
© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2024
M. Skouras and H. Wang
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 8

SketchAnim: Real-time sketch animation transfer from videos

Gaurav Rai† , Shreyas Gupta† and Ojaswa Sharma†

†Graphics Research Group, Indraprastha Institute of Information Technology Delhi

Figure 1: Sketch animation using motion from exemplar video.

Abstract
Animation of hand-drawn sketches is an adorable art. It allows the animator to generate animations with expressive freedom
and requires significant expertise. In this work, we introduce a novel sketch animation framework designed to address inherent
challenges, such as motion extraction, motion transfer, and occlusion. The framework takes an exemplar video input featuring a
moving object and utilizes a robust motion transfer technique to animate the input sketch. We show comparative evaluations that
demonstrate the superior performance of our method over existing sketch animation techniques. Notably, our approach exhibits
a higher level of user accessibility in contrast to conventional sketch-based animation systems, positioning it as a promising
contributor to the field of sketch animation. https://graphics-research-group.github.io/SketchAnim/

Keywords: Sketch animation, Skeleton mapping, Pose matching, Motion transfer

CCS Concepts
• Computing methodologies → Animation;

1. Introduction

Sketches serve as a great medium for visual communication and
animating sketches can add dynamism and interactivity. Traditional
tools for animating sketches require a unique set of skills to bring
hand-drawn characters to life. Artists often refer to some existing

videos and try to replicate a similar video motion to the sketch char-
acter when attempting to animate it. However, this process is often
time-consuming, and an inaccurate replication of motion may make
the character’s movement look non-fluent or unnatural, especially
for those with little to no experience in animation.
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Character animation has been an area of extensive research in
recent years. Initial work includes that of Xing et al. [XWSY15]
who proposed a method that autocompletes a set of continuously
repeated strokes during sketching and performs a keyframe-based
animation. TraceMove [PGC16] provides a data-assistant user in-
terface that enables novice animators in sketching and 2D char-
acter animation. It takes skeleton points as user input and uti-
lizes a motion capture dataset to predict the skeleton in the sub-
sequent frames. Live-Sketch [SBF∗18] extracts dynamic deforma-
tion from videos as moving control points and transfers the motion
to sketches while addressing certain challenges such as extracting
motion from videos, video-to-sketch alignment, and motion trans-
fer.

Recent advancements in sketch animation utilize neural
network-based techniques like CharacterGAN [HFW∗22], that re-
lies on keypoints added manually by the user. Another approach,
AnimationDrawing [SZL∗23], uses video motion and applies it to
the sketch. However, it has limitations, supporting only the ani-
mation of biped characters and generating artifacts in instances of
inaccurate joint estimation and occlusion.

In this work, we propose a method for animating sketches by ap-
plying the motion from a driving video to the sketch. Our algorithm
takes as input a sketch to be animated, a driving video from which
the motion is to be applied, and a skeleton of the character from
the sketch. It then generates an animated sketch with the motion
of the video applied to it. Our method offers multiple advantages
at various stages. It supports animation of sketch characters with
general structures, and not just restricted to biped or quadruped
characters. For instance, our method seamlessly handles inanimate
object sketches. Our approach generates high quality animations
compared to other recent techniques. The main contributions of our
work are as follows

• We provide SketchAnim, an automatic, user-friendly, and effi-
cient sketch animation framework capable of handling different
types of motions such as biped, quadruped and inanimate. Our
framework offers a two-stage approach to animating sketches
from videos: motion extraction, and motion transfer.

• A novel motion transfer approach to map video skeleton motion
to sketch skeleton. We introduce a depth-order based approach
to handle self-occlusion during sketch deformation.

• Our proposed method shows superior performance quantitatively
and qualitatively compared to state-of-the-art methods.

2. Related work

2.1. Sketch-based animation

Significant work has been done in sketch animation in recent years.
The major difficulties in handling geometric deformations, par-
tial occlusions, in-plane and out-of-plane rotations, and complex
backgrounds make this task highly challenging—recent improve-
ments with the sketch animation attempt to create interactive an-
imations by adding dynamic motion. The approach of Bregler et
al. [BLCD02] is a keyframe-based technique that tracks the car-
toon motion and maps to the sketch or line drawing. Sketch-based
animation methods [PGC16, XWSY15] not only animate the static
object but also assist in sketching. Xing et al. [XWSY15] proposed

a method that autocompletes the continuously repeated strokes dur-
ing the sketching and performs keyframe-based animation. Once
the user draws the sketch outlines for each frame and fills in the de-
tails in the first frame, the detail in the first frame will reflect in all
the frames. The idea extends the local similarity methods and pro-
poses the global similarity that contains high-level structure across
multiple frames. Global similarity captures the object contour as
global context and individual strokes as local context. However,
they require manual user input at multiple stages and are purely
data-driven.

Few sketch animation methods [KCGF14, KCG∗14] highly de-
pend on user interaction since these tools’ performances are good,
but they need lots of effort for novice animators. Xing & Kazi et
al. [XKG∗16] add predefined motion effects such as fire, smoke,
and water to add the animation effects, but these are only for a
limited animation style. Few methods [AHSS04, WXSC04] pre-
dict the style of the next keyframe, but they require manual inputs.
Several methods [BJS∗08, HGCA12, SBF∗18, PGC16] for sketch
animation that uses motion from a reference video. Such meth-
ods require manual inputs from the user at multiple stages. Trace-
move [PGC16] is a purely data-driven method; the reference video
is used to assist in sketching and a motion capture dataset for skele-
ton matching in order to make the subsequent keyframes. Ben-Zvi
et al. [BZBM∗16] is a data-driven method that changes the style in-
stead of extracting the video’s motion trajectories and transferring
them to the input sketch. In other methods, Okabe et al. [OAIS09]
animate the pictures of only fluids using the exemplar videos. The
drawback of this method is that it is limited to fluid animation and
requires more computation time. Santosa et al. [SCBS13] used op-
tical flow for the animation, but it requires a similar structure of
input sketch as in the exemplar video. Bregler et al. [BLCD02] is a
keyframe-based technique that tracks the cartoon motion and maps
to the sketch or line drawing. Since it needed manual user input
at many stages, other sketch animation methods [CHZ14,TZS∗16]
use facial landmarks but are restricted to facial animation. On the
other hand, [DAC∗06, WRKS16] use MoCap [KW20] for the an-
imation, but it is restricted to the human body rather than the arbi-
trary object.

Recent text-to-sketch animation methods, such as Gal et
al. [GVA∗23] take vector sketch input (represented as a cubic
Bézier curve), use a text-to-video diffusion model, and optimize
a Score Distillation Sampling (SDS) loss to generate the animated
sketch. Similarly, AniClipart [WSML24] uses a Bézier curve mo-
tion trajectory of sketch keypoint and utilizes Video Score Distilla-
tion Sampling (VSDS) loss with a text-to-video prior for generating
the sketch animation. Although the methods provide promising per-
formance, they incorporate text input which is a different modality
than a video input.

Live-Sketch [SBF∗18] extracts the sparse motion trajectories
from the video and transfers them to the sketch using control point
tracking. It uses mesh deformation during the motion transfer in or-
der to prevent distortion. However, this method also needs manual
user input and cannot handle the motion for smooth regions. The
hand-drawn character animation method [SZL∗23] performs hand-
drawn character animation using video motion but suffers from mo-
tion estimation in smooth regions and only handles biped motion.
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Our proposed method, SketchAnim, is semi-automatic and needs
only sketch input and a reference video with the skeleton of the
video rest pose. Our method does need to give additional manual
input, and it handles the topology structure even though the same
category object structure is different in the video from the sketch.

2.2. Motion transfer

The two primary categories of deep learning techniques for mo-
tion transfer are model-based and model-free approaches. Model-
based approaches primarily focus on pose-guided human image
generation [CGZE19, GCT19]. The other model-based methods
[HKK∗20,WKZ18] use facial landmark detector to extract the pose
of the driving image as guidance information. These methods re-
quire prior supervision of the moving object, such as facial land-
marks and human pose. On the other hand, model-free approaches
do not require any supervision or labeled data. Since the video
generation problem is close to the future frame prediction prob-
lem, X2Face [WKZ18] propose a deep learning method that uses
a dense motion field to deform the input face and generate the de-
formed image output. However, this is a data-driven method and is
limited to faces only. In the past years, many deep learning meth-
ods [SLT∗19a, SLT∗19b] have been proposed that are unrestricted
to a specific object and do not require labeled data. MonkeyNet
[SLT∗19a] is a self-supervised method that uses a learned unsuper-
vised keypoint-based dense motion field using which it transfers
the motion pattern of the driving video to the image. This method
fails when the driving video poses drastic pose changes. FOMM
[SLT∗19b] adds local affine transformation over the learned key-
points to generate the animated image which improves the motion
transfer quality. However, it fails for the sketch modality since it is a
keypoint transformation-based motion model only suitable for im-
age animation. Our proposed method, SketchAnim, is user-friendly
and needs only sketch input and a reference video with a skeleton
on the first frame of the video. It does not require additional man-
ual user inputs, and handles the topology structure even though the
object structure is different in the video from the sketch.

2.3. Video tracking

Object tracking is one of the essential problems in computer vision
and computer graphics; object tracking has a variety of applica-
tions, including remote surveillance, human-computer interaction,
and autonomous driving. The difficulties in handling geometric
deformations, partial occlusions, and complex backgrounds make
this task difficult even after much work has been put into it. Tra-
ditional energy minimization-based optical flow methods [HS81,
S∗94, BBM09, MB08, CWL∗14, HGS∗15, BF06, ČKL12, AIK11]
estimate the pixel-level flow. These methods are limited to track-
ing each feature point individually; these methods do not con-
sider the topological relationship of the object. It doesn’t track
the object’s semantic-meaning part, which results in a large dis-
tortion and artifacts even with a small tracking failure. Buchanan
et al. [BF06] proposed an interactive feature tracking method that
tracks accurate and meaningful features from the 2D video. It uses
a dynamic tracking approach and a k-d tree for efficient compu-
tation. DP-Track does not find the global minimum of its energy

function because the occlusion is not correctly formulated. Graph-
Track [AV11] proposed an enhancement of the DP-Track [BF06]
method and is more reliable on complex videos and more sta-
ble when users add additional patches. Because GraphTrack pro-
vides a full-frame appearance rather than only a patch appear-
ance. SIFT Flow [LYT10] has been proposed to find the pixel-
to-pixel correspondence between two frames inspired by Optical
flow. SIFT flow matches SIFT descriptor rather than raw pixels.
The major drawback is when there are significant changes in ap-
pearance. Cai et al. [CWL∗14] proposed a tracking approach based
on graph learning to address deformation and occlusion challenges.
The graph learning architecture incorporates a variety of inputs,
including appearance and geometric location, to enhance track-
ing performance. In recent years, there are several object-tracking
methods [IMS∗17,HSZ∗22,SYLK18,KRG∗23,DFI∗15] have been
proposed. While Deep learning methods are effective for short-
term tracking, pairwise optical flow techniques cannot handle ex-
tended temporal contexts, making them unsuitable for long-term
tracking. Long-term optical flow methods [SHL∗23, JGR∗18] ad-
dress this limitation by integrating multiple frames to extend pair-
wise flow. However, they struggle if occlusion occurs in the video’s
multiple frames. Point tracking methods [ST08,NŠM24,DGM∗22,
DYV∗23, WCC∗23, HFF22] overcome the limitation by estimat-
ing long-range particle motion throughout the video and handling
occlusion at multiple-frames. PIPs [HFF22] use fixed temporal
windows to predict a point’s motion. It disregards the context in-
formation when occlusion exceeds the temporal window since it
tracks the point individually. At the same time, TAPIR [DGM∗22]
contained the temporal window with temporal depth order. Co-
tracker [WCC∗23] achieves state-of-the-art performance by har-
nessing spatial correlation among multiple points and effectively
handling the occlusion across multiple frames.

3. Methodology

We propose SketchAnim, an easy to use and robust framework for
sketch animation using motion from a driving video. The algorithm
begins by obtaining user-provided input, including a sketch S, a
driving video V containing a moving object, and a user-provided
skeleton K1

v of the object in the first frame of the driving video.
The driving video may be another animated or a real-world video
that provides a realistic character motion for the sketch. The video
skeleton K1

v is tracked across all frames of the video. Subsequently,
bone-joint angles are estimated for the motion skeleton. The video
skeleton is mapped to the sketch to compute a sketch skeleton
Ks and skinning weights are computed using bounded biharmonic
weights [JBPS11]. Our algorithm then computes the bone transfor-
mations required for sketch animation through Linear Blend Skin-
ning (LBS). Finally, the transformations are applied to the sketch
to generate an animated output video Vs, effectively portraying the
given sketch in accordance with the dynamics of the driving video
sequence. The output video is presented to the user as the animated
result, encapsulating the essence of the original sketch within the
context of the driving video. Algorithm 1 outlines the primary steps
of our approach and Figure 2 shows the overall sketch animation
framework.
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Figure 2: Overview of our SketchAnim framework for sketch-based animation. The method involves taking a sketch and a video as input.
The user then draws a skeleton on the initial frame of the video. Mapping of this skeleton to the input sketch is done by shape matching with
MVC. Thereafter, the transformation of skeleton bones is estimated by tracking the skeleton joints across the video frames. Finally, the sketch
is animated using linear blend skinning with BBW weights.

ALGORITHM 1: SketchAnim: Video-to-Sketch motion
transfer

Input: Sketch S, driving video V , and video skeleton K1
v

Output: Sketch video Vs
Segment sketch boundary polygon Bs
Compute triangulation Ts (CDT) of Bs
Segment the first frame of the video Bv

Compute sketch skeleton Ks from K1
v using MVC (Sec. 3.1)

Tracking video skeleton K1
v across all frames

Motion transfer between video and sketch skeleton(Sec. 3.2)
Compute BBW weights for Ts and Ks (Sec. 3.3)
Deform S using LBS to produce Vs

3.1. Skeleton mapping

We use the Segment Anything Model (SAM) [KMR∗23] to per-
form segmentation of the characters from the sketch and the first
video frame. The boundaries of these segmentation regions are re-
sampled with points spaced d distance apart as polygons Bs and
Bv respectively for the sketch image and the video frame. At this
stage, the character poses represented by Bs and Bv may not exactly
match.

The skeleton K1
v of the first frame of the video is taken as an in-

put from the user. We automatically map the vertices of this skele-
ton to create a sketch skeleton Ks with the topology of the former.

Our skeleton mapping approach is based on shape matching be-
tween boundaries Bv and Bs. To start with, Bs and Bv do not have
much correlation as they were constructed independently of each
other. We use the neural deformation pyramid approach of Li and
Harada [LH22] to deform the video boundary Bv and get a close ap-
proximation of Bs. This results in a new sketch boundary B̃s whose
points are in correspondence with Bv and |B̃s| = |Bv|. Once the
shape correspondence between the two boundaries is established,
we transform the vertices of the video skeleton K1

v to those of Ks
via barycentric coordinates. To perform the same, we use mean
value coordinates (MVC) [Flo03] to calculate the barycentric coor-
dinate αv ∈ R|Bv| of a vertex bv ∈ K1

v with respect to the boundary
polygon Bv. The corresponding skeleton point ps (see Figure 3) in
the sketch skeleton Ks w.r.t. B̃s can be calculated as

ps =
|B̃s|

∑
j=1

bs, j αv, j,∀bs, j ∈ B̃s. (1)

In order to transfer the video motion to the sketch, we also need
to capture the motion of K1

v across frames of the video. This can
be achieved with point tracking in the video, however the pri-
mary challenge here comes from occlusions and error propagation
across frames. We require a sparse tracking method that is reason-
ably resilient to occlusions and propagated errors. We use the Co-
Tracker [KRG∗23] neural network model to track vertices of K1

v
across frames keeping the skeleton topology fixed. This results in a
sequence of video skeletons {Ki

v} that we use for motion mapping
to the sketch.
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Figure 3: Video skeleton mapping to sketch via mean-value coor-
dinates.

3.2. Motion extraction and motion transfer

We would like to derive a sequence of sketch skeletons {Ki
s | i =

1, . . . ,n} from the sequence of video skeletons {Ki
v} computed pre-

viously. While there are many ways to do so, for best results one
should ensure that the skeleton motion of the video is captured by
the sketch accurately and that the sketch proportions do not get de-
formed unnaturally.

3.2.1. Skeleton tree node hierarchy

Consider the video skeleton K1
v as a tree, with the deepest ver-

tex designated as the root. The deepest vertex is determined by
considering distances from leaf nodes in the skeleton graph with
edges weights taken as the edge lengths. We determine the root
node as the non-leaf node that minimizes the sum of all shortest-
path lengths to all the reachable leaves (as shown in Figure 4). In
situations where there is a tie, the vertex with the highest degree
is selected to be the root node. We maintain the same tree topol-
ogy across the video frames. Since the video and sketch skeletons
are isomorphic, we choose the corresponding vertex in the sketch
skeleton to be the root node.

   

Figure 4: Estimation of the root node as deepest vertex. The blue
color number denotes the smallest sum from the leaf nodes and the
corresponding node as the root.

3.2.2. Initial pose matching

The skeleton of the sketch Ks thus obtained may not have the same
pose as that of the first frame of the video skeleton K1

v , therefore
we first match the pose of the former to the later. We achieve this
by aligning the edges of Ks to those of K1

v , without changing the
position of the root node.

Our pose matching is performed in a breadth-first search (BFS)
manner starting from the root node. For an edge connected to a
node under consideration, we reorient it in the direction of the cor-
responding edge in K1

v . More specifically, for a skeleton node pv
under consideration in K1

v , let a connected edge be (pv,qv). The
corresponding node qs connected to ps in Ks is modified as

q′s = ps +
∥qs − ps∥
∥qv − pv∥

(qv − pv). (2)

We get the pose-matched sketch skeleton K1
s after performing the

entire BFS pass of this modification (see Figure 5).

Figure 5: Pose matching of the sketch skeleton to the video skele-
ton. The skeleton is traversed in a BFS manner starting from the
root node (shown in red). At a current node, transformations are
applied to edges in its 1-ring to match the orientation of the corre-
sponding source edges.

3.2.3. Motion mapping

We map motion of the sequence of video skeletons {Ki
v} to the

sketch skeleton K1
s sequentially. Our approach is to compute trans-

formations between skeletons of two successive video frames and
apply that to the starting skeleton in the sketch skeleton sequence,
starting from the first frame. Here again we proceed in a breadth
first fashion to calculate the transformation parameters for each
edge and transfer the same to the sketch skeleton under consid-
eration.

During motion mapping at timestep t the root node rt
v under-

goes only translation, which we apply to the corresponding sketch
skeleton as rt+1

s = rt
s +(rt+1

v − rt
v). For a skeleton node pt

v under
consideration, let a connected edge be (pt

v,q
t
v). We calculate the

rotation and scaling for the corresponding sketch edge as

θ = cos−1

(
(qt+1

v − pt+1
v ) · (qt

v − pt
v)

∥(qt+1
v − pt+1

v )∥∥(qt
v − pt

v)∥

)
, (3)

s =
(qt+1

v − pt+1
v )

(qt
v − pt

v)
.

The entire BFS pass gives us the sketch skeleton Kt+1
s at the next
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timestep. We also keep these transformation parameters as bone
transformations for linear blend skinning in the next stage.

3.3. Resolving self-occlusions

Self-occlusions in 2D animation are difficult to handle if the depth
ordering of different parts of the object are not known. We resolve
occlusions by creating depth order for the skeleton vertices first and
then propagating these to the mesh during skinning. To resolve oc-
clusions, we add a discrete depth value to each vertex in the skele-
ton starting with a zero value at the root vertex. Every other vertex
is given a value equal to the number of edges it is away from the
root. We assign a negative sign to all the vertices for which the cor-
responding vertices in the video skeleton were found to be occluded
in one or more frames during tracking. This gives us the correct
depth order of skeleton vertices in the sketch. During skinning ani-
mation, we transfer the depth values from skeleton vertices to mesh
vertices based on the skinning weights in a fashion similar to linear
blend skinning and use these depth values as the z-coordinate of
mesh vertices in rendering.

After the video motion is transferred to sketch skeleton, we an-
imate the sketch. To do so, we first triangulate the sketch bound-
ary polygon Bs and compute a constrained Delaunay triangula-
tion (CDT). Additional points are added to the triangulation by
Poisson disk sampling the interior of the boundary. Smooth skin-
ning weights for this triangulation and the skeleton K1

s are com-
puted using the Bounded Biharmonic Weights (BBW) [JBPS11]
method. The triangulation is then deformed using linear blend skin-
ning (LBS) and texture mapped with the sketch image to generate
each frame of the animated sketch. Algorithm 2 outlines our entire
approach to motion extraction and motion mapping from video to
sketch.

ALGORITHM 2: Motion transfer between video and
sketch skeletons

Input: Sketch skeleton Ks and sequence of video skeletons
{Ki

v | i = 1, . . . ,n}
Output: Sequence of sketch skeletons {Ki

s | i = 1, . . . ,n}
Define the deepest vertex (skeleton joint) as root
foreach skeleton Ki

v in the sequence do
foreach joint in K1

v do
Initial pose matching K1

v to K1
s (Eqn. 2)

Traverse the skeleton joint in BFS manner
Estimate the sketch skeleton transformation using
Ki

v (Eqn. 3)
Assign depth order to each joint (root = 0)

end
end
Compute BBW weights for Ts and Ks and deform using

LBS

4. Results and comparisons

We evaluated the performance of SketchAnim on a system
equipped with an Intel Xeon CPU and an Nvidia Quadro P6000

GPU featuring 24 GB of memory. For the skeleton tracking, we
use a co-tracker [KRG∗23], and shape matching is performed using
the deformation pyramid method of Li and Harada [LH22]. Our ap-
proach incorporates a novel techniques for motion extraction, mo-
tion transfer, and occlusion handling that enhance the quality of our
animation. The framework is implemented in Python as an interac-
tive application. The source code for our implementation will be
made available for research purposes.

In terms of computational time, our method takes approximately
30 seconds to generate an animation sequence of 24 frames with
a skeleton consisting of 12-15 vertices. This duration may vary
depending on the number of skeleton vertices and the frames in
the driving video. In our method, the motion transfer phase is the
most time-consuming, primarily at mesh deformation and animated
video rendering stages. On the other hand, in the motion extraction
phase, the time taken by skeleton mapping depends upon the mesh
configuration.

We have used a set of colored sketches to illustrate sketch ani-
mation capabilities of SketchAnim. These include about 50 hand-
drawn sketch samples with different categories - biped, quadruped,
and inanimate. We further collected samples of driving videos with
the Creative Commons license available on the internet. The se-
lected cartoon and natural videos contain a central character/object
visible in all the frames. Some quadruped samples are also se-
lected from the MGif [SLT∗19b] dataset. Our sketch dataset is
available publicly for research purposes and can be accessed at
https://github.com/graphics-research-group/SketchAnim/.

4.1. Evaluation matrices

We use the following metrics to evaluate quantitative results and
compare SketchAnim with state-of-the-art methods.

• FID: Frechet Inception distance (FID) [HRU∗17] is used to es-
timate the overall quality of the generated frame. It measures the
similarity between the distribution of real images and generated
images.

• AED: Average Euclidian distance (AED) estimates the identity
similarity of the ground truth and generated frame. This implies
that the generated frame shares the same identity as the ground
truth image. We use a person re-identification [HBL17] network
similar to TPS [ZZ22] to measure the identity features of the
human body.

We use the input sketch as the real sample and the animated sketch
sequence as the generated sample to evaluate FID. For estimating
AED, the driving video is considered the real sample and an ani-
mated sketch sequence as the generated sample.

4.2. Comparisons with the state-of-the-art

4.3. Qualitative evaluation

We perform animation on 50 sketch samples across different cat-
egories and assess the motion transfer and appearance consistency
within the animated sequences for the qualitative evaluation. Fig-
ures 6 and 7 show animated sequences for three different categories
of sketches: biped, quadruped, and inanimate. In the biped exam-
ple (see Figure 6(a)), the hand movements of the sketch character

https://github.com/graphics-research-group/SketchAnim/tree/main/dataset
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Figure 6: SketchAnim results on biped and quadruped sketches.
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Figure 7: SketchAnim results on sketches of inanimate objects.

precisely correspond to the same in the driving videos. Figure 6(b)
illustrates the appropriate handling of self-occlusion as the broom
passes behind the character’s head without any distortion or artifact.
In the quadruped sample, the deer’s motion aligns with the exem-
plar horse’s movement in Figure 6(c). Additionally, illustrated in
Figure 6(d), the motion of a horse’s legs is depicted, showcasing its
running movement. In non-living sketches, Figure 7(a), the lamp
exhibits jumping and bending motions in accordance with the hand
movements of a bear. In another scenario, (see Figure 7(b)), the
motion of tree leaves is mirroring the similar motion style of tree in
the driving video.

The method of Siarohin et al. [SLT∗19b] uses keypoint trans-
formation for animation that fails in cross-domain motion transfer
and generates artifacts during sketch animation. In Figure 8, the
hand motion distorted during the deformation, and the motion con-
sistency is not stable. Similarly, the leg motion of the quadruped
character distorts and collapses during animation, as depicted in
Figure 9. The approach of Smith et al. [SZL∗23] is close to our
method and generates promising results, but it is limited to some
kind of motion (biped motion), whereas our method seamlessly
handles other motion categories very well. In Figure 8, the bat
moves behind the character’s body; it generates the artifact during
deformation. On the other hand, our method maintains appearance
consistency and smooth deformation. Also, Figures 8 and 9 show
qualitative comparison with these methods. It is clear that the sub-
tle motion of body parts in the characters are very well captured by
our method whereas the other two fail to model these. The cases of
occlusions are also well handled with our method.

4.3.1. Quantitative evaluation

We performed a quantitative evaluation on 15 bipeds, 15
quadrupeds, and 10 inanimate sketch samples. Our method demon-
strates higher efficiency and accuracy compared to other state-
of-the-art techniques. Table 1 shows a quantitative comparison
between these method and ours. Our method achieves a bet-
ter FID score (lower is better), indicating higher quality in the

generated sketches. Additionally, our proposed method demon-
strates superior AED metric, reflecting its robustness and capa-
bility. AnimationDrawing [SZL∗23] is limited to biped motion
only, therefore we cannot evaluate it for quadruped and inanimate
classes. For these two motion categories we compare our approach
against FOMM [SLT∗19b]. Table 1 presents the comparison re-
sults, demonstrating that our method outperforms FOMM. Our ap-
proach is more robust and accurate in terms of motion transfer, re-
duced distortion, and precise motion estimation, especially in han-
dling occlusion cases.

Table 1: Quantitative comparison with state-of-the-art methods.

Method Biped Quadruped Inanimate

FID↓ AED↓ FID↓ FID↓

Siarohin et al. [SLT∗19b] 186.37 0.4826 160.01 –
Smith et al. [SZL∗23] 201.65 0.4775 – –
SketchAnim (Ours) 150.25 0.4430 140.00 176.89

Sketch Driving Siarohin et al. Smith et al. Ours

[SLT∗19b] [SZL∗23]

Figure 8: Comparison of biped samples with the state-of-the-art
methods.

Source Driving Siarohin et al. [SLT∗19b] Ours

Figure 9: Comparison of quadruped animation with the state-of-
the-art methods.
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5. Limitations and future work

Our proposed framework has limitations, such as it fails to han-
dle motion without correspondence between the video object and
sketch. If the skeleton topologies differ, we cannot transfer human
motion to an animal or vice-versa. Additionally, if missing details
are in the input sketch, our method will not autocomplete the miss-
ing details during deformation.

Input Sketch
Video frames︷ ︸︸ ︷
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Figure 10: Failure cases such as (a) frontal motion, (b) self-
occlusion in rest pose, and (c) error propagation in shape mapping.

Our method struggles to handle frontal motion, such as a hu-
man moving toward the camera’s direction (see Figure 10(a)). In
the rest pose, the body part should not be self-occluded because
the tracking method cannot handle the occlusion in such cases.
In some cases where the body parts may be occluded in the rest
pose, the generated output tends to have distortion as shown in Fig-
ure 10(b) where the legs of the horse are occluded in the rest pose,
which leads to the artifacts in the animated frames. Error propaga-
tion presents a challenge in our method; if tracking failure or shape
mismatch occurs in the initial frames, errors will accumulate in the
final animated sequence. Additionally, incorrect skeleton mapping
might reorient the animated object incorrectly. In Figure 10(c), the
tracking point of the fish’s mouth shifts toward the wing, distorting
the final animated sketch.

In future work, we aim to improve the motion extraction method
by incorporating 3D context to address above issues. A keypoint-
based tracking approach can be developed to estimate the motion

details (such as co-part motion) to enhance performance. Further-
more, depth cues and camera parameters can be integrated to enable
3D handling capabilities. We would also like to work on an auto-
matic skeleton extraction and matching approach to enhance our
method for efficiency and robustness.

6. Conclusion

In this paper, we introduce a method for animating sketches based
on a static sketch and a reference video. The animation process
involves applying the motion from the reference video to animate
the sketch. Users have the flexibility to choose a specific anima-
tion for the sketch, providing a direct reference video input. Fur-
thermore, we take minimal user input in the form of drawing a
skeleton on a video frame. This approach enables the animation
of sketches with arbitrary shapes, removing restrictions to specific
categories such as biped or quadruped. Our method successfully
captures subtle motion from the given video and performs better
than similar methods in terms of quality of animation. While our
proposed framework exhibits notable strengths, it does have cer-
tain limitations. For instance, it may encounter challenges in han-
dling motion when there is no direct correspondence between the
video object and the sketch. Tracking failures can arise in complex
motion scenarios within the video, and instances of occlusion. In
such cases, errors may propagate in skeleton mapping and motion
transfer. Although our method effectively manages self-occlusion
cases, it does not autonomously complete missing sketch details in
specific scenarios when there is overlap between parts of the body.
We wish to handle more complex scenarios by building upon this
work.
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[NŠM24] NEORAL M., ŠERỲCH J., MATAS J.: Mft: Long-term tracking
of every pixel. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (2024), pp. 6837–6847. 3

[OAIS09] OKABE M., ANJYO K., IGARASHI T., SEIDEL H.-P.: Ani-
mating pictures of fluid using video examples. In Computer Graphics
Forum (2009), vol. 28, Wiley Online Library, pp. 677–686. 2

[PGC16] PATEL P., GUPTA H., CHAUDHURI P.: Tracemove: A data-
assisted interface for sketching 2d character animation. In Proceedings
of the 11th Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications: Volume 1: GRAPP (2016), pp. 191–
199. 2

[S∗94] SHI J., ET AL.: Good features to track. In 1994 Proceedings
of IEEE conference on computer vision and pattern recognition (1994),
IEEE, pp. 593–600. 3



© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Gaurav Rai, Shreyas Gupta & Ojaswa Sharma / SketchAnim: Real-time sketch animation transfer from videos 11 of 11

[SBF∗18] SU Q., BAI X., FU H., TAI C.-L., WANG J.: Live sketch:
Video-driven dynamic deformation of static drawings. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems
(2018), pp. 1–12. 2

[SCBS13] SANTOSA S., CHEVALIER F., BALAKRISHNAN R., SINGH
K.: Direct space-time trajectory control for visual media editing. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (2013), pp. 1149–1158. 2

[SHL∗23] SHI X., HUANG Z., LI D., ZHANG M., CHEUNG K. C., SEE
S., QIN H., DAI J., LI H.: Flowformer++: Masked cost volume au-
toencoding for pretraining optical flow estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2023), pp. 1599–1610. 3

[SLT∗19a] SIAROHIN A., LATHUILIÈRE S., TULYAKOV S., RICCI E.,
SEBE N.: Animating arbitrary objects via deep motion transfer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2019), pp. 2377–2386. 3

[SLT∗19b] SIAROHIN A., LATHUILIÈRE S., TULYAKOV S., RICCI E.,
SEBE N.: First order motion model for image animation. Advances in
Neural Information Processing Systems 32 (2019). 3, 6, 8

[ST08] SAND P., TELLER S.: Particle video: Long-range motion estima-
tion using point trajectories. International journal of computer vision 80
(2008), 72–91. 3

[SYLK18] SUN D., YANG X., LIU M.-Y., KAUTZ J.: Pwc-net: Cnns for
optical flow using pyramid, warping, and cost volume. In Proceedings of
the IEEE conference on computer vision and pattern recognition (2018),
pp. 8934–8943. 3

[SZL∗23] SMITH H. J., ZHENG Q., LI Y., JAIN S., HODGINS J. K.:
A method for animating children’s drawings of the human figure. ACM
Transactions on Graphics 42, 3 (2023), 1–15. 2, 8

[TZS∗16] THIES J., ZOLLHOFER M., STAMMINGER M., THEOBALT
C., NIESSNER M.: Face2face: Real-time face capture and reenactment
of rgb videos. In Proceedings of the IEEE conference on computer vision
and pattern recognition (2016), pp. 2387–2395. 2

[WCC∗23] WANG Q., CHANG Y.-Y., CAI R., LI Z., HARIHARAN B.,
HOLYNSKI A., SNAVELY N.: Tracking everything everywhere all at
once. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (2023), pp. 19795–19806. 3

[WKZ18] WILES O., KOEPKE A., ZISSERMAN A.: X2face: A network
for controlling face generation using images, audio, and pose codes. In
Proceedings of the European conference on computer vision (ECCV)
(2018), pp. 670–686. 3

[WRKS16] WEI S.-E., RAMAKRISHNA V., KANADE T., SHEIKH Y.:
Convolutional pose machines. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition (2016), pp. 4724–4732. 2

[WSML24] WU R., SU W., MA K., LIAO J.: AniClipart: Clipart anima-
tion with text-to-video priors. arXiv preprint arXiv:2404.12347 (2024).
2

[WXSC04] WANG J., XU Y., SHUM H.-Y., COHEN M. F.: Video toon-
ing. In ACM SIGGRAPH 2004 Papers. 2004, pp. 574–583. 2

[XKG∗16] XING J., KAZI R. H., GROSSMAN T., WEI L.-Y., STAM J.,
FITZMAURICE G.: Energy-brushes: Interactive tools for illustrating styl-
ized elemental dynamics. In Proceedings of the 29th Annual Symposium
on User Interface Software and Technology (2016), pp. 755–766. 2

[XWSY15] XING J., WEI L.-Y., SHIRATORI T., YATANI K.: Autocom-
plete hand-drawn animations. ACM Transactions on Graphics (TOG) 34,
6 (2015), 1–11. 2

[ZZ22] ZHAO J., ZHANG H.: Thin-plate spline motion model for image
animation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2022), pp. 3657–3666. 6




