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Abstract
Modeling contact between deformable solids is a fundamental problem in computer animation, mechanical design, and robotics.
Existing methods based on C0-discretizations—piece-wise linear or polynomial surfaces—suffer from discontinuities and irreg-
ularities in tangential contact forces, which can significantly affect simulation outcomes and even prevent convergence. In this
work, we show that these limitations can be overcome with a smooth surface representation based on Implicit Moving Least
Squares (IMLS). In particular, we propose a self collision detection scheme tailored to IMLS surfaces that enables robust and
efficient handling of challenging self contacts. Through a series of test cases, we show that our approach offers advantages over
existing methods in terms of accuracy and robustness for both forward and inverse problems.

CCS Concepts
• Computing methodologies → Physical simulation; Continuous simulation;

1. Introduction

Modeling contact between deformable objects is a fundamental
problem in science and engineering. It is at the heart of many ap-
plications in computer animation, mechanical design, and robotics.
The computer graphics community has made great strides in con-
tact detection and response over the past two decades. The state-of-
the-art is perhaps best reflected in the Incremental Potential Con-
tact (IPC) method by Li et al. [LFS∗20] that combines fail-safe
collision detection with implicit integration of contact forces based
on log-barrier penalty functions. This algorithm is able to gener-
ate compelling and stable animations for highly challenging con-
tact scenarios. Nevertheless, there are still limitations with existing
formulations that demand further investigation. Here we draw at-
tention to a particular and fundamental problem, i.e., the discon-
tinuities and irregularities in tangential contact forces induced by
non-smooth surface discretization.

Li et al. [LFS∗20] rely on per-primitive potentials that prevent
too close approach between vertex-triangle and edge-edge pairs.
To avoid discontinuities in contact forces, IPC allows for multi-
ple per-primitive potentials to be active simultaneously. While this
strategy yields smooth forces when contact points migrate from one
triangle to another, our analysis shows that the superposition of per-
primitive potentials leads to energy walls at element transitions that
resist tangential motion—even for the perfectly planar, frictionless
case. These erroneous forces degrade the accuracy of forward sim-
ulations and can even prevent convergence for inverse problems.

IPC addresses this problem using smoothly-clamped penalty
functions that allow multiple collision pairs for the same nodes to

Figure 1: We propose a new approach for robust and efficient con-
tact handling between deformable objects. Using smooth surface
representations, our method enables artefact-free contact forces
during sliding motion.
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be active simultaneously. While there are no contact force disconti-
nuities with this approach, our analysis shows that the superposition
of per-primitive potentials leads to energy walls at element transi-
tions that resist tangential motion, even for the perfectly planar,
frictionless case. These erroneous forces degrade the accuracy of
forward simulations and can even prevent convergence for inverse
problems.

In this work, we show that an alternative approach for de-
formable contact modeling based on smooth surface representa-
tions eliminates contact force discontinuities and irregularities. Our
method builds on Implicit Moving Least Squares (IMLS), a mesh-
less representation that describes smooth surfaces as the zero lev-
elset of an implicit function defined through position and normal
data. While IMLS surfaces have been explored for contact han-
dling before [LFP21], we propose a novel self collision detection
scheme tailored to IMLS surfaces that enables robust and efficient
handling of challenging self contacts. As we show through a se-
ries of test cases, our smooth representation offers advantages over
existing methods based on C0-discretizations for both forward and
inverse problems.

In summary, our work makes the following contributions:

• We identify a fundamental limitation of contact handling meth-
ods for deformable bodies that rely on C0-discretizations. In par-
ticular, we show that spurious tangential forces can significantly
affect the relative motion between contacting surfaces.

• We propose a self collision detection scheme for IMLS-based
surfaces that eliminates false positives using geodesic carving.

• We introduce a two-stage continuous collision detection scheme
for IMLS-based surfaces that combines rapid quadratic distance
tests with 1D nonlinear minimization for robust and efficient in-
tersection computation.

• We demonstrate that contact handling with our IMLS-based ap-
proach eliminates force discontinuities and other irregularities.

We furthermore propose a series of forward and inverse problems to
analyze and quantify contact force irregularities. Using these tests,
we show that existing methods based on C0-discretizations can sig-
nificantly alter simulation outcomes and may even prevent conver-
gence while our smooth formulation eliminates these problems.

2. Related Work

2.1. Contact Modeling in Graphics

Handling contact is a fundamental problem in graphics. Early re-
search primarily focused on contacts between rigid bodies [Bar91,
MW88, MC95, KEP05, KSJP08, KP03]. To handle contacts be-
tween deformable bodies, most approaches relied on impulses, i.e.,
velocity-level corrections for contacting primitive pairs [BFA02,
HVTG08]. However, as a post process to time stepping, these im-
pulses do not result in equilibrium states. Instead of using quadratic
penalty potentials, Harmon et al. [HVS∗09] proposed an asyn-
chronous time stepping strategy with layered collision potentials,
which are infinitely stiff in the limit. While accurate and robust,
their explicit time stepping can lead to extremely long computa-
tion times. Another way of coupling contact forces and dynam-
ics is through constraint-based approaches, which often rely on

linear complementarity problems (LCP) [CPS09]. Kaufman et al.
[KSJP08] reduce the formulation for rigid bodies and reduced-
order deformable objects to a pair of coupled quadratic pro-
gram problems and solve them iteratively using staggered pro-
jections. More recently, Li et al. [LFS∗20] introduce a fully im-
plicit treatment of contact using smoothly clamped barrier func-
tions. This incremental potential contact (IPC) paradigm has been
generalized to handle co-dimensional objects [LKJ21], rigid bod-
ies [FLS∗21,LKL∗22], and reduced models [LYK∗21]. While IPC
enjoys significantly improved robustness, we show that the su-
perposition of per-element potentials leads to spurious tangential
forces that can significantly affect simulation outcomes.

2.2. Frictional Contact

Accurate modeling of friction is of paramount importance in many
applications and has been extensively studied in the graphics com-
munity for both forward modeling [Dav20,VJ19,LDN∗18,LFP21]
and inverse design [LDW∗22, GHZ∗20]. However, the inherently
non-smooth nature of the governing Maximal Dissipation Princi-
ple [GRP91, Mor11] poses significant challenges for conventional
Newton-type integrators. Consequently, a variety of customized
second-order solvers have been developed, such as the Non-smooth
Newton solvers [AC91,DBDB11,MEM∗19] and different iterative
strategies [JM92, KSJP08, OTSG09, KTS∗14]. Our method incor-
porates friction using a smooth model with a lagged update of con-
tact data similar to IPC. We show that even for frictional contact,
the spurious tangential forces from IPC can induce macroscopic
artifacts and lead to less accurate behavior.

2.3. Contact Problems in Engineering

Contact problems have been extensively studied by the engineer-
ing community [WZ04, PHW19]. Perhaps the most widely used
method is the Node-to-segment (NTS) approach [HTS∗76, ZD09].
However, the contact force discontinuities arising from simple NTS
methods are well-known and alternatives have been explored. Us-
ing an integral formulation that extends over the entire region of
contact, Mortar methods [MMP88, Ber89] are arguably the most
accurate approaches that exist today. We refer to the work by De
Lorenzis et al. [DLWW17] for an overview and comparisons. For
all its accuracy and robustness, the complexity of Mortar meth-
ods is substantial. Integrating this approach into an inverse prob-
lem solver seems all but intractable. A more recent work by Elandt
et al. [EDSR19] computes contact forces between nominally rigid
bodies using continuous pressure fields. These fields are precom-
puted for each object and used at run time to determine approxi-
mate contact surfaces. While this approach offers fast computation
of continuous contact forces, it requires interpenetration between
objects and cannot properly capture the mechanical properties of
elastic materials.

2.4. Contacts with Implicit Representations

Implicit representations have found widespread applications in var-
ious areas of computer graphics [TO02, SOS04] and have emerged
as a valuable tool for handling contact. Previous work has lever-
aged signed distance fields (SDFs) [JBS06, FPRJ00, KDBB17]
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for contact handling between deformable objects [FL01, Gas93]
and skinning techniques [MZS∗11, VBG∗13, VGB∗14]. Macklin
et al. [MEM∗20] further improve the robustness of this approach
by replacing point-based sampling with a method that finds the
closest point between the SDF iso-surface and a given mesh ver-
tex. However, one limitation of SDFs defined on polygonal meshes
is their potential discontinuity across element boundaries, unless
parallel edges are specifically considered [LKJ21]. Inspired by
Larionov et al. [LFP21], we use Implicit Moving Least Squares
(IMLS) [Lev04, Kol08, OGG09] to construct C2-continuous sur-
faces whose smooth normal fields eliminate contact force irregu-
larities. We show through experiments that this approach leads to
higher accuracy for both forward simulation and inverse design.

3. Deformable Contact with Piece-wise Linear
Representations

We consider contact problems between deformable bodies Bk

whose surfaces are given as triangle meshes. Let xt denote the vec-
tor of nodal positions describing the configuration Bk for a given
time t. We use implicit Euler for stable time integration and mini-
mize the corresponding per step potential [MTGG11]

xt+1 = argmin
x

E(x) = 1
h (x−xt)

TM 1
h (x−xt)

+Eelastic(x)+xTfe +Econtact(x),
(1)

where M is the mass matrix, Eelastic and Econtact are elastic and
contact potentials, respectively, and h is the step size.

We follow standard practice and use linear tetrahedron finite el-
ements with a Neo-Hookean material to model the elastic potential
of solid bodies [KE22]. For modeling contact between deformable
objects, piece-wise linear surfaces are arguably the most commonly
used representation. However, constructing contact forces with suf-
ficient smoothness and regularity proves particularly challenging in
this discrete setting. We first demonstrate why the simple Node-to-
Segment approach fails to satisfy the smoothness requirements of
gradient-based optimization methods (Sec. 3.1). Then we discuss
the strengths and limitations of IPC (Sec. 3.2).

3.1. Node-to-Segment Method

The Node-to-Segment (NTS) method is a simple approach for
contact handling between deformable bodies that is widely used
in engineering [HTS∗76, ZD09]. One should note that NTS is
a 2D method and in 3D both Edge-to-Edge and Node-to-Surface
cases should be considered. For simplicity we only discuss the 2D
method here but the problems we show remains in 3D. For each
node, the NTS method first identifies the closest segment and com-
putes the corresponding distance. Whenever the distance is suffi-
ciently small, a penalty function is instantiated such that the corre-
sponding contact force, collinear with the segment’s normal, pre-
vents intersection. Since the normals for piece-wise linear surfaces
are piece-wise constant, the contact forces defined in this way will
be discontinuous as nodes move from one segment to the next. To
see this, consider the example shown in Fig. 2, where two objects
B1 and B2 are in close contact, with B1 moving in a given direc-
tion as indicated. To compute contact forces, a discrete decision
must be made to select the closest segment for a given node (shown

in red). As the vertex enters or exits the shaded region where it is
equidistant to both edges, the closest edge on surface B2 changes.
Consequently, the contact force experiences an abrupt change in di-
rection. This force discontinuity occurs whenever a given node is

Figure 2: Contact force discontinuity across element boundaries.
As the red vertex moves in the indicated direction, stepping into or
out of the gray region leads to discontinuities in contact forces.

at the same distance to multiple segments. The discrete choice in
contact primitive pairs thus presents a fundamental problem of the
NTS method.

3.2. Incremental Potential Contact

The incremental potential contact method uses smoothly-clamped
barrier functions to enforce non-intersection constraints between
close primitive pairs, i.e., vertex-triangle and edge-edge pairs.
Whereas the NTS method selects a single close segment for each
vertex, IPC allows multiple primitive pairs for the same vertex to be
active simultaneously. The collision potential for any given vertex
is then obtained as the superposition of per-primitive potentials,

Econtact = ∑
(i j,kl)∈E

b(dee(xix j,xkxl))+ (2)

∑
(i, jkl)∈T

b(dvt(xi,x jxkxl)) ,

where E , and T are index sets for potentially colliding edge-edge,
and vertex-triangle pairs. The values returned by the corresponding
inter-primitive distance functions dvv, dee, and dvt are passed into
the smoothly-clamped log-barrier function,

b(d) =

{
0 d > d̂

−(d− d̂)2 log(d/d̂) d < d̂
, (3)

that activates when the distance d falls below a threshold value d̂.

Removing the need to make discrete decisions eliminates an
important source of non-smoothness. However, the superposi-
tion principle also induces energy variations when multiple per-
primitive potentials are active. We illustrate this problem using a
simple examples in which we examine the contact potential from
IPC between a vertex v and a triangulated plane (Fig.3). We assume
that the initial distance between vertex and plane is smaller than the
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support radius of the barrier function, resulting in a nonzero con-
tact potential. As v moves parallel to the plane, the set of poten-
tially colliding primitive pairs evolves from a single element (face
F1) to three elements (faces F1, F2, and F3), and to two elements
(faces F3 and F4). As can be seen from Fig. 3, since IPC superim-
poses contact potentials from all elements in the constraint set, the
resulting energy is not constant. Rather, we observe energy peaks
at x = x2 = 10 and x = x3 = 20 where contributions from multi-
ple elements amplify to a maximum degree. The resulting energy
walls give rise to spurious tangential forces that affect simulation
outcomes and may stall progress for inverse problems as we show
in Sec. 5.

The problems encountered with NTS and IPC approaches are ul-
timately different manifestations of an inherent limitation of piece-
wise linear surfaces. It is worth noting that using elements with
higher polynomial degree alone does not resolve this problem un-
less inter-element continuity is explicitly enforced. Rather, address-
ing these problems necessitates a fully C1-continuous surface rep-
resentation, which we introduce next.

4. Deformable Contact with Smooth Representations

To avoid the inherent limitations of piece-wise polynomial surfaces
for contact modeling, we resort to smooth surface representations
based on Implicit Moving-Least Squares (IMLS).

IMLS surfaces have already been explored for modeling
frictional contact between deformable objects by Larionov et
al. [LFP21]. Our method largely follows this approach, but we
make two crucial extensions that enable self collision detection for
IMLS-based surfaces with robust continuous collision detection.
Before we describe these extensions in detail, we start with a brief
summary of IMLS-based contact modeling.

4.1. IMLS-based Contact Modeling

Let xi denote the set of mesh vertices of body Bi with associated
normals ni. The corresponding IMLS surface is defined implicitly
as the zero-level set of the signed distance function

f [xi](x) =
∑ j ni

j
T
(x−xi

j)φ
i
j(x)

∑ j φi
j(x)

, (4)

x1 x2 x3

x4 x5 x6

v
F1

F2

F3

F4

x
0 10 20

Figure 3: Energy walls. We plot the contact potential (left) and
the tangential force (right) from IPC as a single vertex slides on
a plane discretized with triangle elements (top right). IPC allows
for multiple per-primitive potentials to be active concurrently (e.g.
at x = x2 or x = x3), leading to energy walls, i.e., local maxima in
contact energy whose gradients resist tangential motion.

where φ
i
j(x) are locally-supported, smoothly-clamped radial basis

functions that can be evaluated at any spatial location x [Kol08].

To enforce contact constraints, we ask that all points x1
i of a given

object B1 must have non-negative distance from the IMLS surface
of another body B2, i.e.,

f [x2](x1
i )≥ 0 ∀i . (5)

With sufficiently smooth basis functions φ, the signed distance
function f is continuously differentiable and can therefore be used
for constructing a smooth contact potential,

Econtact = ∑
x1

i ∈B1

b
(

f [x2](x1
i )
)
+ ∑

x2
j∈B2

b
(

f [x1](x2
j)
)
, (6)

where the barrier function b is the same as in Eq. 3. While this
formulation for handling contact is conceptually sound and simple,
detecting collisions for IMLS surfaces proves more challenging as
explained next.

4.2. Self Contact

Using the basic IMLS formulation as described above for handling
self contact leads to an obvious problem: the distance of any vertex
xi ∈ Bk to the level set of Bk is always (close to) zero. While this
distance value is formally correct, it does not provide any indica-
tion of whether a given vertex xk

i is close other parts of the surface.
To rule out this trivial case, we must devise a way of carving out
the region of the distance field around xk

i when testing it for self-
collisions. To this end, we observe that the Euclidean neighborhood

(a) (b)

Figure 4: Geodesic carving for self collision detection. (a): The
Euclidean neighborhood of a given vertex (red) contains points that
are geodesically close (blue) and points whose geodesic distance is
large (black). (b): To detect self contact for the given vertex, we
remove geodesically close points when constructing the IMLS rep-
resentation (dashed curve).

of a given vertex generally contains points that are geodesically
close, and points whose geodesic distance to the vertex is large (see
Fig.4). It is highly unlikely that xk

i will intersect with its immedi-
ate geodesic neighborhood, since this would require excessive local
curvature. Nevertheless, this immediate geodesic neighborhood is
overriding the distance of xk

i to other parts of the surface. To solve
this problem, we propose to carve out the region of points around
from the distance function that is used to test xk

i for self collisions.
To this end, we pre-compute pairs of vertices whose geodesic dis-
tance dgd in the initial configuration is smaller than a threshold
value εgd . We store this geodesic proximity data in a sparse ma-
trix structure G such that G(i, j) = 1 if dgd(xi,x j) < εgd . Note that

© 2024 The Authors.
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G is computed only once at the start of simulation such that the run-
time overhead is negligible. With these definitions in hand, the self
contact potential for a given object Bk is constructed as

Eselfcontact(Bk) = ∑
i

b
(

f [xk\i](xk
i )
)
. (7)

where xk\i = {xk
j|G(i, j) = 0}. The modified penalty terms for

self and external contacts are used in the time-stepping potential
(1), which we minimize using Newton’s method with intersection
aware line search.

4.3. Continuous Collision Detection

While IMLS surfaces provide
signed distance information, en-
suring that distances are posi-
tive at the beginning and end of
the time step is not sufficient, as
tunneling might occur during a
time step (see inset figure). To
guarantee that no such intersections are introduced, we rely on
continuous collision detection. Let x(l) denote the current estimate
for end-of-step positions in the l-th Newton iteration. Given a new
search direction ∆x(l) from the linear solver, we must compute a
step size α ∈ (0,1] to positions as x(l+1) = x(l) +α∆x(l). To pre-
vent intersections, we must ensure that no vertex passes through
any IMLS surface at any time in the interval (0,α].

Our continuous collision detection is divided into two phases: in
the broad phase, we detect for each vertex xi whether it approaches
any other vertex x j more closely than the kernel radius R. Each
such test involves solving a simple quadratic root finding problem

||x(l)i + t∆x(l)i −x(l)j − t∆x(l)j ||
2 = R2 , (8)

with respect to t. If the solutions t1 and t2 exist and overlap with
the interval (0,1], we add xi to an active set A of potentially col-
liding vertices. To bootstrap the narrow phase solver, we also store
minimum and maximum values for t1 and t2. After the broad phase
has identified potentially colliding vertices and their intersection
intervals, our narrow phase solver determines the maximum possi-
ble step size for each node. This requires finding the earliest root of
its signed distance function within the interval determined by the
broad phase detection. Mathematically speaking, this means find-
ing the smallest root for the function

g(t) =
(

f [yk\p(t)](yp(t))
)2

= 0 , (9)

for each point xp in the active set A, where the distance f is eval-
uated based on the new vertex positions and y(t) = x(l)+ t∆x(l) is
the updated vertex positions when the step size is t . We cast this
root finding problem as a 1-dimensional minimization problem for
the squared distance, allowing us to leverage robust minimization
algorithms. Since multiple roots can exist, we successively shrink
the search interval (by a constant factor c = 0.9) until no fur-
ther zero-distance solution can be found. The complete procedure
is listed in Algorithm 1. It should be noted that solving the 1D min-
imization problems is very fast and easily parallelized. Indeed, the

cost of these operations is negligible compared to the time required
to assemble the Hessian of the total energy.

Our CCD guarantees penetration-free state of the simulation
meshes. The broad phase stage can filter out states where no in-
tersections can happen during this interval. Potential penetrations
and tunneling will be caught in the narrow phase, which finds (if
exists) the smallest t such that the unsigned distance g(t) in Eq.9
evaluates to zero. This guarantees that there is no intersection in the
interval (0, t].

5. Results

We compare the behavior of IPC and our IMLS-based formulation
on a set of experiments that include both qualitative and quantita-
tive benchmarks for forward and inverse problems (Sec. 5.1). Fi-
nally, we show that our method can handle challenging scenarios
with self-contact and friction (Sec. 5.3).

5.1. Comparison with IPC

For comparisons with IPC, we use the publicly available code base†

from Li et al. [LFS∗20], with modifications made solely to the
scene configurations. The scene description files can be found in
the supplemental material accompanying this paper.

5.1.1. Qualitative Comparison.

We begin our analysis by examining a forward simulation task
where the spurious tangential forces generated by IPC become ev-
ident. To this end, we consider a deformable cube that is pressed
down onto a frictionless surface and subjected to a constant hori-
zontal force. The desired outcome is for the cube to move in the
direction of the applied force. However, as indicated in Fig. 5 and
shown in the accompanying video, IPC produces undesirable tan-
gential forces making the cube grind to a halt. This behavior is
explained by the presence of energy walls arising from the super-
position of contact potentials (see also Fig. 3). These energy walls
generate artificial friction-like forces that prevent the cube from
moving along the desired trajectory. In contrast, our approach ac-
curately reproduces the expected linear motion.

In the second example, we consider a cube falling onto a frus-
tum whose apical face has the same area as the faces of the cube.
The basal surface of the cube and the apical surface of the frustum
are supposed to align perfectly. While our approach successfully
captures this behavior, IPC produces lateral motion. This is due to
the energy walls located at mesh edges leading to an unstable local
energy maximum for perfect alignment, which induces tangential
forces upon slight (numerical) perturbations.

As shown in the accompanying video, these artifacts are ob-
served consistently for different hyper-parameters, including the
threshold d̂ that controls when contact potentials are activated.

5.1.2. Quantitative Comparison.

We now shift our focus to an inverse design example where spuri-
ous tangential forces prevent convergence to the desired solution.

† https://github.com/ipc-sim/IPC

© 2024 The Authors.
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ALGORITHM 1: Continuous Collision Detection for
IMLS Surfaces

Data: Search direction ∆x(k+1), number of vertices n,
kernel support radius R, scaling parameter 0 < c < 1,
threshold value ε

Result: Maximum step size α that is intersection-free
α← 1;
A← {};
/* Broad Phase: Detect all IMLS surface

points x j whose kernels are
intersected by trajectory of point xi

*/
for i← 1 to n do
A[xi]←∅ ;
for j← 1 to n do

if G(i, j) == 0 then
a← ||∆xi−∆x j||2;
b←−2

〈
∆xi−∆x j,xi−x j

〉
;

c← ||xi−x j||2−R2;
if b2−4ac≥ 0 then

t1← −b−
√

b2−4ac
2a ;

t2← −b+
√

b2−4ac
2a ;

A[xi]←A[xi]∪ ([t1, t2]∩ (0,1])
end

end
end

end
/* Narrow Phase: For each point in A

with non-empty interval, find the
first α that makes unsigned distance
value zero */

for p← 1 to n and A[xp] ̸=∅ do
/* Define 1D function to minimize,

i.e., the unsigned distance of
point xp to IMLS surface as a
function of t */

g(t)← EvaluateIMLSSquared(x(l)+ t ·∆x(l),xp);
lo←A[p].low; hi←A[p].high;
αp← 1 ;
while True do

if lo≥ α then
break;

end
hi← min(hi,αp);
(tmin, fmin)← 1DMinimizer(g(t), lo,hi) ;
if fmin ≤ ε then

αp← c · tmin ;
else

break;
end

end
α← min(α,αp)

end

𝑡 = 0𝑠

𝑡 = 1𝑠 𝑡 = 1.5𝑠

IPC

Ours

𝑡 = 0.52𝑠

Figure 5: Comparison with IPC. A deformable cube is pressed
down onto a frictionless floor and subjected to a horizontal force
(shown with arrows). Whereas the energy wall from IPC induces
spurious tangential forces that put an early stop to the cube’s tra-
jectory (orange), our approach produces the expected linear mo-
tion (blue).

Initial State

IPC Ours

Figure 6: Comparison with IPC. A cube falls onto a frustum under
gravity (left). The superposition of per-element potentials in IPC
induces lateral motion whereas our approach produces no such ar-
tifacts.

θA
O

θB

A

B

B′

A′

As shown in the inset figure, we
examine a case where two ver-
tices slide along a rigid body
in the form of a quarter annu-
lus. Two vertices, denoted as A
and B, are placed on the inner
and outer tracks of the annulus
and connected by a zero-length
spring. In the absence of friction
forces, moving vertex B should
lead to an analogous motion for vertex A such as to minimize their
distance. We first examine the accuracy of both approaches on the
forward problem, where we seek the equilibrium states of A when
B is moved to a prescribed location. The comparison between IPC
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and our approach with the ground truth solution is shown in Fig. 7.
As can be seen from this figure, our approach achieves accurate
matching of the targets throughout the entire range of motion. In
contrast, IPC exhibits poor matching behavior. By examining the
insets in Fig. 7 (targets shown in red), we observe that this failure
is once again due to spurious tangential forces stemming from en-
ergy walls. In particular, point A comes to a halt at its closest vertex
and fails to reach its target location.

Next, we consider an inverse version of this problem, where the
goal is to control the position of vertex B such that vertex A assumes
a given target location A∗. We formulate this task as a constrained
optimization problem where the constraint enforces static equilib-
rium,

min
θB

O(xB(θB)) = ||xA(θA)(xB(θB))−x∗A(θA)||22,

s.t.
∂E
∂xA

=
∂E
∂xB

= 0 ,
(10)

where E is the total energy of the system and x∗A(θA) is the target
location prescribed by a clock-wise rotation θA w.r.t. the horizon-
tal axis in the image plane. To minimize (10) with respect to θB
we use gradient descent and compute the simulation derivative dxA

dxB
using sensitivity analysis. The convergence plot shown in Fig. 8 re-
veals that, while IPC fails to converge to the desired accuracy, our
approach converges rapidly. This discrepancy is again explained
by the energy walls introduced at segment transitions when using
IPC, which induce undesirable local minima that the gradient-based
solver struggles to escape. We note that increasing mesh resolution
for IPC changes the frequency of energy walls without removing
them.

Figure 7: Accuracy of the forward problem. Our approach (solid
blue line) consistently arrives at locations that closely match the
ground truth values (dotted line). IPC (solid orange line) struggles
to overcome energy walls at segment transitions as illustrated in
the inset.

5.2. 3D Examples

We showcase the effectiveness of our approach through a series of
3D examples with deformable bodies represented using IMLS sur-
faces. In the first example (Fig. 9), an armadillo lands on a soft

A

B

A∗

A

B

A∗

Figure 8: Accuracy of the inverse problem. The convergence plots
for IPC and IMLS are shown in orange and blue, respectively. IPC
fails to find the true solution to this inverse design problem due to
the presence of energy walls that introduce local optima. In con-
trast, our approach demonstrates robust convergence, reaching the
solution in just 8 steps.

plane. The second example (Fig. 10) shows a soft bunny passing
through a narrow deformable torus. Finally, the interactions be-
tween complex geometries can be seen in Fig. 11, in which a de-
formable dolphin collides with a soft armadillo. As can be seen
from these sequences, our approach reliably handles complex con-
tact scenarios between deformable bodies undergoing large defor-
mations. We refer to the accompanying video for the complete sim-
ulation sequences.

5.3. Self-Contact and Friction

We demonstrate the ability of our method to handle tight self-
contacts with friction using two knot-tightening examples. In the
first example, an elastic rope is tied into a single knot. In the sec-
ond and more complex example, we tie a rope into a double knot.
The knot is tightened by pulling the rope around a rigid cylin-
der. We refer to the accompanying video for the complete simu-
lation sequences. Both of these examples involve frictional con-
tacts with initial sliding that eventually converge into tight, static
self-contacts. Our IMLS-based method handles these challenging
scenarios robustly without any artifacts. The implementation detail
of the frictional forces is included in Appx.B.

5.4. Erleben Tests

Erleben [Erl18] proposed a set of degenerate test cases for mesh-
based contact problems. While our approach circumvents these is-
sues by construction by leveraging smooth representations of the
contact geometries, these unit tests nonetheless serve as a challeng-
ing benchmark. As can be seen from Fig. 14, our approach gener-
ates intersection-free trajectories in all cases.

5.5. Implementation Details

Our framework is implemented in C++ with Eigen [GJ∗10] for
linear algebra operations. The Eigen wrapper for the CHOLMOD
solver [CDHR08] is used for solving linear systems. The total

© 2024 The Authors.
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Figure 9: Free falling. A soft armadillo is falling onto a deformable plane. Both the plane and the armadillo’s surface are represented using
IMLS.

Figure 10: Torus tunneling. A soft bunny falls under gravity through a torus, with both geometries represented by implicit moving least
square surfaces for contact resolution.

energy is minimized using Newton’s method augmented with a
back-tracking line search and adaptive regularization. We use lin-
ear tetrahedron elements for deformable solids and discrete shell
elements [GHDS03] for surface meshes. A standard Neo-Hookean
material [BW97] is used for all of our examples. We use the 1D
minimizer provided by ROOT [BR97] in our continuous collision
detection. The timings are obtained on a workstation with a AMD
Ryzen Threadripper PRO 5995WX CPU and summarized in Table
1. More details about our robust IMLS implementation and com-
parisons with other formulations can be found in Appx.A.

5.6. Performance

From the timing information shown in Table 1, we observe that
a single Newton iteration of IPC is generally faster than for our
approach. This is explained by the fact that the contact Hessian of
IPC is relatively simple for each primitive pair, while our distance
computation involves a larger (and varying) number of points as
well as their normals. On the other hand, Table 1 indicates that IPC
generally requires more iterations to converge. We hypothesize that
the slower convergence might be due to local minima introduced by
the superposition of per-primitive potentials for IPC. As a result,
our method is overall comparable to IPC in terms of run time.

Although in the narrow phase of our continuous collision detec-
tion, we perform an exhaustive quadratic test on all pairs of mesh

vertices, it still saves a significant amount of time since the 1D min-
imizer requires additional overhead to set up. We observe a 5x to
20x speed up among our experiments depending on the ratio be-
tween the number of vertices in the active set A and the number of
all vertices. However, they are both comparably much faster than
the RIMLS hessian computation.

6. Conclusions

We have investigated a fundamental limitation of existing meth-
ods for handling contact between deformable bodies based on C0-
discretizations. Our analysis showed that spurious tangential forces
generated by IPC-type approaches can significantly affect simula-
tion outcomes and prevent inverse problems from converging to the
correct solution. We furthermore showed that using smooth surface
representations based on IMLS effectively resolves this problem,
leading to robust behavior even for challenging contact scenarios
and complex geometries.

6.1. Future Work

While we have demonstrated that our smooth representation en-
ables robust convergence for inverse design on a 2D example, ap-
plications of our approach to inverse design tasks in 3D deserve
further investigation.

© 2024 The Authors.
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Figure 11: Catch-of-the-day sequence. Our approach robustly handles intricate contacts between deformable bodies with complex geome-
tries.

Table 1: Statistics for 3D examples. We report the number of simulation degrees of freedom, the average computational time per Newton
iteration, the maximum number of vertices under contact, and the average number of Newton iterations per time step.

Example # Vertices ∆t [s] µ Max #
contact

Avg Time per Timestep [s]
(IPC/Ours)

Avg Time per Newton Iter [s]
(IPC/Ours)

Single Knot 10,184 0.01 0.05 1327 287.485 / 92.535 1.656 / 10.170
Double Knot 13,258 0.01 0.05 2325 101.162 / 98.731 3.167 / 9.943
Armadillo Plane 12,641 0.0025 0 1734 28.492 / 48.774 1.444 / 8.634
Bunny Torus 20,371 0.01 0 1600 195.674 / 135.858 3.478 / 15.189
Armadillo Dolphin 31,705 0.01 0 1015 312.992 / 393.324 4.530 / 14.671

Figure 12: Knot Tightening. We anchor one end of a knot while
pulling on the opposite end, effectively tightening the knot without
self-intersections.

We have introduced a continuous collision detection scheme that
combines rapid quadratic distance tests for broad-phase detection
with robust 1D minimization. While the broad-phase tests are sig-
nificantly faster than solving narrow-phase minimization problems,
we still have to perform pairwise checks between all nodes. Bound-
ing volume hierarchies could further accelerate the average time
for broad-phase detection. Our method uses the vertices of the in-
put mesh for constructing a corresponding smooth implicit surface.
While this is sufficient in most cases, keeping sampling points fixed
during simulation might lead to under-sampled regions for extreme
deformations. A possible improvement would be to develop adap-
tive sampling strategies that offer constant sample density while
maintaining intersection-free states.

Figure 13: Double-knots. We tighten two interweaving knots by
pulling the open ends while having the upper end anchored to a sta-
tionary cylinder. The double knots fasten without self-intersections.
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Figure 14: Erleben tests. We perform simulations between ele-
mentary meshes with simple geometries and sharp features such
as spikes, wedges, and cubes. Our IMLS-based method generates
penetration-free trajectories for all challenging test cases.
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Appendix A

Robust Formulation of IMLS Surface

In order to address the limitations of Larionov et al.’s method
described in 4.1, we integrate a robust IMLS formulation from
Öztireli et al. [OGG09] into our contact handling pipeline. The idea
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(a)

(b)

(e)(c)

(d)

RIMLS with weight in Larionov et al. (num_samples = 20)

(f)

Larionov et al. (num_samples = 20)

RIMLS (num_samples = 5)

RIMLS (num_samples = 20)

IMLS (num_samples = 5)

IMLS (num_samples = 20)

Figure 15: Surface reconstruction from different formulations. We sample points (black dots) from a pentagon (white lines) with different
resolutions (5 points or 20 points per side) and the signed distance values in the space are displayed with the color bar shown on the right.
(a) and (b) show the reconstruction result from the basic IMLS formulation in Eq.4, where we can see the corners are overly smoothed and
there is no significant improvement even when we increase the sample density. The robust formulation in Eq.11 generates sharper results
even with 5 sample points (c) and it improves to negligible difference from the underlying pentagon with more samples (d). Larionov et al.
use a different kernel function φi that generates the worst result in this example even with 20 samples (e) and Robust formulation (f).

of this robust formulation is to treat the normal as the source of out-
liers of the IMLS surface. The sample points around a sharp corner
have very different normals and more weight should be assigned to
those who have a closer normal to the implicit surface. However,
the signed distance function f[p](x) is unknown and an iterative
least squared approach is adopted to refine f[p](x). This leads to a
new formulation and the signed distance at kth iteration is defined
as

f k
[p](x) =

∑nT
i (pi−xT)φi(x)w(rk−1

i )wn(∆nk−1
i )

∑φi(x)w(rk−1
i )wn(∆nk−1

i )
, (11)

where rk−1
i = || f k−1(x)−nT

i (x−pi)|| is the residual of the esti-
mated function value and ∆nk−1

i = ||∇ f k−1(x)−ni||measures the
difference between the normal at sample point ni and the gradient
of the IMLS surface at query point x.

Implementation of Robust IMLS Surface

We stick to the choice of parameters from Öztireli et al. [OGG09]

to have the weighting functions φi(x) =
(

1− ||x−xi||2
R2

)4
, w(r) =

e−( r
σrR )

2
and wn(∇ f (x)) = e

−
(

||∇ f (x)−ni||
σn

)2

, where R is the search
radius, σr is set to 0.5 and σn ranges from 0.5 to 1.5 depending
on how much sharpness the user wants. We also set the number of
iterations k to be 1 since Öztireli et al. observe that only 1 iteration
of optimization can already create sharp enough reconstructed sur-
faces. This also means the surface gradient ∇ f k

[p](x) is only eval-
uated at the initial iteration where the additional weighting terms
w(r) and wn(∇ f (x)) is set to 1. The gradient ∇ f 0

[p](x) is therefore

has a simpler analytical form

∇ f 0
[p](x) =

∑niφi(x)+∑∇φi(x)(nT
i (x−pi)− f 0(x))

∑φi(x)
. (12)

Since we use mesh vertex as sample points, the normal associated
with each point is the per-vertex normal, which is the average of
the per-face normal for all the incident triangles. It should also be
noted that they are computed in the deformed configuration in order
to support large deformation. In order to leverage the efficiency
of second-order solvers for unconstrained optimization problems,
we need to compute the first and second-order derivatives of the
signed distance function with respect to both sample points xi and
the evaluated point x. This is done analytically without any auto-
differential involvement to increase performance.

Comparison Among Different Implicit Surface Formulations

We also compared the reconstructed surfaces from Larionov et al.’s
method, the IMLS method and the Robust IMLS method. The re-
sults can be found in Fig.15 where we sample points from a pen-
tagon with different resolutions and fix the search radius. Compar-
ing (a) and (c) we can see that Robust IMLS demonstrates better
preservation of sharp features even with a small number of sam-
ple points. IMLS tends to smooth the sharp corners and such be-
havior doesn’t improve even if you increase the resolution (see
(c)). RIMLS, on the other hand, improves quite a lot when there
are more sample points. This suggests that simply increasing can-
not help solve the issues with the IMLS method. Larionov et al.

use a different weighting function φ
cubic
i (x) = 1−3

( ||x−xi||2
R

)2
+
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Initial State

IMLS Ours

Figure 16: Comparison with IMLS. The IMLS reconstruction failed
to capture sharp features such as corners and edges. Consequently,
the overly smoothed reconstruction leads to floating artifacts. We
leverage the robust IMLS formulation to preserve these sharp fea-
tures.

BackFront

Figure 17: Input mesh (blue) and its R-IMLS zero level set (yel-
low). As can be seen from the two viewpoints, using mesh vertices
as sample points enables robust reconstruction of the input geome-
try.

2
( ||x−xi||2

R

)3
for faster computation. However, this results in the

worst reconstructed surfaces even with a large number of sample
points (see (e) and (f)). The reconstructed surface doesn’t converge
to the true pentagon under refinement at the flat region. This could
result in severe artifacts and make it harder to do continuous colli-
sion detections.

The inability to capture sharp features of IMLS formulation can
lead to visual artifacts. As shown in the cube falling test in Fig. 16,
IMLS leads to the over-smoothing of the frustum edges, thus, creat-
ing the artificial gap between the two contacting geometry. In con-
trast, using R-IMLS successfully addresses this limitation.

Point Sampling

We perform uniform sampling for the simple meshes in our ex-
periments (such as the cube in Fig. 5 and the inverse design in
Sec. 5.1.2). For the more complex 3D examples, we preprocess
the simulation mesh using the isotropic surface remeshing algo-
rithm [ADVDI03] such that the variance of the edge lengths is

minimized. This allows us to directly use the mesh vertices as the
sampling points and achieve good results in practice. While our ap-
proach can benefit from advanced sampling strategies, as we show
in Fig. 17, using mesh vertices as sampling points can already faith-
fully represent the input geometry. We choose the search radius R
to be 2 to 3 times the largest edge length such that there are enough
points in the neighborhood.

As illustrated in Fig. 15, the sampling resolution will have an ef-
fect on the reconstruction quality of the RIMLS surfaces. Coarse
sampling in general results in overly smoothed features. How-
ever, increasing sample points alone cannot capture sharp features
(a,b,e,f ). We therefore resort to RIMLS formulation which allows
for detailed reconstruction with comparatively fewer samples.

Appendix B

Friction

We incorporate the friction force in our pipeline by using a lagged
model proposed by IPC. This approach leverages the normal force
from the preceding time step to calculate the friction force in the
current time step. A mollifier is used to ensure a smooth transition
from static friction to dynamic friction. To integrate this friction
force into an optimization-based integrator, a friction potential is
formulated on this basis. For one vertex i, given the contact force
magnitude λ

(t−1)
i , direction T(t−1)

i , and position x(t−1)
i , the smooth

friction potential is computed as

E(t)
friction =


µλ

(t−1)
i

(
x6

ε5 −
3x5

ε4 +
5x4

2ε3

)
x < ε

µλ
(t−1)
i

(
x− ε

2

)
x≥ ε

, (13)

where x = ||
(

x(t)i −x(t−1)
i

)
−T(t−1)T

i

(
x(t)i −x(t−1)

i

)
T(t−1)

i || is
the displacement on the tangential plane at the contact point and ε

represents a threshold parameter used to distinguish between static
and dynamic friction.
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