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Figure 1: Left: Our framework takes an input image depicting a character in an arbitrary pose. Middle: We transform the character in
the input image to an A-pose and lift it to 3D. Right: The A-posed 3D mesh enables the standard automatic rigging process to create an
animatable 3D character.

Abstract
Learning-based methods for 3D content generation have shown great potential to create 3D characters from text prompts,
videos, and images. However, current methods primarily focus on generating static 3D meshes, overlooking the crucial aspect
of creating an animatable 3D meshes. Directly using 3D meshes generated by existing methods to create underlying skeletons
for animation presents many challenges because the generated mesh might exhibit geometry artifacts or assume arbitrary poses
that complicate the subsequent rigging process. This work proposes a new framework for generating a 3D animatable mesh
from a single 2D image depicting the character. We do so by enforcing the generated 3D mesh to assume an A-pose, which can
mitigate the geometry artifacts and facilitate the use of existing automatic rigging methods. Our approach aims to leverage the
generative power of existing models across modalities without the need for new data or large-scale training. We evaluate the
effectiveness of our framework with qualitative results, as well as ablation studies and quantitative comparisons with existing
3D mesh generation models.

CCS Concepts
• Computing methodologies → Computer vision; Rendering;

1. introduction

Recent advances in learning-based 3D content generation have
shown great potential to create 3D characters from text prompts,
videos, and images [XZW*23; ZZZ*23; LYX*24; SZS*23;
PJBM22; MPE*23]. Using these simple yet expressive 2D or tex-
tual input formats to create 3D characters is highly effective for
downstream applications such as games, movies, and mixed reality.
However, current methods primarily focus on generating static 3D
meshes, overlooking the crucial aspect of creating an animatable
3D meshes, which limits their application in computer animation.

An animatable mesh is a 3D mesh that depicts the appearance
and the shape of the character, while being able to deform based on

the pose of its underlying skeleton. To make an arbitrary 3D mesh
animatable, a common approach is to create a skeleton that drives
the deformation of the 3D mesh, known as the rigging process. Un-
fortunately, 3D meshes generated by existing methods often exhibit
artifacts such as asymmetric body parts or improper merging of
body segments (e.g., partial merging of upper arms and torso). Ad-
ditionally, the generated mesh may assume a pose that complicates
or renders the subsequent rigging process impossible (e.g., a pose
with crossed arms).

This work proposes a new framework for generating a 3D mesh
from a single 2D image depicting the character, designed to facili-
tate the rigging process for animation. To overcome the abovemen-
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tioned challenges, we enforce the generated 3D mesh to assume an
A-pose, wherein the limbs are separate from the torso except for
the area near the shoulder and hip joints. This approach mitigates
the geometry artifacts and supports the use of existing automatic
rigging methods [XZK*20; BP07], which expects the input mesh
in an A-pose or a T-pose. As such, our problem can be redefined as
follows: given an image of a bipedal character in an arbitrary pose,
create a 3D mesh of that character in the A-pose.

While there are several image and 3D mesh generation mod-
els [RBL*22; BDK*23; PJBM22; QMH*23; ZZZ*23], none of
them can be directly applied to our specific task. Before committing
to training yet another model for this new task, we explore the idea
of synergistically combining existing pretrained models effectively.
This approach aims to leverage the generative power of these mod-
els across modalities without the need for developing new archi-
tectures, embeddings, losses, or, importantly, acquiring new data.
To this end, we propose a framework that consists of three stages
(Figure 1). First, we transform the pose in the input image to a syn-
thesized A-pose image. Second, we construct a 3D geometry using
the A-pose image. Finally, we employ an image generation model
from text prompts trained on high-resolution images to enhance the
texture quality of our 3D avatar. These steps involve the innova-
tive integration and utilization of various existing pretrained image
generation models from text prompts (text-to-image) or from im-
ages (image-to-image), 3D mesh generation models from images
(image-to-3D), and off-the-shelf image feature prediction models,
without requiring additional training data or large-scale training.
We evaluate the effectiveness of our framework with qualitative re-
sults, as well as ablation studies and quantitative side-by-side com-
parisons with existing image-to-3d models. Animated characters
can be found in supplementary videos.

2. Related Work

2.1. Neural Radiance Field for 3D Contents Generation

In the field of machine learning, notable research has been
conducted on 3D content generation based on point clouds
[ADMG18], signed distance fields [PFS*19], voxels [WZX*16],
and neural radiance fields (NeRF) [MST*21; YYTK21; TY21].
NeRF, initially aimed at creating detailed and photorealistic 3D
scenes from 2D images, has evolved into a tool for generating
3D models from sparse inputs such as single images and text
prompts. To overcome the original need for numerous calibrated
views, large-scale image generation models [RBL*22; SCS*22;
RPG*21] have been employed to synthesize novel views replacing
the calibrated views. Liu et al. [LWV*23] introduce an image-to-
image diffusion model that is conditioned on camera views. Due to
the inherent randomness of the diffusion process, multiple novel
view synthesis methods ensuring 3D consistency have been ex-
plored [LLZ*23; LHG*23; SWY*23; LXJ*23]. These methods de-
velop their own network models for training, which requires train-
ing datasets of 3D content, such as Objaverse [DSS*23]. In prac-
tice, learning new network models for such specific tasks often re-
quires laborious hyper parameter tuning, the curation of training
dataset, and expensive training resources. Conversely, our frame-
work does not require training new network models for novel tasks.

Instead, we employ pretrained 2D image generation models that
have been trained on large-scale datasets [SBV*22; DSS*23].

The original concept of using pretrained text-to-image genera-
tion models for 3D content creations was proposed by Poole et
al. [PJBM22]. They introduce score distillation sampling (SDS), an
iterative process that refines an initial random NeRF to match 2D
reference images depicting the target object from various angles.
These reference images are not actual photos but are synthetically
generated by the 2D text-to-image model. In this way, a dataset
of 3D models is not required for generating 3D content, thereby
opening up new possibilities for 3D generative models [WLW*23;
SZS*23; GAA*22]. Our 3D model creation pipeline is aligned with
the above-mentioned methods, and it achieves high-quality results
with our customized diffusion models and two-phase process that
focuses on geometry construction and texture refinement, respec-
tively.

2.2. Diffusion Model Customization and Control

Ever since large-scale diffusion models have demonstrated their
performance in text-to-image generation [RPG*21; RBL*22;
SCS*22], the customization of the diffusion models to generate
synthesized images of specific subjects in various textual con-
texts emerges as an important topics. A naive way to first ob-
tain text prompts from existing image-to-text models such as CLIP
[RKH*21a], and then use these text prompts for text-to-image gen-
erations. However, it often fails to get the desired output primarily
because the text prompts may not be as specific as required for text-
to-image models to accurately synthesize images that depict the
subjects. Gal et al. [GAA*22] propose to learn text embeddings in
the latent space in text encoder, which offers more degrees of free-
dom to the text-to-image model than those available in the natural
language prompts. Fine-tuning the diffusion models for customiza-
tion with a few shot of images [RLJ*23; HSW*21; VHGS19],
with single images [WZJ*23], with images having multiple con-
cepts [AAF*23; KZZ*23] has been explored. Our pipeline lever-
ages these methods for A-posed image generation as well as 3D
model creations. Furthermore, we specialize in character-specific
enhancements, thereby improving the quality of synthesized A-
pose images and 3D models.

In addition to the customization for generating specific subjects,
research has also focused on adding controllability to the generated
outputs. Zhang et al. [ZRA23] introduce network architectures in-
tegrated with diffusion models to condition the denoising process
using an additional image input. Text-driven control methods, com-
bined with in-painting techniques, have been explored to maintain
originality while still exerting influence over the final image results
[MHS*21; BHE23; KZL*23]. Our framework employ both the im-
age control techniques to consistently generate A-pose images and
the text-driven in-painting techniques to refine facial complexity.

2.3. Generative Animatable Characters

Research in the generation of animatable characters has predomi-
nantly focused on creating human-like avatars based on paramet-
ric body model such as SMPL [LMR*23]. Saito et al. [SSSJ20;
SYMB21] introduce a framework generating custom animatable
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avatars from 3D scans of humans. MP-NeRF generates multi-
person novel view synthesis using sparse cameras and a multi-
person SMPL template, addressing occlusion and interaction is-
sues in dynamic scenes [CL22]. HDHumans integrates a clas-
sical deforming character template with NeRF to generate high-
resolution human characters with accurate novel views and mo-
tions [HLX*23]. Text-driven animatable character generations has
been explored using text-to-image diffusion model and the SDS ap-
proach [HSZ*23; KAZ*23; KLTT23; LYX*24].

In the domain of facial animations, DreamFace proposed person-
alized animatable faces generated from text descriptions [ZQL*23].
Qin et al [QSA*23] propose an end-to-end deep-learning approach
for automatic rigging and retargeting of 3D human face models.
Fundamental difference between our framework and these above-
mentioned methods is that we don’t rely on assuming parametric
models underlying the meshes. By enabling the generation of 3D
meshes without underlying parameteric models, our method can
create animatable characters ranging from human-like characters
to super-deformed characters at the cost of an additional rigging
process [BP07; XZK*20; Mix].

3. Method

Our framework takes as input a single image of the character of
interest and produces a 3D animatable character. The input image
is assumed to depict a single full-body bipedal character with legs,
arms, and a head visible in the image.

We propose a framework that consists of three stages. First, we
transform the pose in the input image to a canonical A-pose us-
ing an image-to-image translation model. We utilize text-to-image
model [RBL*22] based on diffusion models for our system’s gen-
erative capabilities. Second, we construct a 3D geometry using the
A-pose image. A pretrained image-to-image model capable of syn-
thesizing novel view images is used to create a 3D mesh using score
distillation sampling (SDS). The texture synthesized by the image-
to-image model often lacks details and good quality. As such, we
employ a text-to-image diffusion model trained on high-resolution
images to boost the quality of our 3D mesh. Once we obtain a high
quality mesh for the character in the A-pose, we can directly use
existing rigging method to make the mesh animatable.

3.1. Image Canonicalization

Given an input image of a character in an arbitrary pose, viewed
from an arbitrary camera angle in front of an arbitrary background,
image canonicalization process translates the input image to a new
image with the character in an A-pose, viewed from the frontal
view with the background removed [LSH21].

This image-to-image translation task requires a generative model
capable of synthesizing a target image that resembles the appear-
ance of the character in the source image, conditioned on a body
pose. One straightforward approach converts the input image to
text using an off-the-shelf image-to-text model [RKH*21a] and
then put this text to the text-to-image model, including a prompt
such as “A-pose” to control the output pose. However, this method
often fails to synthesize accurate A-pose images because the text

prompt cannot fully capture the original image’s appearance and
loses crucial body proportions needed for precise A-pose gen-
eration. Instead, we employ DreamBooth [RLJ*23], which cus-
tomize the pretrained text-to-image model to mimic the input im-
age. Additionally, the body proportions are extracted using Open-
pose [CSWS17] features to utilize ControlNet [ZRA23], which can
generate images conditioned on these pose features.

3.1.1. Text-to-image model customization using a single 2D
image

We use a diffusion-based text-to-image model that learns to pro-
duce high-quality images conditioned on text prompts y by sequen-
tially denoising a sample, starting from random noise ϵ∼N (0,1).
Specifically, the model ϵφ(xxxt ,y, t) learns to predict noises with net-
work parameters φ at diffusion step t ∈ [0,1000], where xxxt is the
noised image at the noise level t. Our goal is to finetune a pretrained
text-to-image model ϵφ based on the input image xxx0, in order to ob-
tain a customized diffusion model ϵφcus . We use a score estimation
loss [Ryu] for finetuning:

Ldiff = Ey,b,t,ϵ||(ϵφ(xxxt ,y, t)− ϵ)⊙mmmb||2. (1)

To improve the quality of the image at areas with high complexity,
we partition the character into two regions, b = {body, face} with
two individual masks mmmb.

The learnable variables include the parameters of the denoising
network φ and the textual embeddings <b> corresponding to the
body or face. The <b> is an embedding vector that encodes the text
b. We use CLIP [RKH*21a] to encode the prompt y, constructed as
"A photo of <b>" [GAA*22] and learn the textual embeddings <b>
to optimize Ldiff.

To ensure the textual concepts of <face> is aligned with the con-
cept of <body>, we use an union-sampling technique inspired by
Avrahami et al. [AAF*23]. During finetuning, we concatenate two
concepts to create a merged mask mmmb = mmmbody ∪mmmface and a com-
bined prompt, "A photo of <body> and <face>". The new prompt
and the new mask are used to compute Equation (1) to learn the
combinations of two textual concepts. We additionally use spatial
cross-attention loss to ensure that each concept learns from the cor-
responding mask when union-sampling is applied.

For the A-pose image generation, we finetune the text-to-image
model ϵφ in a two steps, suggested by [AAF*23]. We first train
textual embeddings <b> with a high learning rate 5e-4, followed
by finetuning the whole φ in low learning rate 2e-6, including the
CLIP text encoder and the UNet denosing networks [RKH*21b;
RFB15].

3.1.2. Kinematics extraction and reposing

We use two off-the-shelf models to predict the 2D joint locations
[CSWS17] on xxx0 and the depth map of xxx0 [RLH*20]. Each 3D joint
position is reconstructed by concatenating its predicted 2D joint
position and the corresponding depth. From the 18 reconstructed
3D joint positions, we compute the body segment lengths and facial
feature locations (Figure 3). Body symmetry is enforced by taking
the average of the limb lengths and the joint angles on both side.
Once a 3D stick figure is constructed in such a way, we repose the
stick figure to an A-pose by forward kinematics.
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Figure 2: Left: Text-to-Image Model Customization. We customize a pretrained text-to-image model to the input image by optimizing
the model parameters and the textual embeddings. Right: A-pose Image Generation. We utilize pretrained pose-conditioned ControlNet to
control the customized text-to-image model. We ask ControlNet to generate the character in two views at once, utilizing the input image and
inpainting technique.

Figure 3: We use off-the-shelf methods to estimate 2D joint lo-
cations and depth map from the input image. Concatenating these
estimates, 3D joint positions, body segment lengths and facial fea-
ture locations of a 3D stick figure are reconstructed. We repose the
stick figure to an A-pose using forward kinematics.

Since the model that predicts 2D joint locations was trained on
the real human data [CSWS17], it occasionally fails when applied
on nonhuman characters. We manually label the 2D joint locations
for those cases. Surprisingly, the A-pose image generation process
described in Section 3.1.3 can still handle nonhuman characters ro-
bustly.

3.1.3. A-posed image generation

With the customized text-to-image model ϵφcus and a stick figure in
an A-pose, we use ControlNet [ZRA23] to generate a new image xxxA
with the character in A-pose. ControlNet is a neural network model
attached to a backbone diffusion model to enable additional con-
trollablity for text-to-image generation. We could simply use the
existing ControlNet for 3D pose conditioning and swap the back-
bone diffusion model with our customized ϵφcus . However, it is chal-
lenging to come up with a text prompt such that ControlNet would
generate consistent appearance of the desired character, even with
our customized backbone diffuion model ϵφcus .

We overcome the issue using the idea of in-painting with a two-
stage process (Figure 2). In the first stage, we put side-by-side the
original input xxx0 ∈ RH×W×3 and an image of noise ϵ ∼ N (0,1)
to form a wider image [xxx0,ϵ] ∈ RH×2W×3, where H and W are the
height and the width of xxx0 respectively. Similarly, we put two stick
figures side-by-side, one with original pose and one with the A-
pose, and project them to an image as a condition to the ControlNet.

We then ask ControlNet to in-paint the right side of the wide image
with the text prompt, "Multiple views of the same character in the
same outfit. A photo of <body>". With the guidance provided by
the left side of the image along with the pose condition, ControlNet
dutifully generates an image of the character on the right side in A-
pose with the same appearance similar to xxx0. This trick works well
for the full body, but the result lacks details in the face and hand
areas, hence the second stage. We generate circle masks around the
face and hands to further refine these areas. The center and radius of
the masks are determined by the corresponding 2D joint positions
and limb length. Similar to the work by Meng et al. [MHS*21],
the refinement process is done by adding noise at the mask regions
at the noise level t = 500 and denoising them down to t = 0 with
the same text prompt but swapping textual embedding <body> with
<face>.

3.2. Geometry Construction

The next step is to create a 3D triangle mesh from the gen-
erated A-posed image xxxA (Figure 4). Recent work such as
Zero123 [LWV*23] has made great advances in creating novel
views from a single image. In this stage, we leverage a pretrained
image-to-image, view-conditioned diffusion model ϵψ to construct
the 3D geometry from xxxA. We further exploit our customized text-
to-image model ϵφcus , and off-the-shelf image feature prediction
models to improve detail reconstruction of the 3D geometry.

We use a NeRF representation with learnable implicit density
and albedo function [MST*21] to construct the 3D mesh. The
NeRF parameters θθθ are optimized with the following two loss func-
tions.

3.2.1. Front view loss

Although we do not have a sufficient set of images that cover dif-
ferent camera views to train a NeRF representation, we can at least
leverage the one image from the frontal view we have, xxxA. Given the
rendered image xxx of the 3D representation θθθ from the camera posi-
tion ccc = cccfront and the differentiable rendering function ggg(θ,ccc) = xxx,
we define a loss function such that the 3D geometry seen from the
front view matches xxxA:

Lfront(xxx) = Lrgb +Lopac +Ldepth +Lnormal (2)
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Figure 4: Left: Geometry Construction. In addition to the information provided by the input image in the frontal view, we utilize a pretrained
view-conditioned diffusion model and our customized text-to-image model to provide score distillation sampling (SDS) loss. Right: Texture
Refinement. We fix the geometry of the reconstructed 3D model and continue to improve its texture. Images from multiple views are rendered
from the 3D model and refined by our customized text-to-image model. These refined images are used to customize another 3D-aware text-
to-image model, which is then used to further optimize the texture of the 3D model.

where Lrgb and Lopac penalize pixel-wise rgb and opacity devi-
ations between xxx and xxxA, respectively. With the predicted depth
and normal maps from the off-the-shelf feature prediction mod-
els [RLH*20], Ldepth encourages higher Pearson correlation coef-
ficients between the depths of xxx and the predicted depths of xxxA.
Similarly, Lnormal encourages cosine similarities between the nor-
mals of xxx and the predicted normals of xxxA. The design of L f ront
closely follows the work [QMH*23; SZS*23].

3.2.2. Novel view loss

For other views which we do not have any reference im-
ages, we leverage a pretrained view-conditioned diffusion model
ϵψ(xxxt ,xxxA,ccc, t) [LWV*23] and our customized text-to-image model
ϵφcus(xxxt ,y, t) A straightforward approach samples numerous syn-
thesized novel view images using ϵψ in random arbitrary views
with standard methods like DDPM or DDIM [HJA20; SME20].
However, the NeRF θ fails to converge due to 3D inconsistency
throughout the synthesized images. This occurs because the images
are independently sampled before updating θ for 3D consistency.
Instead, we use score distillation sampling (SDS), which updates
θ during sampling. Consider sampling an image xxx from the camera
position ccc by minimizing the loss L(ϵψ,xxx) =Et,ϵ||ϵψ(xxxt ,xxxA,ccc, t)−
ϵ||2. By following the gradient of the loss with respect to xxx, the min-
imization aligns with the score of the data distribution formed by
ϵψ to obtain an optimal image xxx∗ that meets the conditions xxxA and
ccc. In our problem, the image xxx = g(θ,ccc) is the rendering of the
NeRF with the volumetric renderer g, allowing us to update θ by
the chain rule:

∇θLSDS(ϵψ,xxx) = Eccc,t,ϵ

[
w(t)[ϵψ(xxxt ,xxxA,ccc, t)− ϵ]

∂ϵψ

∂xxx
∂xxx
∂θ

]
(3)

where w(t) is the weight depending on the noise level t. The noise
residual ϵψ(xxxt ,xxxA,ccc, t)− ϵ estimates the update direction for the
current rendered image xxx toward higher data density region of the
frozen network ϵψ. In practice, we omit computing the U-Net Ja-

cobian term ∂ϵψ

∂xxx for computational efficiency. For more details on
SDS, please refer to the original paper [PJBM22].

We also exploit the customized text-to-image model ϵφcus(xxxt ,y, t)
(Section 3.1). Our SDS loss linearly combines both pretrained dif-

fusion models with a weight wcus. As such, our final loss function
is defined as follows:

L =

{
Lfront(xxx) i f ccc = cccfront ,

LSDS(ϵψ,xxx)+wcusLSDS(ϵφcus ,xxx) otherwise
(4)

During training, we sample ccc randomly from a predefined range
of angles and elevations. Additionally, we use classifier free guid-
ance (CFG) to steer the update direction toward conditioned sam-
ples by adding wCFG(ϵφ(xxxt ,y, t)− ϵφ(xxxt ,∅, t)) to ϵφ(xxxt ,y, t), where
wCFG = 100 is the weight determining how much we emphasize
the conditioning y [HS22].

Finally, we improve the geometry quality by switching to DMTet
[SGY*21] from NeRF in the middle of the optimization process.
Extracting explicit triangle meshes directly from an implicit neu-
ral field using marching cube algorithm [CDH*87] results in poor
mesh quality. On the other hand, DMTet, which is based on tetra-
hedralized grids with nodes containing signed distances, is capable
of generating explicit iso-surface triangle mesh. With a differen-
tiable renderer [LHK*20] for the triangle meshes, we can continue
to optimize the 3D shape in DMTet representation. While DMTet
improves the final mesh quality, we cannot use it at the beginning of
the optimization because DMTet requires an initial geometry with
proper topology [CCJJ23].

3.3. Texture Refinement

The method described above generates 3D models with high qual-
ity geometry, but the texture is noticeably blurry due to several rea-
sons. First, we use low-resolution for rendering NeRF models be-
cause high-resolution NeRF is computationally costly and requires
excessive GPU memory. Second, the view-conditioned model ϵψ

is trained on low-resolution image dataset (256 × 256). Lastly,
the SDS loss empirically requires higher CFG weights for conver-
gence than the weight ranges (3.0 to 7.5) used for ancestral sam-
pling [HJA20; SME20]. To overcome these issues, this final refine-
ment step only optimizes appearance with fixed geometry, using
a text-to-image model to distill scores on high-resolution images
(512 × 512). In addition, we utilize variational score distillation
(VSD) to allow for smaller CFG weights [WLW*23].
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We would like to remove the dependency to ϵψ which is trained
on low-resolution images, but depending solely on the customized
model ϵφcus to provide SDS loss without the view-conditioned ϵψ

can be harmful since ϵφcus is customized on the single front view
2D image; we found that optimizing θ without 3D priors creates
multiple faces on the character even though the geometry is fixed.
As such, we opt to customize another text-to-image diffusion model
that is 3D-aware for providing distillation loss to improve the tex-
ture of the 3D model (Figure 4).

3.3.1. Customizing a 3D-aware diffusion model

Inspired by the work [RKP*23], we learned a customized 3D-
awear text-to-image model φ = φ3D by finetuning a pretrained
text-to-image model to a set of high-quality images with multi-
ple views. We render images of our current 3D model from 18
random camera views and refine them using our customized text-
to-image diffusion model ϵφcus . The image refinement is done by
setting the noise level to t = 500 [MHS*21] and ask ϵφcus to de-
noise low-quality rendered images. When generating these im-
ages, we also exploit the normal-map-conditioned ControlNet to
help preserve original geometry. The normal maps can be ex-
tracted using the existing model [RLH*20]. The refined images
are used to train the customized ϵφ3D using standard diffusion loss
L = Et,y,ϵ||ϵφ(xxxt ,ccc,y, t)− ϵ||2. This render-and-refine process al-
lows to learn 3D-aware text-to-image diffusion model while keep-
ing the quality as high as φcus.

3.3.2. Optimizing texture of the 3D models

To utilize ϵφ3D for texture optimizaiton, we construct a VSD loss
as proposed in the work [WLW*23], which has shown to be able
to use standard range of wCFG for image generation. The VSD loss
suggests learning the distribution of the 3D models µ(θ|y), instead
of learning θ. The goal is to minimize KL divergence between the
prior data distribution pφ3D(xxx|y) and the data distributions among
the 3D models qµ(xxx|ccc). With the model ϵµ(xxxt ,ccc,y, t) that learns qµ
by standard diffusion loss, the proposed update rule for θ uses the
gradient of the VSD loss as follows:

∇θLVSD(xxx) = Eccc,t,ϵ

[
w(t)[ϵφ3D(xxxt ,y, t)− ϵµ(xxxt ,ccc,y, t)]

∂xxx
∂θ

]
. (5)

which replace ϵ in the Equation (3) to ϵµ, providing more elabo-
rate information for the current 3D model distributions than just
pure noise. Considering ancestral samplings [HJA20; SME20],
where the sample xxx0 is sampled from the sequence of Markov chain
pφ(xxxt−1|xxxt ,y), the VSD loss acts in similar way in a sense that
the score is distilled between target prior data distribution and cur-
rent distribution. Hence, we are able to use standard CFG weights
used for standard image samplings. In our experiments, we use
wCFG = 3.0 for the VSD loss.

The VSD loss acts in similar way as ancestral samplings [HJA20;
SME20], in a sense that the score is estimated not from the gaus-
sian noise, but from the current data distribution. Hence it allows
standard range of the CFG weights in ϵφ3D .

Table 1: Pretrained models used in our framework.

Pretrained Model URL (https://huggingface.co)
Stable Diffusion 1.5 runwayml/stable-diffusion-v1-5
Stable Diffusion 2.1 stabilityai/stable-diffusion-2-1
Stable Diffusion XL stabilityai/stable-diffusion-xl-base-1.0
ControlNet lllyasviel/ControlNet-v1-1
Stable Zero123 stabilityai/stable-zero123

Figure 5: Ablation study of depth map for A-pose reconstruction.

3.4. Character Rig Generation

Now that we obtain a 3D mesh of the character in the A-pose, we
can enjoy a streamlined rigging process provided by commercial
software. We use Adobe MixamoTM, a free software that requires
minimal intervention from the user for generating a skeleton and
skinning weights for the A-posed mesh. Each rigging process takes
under two minutes because the user only needs to provide a few
clicks on the mesh to indicate the locations of key joints. See the
accompanying video for qualitative evaluation.

4. Implementation

Our framework relies on many pretrained models listed in Table 1.
We use hugging face diffusers to load pretrained network weights
φ and ψ and their architectures [vPPL*22]. xformers [LML*22] is
used to accelerate the inference time of transformer architectures
and 3D position encoding proposed by InstanceNGP [MESK22]
is used to accelerate the optimization of the 3D model param-
eters θ. threestudio, a unified framework for 3D content gener-
ations [GLS*23] is used for implementing the loss functions in
Equations (2) and (3).

We use NVidia A5000 24GB GPU with batch size 1 in all our
experiments. The optimization and finetuning is done by the Adam
optimizer [KB14]. For each example, A-pose image generation
roughly takes 7 minutes to finetune ϵφcus , followed by an additional
10 minutes for the image generation. We generate 32 samples us-
ing standard ancestral sampling [SME20], and choose one of them
manually. For geometry construction, we iterate 10000 epochs with
NeRF and additional 5000 epochs with DMTet, taking 70 minutes
on average to produce a triangle mesh. For texture refinement, we
iterate 10000 epochs which takes on average 60 minutes. The final
rigging step only takes 2 minutes on average, thanks to the near-
automatic process provided by Adobe MixamoTM .

© 2024 Eurographics - The European Association
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Figure 6: Without concatenating input image when in-painting the
A-pose image, DB-CN produces images with significant differences
in appearance from the input images.

Table 2: Analyses on A-pose generation.

CLIP Similarity CLIP Score
Ours 0.9639 ± 0.0065 24.8217 ± 0.4251

Ours Without
Face Refinement

0.9708 ± 0.0066 23.5377 ± 0.6733

DB-CN 0.9376 ± 0.0185 22.7274 ± 1.1282

5. Evaluation

We evaluate our system with 17 character images varying in body
proportions, anatomy, and poses. Our system is agnostic to the
source of images. We have tested our system on images from in-
ternet [GLS*23] or from open-sourced image generation models
[PEL*23].

Below we describe the quantitative evaluation on each stage of
the method with different metrics and baselines. For qualitative
evaluation, please see the accompanying video and the supplemen-
tary document.

5.1. Evaluation of A-pose image generation

We compare our A-pose image generation with a baseline that com-
bines DreamBooth and ControlNet, since either of them alone can-
not achieve our task. The baseline, DB-CN, customizes a pretrained
Stable Diffusion model to the input image xxx0 using the technique
proposed by DreamBooth and use this customized diffusion model
as the backbone image generator for the pose-conditioned Control-
Net. The main difference between DB-CN to our method is that
DB-CN directly generate the A-pose image using the customized
text prompt, while our method asks the ControlNet to generate a
concatenated image with the same characters from two views

We evaluate our A-pose image generations with an off-the-shelf
image-to-text CLIP model [RKH*21a]. The model provides us an
image embedding useful for semantic evaluation because they are

Figure 7: left: CLIP similarity. right Average similarity and satu-
ration of the rendered images of 3D models.

trained on a large-scale image-text paired dataset. We compare the
cosine similarity of the embedding between the input and the gen-
erated images to quantitatively evaluate the semantic similarity.

Table 2 shows that our method, with or without face refinement
option, outperforms DB-CN baseline. This quantitative result is
consistent with our visual inspection as shown in Figure 6. How-
ever we also observe a small amount of decrease in similarity when
face refinement is applied. For some characters, the face refine-
ment might change accessories around the head, such as necklaces,
resulting in lower CLIP similarity scores. However, we still opt to
include the face refinement as it dramatically increase the quality
of faces.

We also compare the general quality of the images generated
by our method and by DB-CN. We compute the CLIP score that
measures the closeness between an image and the prompt "A photo
of a high-quality bipedal character.". The result in Table 2 shows
that our method generates images with higher quality according to
the CLIP model.

We also conduct ablation study to assess the importance of ex-
tracting depth maps for constructing a stick figure (Figure 5). We
find that depth map extracted from an off-the-shelf feature pre-
diction model [RLH*20] is especially beneficial for the characters
with non-trivial poses. For example, without the depth map, an im-
age with a sitting teddy bear results in incorrect body proportions.
As such, ControlNet would generate a sitting pose instead of an A-
pose as the length of the lower body is shorter than the length of
the upper body. Using the depth map to reconstruct the stick figure,
we are able to robustly generate A-pose images for all of our 17
characters.

5.2. Evaluation of 3D model generation

5.2.1. Qualitative Comparisons

We compare the 3D models generated by our method with
those generated by previous works: Magic123 (M123), Wonder3D
(W3D), DreamGaussian (DG) and commercial assets from a com-
pany called CSM [QMH*23; LGL*23; TRZ*23; CSM]. In gen-
eral, our method works well for a wide range of characters, with no
obvious misalignment in shapes, colors, and semantics.

The textures and geometry generated by W3D tend to lack de-
tails. This might be caused by the fact that W3D does not use score
distillation techniques. DG uses Gaussian splatting as the 3D repre-
sentation [KKLD23]. We observe that DG often generates artifacts
in geometry (most obviously in the firefighter character). Possible
cause might be that only the view-conditioned diffusion model is
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Figure 8: The quality of rendered images from the 3D model before
texture refinement is poor. However, after refinement using ϵφcus ,
the images look a lot sharper with slightly higher CLIP similarity
scores.

Figure 9: Ablation studies on the impact of customized text-to-
image diffusion models during geometry construction and texture
refinement

used in the SDS loss, as opposed to adding the text-to-image dif-
fusion model, shown in our Equation 4. M123 by far generates the
best textures because they utilize both view-conditioned and text-
to-image diffusion models with the text embedding learned from
textual inversion techniques [GAA*22]. However, we notice mis-
alignment in geometry, such as multiple faces shown on the tree-
like character and eyes merging into nose shown on the bear and
the mouse characters. The reasons might be that only text embed-
ding was learned without finetuning the text-to-image model. Ad-
ditionally, we notice that M123 produces textures that are overly
saturated (Figure 7). We quantitatively evaluate the level of satu-
ration by converting RGB of rendered images to HSV. The results
distinctively show that M123 is overly saturated. We suspect that
they use higher CFG weights for the SDS loss.

5.2.2. Quantitative Comparisons

We evaluate our results with the CLIP [RKH*21a] to measure se-
mantic similarity between the 3D models and the input 2D images
(Figure 7). We do so by rendering 128 images varying in view an-
gles for each 3D model and compare the cosine similarity of their
CLIP embeddings with that of the input image. Our method out-
performs M123 and DG on average and in all viewing directions,
though the difference between M123 and ours is small. However,

we notice that M123 sometimes creates multiple faces on the char-
acters. The erroneous faces may inadvertently increase their seman-
tic similarity values.

5.2.3. Ablation Study

We first study the importance of adding our customized text-to-
diffusion model ϵφcus in the SDS loss (Equation 4). Figure 9 shows
that creating geometry only with the view-conditioned model ϵψ

results in blurred texture and adding ϵφcus dramatically improves
the texture quality even with a small weight wcus = 0.001.

Texture refinement without training another model ϵφ3D often
creates multiple faces on the back view even with a fixed geom-
etry. Figure 9 shows that with a 3D-aware text-to-image model, our
framework is able to learn 3D models with highly-detailed textures.

We also evaluate the effectiveness of the render-and-refine tech-
nique to generate higher quality images for training ϵφ3D . Figure 8
shows that the texture quality improves noticeably after image re-
finement using ϵφcus . The average CLIP similarity before and after
the refinement also increases by a small amount.

6. Conclusion

We present a framework, capable of creating a 3D animatable char-
acter from a single image. We exploit the generative power of pre-
trained models to reconstruct A-pose figures, generate A-pose im-
ages, and create 3D models ready for the rigging process, without
the need for new loss functions, new architectures, or most impor-
tantly, additional data.

Our framework has several limitations. Firstly, the selection of
A-pose images is a manual process from a batch of candidates.
This necessitates human intervention before 3D model creation.
Secondly, while leveraging pretrained models is advantageous, it
can also inherit biases or weaknesses. For example, we found that
using ControlNet trained on the OpenPose dataset, which is based
on real human data, often fails to accurately control poses when
the input characters have body proportions that significantly dif-
fer from typical human proportions. Moreover, the generated im-
ages frequently display textures influenced by lighting and ambi-
ent occlusions. Such undesired shading effects appear in texture
maps and can be potentially fixed by new methods that extract true
colors from images. Lastly, our framework struggles with skele-
tal rigging in characters with long hair, often resulting in the hair
merging into the torso. The movements of the hairs complicate the
standard skeletal-driven rigging process. A potential future direc-
tion is to separate generation of 3D hair and full-body models and
use a simulation-based rigging process for the hair.
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