and how to apply any of the aforementioned
correction methods. Compared with replacing the erroneous interpolants with other meshless
methods like classic MLS, the presented methods can be easily integrated into the SPH pipeline
and do not require substantially more computational effort. However, investigating these methods
in the context of higher-order interpolants to further reduce the remaining artifacts appearing at
the free surface remains an interesting future research avenue to the graphics community.
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