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Abstract
While IMU based motion capture offers a cost-effective alternative to premium camera-based systems, it often falls short
in matching the latter’s realism. Common distortions, such as self-penetrating body parts, foot skating, and floating, limit
the usability of these systems, particularly for high-end users. To address this, we employed reinforcement learning to train
an AI agent that mimics erroneous sample motion. Since our agent operates within a simulated environment, it inherently
avoids generating these distortions since it must adhere to the laws of physics. Impressively, the agent manages to mimic
the sample motions while preserving their distinctive characteristics. We assessed our method’s efficacy across various types
of input data, showcasing an ideal blend of artefact-laden IMU-based data with high-grade optical motion capture data.
Furthermore, we compared the configuration of observation and action spaces with other implementations, pinpointing the
most suitable configuration for our purposes. All our models underwent rigorous evaluation using a spectrum of quantitative
metrics complemented by a qualitative review. These evaluations were performed using a benchmark dataset of IMU-based
motion data from actors not included in the training data.

CCS Concepts
• Computing methodologies → Motion capture; Physical simulation; Motion processing; Reinforcement learning;

1. Introduction

IMU-based motion capture is affordable and untethered, however,
it lacks the quality of higher end marker based solutions. In this
work, we present a physics-based, AI-enhanced method for im-
proving motion data quality. The last decade has seen a rise in the
popularity of IMU-based motion capture systems, making this tech-
nology common ground. It has proven itself as a reasonable alter-
native to marker based optical motion capture systems, in scenarios
dictated by limited budgets or a need to capture ’in the wild’. Nev-
ertheless, these systems lack the quality of high end marker based
solutions. Physically implausible artefacts are common ground in
the raw capture data. Examples of artefacts are self-collisions, foot
skating, and, floating. For visual examples, see Figure 1.

In this work, we present a method for cleaning motion data while
maintaining natural human-like motion qualities. We use a com-
bination of physics simulation and learned AI behavior, through
reinforcement learning. Our agent learns to mimic faulty sample
motions and generalise this learning to motion data that was not
seen during training. The core idea of our approach is that since
our agent ’lives’ in a physically accurate simulated environment
it is not capable of reproducing errors that are in contest with the
laws of physics, resulting in visually pleasing and physically plau-
sible output motion. Our method builds on top of recent develop-

ments in the state of the art in this field. However, it distinguishes
itself by its capability to operate on unseen motion data, stemming
from unseen characters. One of our major findings is the impor-
tance of the choice of data source when training the agent. We show
that the key to a robust and versatile agent is training on a mix of
high quality and faulty motion capture data from different sources.
Agents trained solely on either high quality or faulty data lack the
robustness to generalise to unseen data. Finally, we compare fun-
damental differences in the configuration of the observation and
actuation spaces of our agent for our use case. We demonstrate an
optimal configuration and its impact on the agent’s capabilities to
produce high quality output motion. In summary, the contributions
presented in this work are:

• A physics-based framework for cleaning artefacts from motion
capture data.

• A method that focuses on generalising to unseen IMU data,
from unseen actors. This is in contrast to most other motion-
mimicking methods, that draw their sample motions from known
distributions.

• We show that mixing faulty and high quality training data is piv-
otal in generalising our method to unseen animation data.

• We show that the choice of observation and actuation configu-
ration greatly impacts the agent’s ability to learn and produce
quality output.
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Figure 1: Examples of typical artefacts as seen in IMU-based mo-
tion capture recordings. On the left is an example of two frames
from an animation clip where we see foot skating: both the foot in
motion (rear foot), and the foot from the supporting leg, are dis-
placed. On the right is an example of self-collision, where one leg
is penetrating the other near the ankle.

2. Related Work

Imperfections are a common trait in real-world data, motion capture
data being no exception. Inherent hardware limitations can cause
missing or faulty sensor information. In the case of optical motion
capture, common sources of error are missing information due to
occluded markers or markers going out of view of the cameras. For
IMU based motion capture, errors are mostly due to signal noise
and bias, limitations in sensor precision, and resolution. These im-
perfections can cause a range of faults in the resulting animations,
such as jittering limbs, self-collisions, foot-skating, and others.

Recognizing the challenges posed by these imperfections in mo-
tion capture data, both researchers and industry professionals have
continuously sought efficient and effective solutions to assist ani-
mators in the data cleaning process. While a significant portion of
this cleaning is still manually performed, aided by a range of com-
mercial software suites the quest for full automation remains an
unsolved challenge. The following sections delve into some of the
innovative approaches in this domain.

2.1. Non-Physics Based Methods

Existing techniques often focus on eliminating these artefacts us-
ing straightforward kinematic and/or geometric techniques [PP10].
A shared trait by many of these methods is that they don’t take the
physics of the character into account, leading to unnatural poses
and dynamic behaviour and they rely on post-clean-up techniques
using IK solvers [GM85, BRRP97, CK99, LS99, KSG02, GBT06,
LL14]. Recent deep learning approaches focus on robust detection
of foot planting or global root position and apply IK as a post-clean-
up process [SPL∗21,MHCH22]. It is known that the IK clean-up is
somewhat inferior in quality and that humans are extremely sensi-
tive to even small foot sliding errors [PHO11].

Deep learning approaches have also been adopted to train gener-
ative models to directly produce believable dynamic behaviours,

possibly taking a pre-clean-up sample in an encoding step for
reconstruction. Care is often taken to the model design for ef-
fectively capturing the motion data statistics. Examples include
MoGlow using latent flow models [HAB20] and its variant encod-
ing skeleton data with graph neural networks [YYKB21]. Gener-
ative models demonstrate high performance in synthesising com-
plex human movements of various styles and rich contextual in-
put [VPHB∗21,DAS∗20,YYB∗23]. Physical constraints, however,
tend to not be explicitly enforced but with an expectation of ex-
tracting them solely from the motion data. As a result, state-of-
the-art such as diffusion models are often exploited to represent
the behaviours to imitate [TRG∗23,YTY∗23], in combination with
physically-grounded approaches reviewed below.

2.2. Deep Reinforcement Learning (DRL)

Ever since the 1980’s physics simulation has been a topic within
(interactive) character animation, steadily gaining traction over the
past decades. A detailed overview of the early stages of this re-
search was made by [GP12]. More recently DRL for character
animation has become an active field of research, as shown by
[MHLC∗22]. The ability to incorporate physics makes DRL an at-
tractive approach for motion data cleaning. DRL with physics sim-
ulations give these methods an inherent sense of realism: they allow
for interactivity, and they can be employed online and in real-time.
In this class of methods, an agent is trained to reproduce sample
motions in a physically simulated environment. These methods can
be subdivided into two sub-classes: methods that employ a phase
variable to give the agent a notion of timing of the sample motion
and those that directly supply the agent with a sample of motion
data. Where the former can be used to learn single motions and
general behaviour, the latter is more suitable to mimic diverse sets
of sample motions closely.

2.2.1. Phase Variable Methods

A number of works successfully mimicked reference motion by
relying on the use of a phase variable, providing the policy with
information about the timing of the reference motion. With their
groundbreaking work, DeepMimic, [PALVdP18] showed that an
agent could learn to mimic complex behaviours while a user could
set high-level task objectives, such as hitting a target when per-
forming a spin kick. In follow-up work, [PMA∗21] used GANs
to have an agent learn similar behaviour from unstructured data
sets. [MYT∗21] improved sample efficiency using a set of con-
straints called spacetime bounds, effectively limiting the action
search space. Inspired by NLP models, [PGH∗22] map a set of
motions into latent motion embeddings. The authors then train a
low-level policy to generate motions from these embeddings, using
adversarial imitation learning. Subsequently, they train a high-level
policy to complete new tasks by passing latent embeddings to the
low-level policy.

In [XMN∗22] a differentiable physics simulator is used in com-
bination with a new policy learning algorithm, short horizon actor-
critic (SHAC), to improve training time. They showcase a speed up
in training humanoid agents compared to the state of the art, re-
ducing training time by a factor of up to 17x. [RYC∗23] proposes
a method to directly learn a policy by back-propagating through a
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differentiable physics simulation, thereby speeding up the learning
process and eliminating the need for reinforcement learning alto-
gether.

While phase-variable methods are successful in training an agent
to imitate single motions, general motion behaviours and styles,
they are less suitable for use in our case where the requirement is
to mimic a large variety of specific sample motions. This is due
to the lack of information available to the agent during inference
about the sample motions.

2.2.2. Increasing the Variety of Learned Skills

A more suitable approach for close reference tracking of diverse
motion capture data is to replace the phase variable with a sam-
ple of the reference motion in the state information of the agent.
The first to implement this idea were [CMM∗18], whose agent was
trained on a large body of unstructured motion capture data. It was
able to mimic a large variety of human motion tasks, even some
from unseen data. While impressive in their versatility, the output
motion quality does not compare to the phase variable methods ear-
lier discussed. Different works have since tried to improve diversity
in the agent’s skill set and quality of the output motion. Multiple
works focused on making their agent robust for in game use and
interactivity. [PRL∗19] and [BCHF19] concurrently came with a
two layer pipeline. They first generated kinematic motion samples
from a user’s control input and subsequently mimicked the motion
through a RL agent. The latter step improves the generated mo-
tion by making it physically plausible, while the first allows for
flexible high-level user control, perfect for in-game use. On top of
that they enable interaction between the character and their environ-
ment. Similarly, [LSCC20] proposes a framework for user control
of quadrupeds, using GANs to map high-level user control inputs,
such as direction and velocity, to influence factors for primitive mo-
tor actions. The controller is then fine-tuned using deep RL to im-
prove robustness. In [MTA∗20] the authors encoded latent task in-
tentions from motion trajectories to learn interactive tasks such as
catching a ball or carrying an object to a specified target. These
works focused on real-time performance, for example for in-game
use. Unlike our approach, they rely on a fixed body of underlying
data during inference, which stems from the same data source and
has been seen during training. This makes them less suitable for
tracking arbitrary reference motions, which is a hard requirement
for our case.

Other works focused on anatomical features of agents. [WL19]
and [LLLL21] used parameterised controllers to accommodate for
body shape variations on the fly or changing environmental and mo-
tion characteristics. [LPLL19] do motion mimicking with a muscu-
loskeletal model to study the effects of anatomical symptoms and
prosthetics on locomotion. While they were effective for their pur-
pose, the complex anatomical model makes the simulations and
subsequent policy training computationally heavy and slow. Each
of these contributions serves a clear purpose for each of their indi-
vidual use cases, however they do not intend to solve the problem of
generalising to unseen motion data while maintaining output mo-
tion quality and they do not address the topic of diverse data modal-
ity for training, which we found to be essential for generalisation
to unseen IMU data.

More interesting for our objective are those works that explicitly
focus on improving skill diversity. To this end, [WGH20] designed
a mixture of experts policy but they relied on high quality mo-
tion data. One of the few works that do report diverse data sources
is [WGSF20]. They introduced constrained multi-objective reward
optimisation to avoid domination of individual reward terms, a mo-
tion balancer to ensure a uniform distribution of motion classes
during training, and adaptive policy variance control to avoid local
minima. They demonstrate spectacular results in terms of versatil-
ity, robustness, and generalisability, even to unseen motion sam-
ples. However, their robustness seems to come at too high of a cost
of motion quality for our purpose, specifically for unseen motion
data.

Recent studies in the field of virtual reality [WWY22,YLHX22]
show impressive motion reconstruction from only 3 sensors and
using a reinforcement learning trained policy. Their methods guar-
antee physically correct motion, potentially bypassing the need
for cleanup. However, they rely on combinations of SLAM cam-
era sensors and IMUs, providing relatively high quality global
positional information, thus constraining the applicability of the
method.

Possibly most relevant to our work, [YSI∗22] used motion mim-
icking to clean up physically implausible artefacts from motion
data generated by a diffusion model. The core difference here is
that the diffusion model and mimicking policy are both trained and
evaluated on the same dataset. The policy subsequently never sees
real unseen data during training, but rather samples drawn from the
known distribution. In our work we focus on making our method
robust towards unseen data, by combining different data modalities
and a large observation space.

3. Method

Unique to our approach is the way we focus on generalising to un-
seen data, from unseen actors. We achieve this by using a dataset
that consists of a large number and variety of motions that are
recorded with either high-quality optical motion capture setups or
lower quality IMU-based motion capture setups. Some IMU-based
assets purposefully contain physical implausibilities to make the
agent acquainted with that input. This is in contrast to other meth-
ods that usually rely on high-quality motion capture data, often
from a single source.

Our method follows three general stages. During data prepa-
ration we first record a dataset of animations using IMU-based
motion capture suits. These recordings are post-processed with
industry-standard clean-up filters. We then select recordings such
that the resulting data set contains a mixture of faulty and clean
recordings. Finally, we mix in a set of high-quality recordings from
an optical motion capture source. We have compared this approach
to using only IMU-based data and found this last step crucial in
getting optimal performance on unseen motion data. Section 3.1
describes the data in more detail.

Next, during the training stage, our policy is optimised to mimic
the presented sample motions. In a large parallel physically simu-
lated environment, we collect a number of rollouts from our policy.
For each rollout, we select a random sample asset and initialise
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it at a random frame in the animation. Rollouts have a maximum
length of 300 frames. After collecting a fixed number of rollouts,
we optimise our policy using the RL-games implementation of PPO
from [MM21], as PPO is the de facto standard for policy gradient
optimisation for this type of problem. We repeat this until the pol-
icy converges in terms of reward collection and episode length. A
general overview of the motion-mimicking formulation is given in
Section 3.2. Choices for our agent’s state observation and action
spaces are described in Sections 3.2.2 and 3.2.1 respectively. Sec-
tion 3.2.3 discusses the way we calculate the agent’s rewards. De-
tails about our policy and value network configuration are given in
Section 3.2.4 and the remaining details on our training and simula-
tion setup are discussed in Section 3.2.5.

In the last stage, our policy is evaluated on unseen data us-
ing a set of performance metrics that we found descriptive for our
context. These metrics are the episode length ratio compared to
the ground truth, the mean squared error between the sample and
ground truth root trajectories, the survival rate of the agent and the
ratio between achieved and maximum achievable reward. To this
end, we collect 20 rollouts for each asset in our test data set and
evaluate our model in terms of the performance metrics. We repeat
this every 400 epochs to find the best policy from a training run.
The performance metrics are described in detail in Section 3.2.6.

3.1. A Mixed IMU and Optical Mocap Data Set

For this project, we used both high-quality motion capture data
from optical sources and IMU-based motion capture recorded us-
ing Rokoko’s Smartsuit Pro II. This section describes the details
concerning data collection, hardware used, and total numbers. For
details about specific training datasets, we refer to Section 4.3.

Optical Data The optical data is sourced from a large, com-
mercially available motion asset library. These assets have been
recorded at various motion capture studios, using optical systems
such as Optitrack and Vicon. The exact hardware is not known by
the authors. All assets are recorded at 120 frames per second (fps)
and are down-sampled to 60 fps. We used a total of 107 assets,
containing a total of 80102 frames, in this project, which were ex-
clusively used during training and not for testing.

IMU Data The IMU-based motion data was recorded on differ-
ent occasions using Rokoko’s Glove Ready Smartsuit Pro II. These
suits contain 17 IMU sensors distributed over the body. The sensors
record bone orientations, which are fitted to a body model through
Rokoko’s studio software to produce animations of a humanoid
character. Since these sensors exclusively record orientations, the
animations initially lack a sense of global placement. Through post-
processing filters provided by the studio software, the animations
are cleaned and augmented with global position estimates. The re-
sulting animations still contain artefacts, such as self-collisions,
foot-skating, and jittering limbs.

In this work, we use a total of 118 such recordings, recorded
using 13 actors. The actors had various body shapes, dimensions,
and genders. Of these recordings, 13 assets were exclusively used
as test data. To ensure that the test result is representative of both
cleaning abilities as well as the agent’s ability to mimic motion,

the test assets were carefully selected to contain both fairly clean
and vivid animations as well as animations with typical flaws. The
actors used to record the test assets were kept out of the training
data.

The IMU-based animations were initially recorded at 200 fps
and subsequently exported to FBX files, sampled at 60 fps during
training and inference.

3.2. Motion Mimicking for Artefact Clean Up

We aim to fix physical implausibilities in the mocap data, such
as self-collisions, foot skating, floating, ground penetrations, and
jitter. To this end, we train an AI-based agent that is capable of
mimicking a given sample motion. The agent constitutes a physi-
cally plausible model of a humanoid and ’lives’ in an environment,
which is a physically simulated approximation of the real world.
Hence the agent must adhere to common laws of physics while
mimicking sample motions, prohibiting it from copying the above
artefacts from sample motions.

The agent’s joints are actuated by joint torques computed from
PD controllers within the simulation environment. A policy π(a|s),
constitutes the probability of an action a given the agent’s current
state s. The actions in this setting are joint angle targets for the PD
controllers. After applying actions a, the environment computes the
agent’s new state and a reward, r, based on how well the agent
performed. See Figure 2 for a schematic overview of this process.

at

rt

st

ōt

ot

π(at |st) +
PPO

Simulation
Env.

Motion
Sampler

Figure 2: Schematic of the policy evaluation loop used to create
rollouts from policy π(at |st). The simulation and motion sampler
both generate parts the state vector st . The policy computes the
most likely action given the state, which is applied to the charac-
ter by the simulation environment. This results in a new state and
reward. After a batch of rollouts is collected, the policy is updated
using the collected rewards. We use PPO to optimise the policy.

3.2.1. State Observation

We use a skeleton containing 20 bodies, connected by 19 joints.
The elbows and knees are modeled as 1-DoF hinge joints. All other
joints are modeled as 3 hinge joints connected in series to achieve
a 3-DoF rotational joint. The total number of DoF is 13× 3DoF+
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4× 1DoF = 43DoF. Hand motion is not actuated, and therefore
their joints are not counted for the total number of DoF. The pelvic
bone is assigned to be the character’s root.

The agent’s policy gets information about its own state in the
form of a state vector. Based on this it computes the actions for
the next step. As discussed in Section 2, one key feature is that
we want the policy to use the information on the desired state, as
well as its own state, in order to enhance its ability to mimic ar-
bitrary reference motions. Therefore we include information about
the simulated character’s motion and the reference motion to the
state vector.

In Table 1 we present our state vector st ∈R273 at time step t and
its components.

Table 1: The agent’s state observation vector. The state observation
vector is composed of a number of key observations on the agent’s
state, stacked as a 1D vector of 273 elements.

Symbol Dim. Description

vcom R3 Centre of Mass (CoM) velocity of the
agent

v̄com R3 CoM velocity of the reference motion
∆vcom R3 vcom− v̄com

v̄hor R2 The reference motion’s velocity in the
horizontal plane

∆vhor R2 vhor− v̄hor
pa R60 Positions of all 20 rigid bodies of the

agent with respect to its CoM
va R60 Global velocities of all 20 rigid bodies

of the agent
∆pa R60 pa− p̄a

∆va R60 va− v̄a

at−1 R20 Smoothed actions from the previous
time step (see section 3.2.2)

st R273 {vcom, v̄com,∆vcom, v̄hor,∆vhor,pa,va,
∆pa,∆va,at−1}

All velocity quantities are expressed in the global reference
frame. The rigid body origin positions, pa, are expressed in the
frame whose origin is attached at the agent’s centre of mass (CoM)
and whose axes are parallel to the global frame. To compute the
difference between the agent’s and the reference motion’s rigid
body positions, we compute the reference motion’s rigid body posi-
tions p̄a in a similar frame attached to the reference motion’s CoM.
We then simply calculate the difference between the two vectors:
∆pa = pa− p̄a.

The last entry of the state vector is the smoothed actions from
the previous time step. This is done in accordance with [BCHF19]
to give the policy information about the smoothing process.

3.2.2. Action Space

In this section, we give a brief overview of our action space. For our
implementation, we took inspiration from the work of [BCHF19].

We follow their implementation of the action space closely but with
a few tweaks.

Our agent’s joints are actuated by torques computed by PD con-
trollers. All computations are on a per-frame basis, but in our nota-
tion, we omit the frame number for clarity.

τd = kped + kd ėd , (1)

ed ≡ θd− θ̃d . (2)

Here θd is the current angle of degree of freedom d and θ̃d is the
target angle for that degree of freedom. The target angles are com-
puted using the reference motion and a correction term from our
policy:

θ̃d ≡ θ̄d +αdad . (3)

Here θ̄d is the angle of degree of freedom d from the reference mo-
tion at the current frame, which serves as a feed-forward open-loop
action. Our policy computes the closed-loop action ad based on the
current state of the agent. Finally, αd is a fixed binary operator that
can be either 0 or 1, thus excluding certain degrees of freedom from
closed-loop actuation. We set αd = 1 for the degrees of freedom of
a set of key joints:

{Right shoulder, Right hip, Right knee (1D), Right ankle, (4)

Left shoulder, Left hip, Left knee (1D), Left Ankle} .

In contrast to [BCHF19], we found that actuating any of the spinal
elements in a closed-loop occasionally causes unnatural spinal
wobbling and therefore we excluded all spinal elements from the
closed-loop actuation.

In order to avoid high-frequency oscillations in the control sig-
nal, we further follow the example from [BCHF19] and perform a
smoothing operation on our closed-loop action signals:

at ← β araw,t +(1−β) at−1 . (5)

Here at are the smoothed actions at time t, araw,t are the actions
generated by the policy, and β is a smoothing factor. For details
and a justification for the value of this parameter, we refer to the
original work. We use β = 0.2 as reported by the authors for all
experiments in this work.

3.2.3. Rewards

Our agent is rewarded based on the similarity between the simu-
lated character state and the sample motion state. We use a com-
pound reward based on the similarity between the simulated and
the sample’s joint angles, positions of bone landmarks, and bone
landmark velocities. The reward scaling and threshold parameters
discussed further in this section are listed in Table 2.

Table 2: Reward scaling parameters and threshold parameters.
The weights were empirically chosen to ensure different reward
terms contribute equally to the total reward.

Parameter αlocal αp αv ϵdiscount

Value 2.5 1.0 0.1 0.025

© 2024 The Authors.
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Local Pose Reward We calculate a pose reward based on the sum
of the local joint angle errors for the J joints of the skeleton, using:

rlocal ≡ exp

(
−αlocal

1
J

J

∑
j=0

∠(q−1
j q̄ j)

)
. (6)

Here q j represents the rotation of the j-th joint in a local frame
attached to the joint’s origin and whose axes are fixed to the joint’s
parent body. The ¯ indicates ground truth. The parameter αlocal
is an empirically chosen weighing factor for the local joint angle
reward.

Position Reward We use the same position and velocity rewards
as [BCHF19]:

rp ≡ exp

(
−αp

1
J

J

∑
j=1

6

∑
k=1
∥ p jk− p̄ jk ∥2

)
. (7)

Here p jk and p̄ jk are the positions, with respect to the root bone of
the simulation and sample skeletons respectively, of face centre k
of a unit cube mounted to the origin of bone j. The weighing factor
αp is empirically chosen.

Velocity Reward The velocity reward is computed analogously to
the position reward as:

rv ≡ exp

(
−αv

1
J

J

∑
j=1

6

∑
k=1
∥ v jk− v̄ jk ∥2

)
. (8)

Finally, the entire reward is discounted based on the fall factor
from [BCHF19]. This serves as a correction on the reward, in case
the simulated character falls behind on the sample motion.

ediscount ≡ clamp(1.3−1.4 ∥ phead− p̄head ∥2,0,1) . (9)

The resulting reward function is:

r ≡ ediscount(rlocal + rp + rv) . (10)

Finally, we terminate the episode in case the agent either falls be-
hind beyond a given threshold, ediscount < ϵdiscount or when the
agent has fallen. Falling is detected as 3 or more spinal elements
being in contact with the ground plane at the same time. The termi-
nation threshold is set to ϵdiscount = 0.025.

3.2.4. Policy and Value Networks

Our policy and value functions are approximated using neural net-
works, both with an identical architecture. We follow the approach
of [YSI∗22] and use multi-layer perceptrons (MLPs) with 3 fully
connected layers of size [1024, 1024, 512]. At each layer output,
we use tanh activation functions as suggested by [BCHF19]. The
policy network estimates the mean of a normal distribution. During
training, the agent’s actions are sampled from this distribution, us-
ing a fixed variance. This variance determines to a high degree the
amount of exploration an agent performs. We found empirically
that a value of σ

2 = 0.03 gave a good balance between exploration
and stable training. Table 3 gives an overview of these and other
hyperparameters and simulation parameters.

3.2.5. Training & Simulation

We trained all our agents using NVIDIA’s Isaac Gym. This choice
was driven by Isaac Gym’s ability to do massive, GPU accelerated
parallel simulations, reducing training times to a minimum. As a
reinforcement learning algorithm, we use PPO ( [SWD∗17]), as
it is the de facto standard for these types of tasks as can be seen
in [BCHF19, PALVdP18, PMA∗21]. We use the PPO implementa-
tion from RL-games by [MM21], which comes shipped with Isaac
Gym. The training was performed on an NVIDIA RTX A5500 with
24GB of memory. For more information about our training and
simulation configuration, we refer to Table 3.

Table 3: Training and simulation parameters for our motion mim-
icking agent’s policy optimisation.

Paramter Value

Simulation time step 0.0166 s (60 Hz)
# of substeps 2
Control frequency 30 Hz
Episode length 300

Network layers [1024, 1024, 512]
Activation tanh
Learning rate 5 ·10−5

Distribution variance σ
2 0.03

PPO clipping ϵclip 0.2
Batch size 65536
Minibatch size 16384
Mini epochs 6
Discount factor γ 0.99
GAE τ 0.95
Episode horizon 16
Number of environments 4096

3.2.6. Performance Metrics

To determine performance on unseen motion data, we use four met-
rics discussed in this section. The metrics are effective on the con-
dition that the ground truth assets all have the same length, as only
then does it make sense to calculate statistics on episode length
ratio, root displacement errors, survival rate, and maximum achiev-
able rewards.

We discuss the metrics here as they are computed per rollout.
For the evaluation of policies, we then calculate mean and standard
deviations for each metric, after evaluating them on a test dataset
of unseen motion assets.

Episode Length Ratio The episode length ratio is defined as the
length of rollout i, divided by the length of the ground truth motion
asset (gt):

ELRi ≡
length(rollouti)

length(gti)
. (11)

This metric provides information about the ability of a policy to
mimic sample motions well enough to not terminate early. If the
metric is one, then the rollout was not terminated early; if the metric
is zero, it does not mimic a single pose.

© 2024 The Authors.
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Table 4: The results of our method, in bold, compared for models trained on different training data and configurations of the observation and
action spaces. The models are compared based on the ratio of the episode lengths and the original asset’s lengths, the fraction of episodes
that reached at least 90% of the original asset length, the MSE of the root trajectories per frame in m, and the ratio of the obtained and
maximum obtainable reward.

Episode length ratio SR90 Root MSE / frame Max reward ratio
Experiment µel σel µmse σmse µr σr

IMU + Optical (50 assets, 39270 frames) 0.969 0.081 0.889 5.118 ·10−05 4.789 ·10−05 0.400 0.114

IMU large data (107 assets, 80102 frames) 0.961 0.120 0.907 6.386 ·10−05 5.639 ·10−05 0.371 0.111
IMU (33 assets, 28925 frames) 0.889 0.191 0.757 6.949 ·10−05 5.882 ·10−05 0.386 0.121
Optical, large data (103 assets, 68392 frames) 0.782 0.248 0.469 1.424 ·10−04 1.107 ·10−04 0.257 0.070
Optical (17 assets, 10345 frames) 0.468 0.212 0.017 2.132 ·10−04 1.325 ·10−04 0.329 0.095

Configuration Drecon [BCHF19] 0.942 0.141 0.885 5.863 ·10−05 5.598 ·10−05 0.372 0.110
Conf. full state & action space 0.924 0.168 0.839 6.251 ·10−05 7.980 ·10−05 0.273 0.099

Root Displacement Error This metric measures the mean
squared error (MSE) between the root trajectories of rollout i and
its ground truth motion asset:

RDEi ≡
1
N

N−1

∑
n=0
∥ pi,n− p̄i,n ∥2

2 . (12)

We use N for the number of frames of the rollout. The RDE pro-
vides information about the accuracy with which the policy tracks
the ground truth motion trajectory.

Survival Rate .9 The survival rate measures the probability of a
policy successfully mimicking a given asset from the start until a
given percentage of the ground truth length. The “.9” means the
probability of an agent surviving 90% of the given ground truth
asset. If the metric is one, the agent survives 90% or more of the
given asset.

SRi ≡
{

1 if len(rollouti)≥ len(gt) ·0.9
0 else

. (13)

Max Reward Ratio The max reward ratio measures the fraction
of the maximum cumulative reward an agent achieves over rollout
i:

MRRi ≡
Ri

Rmax,i
. (14)

The cumulative reward is calculated as:

Ri =
N−1

∑
n=0

rn . (15)

For a rollout with length N and using Equation 10. For the
maximum cumulative reward, Rmax,i we use N = length(gti) and
ediscount = rlocal = rp = rv = 1.0. Note that due to using exponen-
tial rewards and the choice of weights, achieving the maximum re-
ward is rather unlikely and in practice the score for this metric falls
well below 1.0.

4. Results

In this work, we hypothesise that a humanoid agent, trained us-
ing reinforcement learning, is capable of fixing common physically
implausible motion artefacts in unseen IMU-based motion capture
data. We seek to find answers to questions, such as what data mix-
ture is optimal for training, and which configurations of the state
and action spaces result in the most robust agent. In this section,
we discuss the experiments and their results that provide answers
to these questions.

4.1. Unseen Data Study

To determine how well our method generalises to unseen data, we
tested our agent’s performance on a set of motion data that was
not present during training. The test data consists of 13 IMU-based
recordings from four different actors, with different body types and
genders. The recordings were split into 27 segments of 300 frames
long. This was done to mitigate the effects of failure due to specif-
ically difficult movements in long recordings, which would other-
wise render large parts of the test data inaccessible. This was justi-
fied by the fact that we wanted to test the agent for overall capabil-
ities and not so much for surviving for the longest possible amount
of time.

The first row of Table 4 shows the performance in terms of our
metrics. For each of the 27 segments, 20 rollouts were collected all
starting at slightly different timings. The metrics were calculated
on a total of 540 rollouts. The standard deviations in the table give
a measure of how much the mean values differed between rollouts.

Figure 3 is a visual comparison of a ground truth asset with
heavy self-collisions, and the same asset reproduced by our agent.
The agent manages to faithfully keep key features and details of the
motion intact, while not exhibiting any self-collisions. Our method
also improves the CoM position of the character: in the last frame
of the sequence, the ground truth character can be seen to lean un-
naturally to a side, causing the projection of the CoM on the floor to
lie outside of the base of support of the feet. This is unusual for hu-
man motion and would cause the character to risk losing balance in

© 2024 The Authors.
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Figure 3: Collision fixing on a flawed animation. The image shows still frames from an animation before and after processing by our method.
The ground truth (pink) displays self-collisions at the legs in 3 of the still frames while the agent (green) does not. The agent also maintains
a more natural pose throughout the animation, while the ground truth leans in unnaturally in the last still frame, placing its centre of mass
far outside of its foot base.

Figure 4: A visualisation of our agent (green) applied to an animation containing foot skating (pink/red). The color gradient represents the
flow of time, where brighter is later in the sequence. The white lines are the character’s centers of mass (CoM) projected onto the horizontal
plane. Note how in the ground truth the character floats backward between frames 2 and 3, while our agent follows a much smoother CoM
trajectory.

a real-world setting [HGS05]. In contrast, our character has a more
natural, upright stance, causing the CoM projection to be within the
base of support.

Our agent was also successful in improving the root motion
of unseen ground truth animations that were flawed. In figure 4
we demonstrate an example, where the ground truth contained
heavy foot skating and a generally unstable CoM trajectory. Our
agent maintained a smoother CoM trajectory while eliminating foot
skate. For full visualisations of these and other examples, we refer

to the supplementary video which contains full side-by-side record-
ings of our agent with the ground truth.

4.2. Comparison to an Optical Reference

Our method is designed to improve IMU-based motion capture
recordings, and specifically to rid them of physical implausibilities.
However, to get an idea of how the resulting motions compare to
the near ground truth actor motion, we include a comparison to ref-
erence motion, captured with both an IMU and an optical motion

© 2024 The Authors.
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capture setup. The full comparison can be viewed in the supple-
mental video.

Even though the improvement of our result with respect to the
input IMU motion is evident in terms of nonphysical artefacts, the
optical reference still outperforms in terms of naturalness of mo-
tion. This limitation is not unexpected since the agent has no direct
incentive to improve the motion beyond removing artefacts. It still
follows the input IMU motion closely, thus any imperfections that
are not directly breaking the laws of physics will remain present in
the results. One such example is the end pose, as shown in figure
5. Our agent (green) ends up in a different and slightly unnatural
stance, with the left food behind the right and the toe touching the
heel, due to the IMU input (pink) ending in this stance.

4.3. Data Ablation Study

A question we sought to answer was to what extent the type and
mixture of the training data impact the performance of the agent.
Generally speaking, optical motion capture data is high quality and
low on noise while it is confined in recording space. IMU data, on
the other hand, is easy to record, untethered, and low cost, but this
comes at the expense of data quality and high noise. We trained

Figure 5: A comparison between the IMU based input motion
(pink, left), our result (green, centre), and an optical reference
(gray, right). Note how in our result the self-penetrating feet are
fixed, however the stance from the ground truth can not be recov-
ered, as this information is lost in the IMU input.

models on different mixtures and sizes of datasets and evaluated
them on our performance metrics.

The following 5 datasets were compared:
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Figure 6: Effects of training data modality in terms of performance metrics. The model trained using the IMU+Optical dataset outperforms
other dataset configurations on all metrics, except the 90% survival rate. The model trained exclusively on optical data scores lowest on all
metrics.
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1. IMU: This dataset contained 33 motions recorded with an IMU
based motion capture suit, totaling 28925 frames at 60 frames
per second. Some assets contained artefacts common to IMU se-
tups, such as jittery limbs, self-penetration and foot skate.

2. Optical This dataset contains 17 high-quality motion assets
recorded with high-end optical motion capture hardware. It con-
tained a total of 10345 frames at 60 frames per second.

3. IMU + Optical: This dataset is the combination of the above
two datasets (50 motion assets, 39270 frames at 60 frames per
second).

4. IMU Large: To rule that the IMU+Optical agent outperformed
the other agents on sheer data size, we also trained the single
source agents on larger datasets. The IMU Large dataset con-
tained 107 assets, with a total of 80102 frames of motion data.

5. Optical Large: This dataset contained 107 high-quality optical
based motion assets with a total of 68392 frames.

Each agent was trained for approximately 35000 epochs. To get
an indication of the agent’s general performance the agents were
evaluated with our test metrics on a dataset of unseen IMU-based
motion assets. The actors recorded in this dataset were not present
in the training data. The results for the best scoring epoch for each
model can be found in table 4. The results for all epochs are plotted
in figure 6, except for the agent trained on small optical data, as it
did not manage to reproduce most of the motions in the test dataset.

The agent trained on a mixture of IMU and optical-based data
outperformed the other agents, including those trained on larger
bodies of motion data. It held the highest score for episode length
ratio, max reward ratio, and root MSE per frame, while the IMU
Large agent scored slightly better on the 90% survival rate metric.

This led us to conclude that introducing different types of data
to the training dataset is beneficial and preferable over simply in-
creasing the dataset size. Our combined IMU and optical motion
capture dataset was about half the size of the IMU Large dataset,
yet still performed better. This superior performance is rooted in
two key factors: On the one hand, introducing different data types
makes the agent more robust to different types of input data, which

is crucial when evaluating unseen data. On the other hand, the high-
quality motion data aids the agent in compensating for flaws in the
IMU data.

The agent trained solely on optical motion data exhibited poor
performance. The likely reason is a substantial change in the input
data distribution across different motion capture sources. Conse-
quently, training on one source and inferring on another is ineffec-
tive.

4.4. Configuration Ablation Study

In order to find the most robust agent for inference on unseen data,
we compared different state and action configurations for our agent.
In [BCHF19] the authors showed how a reduced state and action
space was beneficial for their case (for simplicity called the Drecon
configuration here). However, we argue that a configuration with a
similar action space but with state information on all bones/joints
is beneficial for robustness against unseen data. We therefore tested
their proposed configuration against the configuration described in
the method section of this work. Finally, we tested whether us-
ing the full action space would be beneficial for our case. Figure
7 shows six frames of an animation comparing all three config-
urations as well as the ground truth. While our agent (the green
character) faithfully follows the reference motion, the Drecon con-
figuration falls (from frame 4) after a sharp turn. The agent with
full state and action space manages to perform the full motion, but
introduces blandness to the motion, as witnessed, for example, by
the lesser pronounced arm motion in frames 2, 4, 5 and 6.

Both the Drecon configuration and the full action space configu-
ration were tested against our performance metrics, using the same
test dataset as in the previous comparisons. The metric scores of
the best epochs for this comparison can be found in the lower sec-
tion of Table 4. The metrics over all training epochs are plotted in
Figure 8.

Our agent trained with full state information and reduced ac-
tion space (top row, IMU + Optical) performed best on all metrics,

1 2 3

654

Figure 7: A comparison of performance between configurations: The pink character is the ground truth, green is our configuration, blue has
reduced state and action spaces, and orange has full state and action spaces. Note how the blue character falls in frames 5 and 6, while the
orange character adds an increased blandness to the motion (frames 4 and 5).
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Figure 8: Effects of state and action space configurations in terms of performance metrics. The model trained using our full state and reduced
action space outperforms other configurations on all metrics, closely followed by the Drecon configuration from [BCHF19].

closely followed by the Drecon configuration. We attribute this ad-
vantage to the agent having more information to go on than the
Drecon agent, adding to its robustness against unseen data.

We confirmed the findings from [BCHF19] that using the full
action space is not beneficial and that it does not contribute to the
case of unseen data. This is due to the problem becoming unneces-
sarily complex for the policy, leading to reduced motion quality, as
witnessed by the lower max reward ratio. This is further confirmed
visually in the supplementary video.

5. Discussion and Conclusion

We demonstrated how motion mimicking using reinforcement
learning can be effectively deployed to purge faulty motion data
from physically implausible artefacts. Our agent was evaluated on
a test dataset of IMU based motion capture recording from mul-
tiple actors, that were not included in the training data. It could
reproduce sample motions faithfully and in their entirety in almost
90% of the cases while fixing artefacts such as self-collisions, foot-
skating, and jittery limbs. Moreover, it produced more realistic cen-
tre of mass trajectories.

For training of our agent we used a mixture of high and low qual-
ity motion data from different sources. This mixture benefited the

performance of our agent, making it more robust to unseen data.
Even when the homogeneous dataset was larger then the mixed
dataset, training with the mixed dataset yielded better performance.
Training exclusively on high quality motion data did not produce an
agent that was capable of generalising to unseen IMU based data.

Finally, we proposed a configuration of the observation and ac-
tion spaces that improved our agent’s performance on unseen data.
The agent had access to information about all its joints, while it
could only actuate a set of key joints. We compared this configura-
tion to other configurations, one where both action and observation
spaces were reduced, and one where the agent had access to the
full observation and action space. Our configuration showed the
best results during validation on unseen data.

6. Limitations

A limitation to our work is that we expect our agent to solve two
contradicting problems: on the one hand the agent is incentivised
to mimic motion closely through joint angle and position rewards,
while on the other we want it to deviate from close mimicking when
there is unnatural phenomena such as self-collisions. This nuance is
not explicitly represented in the reward setup, occasionally causing
our agent to try and mimic artefacts as close as possible without

© 2024 The Authors.
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breaking the laws of physics. This causes undesirable behaviours
in the output motion, such as stumbling or intermediate steps. As
a direction for future work, one proposed path to solving this con-
tradiction is combining conventional rewards with a reward from a
discriminator network, like the one proposed in [PMA∗21], to re-
ward the agent on a global style, rather than exactly mimicking the
reference motion.

We believe that this will also improve the overall quality of the
resulting motion. As simply adding high quality motions to the
training data is not necessarily enough to force high quality motion
output. As our comparison to optical reference motion showed, our
method is largely depending on the input data from the IMU based
motion capture hardware, even when that input motion is of low
quality in terms of naturalness of motion. The result is that any
flaws in the input motion that are not breaking any laws of physics
are mimicked by our agent.

As a final remark, we observe that our agent fails in about 10% of
the cases. This is likely due to out of distribution motions for which
the agent has not learned actions, or sudden sharp movements caus-
ing our agent to trip. A way to improve the agent’s robustness could
be to include a longer forward time horizon to the agent’s observa-
tion space. Currently the agent sees a single step ahead, multiple
steps ahead could enable the agent to foresee and prepare for future
events, thus increasing its robustness.
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