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Figure 1: Seven different non-Newtonian fluids are used in one single simulation (2.06M particles in total). The letters in S-C-A come with
decreasing shear thickening, whereas the numbers in 2-0-2-4 use gradually enhanced shear thinning (see Section 6 for details). Moving a
fork across the seven characters shows different flow behaviors and dynamic interactions after fluid contact.

Abstract
We propose an SPH-based method for simulating viscoelastic non-Newtonian fluids within a multiphase framework. For this, we
use mixture models to handle component transport and conformation tensor methods to handle the fluid’s viscoelastic stresses.
In addition, we consider a bonding effects network to handle the impact of microscopic chemical bonds on phase transport. Our
method supports the simulation of both steady-state viscoelastic fluids and discontinuous shear behavior. Compared to previous
work on single-phase viscous non-Newtonian fluids, our method can capture more complex behavior, including material mixing
processes that generate non-Newtonian fluids. We adopt a uniform set of variables to describe shear thinning, shear thickening,
and ordinary Newtonian fluids while automatically calculating local rheology in inhomogeneous solutions. In addition, our
method can simulate large viscosity ranges under explicit integration schemes, which typically requires implicit viscosity solvers
under earlier single-phase frameworks.

Keywords: fluid simulation, mixture models, Viscoelastic Non-Newtonian fluids

CCS Concepts
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1. Introduction

Fluid simulation has always been a research hotspot in computer
graphics [WXL*24]. Many techniques have been proposed, includ-
ing Newtonian fluid simulation, detail enhancement such as tur-
bulence [FLX*22], and multiphase fluid simulation [XWW*23].
In Newtonian fluid simulations, previous work has covered
surface tension [JWL*23], pressure solvers [BK15], and viscous
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solvers [TDF*15; WKBB18; LHWW21; BK16] [PICT15]; as
well as numerical accuracy improvements for different calcu-
lation methods [HKA21]. In multiphase fluid simulations, sim-
ulated phenomena include bubbles [HK03; IBAT11; TFK*03],
melting [MKN*04; CBL*09; FM07], and crystallization [KL03;
KHL04; KAL06], among several others.

Newtonian fluids can be considered time-invariant with constant
viscosity under certain conditions. In contrast, non-Newtonian flu-
ids show a nonlinear relationship between viscosity and shear strain
rate. Non-Newtonian fluids are actually more common in industrial
production and in nature, e.g., blood, chocolate, paint, and glass
melts. At present, single-phase techniques can simulate simple non-
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Newtonian fluids [LHWW21; ASP*14] by computing the fluid’s
rheology by adding macroscopic viscosity models such as the Cross
model [Cro65] to existing fluid simulators. For example, when con-
figuring a specific fluid, such as the shear thinning type, the param-
eters of the Cross model are fixed in one single simulation. As the
local rheological properties of a mixture may be different due to the
solute concentration, such methods cannot simulate complex mix-
tures. Rather, when substances are mixed to form a non-Newtonian
fluid (and since almost all non-Newtonian fluids are mixtures), sim-
ulation mechanisms with a multiphase framework are preferred.

This paper proposes a non-Newtonian fluid simulation method
based on multiphase flow. Our method focuses on two-phase
flow simulation and uses the conformation tensor method of non-
Newtonian fluid dynamics to calculate the fluid’s viscoelastic
stress, and designs a non-Newtonian fluid mechanism based on
the mixture model, which can simulate shear thinning fluids, shear
thickening fluids, and Newtonian fluids in a single framework.
Our method can process single-phase non-Newtonian fluids, deal
with dynamic mixing scenes, and compute the local rheological
properties of the fluid separately. Our method has simple-to-set
parameters and can be computed efficiently. Separately, in previ-
ous multiphase fluid models, interphase momentum exchange de-
pends on suitably setting various constants (e.g. kd in [JL21]; and
Cd in [XWW*23]). Such settings imply a constant degree of the
mixture effect on phase motion for an entire simulation – which
does not hold for systems with significant combining reactions. To
the best of our knowledge, ours is the first action model to effec-
tively alleviate the limitations of previous multiphase fluid models
where interphase momentum exchange is constrained by constant
settings. Our model uniquely calculates the effect of concentration
on phase transfer by simulating the dynamic network of chemical
bonds formed in the solution, thus providing a more accurate rep-
resentation of the mixing dynamics in non-Newtonian fluids.

2. Related Work

Much previous work on fluid simulation focuses on Newtonian flu-
ids. Simulating non-Newtonian fluids is mainly achieved by vis-
cosity solvers combined with simple non-Newtonian fluid viscos-
ity models. In such schemes, a core problem is how to solve the
viscous term in the Navier-Stokes equations and the viscosity of
non-Newtonian fluids.

Viscosity computation: Currently, there are three main methods
to solve the viscosity term in the SPH method: artificial viscosity
(XSPH), viscosity Laplacian-based methods, and strain rate tensor-
based methods [KBST22]. Schechter et al. [SB12] used XSPH to
compute viscosity, which updates the velocity field by controlling
the velocity difference with artificial parameters. However, such ar-
tificial parameters lead to the problem that phenomena such as curl-
ing and coiling cannot be correctly simulated. Many methods exist
that handle the Laplacian of viscosity. A simple approach is to dis-
cretize the Laplacian by standard SPH. While easy to compute, this
method is highly sensitive to the lack of particles at the boundary,
and it cannot guarantee the sign correctness of the second deriva-
tive of the Gaussian-like kernel function. To avoid second deriva-
tives, Takahashi et al. [TDF*15] solved the first derivative twice,
but the computational overhead increased. Brokshaw et al. [Bro85]

used an SPH discretization combined with finite differences to pro-
cess the Laplacian and conserve the linear and angular momenta.
This method was later adopted by subsequent schemes [WKBB18;
LHWW21].

Improving quality and speed: To achieve faster and stabler sim-
ulation of highly viscous fluids, many methods proposed im-
plicit viscosity solvers based on strain rate tensors. Takahashi et
al. [TDF*15] used implicit time integration in a reverse Euler
framework based on the original strain rate tensor representation.
Though this scheme allowed for larger time steps, it led to pseudo-
realistic artifacts in some scenes due to missing particles at the
boundary. Bender et al. [BK16] proposed a velocity constraint
function with the strain rate tensor to correct the velocity field,
which is, however, expensive to compute. Peer et al. [PICT15] de-
composed the velocity gradient tensor into three parts, with an ar-
tificial regulator imposed on the shear rate tensor; SPH discretiza-
tion and Taylor expansion were used to numerically approximate
the velocity field. However, this scheme cannot smoothly recon-
struct the velocity field for low-viscous fluids. Also, this velocity
field reconstruction method produces artifacts due to the above-
mentioned missing particle issue. The Laplacian-based optimiza-
tion scheme in [WKBB18] addressed the issue of boundary arti-
facts of the above methods. In addition, some acceleration schemes
also consider the use of efficient data structures and multi-grid
strategies, Goldade et al. [GWAB19] proposed an implicit octree
finite difference discretization with adaptive staggered grids, sig-
nificantly accelerating the viscous solution of the free surface.
Shao et al. [SHM22] presented an Unsmoothed Aggregation Al-
gebraic MultiGrid (UAAMG) method with a multi-color Gauss-
Seidel smoother to speed up sparse matrix operations.

To further improve visual realism in large viscous fluid simula-
tions, researchers have studied the interference problem between
incompressibility and viscosity solutions. Liu et al. [LHWW21]
first implemented a convergent sticky-incompressibility iterative
algorithm in the SPH method by using the SIMPLE algorithm
in an Eulerian setting, which reduces the interference between
solvers; however, the iterative nature of this method can yield high
computational overhead. Based on such SPH solvers, some stud-
ies further extended simulations to non-Newtonian fluids. Andrade
et al. [ASP*14] combined the symmetric form of Laplacian dis-
cretization with a Cross model [Cro65] to simulate simple shear-
thinning non-Newtonian fluids. Ozgen et al. [OKB19] introduced
an efficient history-based stiffness term and used the fractional cal-
culus to describe shear thickening fluids in the SPH framework. Liu
et al. [LHWW21] used the Cross model [Cro65] to describe simple
shear thinning and shear thickening scenarios.

Refined frameworks: Some viscous solvers achieve good vi-
sual results using more refined frameworks. The codimension
method [ZLQF15] used the Carreau model [Car72] to describe
shear thinning and shear thickening fluids, achieving a good thin
film effect; yet, this method involves complex calculations. Bar-
reiro et al. [BGAO17] were the first to implement real-time simu-
lation of viscoelastic Newtonian fluids using polymer conforma-
tion methods combined with Position Based Dynamics (PBD);
however, they did not consider non-Newtonian fluids. Goldade et
al. [GWAB19] used an octree adaptive variational finite differ-
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ence method to optimize the viscosity solution problem, which
greatly increased speed. Fei et al. [FBGZ19] developed a multi-
scale framework for coupling wire and shear-related fluids, where
the elastoplastic fluid was modeled by the Herscher-Barkley model.
Panuelos et al. [PGG*23] used the functional method to solve the
unsteady Navier-Stokes equations to simulate highly viscoelastic
fluids. The advantage of this method is that it preserves the coupling
between the viscosity and pressure solutions and improves numer-
ical accuracy. Su et al. [SXH*21] used the MPM method to con-
struct a second-order accurate viscosity solver that achieves diverse
single-fluid effects while maintaining good numerical accuracy. By
integrating previously simulated models of different materials into
a unified particle framework, Li et al. [LGH*23] created a compre-
hensive engine able to simulate a wide variety of non-Newtonian
fluids.

Multiphase simulations: The above mentioned methods use a
single-phase framework and cannot deal with multivariate dynamic
scenarios, such as material mixing and precipitation phenomena.
For such cases, multiphase simulations are needed. Multiphase
simulation frameworks aim to address this case, which is consistent
with the fact that fluids almost always exist as mixtures. Separately,
single-phase models can only simulate fluids with fixed properties;
and non-Newtonian viscosity models can only realize simple non-
Newtonian fluid simulations. The formation of non-Newtonian flu-
ids after material mixing and the simulation of the mixing process
can only be achieved using a multiphase framework.

The mixture model, introduced by Ren et al. [RLY*14] to graph-
ics, is a simple to compute and easy to extend multiphase model.
Jiang et al. [JL21] further reformulated the computation of the hy-
brid model, abandoned the local equilibrium assumption, and en-
hanced simulation efficiency and stability, allowing the simulation
of more dynamic scenes. Xu et al. [XWW*23] proposed an im-
plicit mixture model and used a volume-incompressible method
to enforce fluid incompressibility, leading to a more stable phase
transport and a highly improved numerical stability.

The phenomena investigated by current multiphase fluid simula-
tions are very broad, including bubble simulation [HK03; IBAT11;
TFK*03], melting [MKN*04; CBL*09; FM07], and crystal forma-
tion [KL03; KHL04; KAL06]. However, in the field of computer
graphics, there is no current approach that attempts to model non-
Newtonian fluids with multiphase models. We present a method
that enables efficient computation of dynamically non-Newtonian
fluid scenarios under a multiphase model.

3. Implicit Mixture Model with SPH

The implicit mixture model is a modification based on mixture
model theory, which is usually computed numerically using the
SPH method in graphics. We next review the fundamentals of SPH
(Sec. 3.1) and outline the implicit mixture model (Sec. 3.2).

3.1. SPH method

The SPH (Smoothed Particle Hydrodynamics) method is a spatial
discretization technique. It uses a set of kernel functions to rep-
resent the weights of the space and reconstructs the physical field

of the fluid based on the weights. The kernel function is usually
Gaussian-like; practical implementations use cubic spline functions

W (r,h) = Λ


6(l3 − l2)+1, 0 ≤ l ≤ 0.5
2(1− l)3, 0.5 < l ≤ 1
0, otherwise

(1)

where l = ∥r∥
h , h is the support radius of the kernel, and Φ depends

on the spatial dimension, 1D: Λ = 4
3h , 2D: Λ = 40

7πh2 , 3D: Λ = 8
πh3 .

For a field A, SPH uses neighborhood information to compute
the value, gradient, and divergence of the field, as

Ai = ∑
j∈N(i)

m j

ρ j
A jW

i j,

∇Ai = ∑
j∈N(i)

m j

ρ j
A j ⊗∇W i j,

∇·Ai = ∑
j∈N(i)

m j

ρ j
A j ·∇W i j,

∇2Ai = ∑
j∈N(i)

m j

ρ j
A j∇2W i j,

(2)

where a ⊗ b = abT , i is the index of current particle, j is the
neighbor index, N(i) are the neighbors of particle i, and W i j =
W (xi −x j,h). For brevity, we next use ∑ j to denote ∑ j∈N(i).

3.2. Implicit Mixture Model

The mixture model [MTK96] is a well-known technique to simu-
late multiphase fluids. It uses the volume fraction (Fig. 2) to repre-
sent the concentration ratio of each phase in a multiphase particle;
computes the dynamic parameters of each phase through the multi-
phase fluid dynamics; and finally reconstructs the velocity field of
the mixed particle. We next detail the mixture model’s main terms.
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Figure 2: The volume fraction scheme and momentum sources in
the implicit mixture model [XWW*23].

A mixed particle i with phases k ∈ [1, . . . ,K] contains the volume
fractions α

i
k of each phase which sum up to 1, that is

α
i = ∑

k
α

i
k = 1. (3)

The mixture model uses the drift velocity vd
k to measure the shift of
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the phase velocity vk relative to the mixture velocity v̄ as

vd
k = vk − v̄, (4)

where

v̄ = ∑
k

αkvk. (5)

Finally, the particle rest density ρ̄ is computed as

ρ̄= ∑
k

αkρ
0
k (6)

where ρ0
k is the rest density of phase k.

The recent implicit mixture model in [XWW*23] is designed
to improve the numerical stability of mixture models. It uses a con-
stant rest volume of particles and adopts the pressure profile pk = p̄
for mixture fluids, where pk is the pressure of phase k and p̄ is
the mixture pressure. The basic implicit model has five phase-level
momentum sources: pressure Mp

k , viscosity Mv
k , gravity Mg

k , ad-
vection Ma

k, and interphase MI
k; the corresponding velocity fields

and mixture momenta are denoted accordingly, e.g., vv
k and M̄v for

Mv
k . In detail: Ma

k is caused by the phase drift velocity; MI
k obeys a

strict force balance model ∑k MI
k = 0; according to Eqn. 4, we get

M̄∗ = M∗
k −Md

k with ∗ ∈ {p,v,g,a, I}; finally, the mixture momen-
tum sources can be obtained by summing up all momentum sources
of all phases as

αkρ
0
k

Dvk
Dt

= Mp
k +Mv

k +Mg
k +Ma

k +MI
k, (7)

ρ̄
Dv̄
Dt

= M̄p + M̄v + M̄g + M̄a + M̄I. (8)

From Eqns. 4, 7, and 8, we get the change rate of phase drift veloc-
ity as

Dvd
k

Dt
=

M∗
k

αkρ
0
k
− M̄∗

ρ̄
. (9)

The relationship between MI
k and Md

k can be deduced from the
no-drift and free-drift situations to finally get MI

k = CdMJ
k, where

MJ
k is the number interphase momentum and Cd ∈ [0,1] is a regu-

latory factor: Cd = 0 recovers free-drift, which means that the in-
terphase momentum is zero, and Cd = 1 recovers no-drift, which
means that the phase drift velocity is zero.

Computing the momentum sources vv
k and vp

k uses Cd and the
corresponding momentum sources, as

Dvv
k

Dt
=Cd

M̄v

ρ̄
+(1−Cd)

Mv
k

αkρ
0
k
, (10)

Dvp
k

Dt
=Cd

M̄p

ρ̄
+(1−Cd)

Mp
k

αkρ
0
k
=

M̄p

ρ̄

(
Cd +(1−Cd)

ρ̄

ρ0
k

)
.

(11)
Advection and drift momentum sources are reasonably ignored in
the calculation, and the pressure profile pk = p̄ is adopted, as above.
These make the pressure treatment revert to the single-phase solver.
For a detailed derivation of momentum sources, see [XWW*23].

The viscosity in the original implicit mixture model is designed

to bind phases together, and the phase-level viscous momentum
source is derived from the single-phase fluid viscosity

Mν
k = αkµk∇2(v̄+∑

j
vd

kWi j). (12)

This derivation is consistent with the viscosity description of the
standard mixture model. Yet, the mixture momentum M̄ν can be
conservatively reconstructed via ∑k Mν

k = M̄ν from the phase mo-
mentum Mν

k only when the viscosities of all phases are equal.

The phase transport is affected by two factors, namely drift ve-
locity and diffusion, given by

Dα
i
k

Dt
=−∑

j
V0(α

i
kvi,d

k +α
j
kv j,d

k ) ·∇W i j, (13)

∇2
α

i
k =C f ∑

j
(αi

k −α
j
k)

xi j ·∇W i j

∥xi j∥2
+0.01h2

, (14)

where vi,d
k is vd

k of particle i; C f is the diffusion coefficient; xi j =

xi − x j is the distance between the positions of particles i and j; h
is the SPH support radius; and W is the kernel function, which is
common to be cubic spline function.

Volume incompressible SPH changes the density estimation step
in DFSPH to a volume compression ratio estimation, and corrects
the velocity field according to compressibility. This has the advan-
tage of supporting the simulation of fluids with non-uniform den-
sity fields. The volume compression ratio is computed as

φ
i =V 0

∑
j

W i j (15)

where V 0 is the rest volume of a particle and j denotes all neigh-
bors of particle i within the kernel radius. Similar to DFPSH, φ is
iteratively corrected to ensure that φ ≤ 1.

4. Proposed Method

In view of the shortcomings of existing single-phase solvers and the
mixture model, we propose a mixture-model-based non-Newtonian
fluid simulation method to simulate dynamic and highly viscoelas-
tic fluid scenarios. The viscoelastic stress calculation is presented
in Sec. 4.1, the extended non-Newtonian simulation mechanism in
Sec. 4.2, and the dynamic phase transport control in Sec. 4.3.

4.1. Conformation Tensor Based Viscoelastic Stress

Polymer fluids provide one way for modeling non-Newtonian flu-
ids. The polymer provides viscoelasticity to the fluid, and its con-
centration affects the lubrication of the fluid on the polymer and
the friction between polymers, leading to an overall viscoelastic
effect. In non-Newtonian fluid dynamics, the conformation ten-
sor [BTRD11] can be exploited to control viscoelastic stress of
polymer fluids.

The polymer fluid model defines the polymer stress tensor,
which is the viscoelastic stress of the fluid, as

σ = cηss(C), (16)

where ηs is the mixture viscosity; c is the mixture concentration.
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In the mixture model, c = α2, and the symmetric positive definite
polymer conformation tensor C evolves as

DC
Dt

= C∇v+(∇v)T C− 1
λ

s(C). (17)

where λ is relaxation time. This model can only describe Newto-
nian viscoelastic fluids. To simulate non-Newtonian fluids, a non-
linear term β(C− I)C must be added, yielding

DC
Dt

= C∇v+(∇v)T C− 1
λ

s(C)−β(C− I)C, (18)

where β ∈ [0,1] is a thinning factor that regulates the fluid’s shear
thinning capacity (larger β yields stronger shear thinning).

The tensor s(C) takes different forms in various non-Newtonian
models. In our work, we use the Oldroyd-B case given by

s(C) = C− I. (19)

The mixture viscoelastic stress is calculated as

σ̄ = cηs(C− I), (20)

In the multiphase framework, the velocity field of the mixture
is reconstructed by the phase velocity. We use the implicit mixture
model (Sec. 3.2) as a base model and replace the viscosity momen-
tum source Mv with the viscoelastic stress force momentum Mvise

Mk = Mp
k +Mvise

k +Mg
k +Ma

k +MI
k. (21)

Following the mixture theory, we have that

M̄vise = ∑
k

Mvise
k . (22)

In our work, we only focus on two-phase fluids made up of wa-
ter (α1) and polymers (α2 = 1−α1). Since the conformation tensor
method focuses on the mixture as a whole, the momentum updates
of each phase are not explicitly given. So, when computing mo-
menta, we do something similar to the pressure profile:

σk = σ̄ (23)

where σk is the stress of phase k, σ̄ is the mixture stress. And ac-
cording to Eqn. 22, we get

Mvise
k = αkM̄vise, (24)

M̄vise =∇· σ̄. (25)

Our method corrects the viscous momentum of each phase simul-
taneously through a uniform stress and avoids the problem of mo-
mentum loss caused by different viscosities of the phases in the
original implicit mixture model.

Finally, we obtain the viscoelastic phase momentum update
equation

Dvvise
k

Dt
=

M̄vise

ρ̄

(
Cd +(1−Cd)

ρ̄

ρ0
k

)
. (26)

This setting does not lead to the disappearance of the multiphase
characteristics, and it ensures the normal phase transport and vis-
coelastic properties calculation.

The relaxation time λ in Eqn. 18 can affect the fluid’s viscoelastic

Figure 3: Solution dynamics. Particle colors are a mixture of phase
fractions – darker colors show higher fractions of polymer phase.
The fluid’s local rheological properties are affected by the solu-
tion’s local concentration. For a dynamic solution system, the prop-
erties of the local fluid elements may also be different if the poly-
mer’s concentration in the above three regions is different: Region-
1 shows properties of pure water; Region-3 shows viscoelastic
polymer properties; Region-2 is somewhere in between.

behavior. As λ approaches infinity, the mixture will approach an
elastic solid; as λ approaches 0, the mixture will approach a pure
viscous fluid. The solution’s viscosity will affect the overall viscous
behavior of the mixture, which differs from the general viscosity.

Another benefit of using a multiphase framework is that the
fluid’s local rheological properties can be computed independently.
This can simulate the discontinuous shear scenario of a fluid, which
is not possible with previous models (see Figure 3).

4.2. Non-Newtonian Mechanism

In the conformation tensor model (Sec. 4.1) there are already non-
linear terms that can describe the fluid’s shear thinning ability.
Still, the model’s descriptive ability is limited to Newtonian and
shear thinning. We add shear thickening capability to the model by
creating a non-Newtonian mechanism, combined with the mixture
model, to dynamically calculate local fluid properties.

For the three fluid scenarios described in Figure 3, we know that
the key parameter affecting the local rheological properties is the
solution concentration, which can be conveniently replaced by the
volume fraction of the polymer phase in the mixture model. Hence,
an artificial threshold can be set to adjust the stress calculation
model, we use a volume fraction threshold α0 to handle this.

For the shear thinning fluid, we update the thinning factor β in
Eqn. 18 by

β = β0
max(0,α0 −α2)

α0 + ϵ
, (27)

where β0 is the basic thinning factor. When α2 <α0, shear thinning
will be stronger, and if α2 it will be weaker; α0 = 0 recovers the
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basic viscoelastic model and describes a Newtonian fluid; ϵ is a
regularization factor used to ensure numerical stability.

For the shear thickening, we use the Cross model, a kind of non-
Newtonian viscosity model[Cro65], to calculate shear-related vis-
cosity changes. The classical Cross model is formulated as

µ(γ) = µ∞+(µ0 −µ∞)
1

1+(lγ)N , (28)

where γ =
√

1
2 tr(∇v̄+(∇v̄)T )2 is the shear rate; µ0 and µ∞ are

limiting values of viscosity; l is a scaling factor; and N is a smooth-
ing factor.

In our model, we need to consider two aspects to change the vis-
cosity of the fluid: the change caused by the polymer concentration
α2 and the shear rheology.

Inspired by the classical suspension model [WC14], we describe
the non-Newtonian properties of fluids by microstructures. Instead
of explicitly computing and storing microstructures, we scale the
rest dynamic viscosity by establishing a nonlinear relationship be-
tween the polymer particle phase fraction and the scaling factor.
Following Royer [RBH16] and Hermes [HGP*16] on the relation-
ship between the volume fraction and the viscosity of the polymer
particle component, we compute the scaling factor

κ
i = (1−α

i
2)

−n (29)

and apply it to the solution viscosity, where α
i
2 is the volume frac-

tion of the polymer phase in particle i, and n denotes the strength of
the nonlinear relationship (set empirically in our work to n = 1.2).
The rest dynamic viscosity is computed as

η
0
s = κη0, (30)

where η0 is the basic viscosity of the solution.

Finally, we compute the effective dynamic viscosity as

ηs(γ) = η
0
s +(ηmax −η

0
s )

1
1+(lγ)N

max(0,α2 −α0)

1−α0 + ϵ
. (31)

The above model can be seen as two acting ‘intervals’ which
maintain the same shear properties in each; the interval’s upper and
lower bounds give the upper and lower limits of shear strength.
Shear thinning properties generally occur at low solution concen-
trations, when water lubrication in the solution exceeds friction
between polymer molecules. In Eqn. 27, max(0,α0−α2)

α0+ϵ shows that
when α2 gradually increases in the shear thinning interval, the in-
crease of local concentration weakens the thinning effect, thus re-
ducing the thinning factor of the nonlinear term. When the con-
centration rises and exceeds the threshold, the nonlinear term in
Eqn. 18 vanishes and activates the calculation of shear thickening.
In Eqn. 31, max(0,α2−α0)

1−α0+ϵ shows that the higher the concentration,
the larger the scaling factor and the higher the solution viscosity.
When α0 = 0, we simply set ηs = η0.

The viscoelastic capacity of our non-Newtonian model as a func-
tion of shear is plotted in Fig. 4.

4.3. Bonding Effects Network

In the mixture model, the phase transfer step is only affected by
drift velocity and diffusion. In the implicit mixture model, Cd is

Figure 4: The Viscoelasticity-ShearRate curve is divided into the
shear thinning interval and the shear thickening interval, and the
rheological properties are calculated dynamically through α2.

used to adjust the effect of mixture on the phase motion, but it is
a constant. This means that, regardless of the dynamic state of the
fluid, the mixture affects the phase in the same proportion. This is
not true in solutions with significant bonding interactions, such as
starchy water, which are easy to mix and difficult to separate, and
cannot be simulated if constant Cd values are used. To alleviate this,
we propose a bond cooperation network that dynamically modifies
the parameter Cd at each time step according to the fluid’s local
concentration, as follows.

For a simulation, we set a basic drag parameter C0
d , making next

Cd depend on it. The core concept of the bonding effects network
is obstruction: For particle i, the polymer concentration carried by
its neighbors hinders the momentum exchange between the phases,
which causes the Cd value to rise there. We use the SPH method to
estimate particle i’s value Cd (see also Figure 5) as

Cd =C0
d +(1−C0

d)
j

∑
j ̸=i

V j
α

j
2W i j, (32)

where V j is the volume of particle j, and ∑
j
j ̸=i V

j
α

j
2W i j denotes

the blocking factor.

5. Implementation

We implemented our model in CUDA 12.3. All experiments dis-
cussed next were run on a single NVidia RTX 3070Ti card. All rel-
evant parameters are summarised in Table 1. The first two parame-
ters adjust the mixing process; the latter ones control the desired
non-Newtonian fluid effects. The model’s elastic calculationde-
pends mainly on parameter λ and viscous behavior on η f ,η0,ηmax.
When λ → 1, the model is purely elastic; when η →∞ or λ → 0,
the model is purely viscous.

Algoritm 1 shows an overview of our algorithm and its main
steps. We start by setting the conformation tensor to I for all par-
ticles. We compute particle neighbors (here and next) by a uni-
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𝒊 𝒊 𝒊

𝑪𝒅
𝒊 = 𝑪𝒅

𝟎 𝑪𝒅
𝒊 = 𝟏 𝑪𝒅

𝒊 ∈ (𝑪𝒅
𝟎 , 𝟏)

Figure 5: Three bonding effect cases. Red arrows show the block-
ing effect – the longer the arrows, the stronger this effect. When
particle i’s neighbors are all pure water, no shift occurs and Ci

d =

C0
d . When neighbors are all pure polymer, momentum exchange

blocking occurs, yielding a no-drift scenario and Ci
d = 1. A more

common scenario is a neighbor with an unsaturated phase which
activates the blocking effect. Particles in the figure are drawn using
pure water or pure polymer phases; the case of particles with un-
saturated phases can already be described by these three examples.

fied grid-based neighbor search [Gre10]. Next, the simulation loop
starts, consisting of six steps. Step 1 updates the current state of the
fluids and precomputes the viscoelastic solver related parameters.
Step 2 uses an VFSPH solver to compute the pressure momen-
tum and next uses this to update the phase velocities and mixture
velocity to keep the velocity field divergence-free. Step 3 updates
the fluid field based on gravity, surface tension forces also can be
added here. Step 4 employs our viscoelastic solver to compute
viscoelastic stress forces. Step 5 uses VFSPH to enforce the fluid’s
incompressibility. Finally, Step 6 updates the volume fractions, par-
ticle positions, and particles’ neighbors.

6. Results

In this section, we present several results obtained using our pro-
posed multiphase model. It is noteworthy that our method enables
the adjustment of fluid flow using a uniform set of parameters, elim-
inating the need to switch between different models. All experi-
ments discussed herein employ an explicit scheme to update the
fluid’s conformation tensor.

Viscoelastic capacity: Figure 6 shows a set of multiphase Newto-
nian fluids (α0 = 0) with different viscosity and relaxation time,
where we set C0

d = 1 to stabilize the rheological properties. Except
for the small ball scenario, the other scenarios adopt a fixed time
step of 1.5ms, which cannot be achieved by the viscosity calcula-

Table 1: Model parameters

Parameter Meaning Range
C f diffusion coefficient [0, 1]
C0

d rest drag coefficient [0, 1]
β0 rest shear thinning factor [0, 1]
α0 phase volume fraction threshold [0, 1]
η f rest viscosity of water (0, 0.02)
η0 basic viscosity of solution (0, 20)
ηmax max viscosity of solution (0, 20)
λ relaxation time (0, 1)

Algorithm 1: Non-Newtonian fluid simulation algorithm

Initialization:
set C = I
Update Neighbors

Loop:
1. Precomputation:

for all particles:
compute mixture velocity v̄ using Eqn. 5
compute phase drift velocities vd

k using Eqn. 4
compute mixture rest density ρ̄ using Eqn. 6
compute β and κ using Eqns. 27 and 29
compute drag coefficient Cd using Eqn. 32

2. VFSPH divergence-free Solver:
for all particles:

compute pressure momenta Mpdiv

k using VFSPH
update phase velocities vk using Eqn. 11
recompute mixture velocity v̄ using Eqn. 5

3. Advection:
for all particles:

update phase velocity from Mg
k using vk+ = g∆t

recompute mixture velocity v̄ using Eqn. 5
4. Viscoelastic Solver:

for all particles:
update conformation tensor C using Eqn. 18
update phase velocity from Mvise

k using Eqns. 20 and 26
recompute mixture velocity v̄ using Eqn. 5

5. VFSPH incompressible Solver:
for all particles:

compute pressure momentum Mpincomp

k using VFSPH
update phase velocity vk using Eqn. 11
recompute mixture velocity v̄ using Eqn. 5

6. Finalize:
Phase Transfer:

update volume fraction using Eqns. 13 and 14
for all particles:

recompute each phase drift velocity vd
k using Eqn. 4

update particle positions xi using xi += v̄∆t
Update Neighbors

tion scheme in the implicit mixture model or by the existing ex-
plicit viscosity solvers, such as explicit Laplacian viscosity. In the
upper part of Figure 6, η0 and ηmax range in [1,15], and λ ranges
in [0.005,0.3] in the lower part.

Non-Newtonian fluid: Figures 7 and 8 show a shear-dependent
non-Newtonian fluid. Our non-Newtonian mechanism assigns
computational flows primarily by polymer phase fractions. In Fig-
ure 7, for an intuitive comparison, we set three different types of
fluids simultaneously in one single simulation: Left: Newtonian,
Middle: shear thinning, and Right: shear thickening. It is worth
noting that in existing non-Newtonian solvers based on specific
non-Newtonian viscosity models (Cross [Cro65], Carreau [Car72],
et al.), simulating different types of fluids requires manually chang-
ing the parameters of the non-Newtonian viscosity model, which
means that different types of fluids cannot be considered in one
single simulation, and more dynamic scenarios cannot be achieved.
The scenario mainly examines the static non-Newtonian properties
and hence we set C0

d = 1 to keep a homogeneous solution. Fig-
ure 8 shows a simple comparison of our model with a non-Newton
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Figure 6: Diamonds and a ball with different viscoelasticity values and 281k particles. The timeline in the upper part shows the flow
of different viscosity parameters (η0,ηmax) with equal elastic coefficients (relaxation time λ). The first three diamond simulations in the
timeline in the lower part show the flow with different elastic parameters with equal viscosity. The last small ball demonstrates the bouncing
effect at high viscoelasticity.

solver based on the Cross model for another set of single simu-
lations. This scenario examines dynamic flow effects with phase
transfer, where the rheological properties of the fluid may change
as the phase fraction changes. We set C0

d = 0.8,α0 = 0.65,β0 = 0.1.
For these two scenes, η0 = 2,ηmax = 5.

Buckling effect: The buckling effect is a complex flow behavior
of highly viscous fluids, which can be correctly reproduced by our
model; see Figure 9. We set C0

d = 0.85,λ = 0.0075,α0 = 0.1,β0 =
0.1,η0 = 10,ηmax = 13.

Bonding effect network: The network is mainly used to mitigate
phase separation, which helps in easy to mix, hard to separate sce-
narios. In the original implicit mixture model, the constant Cd leads
to the same mixing and separating mechanism, which means that
mixing and separating occur at the same rate. For scenarios like
starch water, relatively easy mixing can be achieved by stirring, but
we also need to maintain the mixing state for a certain amount of
time, so the constant setting of Cd is not applicable. We visually
observe the blocking effect of the bonding network on phase sep-
aration through a simple scenario; see Figure 10. We set volume
fraction α = (0.3,0.7) and C0

d = 0.3,C f = 0.0005,λ = 0.004,α0 =
0,η0 = ηmax = 1.

Mixing Comparison: For fluids with a high viscosity ratio, mixing
them stably is a challenge. In this experiment, we demonstrate the
simulation of our method and IMM with a viscosity ratio of 1000
(water phase: 0.01 Pa · s, polymer phase: 10 Pa · s). In this scenario,
we set the time step of IMM to 0.1 ms and the time step of our
method to 1 ms. Our method is able to stably mix the fluid; see
Fig. 11.

Mix into cement: This experiment mainly investigates the compre-
hensive ability of the model. The process of mixing water and sedi-
ment to form cement reflects easy mixing, difficult separation, local
rheological differences and viscoelastic ability. This scene can also
be extended to more dynamic scenes, such as making dough; see
Figure 12. We set C0

d = 0.4,C f = 0.015,λ = 0.006,α0 = 0.65,β0 =
0.2,η0 = 6,ηmax = 13.

"SCA2024" non-Newtonian: This experiment demonstrates a dy-

namic non-Newtonian scene. We set 7 different non-Newtonian flu-
ids in one single simulation. Different non-Newtonian fluids are
obtained by setting different initial phase fractions. We set C0

d =
0.6,C f = 0.015,λ = 0.006,α0 = 0.55,β0 = 0.25,η0 = 6,ηmax =
10. For the letters/numbers, we set ‘S’ to α = (0.1,0.9), ‘C’ to
α = (0.3,0.7), ‘A’ to α = (0.4,0.6), the first ‘2’ to α = (0.5,0.5),
‘0’ to α = (0.6,0.4), the second ‘2’ to α = (0.7,0.3), and finally
‘4’ to α = (0.9,0.1); see Figure 1.

Table 2 outlines our method’s capabilities vs with three other es-
tablished fluid simulation solvers. Table 3 compares four viscosity
scheme time steps under different viscosities. Table 3 shows that in
high viscosity scenarios, our approach has significant advantages
over other explicit schemes and can also include a wider viscos-
ity range. Table 4 shows the time cost of our method and IMM
when stirring a high viscosity ratio fluid at a high speed. For single-
step viscosity solving and overall computation, our method incurs
slightly higher costs. However, since our method allows for larger
time steps, the overall cost is lower, with a speedup of approxi-
mately ×1.97.

Table 2: Comparison of method capabilities

Solver
High viscosity
(∆t ≥ 1.5ms

)
Dynamic
Mixing

Non-Newtonian
fluids

Easy mixing but
separation blocked

Multitype fluids
in one simulation

Ours ✔ ✔ ✔ ✔ ✔

IMM ✘ ✔ ✘ ✘ ✘

DFSPHev ✘ ✘ ✔ ✘ ✘

DFSPH iv ✔ ✘ ✔ ✘ ✘

IMM: Implicit Mixture Model
DFSPHev: DFSPH with Explicit Viscosity
DFSPH iv: DFSPH with Implicit Viscosity

7. Conclusion

We proposed a new simulation technique for non-Newtonian flu-
ids in a multiphase framework that makes use of the concept of
mixtures so as to closely mimic the real behavior of fluids. Our
method can adapt to different non-Newtonian fluid models and can
reproduce their behavior for a wide range of viscosities. Also, our
method is able to model a certain degree of elastomer behavior.
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Figure 7: A fluid block (52k particles) falls on an inclined plate.
Left block of particles: Newtonian, Middle block: shear thinning,
Right block: shear thickening. After contact with the inclined plate,
the Newtonian fluid always maintains its own flow. 0–1.5s: the
shear thinning fluid reduces the viscosity due to shear effect, and
promotes the flow; the shear thickening fluid increases viscosity and
blocks flow. 1.5–3.5s: as the shear effect weakens, the shear thin-
ning fluid viscosity increases, and the flow slows down. The shear
thickening fluid viscosity decreases, facilitating flow.

Table 3: Maximum time step ∆t (in ms) for each method in the
corresponding viscosity range; η is listed in m2/s.

Solver η ≤ 0.001 η ∈ [0.001,1] η ∈ [1,10] η ∈ [10,20]
Ours 3 3 1.5 0.1
IMM 3 0.5 - -
DFPSHev 10 1 - -
DFPSHiv 10 10 5 1

Compared with general single-phase solvers with explicit viscosity
and the original implicit mixture model, our method is more com-
putationally efficient in highly viscous scenarios.

There are a few directions worth exploring. In this work, we used
the explicit solution. An implicit solution of the conformation ten-
sor method under a Lagrangian method may be able to improve
the stability of the algorithm and improve its time stepping. The
problem brought by the explicit solution is that numerical errors

Figure 8: Three bunnies falling to the ground. 73k particles. For
our model, they are Below: newton, Middle: shear thinning, Top:
shear thickening. And three same shear thinning bunnies in another
scenario. In our scenario, the flow is composite and dynamic, and
influenced by the polymer phase fraction, the fluid more closely
resembles a viscoelastic shear thickening fluid.

Figure 9: The top scene shows honey poured over a donut and the
bottom scene shows another buckling scene rendered as a particle
state with 158k particles. The scenes have a stable and obvious
buckling effect.

may occur under high stress, resulting in undesirable fracture be-
havior. This problem mostly occurs in ultra-high elastic scenes, and
the resolution of the background grid may also affect the calcula-
tion. Multiscale multiphase flow simulation techniques should have
higher potential for non-Newtonian fluid simulation. In our exper-
iments, we also found that our model has the potential to be ex-
ploited in elastomer simulations as well.
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Figure 10: The blocking effect of Bonding Effect Network on phase
transfer (98k particles). We use a plane to segment the fluid to ob-
serve the internal state of the fluid. The arrows indicate distinct
phase interfaces. The left shows phase separation of the original
implicit mixture model, Cd = 0.3. Our model’s result with C0

d = 0.3
is on the right. It can be clearly seen that our model has a blocking
effect on phase separation, which contributes to the scenario where
the fluid achieves easy mixing and remains mixed at low C0

d values.
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